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Theorems of Existence and Multiplicity
for Nonlinear Elliptic Problems

with Noninvertible Linear Part (*).

ANTONIO AMBROSETTI (**) - GIOVANNI MANCINI (**)

dedicated to Jean Leray

Summary. - The paper deals with nonlinear elliptic boundary value problems with
linear part at resonance. Existence, nonexistence and multiplicity results are given
both for bounded and some unbounded nonlinearities, extending a preceding paper [1]
to the case in which the linear part has general f inite dimensional nullspace.

0. - Introduction.

Let Q c RN be a bounded domain with boundary L an uniformly
elliptic variational operator, Âk any eigenvalue of LU + Au = 0 with zero

Dirichlet data. In a preceding paper [1] we studied the nonlinear Dirichlet
problem

both for bounded and some unbounded nonlinearities, assuming 2,, be a
simple eigenvalue and proving existence and multiplicity results for (0.1).
It is our goal in the present paper to state similar results removing the
condition on the semplicity of the eigenvalue. As in [1] the idea of the

(*) Supported in part by CNR, GNAFA.
(**) Istituto di Matematica, Universita di Bologna, Piazza di Porta S. Donato 5,

Bologna, Italy.
Pervenuto alla Redazione il 18 Marzo 1977.
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proofs is to use a global Lyapunov-Schmidt method: (0.1) is equivalent to
a system of an equation on the Cokernel of ~ + Âk (solved by means of a
global inversion theorem) and a finite dimensional equation on the Kernel
of E + Âk. This latter contains the main contribute of the nonlinearity and
can be studied with bit more precision using elementary degree theory or
elementary critical point theory. With these techniques we state existence
and nonexistence theorems on (0.1) related with several previous papers
(see references listed in [1]; see also [8]). But besides to prove such results by
means of simple arguments, another purpose of this paper is to show that

in some cases (0.1) possesses multiple solutions. As far as we are concerned,
this kind of results are not studied before for such equations, with exception
of [2], where multiplicity results are given, but for odd nonlinearities, and [1].

The outline of the paper is the following. Section 1 contains the descrip-
tion of the problem and some preliminary lemmas, where the equation is
studied in the Cokernel. In § 2 it is stated the main existence result in the
case f is bounded. The existence of multiple solutions is investigated in § 3.
In § 4 we consider briefly the case of unbounded f. In sections 2-4 we as-

sume some bound on f’ in order to give the proofs as simple as possible.
In § 5 we show as this assumption can be eliminated by a more appropriate
use of the finite dimensional topological degree.

For brevity we will assume the reader is somewhat familiar with [1~
and we refer often to such paper.

1. - Position of the problem and preliminary lemmas.

We first describe briefly our problem. For more details see [1]. Let S2
be a bounded domain in RN with boundary 8Q and let L~’ = We

will denote by )) the norm in E, by 11-1B0 the norm in L2(Q) and by (, )m
(resp. (, )) the scalar product in E (resp. in L2). Let a()(,(3 = be

such that 3y &#x3E; 0 with

and set, for u, v E E

Let us consider the linear operator L : E - E defined by (Lu, v).= - (( u, v)).
L is a selfadjoint operator with infinitely many eigenvalues 0 C ~,1 ~ ~,2 ~ ...
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and a corresponding complete orthonormal system of eigenfunctions Ti.
Let us denote by Lk the linear operator defined by v)m= (LU, v)m +
-f- ,k(, v); it is known Lk is a Fredholm mapping of index zero. We will

suppose 2, is an eigenvalue of multiplicity p &#x3E; 1, namely

We set V = Ker Lk , its orthogonal complement in such a way that

.E = V EÐ Y1 and u E E can be put in the form u = v + w, where v E Y
and w c- V 1.

Let be a function which throughout in the paper will be
assumed to be measurable in x Vs E Rand C1 in s for a.e. x E SZ. In sec-

tions 1-3 we deal with bounded f. Precisely we assume:

HYPOTHESIS I:

If f satisfies (I), we can define a mappingh
E E, and F is Cl.

It is our purpose to study the follo~wing nonlinear Dirichlet problem:

PROBLEM. Given g E E, f ind u E E such that

To study (1.1) we use, as in [1], a global Lyapunov-Sclnmdt method. Let
us denote by P the .L2-orthogonal projection on V and set Q=I-P, where I
is the identity on E. Applying P and Q to (1.1) we obtain the following
system:

It is evident that:

LEMMA 1.1. Problem (1.1 ) is equivaclent to the system (1.2)-(1.3).

The following lemma studies (1.2). Since the proof is very close to those
of lemmas 2.2 and 2.3 of [1], we give here only the outline.

2 - Annali della Scuola Norm. Sup. di Pisa
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LEMMA :L.2. Let us assume (I) and let g c- E be fixed. Then Vv EV equa-
tion (1.2) has one solution EV..1.. Such is a 01 function of v and 3k
such that 11 wQ,, (v) c k.

PROOF. Consider the mapping Lkw + QF(v + w). By I-ii) and
using the variational characterization of the eigenvalues 2i, it is possible to
show such application is locally invertible in every point w EV..1.. Moreover,
since f is bounded, the mapping above is proper, and therefore it is a global
homeomorphism on V..1.. The last statements are easy consequence of the

fact that f is C’ in s and bounded. Q.E.D.

2. - Existence theorems.

In this section we state our main existence results. Let us introduce the

following symbols:

THEOREM 2.1. Assume (I) and let g c- E be given. Then there exists a

bounded set AQg cV such that (1.1) has solution provided Pg E More-

over A contains the set of Pg such that either

From theorem 2.1 it follows easily the following Corollary, which is related
with preceding results (see ref. in [1~) .

COROLLARY 2.2. If, besides the hypothesis above, f has limits f( -:1:. 00) =
= lim f (x, s), with f (- oo)  f(+ oo), then

1 ) a sufficient condition for (1.1 ) be solvable is that (2.1) holds;

2) if f (- oo)  f (x, s)  f (-~- oo) V(x, s) then (2.1) is also a ne-

cessary condition for (1.1 ) to be solvable.
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PROOF OF THE THEOREM. - By lemmas 1.1 and 1.2 we have to solve only
equation PF(v + w(v)) = Pg, where we indicated for brevity w(v) instead
of wQ,(v). We set

The mapping 1~: V - TT is continuous, y and since f is bounded is

bounded. Set = jT(V)y the first part of the theorem is proven. Next
we need a lemma.

LEMMA 2.3. Let us assume (I). If g c- E satisfies (2.1) (resp. (2.1’)) 3r

such that (v, 1’(v)) &#x3E; (vt Pg) (resp. (v, I’(v))  (v, Pg)) f or Ilvllo = r.

PROOF. We suppose (2.1) holds, and argue by contradiction. Then
= 11 v,, 11 o - oo and zn = Witb zn - z in V, 11 z,, ll,, = 1

such that

Consider

Since k in virtue of lemma 1.2, passing possibly to a subsequence,
we can assume a.e. in SZ; then dx E Q+(z) I while

VX E tn zn + win - - oo. Therefore by I-i) and the Fatou’s lemma, (2.3)
implies

On the other hand, since f is bounded and zn -z in V, it results

+ wn) zn - 0, where Q° = z(x) = 01 and therefore from (2.2)
Do

and (2.4) it follows:

which contradicts (2.1). If (2.1’) holds, we use, with obvious modifications,
lim sup instead of lim inf. Q.E.D.
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PROOF OF THE THEOREM COMPLETED. Let g satisfy (2.1). Then

by lemma above 3r such that (V, F(v) - Pg) &#x3E; 0 on = r. There-

fore Pg, Br, 0) ~ 0 and the equation r(v) = Pg has a solution in
Br = as required. The same arguments hold if g satis-

fies (2.1’). Q.E.D.

3. - Multiplicity results.

If f(+ oo) = f(- oo) = 0 theorem 2.1 or corollary 2.2 gives no informa-
tions. The following theorem studies the solvability of (1.1) in such a case
and shows that multiple solutions occurr. For other related results we refer
to [2], [3], [4] and [1-Th. 5.2]. In theorem below we will assume the fol-

lowing unique continuation property holds:

(UCP) for every Z E V, z =/= 0 the set {x E Q: z(x) = 01 has zero .Lebesgue 

THEOREM 3.1. Let us assume (I) and (UCP). Moreover we suppose

f(+ oo) = f(- oo) = 0 and

Let g c- E be given. Then :

1) there exists 0 such that (1.1) has at least one solution provided
II-PgIIo  J

2) if 0  (I pg II o  BQg then (1.1 ) has at least two distinct solutions.

PROOF. We follow the same procedure as in sections 1-2. The problem (1.1)
is equivalent to (1.2)-(1.3). Solved (1.2) we consider the equation = Pg.
-Using (3.1 ) we will actually show 3r: &#x3E; 0 for 11 v ll,, = r.
In fact, if not, 3tn = Ilvnllo - oo such that

Setting, as in lemma 2.3, we can suppose moreover

a.e. in S~. Using (UCP) it follows
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Since tnzn + wn - + oo (resp. - oo) provided x E Q+(z) (resp. x E S2-(z)),
by I-i) and (3.1) it follows the integral above tends to gIS21.

Moreover f bounded, and in .L2 imply jf(vn + wn) wn
s

tends to zero. Then lim sup (vn, 7 F(vn)) , a contradiction. Therefore

such that for it results Br , and 1) follows.
Now we prove 2). Let 6 be such that and denote by Be

the ball in V of radius e. Since f (-E- oo) = f(- oo) = 0 it follows easily
3r’&#x3E; r such that T(oBr’) c * Let us consider v EY with 0 w T(V), which
is possible because is bounded. Then deg(T, v) = 0. But, since

the topological degree is constant on every connected component of

V - T(oBr’) (see for ex. [5, pag. 72]), we obtain

provided 6  Therefore for we obtain

and the equation r(v) = Pg has at least another solution in Br. - Br . This

completes the proof. Q.E.D.

REMARK 3.2. It is possible to show the set cV where the equation
r(v) = Pg has solutions, is closed. In fact 0 is an interior point because 2)
of theorem above. Let an E A~9 be such that an -~ Pg # 0, and denote by vn
a solution of = an. If Ilvnllo -~ oo we should have an ~ 0 ; then vn is
bounded and we can extract a subsequence v., converging to some v. Evi-

dently = Pg.

Now we come back to the equation Zku + Fu = g. In what follows

we take g = 0 and use the variational structure of (1.1). In fact let be

the solution of (1.2) with g = 0. If we set

it is easy to show that grad H(v) = ho(v) and thus the solutions of the
equation ho(v) = 0 are the critical points of .g on the p-dimensional space V.
We remark that H is even whenever f is odd as function of s : in fact in such
a case the solution zvo(v) of (1.2) is an odd function of v.

In the following proposition we take f (o) = 0 and look for nontrivial
solutions of (1.1); elementary critical point theory will enable to find them,
improving the results of Proposition 5.1 of [1].
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THEOREM 3.3. Let us assume (I), and take f independent of x, with

f (0) = 0. Moreover we suppose:

Then the equations + Fu = 0 has at least two nontrivial solutions. If f
is odd, then such equation has at least p pairs of nontrivial solutions.

PROOF. By (3.4) the functional H satisfies, as in Lemma 2.3,
(v, grad H(v)) = (v’ To(v)) &#x3E; 0 for Ilvllo sufficiently large and thus g possesses
a minimum vm interior to some Br. Since g = 0, we obtain who(0) = 0 and

= To(0) = 0. Moreover since it follows easily N"(0) = I iden-

tity in V, by (3.3) v = 0 is a maximum for 0. Since the index

of vm is 1 while that of 0 is ~ 1, and the index of H on Br is 1, H must
have at least another critical point in Br, 7 which leads to the second non-
trivial solutions.

Now we take f odd; then H is even and the same arguments above show

(~7~))0 if sufficiently small. Then an application of the
Lusternik-Schnierelman theory of critical points in finite dimensional space
leads to obtain p pairs of critical points of .g in Br - This completes
the proof. Q.E.D.

REMARK 3.4. The same results are true if f’(0) &#x3E; 0 and

REMARK 3.5. In the case of odd f our results are related with those of [2].
Moreover using variational arguments as above, it is possible to study equa-
tion (1.3) assuming on f conditions like those of papers [6], [2]. For ex.,
for general f (x, s), if we assume

then the functional H(v) takes arbitrary large values for large and H

possesses a minimum which leads to a solution of (1.3). But we do not

carry into details such arguments.
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4. - Existence and multiplicity results for unbounded nonlinearities.

In this section we deal with problem (1.1) with 2,, = ~i and f un-
bounded. We will take Â1 = ... _ ~,p C and assume

HYPOTHESIS II:

As in section 1, it is possible to define, using (II), a mapping F : E --&#x3E; E

putting = ( f (x, u), ip) and F is Cl.

Even if in [1] we consider several cases concerning the asymptotic be-
haviour of f at oo, we will limit ourselves to consider the case f(- oo) = + oo,
f(+ cxJ) = - 00. 

°

THEOREM 4.1. Let us assume (II), (UCP) and f(- oo) = -~- oo,
f ( -E- oo) = - oo . Then for every gEE the problem

has at least one solution.

PROOF. Since the proof is essentially the same as in previous theorems,
we will give only the outline. The system (1.2)-(1.3) with k = 1 is equiv-
alent to (4.1). Equation (1.2) can be uniquely solved by monotonicity ar-
guments as in [1, lemma 7.1]. Equation (1.3) leads to a finite dimensional
equation = Pg. Also in this case it is possible to show that Vg E E 3r
such that (v, r(v) - Pg)  0 for = r. In the present case we will use
the arguments of lemmas 8.3 and 8.5-i) of [1]. In conclusion dg T(v) = Pg
has at least one solution, as required. Q.E.D.

The following is a multiplicity result about (4.1). For the proof we use
the same arguments of 3.3 and 3.4

THEOREM 4.2. Let us assume (II), (UCP) and f(- oo) = + 00,
f(+ oo) _ - oo . Moreover take g = 0, f independent of x, with f(0) = 0.
If / (~) &#x3E; 0 then (4.1 ) has at least two nontrivial solutions. If f is odd then (4.1 )
has at least p pairs of n6ntrivial solutions.
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5. - Further remarks on existence.

In sections above we have assumed some conditions on f’, namely hypo-
thesis I-ii) and II-ii). We will show here how it is possible to eliminate
such assumptions.

THEOREM assume (UCP), I-i) and that 3c such that f 8(x, s)1 c c
same conclusions of theorem 2.1 are true.

PROOF. Let m be such that f $(x, 8) + À*~  const. C ~,m+1, and set

9 = span ..., Denoted by P the projection and = I - P
the projection on ~y we pose u = lY + 16, with and We

project equation (1.1 ) on 9 and 91 and obtain the following equivalent
system :

For we can solve (5.1) exactly in the same way as in Lemma 1.2 and
we denote by = such a solution. We put in (5.2) and ob-
tain the finite dimensional equation = Pg, where T(v) = +
+ + To solve this equation we need a modification of lemma 2.3.

LEMMA 5.2. denote the projection on 

Then 3r such that if g satisfies (2.1) then

where

PROOF OF THE LEMMA. Let us consider the homotopy T: f7 x[0~ 1] 2013~
defined by 

--

We claim that 3r such that T (v, t) ~ 0 for 0 ~ t ~ 1. In fact,
if not, there are sequences ~ 00, tn ~ t E [0, 1] with T (vn , tn ) = 0,
namely (denoted wn = w(vn)):
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From (5.4) it follows

where zn = can be assumed to converge to some ~~0.
But the second term in (5.5) tends to 0 because F is bounded and then

both and tend to zero because they are orthogonal. There-
fore it follows Z~==0~ namely As consequence 
and thus 1 = 1. Now we multiply (5.4) by and obtain

Passing to the limit in (5.6), since - z and tn --* 1, we obtain in
the same way as in Lemma 2.3

which contradicts (2.1). Then the claim is true and T is an admissible

homotopy on B~ with T(’, 0) = L + n, T(’, 1) = .1~ - Pg. Therefore (5.3)
follows. Q.E.D.

PROOF OF THE THEOREM 5.1 COMPLETED. Since deg(L + n, Br, 0) =1= 0,
lemma 5.2 implies Br, 0) ~ 0 and then the equation =Pg
has a solution, as required. Q.E.D.

REMARK 5.3. The same arguments apply to the case of unbounded non-
linearities, with the same modifications needed in theorem 4.1.

With respect to the multiplicity results the same improvements hold.
We will limit ourselves to consider theorems 3.3-4.2, showing that actually
the number of nontrivial solutions depend on the intertwinning of f’ with
the spectrum of L. The following improves theorem 3.3.

THEOREM 5.4. Let us assume I-i ), f independent of x, f odd and ~ c.
Moreover we suppose (3.4) holds acnd

Then the equation

has at least l + p pairs of nontrivial solutions.
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PROOF. Let us denote, with the same symbols of theorem 5.1,

To study h we need a lemma, which is essentially the same of th. 1.9 of [2]
but in a finite dimensional setting.

LEMMA 5.5. Let h : R be a C2 even functional with h(O) = h’(0) = 0.
Let Xo, X, be subspaces of .Rm with If h
satisfies (P - S) (*) and

product and 1.1 [ the euclidean norm);

then h has at least I - j pairs of critical points.

PROOF OF THE THEOREM COMPLETED. Set Xo = span {9Jl, ...., 
Xl = span ..., 7T-19 we prove Lemma 5.5 is applicable. Let vn be such
that = + + wn ) - 0; if oo then, since f is

bounded, with zn = ~ z. Therefore Z E Ker Lk and so

which contradicts (3.4). Then 9,, is bounded and h satisfies (P - S). Now
we prove 5.5-i) holds. If not 3VnEXo, = 

such that lim inf + If z E Ker Lk we should
have, by (3.4) which jointly with 
leads to a contradiction. If z 0 Ker Lk we have

Since f is bounded and tn - oo we obtain again a contradiction and 5.5-i)
follows. Moreover h"(0) = Lk + f’(o)l, 1 identity on V, and then Vv E X,,
(5.7) implies

which proves 5.5-ii). Thus lemma 5.5 leads to the required result. Q.E.D.

(*) It is well known (P - S) means: every an with h(a,,) bounded and h’(an) - 0
has a converging subsequence.
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REMARK 5.6. Theorem 5.4 is related to theorem 2.22 of [2] where I = 0
is taken.

If f is unbounded we can obtain the following improvement of theorem 4.2.
Below we will assume, to avoid technical difhculties, (UCP) holds for

every 

THEOREM assume II-i), (UCP) f independent o f x,
odd and with f ’(s)  c. Moreover we suppose f( - 00 ) = 00, f (-f-oo) = - 00, and

Then the equation LI u + Fu = 0 has at least l + p pairs of distinct nontrivial
solutions.

PROOF. We will indicate only the differences with respect theorem 4.2.
Let m be such that f’ (s) -E- ~,1  Âm+1 and f = span ... , as in the-

orem 5.1. In view of the application of lemma 5.5 we set Xo = V,
X, = span {991, ..., g~ ~+p~ and

The 5.5-ii) can be proven exactly in the same way as in theorem before. To
show i) we assume by contradiction that -~ oo and zn -z, 

- = 1 with

Now (Llzn, zn) ~ 0 while the (UCP) on all F and f (- 00) _ + 00,
f (-E- oo) = - oo, I imply fl(t. z. + wn) zn - - oo, a contradiction. The same
arguments show (P - S) holds and then the conclusion follows from

lemma 5.5. Q.E.D.

REMARK 5.8. Let us consider the problem Cu + Âku + f(u) = 0, u = 0
on 8Q. Setting f,(u) = (~~ - ~,1)u -~- f(u), we can apply theorem 5.7 to equa-
tion Cu --f- Àiu -f- fo(u) = 0 provided f(u)/u -~ - oo as Jul - oo and f’(0) +
+ Âk &#x3E; ~,z+k+p. In this way we can obtain multiplicity results for equation
above according to the statements of [7]. However theorem 5.7 improves
(for Âk = ~,1) the results of that paper.

Added in proofs. Prof. L. Nirenberg pointed out our existence theorems are related
to some results of a recent paper by H. BREZIS and L. NIRENBERG, Characterizations
of the ranges o f some nonlinear operators and applications to boundary value problems,
to appear on Ann. Scuola Norm. Sup. Pisa.
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