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It is proved that the zeros of the partition function of an extended Ising model lie on 
a unit circle in the fugacity piane under certain conditions. Each spin assumes a general value. 
The key point of the proof is to derive a simple condition sufficient for zeros of polynomials 
to lie on a unit circle. Conjectured theorems on the Heisenberg model are also discussed. 

§ 1. Introduction 

The critical behavior of the Ising model with SpIll t has been investigated 

III terms of Lee-Yang's theorem concerning the distribution of the zeros of the 
canonical partition function in the fugacity plane.1

)-4) The distribution of the 

zeros in the complex temperature plane was also used to discuss the nature of 
critical points. 5)-1l) 

In this paper, the Lee-Yang theorem is generalized to an extended Ising 
model with applications to dilute fertomagnetism. 12

)-14) We discuss an idealized 

annealed system in which the temperature and external parameters are varied 

infinitely slowly and true thermal equilibrium is realized. This annealed system 
is formulated by introducing a generating function in the case of Ising spins.13

),14) 

Consider a crystal lattice whose l~ttice points are named i= I, 2···N. On each 
lattice point there is either an Ising spin of S = 1/2 or a nonmagnetic atom. The 

generating function of this system is given by 

(1·1) 

where 

and h=mH/kT. 

In the above Equation (1·1), Sj = 1 or -1 corresponds to Ising spin (up or 

down) and Sj = 0 to a nonmagnetic atom. Since s/ = 1 fo~ spin state and 0 for 
nonmagnetic atoms, the parameter A is determined as a function of concentration 
p of Ising spins from the equation 

~ :A log EN=<s/) =p . (1· 2) 
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Extending the partition function (1·1) to the form 

E N ( {X'ij}; z; {Sj}) =Tr exp(~ KijSiSj + ~ 'Ajs/+h~sj); 

(1· 3) 

we find the following theorem. 

Theorem I-A: In the ferromagnetic system represented by Eq. (1· 3), all 

the roots of the equation 

(1· 4) 

are on the unit circle in the complex z-plane for Sj = t, 1 or i, and for 'Aj>O. 

Sj indicates a spin quantum number at the j-th lattice site, and Sj is the z com

ponent of the spin operator (Sj=Sj, Sj-I, "', -Sj). 

Since the case Aj = 0 corresponds to the usual Ising model, this theorem 
includes the results obtained in previous papers. 15

)-17) This theorem can be easily 

extended to' the case of general spin in the following way. 

Theorem I-B: All the roots of Eq. (1·4) for general spin Sj lie on the 
unit circle for 

A,> AO(S.) 
J- J' (1· 5) 

where the lower bound 'A 0 '= AO (S) is given by the largest real root of. the equa

tion 

exp{'A°S2} =exp{'A°(S-IY} +exp{'A°(S-2)2} + ... 

+exp{'A°(S- [S] +IY} + (S- [S] +t)exp{'A°(S- [S]Y}' (1·6) 

where [S] = S for even half-spin Sand [S] = S - t for odd half-spin S. The 

numerical values of AO(S) are shown in Table. 

The above theorem I-B is derived as a special case of the following theorem. 

Theorem I-C: All the zeros ,of the partition function 

N [SjJ 
=Tr exp(~ KijSiSj + ~ ~ 'Aj,ks/k+h~ Sj) 

j t=l . 
(1· 7) 

lie on the unit circle in the complex z-plane for Kij>O if the parameters 'Aj,k 

= Ali; (Sj) (or Ak (S) = Ak) satisfy the inequality 

(1· 8) 

For purposes proving the above theorems, it is convenient to introduce the 

following function In of the varia bies Zl) "', Z'(l,: 
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1248 M. Suzuki 

(1·9) 

which 'corresponds to the partition function in an inhomogeneous field with 

and 

By expanding the above function with respect to the variable. Zb the following 
recurrence formula is easily obtained: 

(1·10) 

where 

(1·11) 

The following simple relations hold in general for real parameters {Xij} and 
. {Aj,!,:}: 

( i ) 

(ii) 

in * ( {Zj}; {Sj}; {Aj,!,:}) = in ( {z/}; {Sj}; {Aj,k}) ' 

in ( {II Zj}; {Sj}; {Aj,k}) = in ( {Zj}; {Sj}; {Aj,k}) ' 

. (1·12) 

(1·13) 

(iii) if IZ21 = ... = IZnl = 1, then the following symmetry relations 

hold: 

(1·14) 

It IS clear that 

(1·15) 

Therefore, Theorem I-C is an I immediate consequence of the following theorem: 

Theorm II: If IZll >1, "', IZnl >1 and 

in ( {Zj}; {Sj}; {Aj,lc}) = 0, (1·16) 

then 

for O<xij<l, and on the condition (1· 8). 
In the following sections, we assume that all the x's are different from l. 

The proof can then be easily generalized to include the case when one or more 
of the x's are equal to 1. We shall prove Theorem II by mathematical induction. 
in the same way as Lee and Yang. 

§ 2. Theorems on the zeros of polynomials 

In this section, we describe some theorems useful for proving Theorem II 

or its extension (if possible). The lemma abo\lt ~Qnditions sufficient for zeros 
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of polynomials to lie on a unit circle, which has been obtained III prevIOUS 
papers,I5),16) can be generalized in' the following form 

Theorem III: Consider the following equation: 

(2 ·1) 

then all the roots of Eq. (2·1) have the absolute value equal to 1. 
This is ea~ily derived from the following two theorems. 
The Schur-Kohn-Yamamoto theorem :18) The condition necessary and suf

ficient for all the roots of Eq. (2 ·1) to have the absolute value equal to 1 is 

that 

(i) aOale * = am-leam * and that (ii) all the roots of the equation f' (z) = ° satisfy 
the inequality Izl <1. 

Since lam-lei = ialel on the condition (i), Theorem III can be derived by appli

cation of the following theorem to the" above condition (ii). 
Theorem :19) If the coefficients in .Eq. (2 ·1) satisfy the inequality 

(2·2) 

then none of the roots of Eq. (2 ·1) has an absolute value larger than 1 (Izl <1). 
This is easily proved from Rouche's theorem and the continuity of the roots 

with respect to the coefficients. 
The following theorem will be useful in extending theorem II, for example, 

to the region Aj,le>O, including the usual Ising model" with general SpIll. 

Theorem 11/: The condition necessary and sufficient for all the roots of 

Eq. (2 ·1) to have 'an absolute value equal to 1 is that (i) aOale * = am-leam * and 
(ii) the following hermite matrix Sm is semi-positive definite: 

(2·3) 

where 

Sm= (Sij); (i,j=O, "', m-2), 

{:t {(m - kYIalel2 - (k + 1)2Iarn _le_11 2} 
Sit = k=o 

Sm-i-2,m-i-2 for i> [m/2 -lJ, 

for i<[m/2-iJ, 

and 

{ 
m (m + i - j) ao * aj_1 - (j - i + 1) a;'+i-j-lam-1 

Stj= ' 
SJi for i>j. . 

for j>i, 

(2·4) 

Some examples of the matrix Sm and their pril~cipal minor determinants are shown 
m Appendix A, 
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1250 M. Suzuki 

Theorem IV is a simple version of the Schur-Kohn-Yamamoto theorem usmg 

the following Schur-Kohn theorem. 
The Schur-Kahn theorem: The condition necessary and sufficient for none 

of the roots of Eq. (2 ·1) to have the absolute value larger than 1 is that Bezout's 
matrix for Eq. (2·1) is semi-positive definite. l9

) 

The following theorem is also useful for proof of Theorem II extended to 

a wider region in the case n = 1 (see Appendix B). 

The Enestrom-Kakeya theorem: If the coefficients of Eq. (2 ·1) satisfy the 
relation, 

(2· 5) 

then none of the roots of Eq. (2 ·1) has the absolute value larger than 1 (izi <1). 

§ 3. Proof of Theorem II 

For the purpose of proving Theorem II by mathematical induction, it is· 

convenient to set up the following assertion: 

Assertion A: There exist roots of Eq. (1·16) with respect to the variable 

ZIG for IZll >1, ... , IZIG-li >1, IZIG+ll >1, .. ·Iznl >1. 
Clearly, Assertion A holds for n = 1. Theorem II is also easily proved for 

n = 1 from the application of Theorem III to the equation 

(3 ·1) 

. Assume that Theorem II and Assertion A are true for n = m -1. Then, it 

is shown that Assertion A holds for n = m. The coefficient of the highest order 

in Eq. (1·16) with respect to the vari~ble ZIG IS gIven by 

(3 ·2) 

and 

Consequently, the coefficient (3·2) does not vanish from the assumption that 

Theorem II is valid for n = m -1. This means that Assertion A holds for n = m . 
. We show that it leads to contradiction to assume that Theorem II is not 

true for n = m. 
Under the above assumption that Theorem II IS not true for n = m, there 

exists a set of z's equal to Zl, ... , Zm such that 

(3·3) 

and 

(3·4) 
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We can repeat the Lee-Yang procedure in a generalized fonn as follows. Keeping 

Zg, .. ·Zm fixed and regarding Z2 as a function of Zl defined by (3·3), one obtains 

a limit .2',2 for Z2 as Zl-?OO, which is given by the equation, 

(3· 5) 

from Assertion A for n = m -1. Under the assumption that Theorem II is true 

for n=m-1, one obtains 

Therefore, keeping Zg, ... Zm fixed one can increase [2:1 [ and define Z2 as a con

tinuous function of Zl. Since by (3·4), Z2 starts to be >1 in absolute magnitude 

and tends to a limit <1 in absolute magnitude as Zl-?OO, there must be a value 

equal to z/ so that Z2 assumes a value z/ equal to 1 in absolute magnitude, i.e. 

fm(z/, z/, Zg, ···Zm; {Sj}; {Aj,Tc}) =0, 

and 

(3·6) 

We can fix z/, Z4, ... Zm and regard Zg as a function of z/ and· follow the same 

procedure as mentioned above. Continuing this way we finally get a set of values 
z/', ... zm" such that 

and 

[z/'[>l, I Z/' [ = ... = [zm" [ = 1 . 

On the other hand, we prove tha t if 

[Z2 [ = ... = [zm [ = 1 and 

fm ( {Zj}; {Sj}; {Aj,Tc}) = 0 , 

(3· 7) 

(3 ·8) 

then [ZI[ = 1 under the condition (1· 8). In the same way as III the prevIOUS 
papers,I5),16) we find that a function 

[ fm-I (t 2Z2, ... tmzm; {Sj}; {Aj,Tc}) [2 

IS a monotonously increasing function of all tTc for t Tc> 1 and [Z2 [ = ... = [Zm [ = l. 
Therefore, the following inequality is obtained: 

[ fm-1 ( {xi/zj}; {Sj}) I >1 fm-l ( {xij1c' Zj}; {Sj}) [ 

(3 ·9) 

Consequently, in terms of Theorem III and the recurrence formula (1·10), one 

finds that if [Z2[ = ... = [Zm[ = 1 and Eq. (3·8) holds, then [ZI[ = 1 under the con
dition (1· 8) . 

Thus 7 the above two results contradict one another, which means that 
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1252 M. Suzuki 

Theorem II must hold for n = m. This completes the proof of Theorem II by 

induction. 

§ 4. Conjectured theorems on the Heisenberg model 

As pointed out in the case of small lattices,2),20),21) the extension of the Lee

Yang theorem to Heisenberg ferromagnets seems to be possible in the following 
way. 

Conjectured Theorem A: In the ferromagnetic Heisenberg model (Jij> 0) , 
all the roots of the equation 

(4·1) 

are' on the unit circle in the complex z-plane. 

Remark that it is possible to define the function fn of the variables Zt, .. 'Zn 
as in the Ising model: 

(4·2) 

Since the Zeeman term ~S/ commutes the exchange interaction ~KijSi' Sj, we 

obtain the relation 

(4·3) 

The function (4·2) can be r'ewritten as 

(4· 4) 

where 

n 

=Tr' {<klexp(~ Kijs'i·Sj) Ik) II zj-Si~} (4·5) 
. j=2 

From the inversion symmetry of the Hamiltonian in the spin space, the following 

relations hold in general for real parameters {Kij}: 

tions hold; 

( i ) 

( ii) 

(iii) 

(iv) 

fn * ( {z j}; {S j} ) = fn ( {z j *}; {S j} ) , 

fi~ ( {II Zj}; {Sj}) = fn ( {Zj}; {Sj}), 

gn*(k; {Zj}; {Sj}) =gn(k; {z/}; {Sj}), 

gn(k; {I/zj}; {Sj}) =gn(-k; {Zj}; {Sj}), 

(4· 6) 

(4·7) 

(4·8) 

(4·9) 

(v) if IZ2\ = '" = IZnl = 11 then the following symmetry rela-

1252 M. Suzuki 

Theorem II must hold for n = m. This completes the proof of Theorem II by 

induction. 

§ 4. Conjectured theorems on the Heisenberg model 

As pointed out in the case of small lattices,2),20),21) the extension of the Lee

Yang theorem to Heisenberg ferromagnets seems to be possible in the following 
way. 

Conjectured Theorem A: In the ferromagnetic Heisenberg model (Jij> 0) , 
all the roots of the equation 

(4·1) 

are' on the unit circle in the complex z-plane. 

Remark that it is possible to define the function fn of the variables Zt, .. 'Zn 
as in the Ising model: 

(4·2) 

Since the Zeeman term ~S/ commutes the exchange interaction ~KijSi' Sj, we 

obtain the relation 

(4·3) 

The function (4·2) can be r'ewritten as 

(4· 4) 

where 

n 

=Tr' {<klexp(~ Kijs'i·Sj) Ik) II zj-Si~} (4·5) 
. j=2 

From the inversion symmetry of the Hamiltonian in the spin space, the following 

relations hold in general for real parameters {Kij}: 

tions hold; 

( i ) 

( ii) 

(iii) 

(iv) 

fn * ( {z j}; {S j} ) = fn ( {z j *}; {S j} ) , 

fi~ ( {II Zj}; {Sj}) = fn ( {Zj}; {Sj}), 

gn*(k; {Zj}; {Sj}) =gn(k; {z/}; {Sj}), 

gn(k; {I/zj}; {Sj}) =gn(-k; {Zj}; {Sj}), 

(4· 6) 

(4·7) 

(4·8) 

(4·9) 

(v) if IZ2\ = '" = IZnl = 11 then the following symmetry rela-
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Un-1(-k; {Zj})=U;_l(k; {Zj}); 

(k=Sb Sl- I , "', -Sl)' (4·10) 

Therefore, instead of proving conjectured Theorem A, we may verify the fol

lowing theorem: 

Conjectured Theorem B: Iffn({zj}; {Sj}) =0 and IZ11>I, "', IZnl>I, then 

IZ11 = IZ21 = .... = IZnl = 1 for Kij>O. 
For simplicity, we discuss the case of all Sj = t. In terms of the symmetry 

relation, 

Un-l ( - t; {Zj}) = U;-l(t; {Zj}) 

for IZ21=I, "', IZnl=I, one finds that if jZ21=I, "'lznl=I, and if fn-1({Zj}) =0, 
then _IZll =1 .. It is shown that conjectured Theorem B holds in the cases n ~ 1 
(trivial) and n = 2 (Appendix C). As a result of the above discussions, the 

proof of conjectured Theorem B by mathematical induction as in the Ising model 
reduces to the verification of the following assertion: 

Assertion B: If Um-1(Sl; Z2, ",zm) =0 and iZ21>I, "', IZml>l, then 

IZ21 = IZ31 = ... = IZml =1 

under the assumption that Theorenl B is valid for n = m -1. 

It seems difficult to prove Assertion B in general, because the relation 

between the functions fn and Un is not so simple· as in the Ising model. 

§ 5. Discussion 

If we apply the same argument to dilute ferromagnetism in terms of Theorem I 
as in previous papers,2)-4) we find that the results predicted by the scaling law22) 

are valid even in the case of dilute ferromagnetism. 

Extension of Theorem I is expected to be possible to the region Aj,k>O, 
including the usual Ising model with general. spin. According to Theorem IV, 
the above problem reduces to the verification of the following assertion: 

Assertion C: If Theorem II is valid in the case of 1Z = m -1 for Aj,k>O, 
then the hennite matrix S is semi-positive definite for IZ21 = ... = IZ7I~1 = 1. 

The relevant theorem of the usual Ising model with general spin (8 = t, 1, 
! and 2) has been confirmed by a high-speed computer.10),23) 

In the ferromagnetic Heisenberg model, Theorems A and B are intuitively 

expected to hold from the consideration that the interaction -J1jS 1 • Sj in the 

function fln-1 after tracing in the spin space 8 1 will play a role of a positive 
effective field as was shown in the case n = 2 (see Appendix C). 

It should be noticed that Theorem I holds in the case when values of Bohr 
magneton differ at each lattice point, including non-magnetic atoms. This is 

ec:sily confirmed from Theorem II, putting Zl = ZPl, "', Zn = zPn (Bohr magneton 
mj=Pj1n: all pj>O, and IZjl<I corresponds to Izl<l, respectively). 
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Appendix A 

Hermite matrix Sm 

Matrix S2>0 corresponds to the inequality lall<2Iaol.· S3 IS gIven by 

s, ~ (91 ".1 ' ... 1 a, 1 ' 
6aOai * - 2ala2 * 

6aO*al - 2al*a2) . 

91 ao 12 - 1 a21 2 

Therefore, the condition S3>0 is represented by 

and 

(A· 1) 

(A·2) 

(A·3) 

where we have used a2=al* and a3=aO*. In the case n=4, the matrix S4 IS 

given by 

4 (41 ao 12 + 21 al1 2 - a22) 

(*) 

Appendix B 

Extension of Theorem II in the case n = 1 

(A·4) 

For brevity, we discuss the case of AI,1 = A and AI,2 = ... = 0, which corresponds 

to Theorem I-B. Since 

(B· 1) 

with 

ak= exp {A (S-kY}, 

we obtain the following inequality: 

28ao> (28-1) al>··· >a2S-I>0 (B·2) 

under the condition 
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A'>A>-A"; A"=_I __ ln(-~) 
2S-I 2S-I 

and 

. A'=min {In(2/I) In (3/2) ... (S- [S- -~J)ln--[~J---}, 
2S-3 ' 2S-5' , 2 [S]-I 

(B·3) 

Then, none of the roots of the equation f' (z) =0 have an absolute value larger 
than 1 on the condition (B· 3) in terms of the Enestrom-Kakeya theorem. There
fore, all the roots of Eq. (B ·1) have the absolute value equal to 1 for A'> A> A" 
in term~ of the Schur-Kohn-Yamamoto theorem. On the other hand, it is easily 
confirmed (see Table) that 

for 2<S<9/2. (B·4) 

Table. }.O (S) is a lower bound in Theorems I and II. }.~ff, is an effective lower bound. }., (S) is 
an upper bound appearing in Appendix B, which should be compared with }.o (S). 

S 
I 

}.o (S) 

1/2 -00 

1 -ln2 

3/2 0 

2 .1221 

5/2 .1406 

3 .1346 

7/2 .1229 

4 .1108 

9/2 .0997 

5 .0900 

11/2 .0817 

6 .0745 

13/2 .0683 

7 .0629 

15/2 .0582 

8 .0540 

17/2 .0504 

9 .0472 

19/2 .0443 

10 .0418 
----- ------ --~--~-~---- - - -- -

00 0 

}.°eff=S2}.O 

-00 

-ln2 

0 

0.49 

0.88 

1.21 

1.51 

1.77 

2.02 

2.25 

2.47 

2.68 

2.88 

3.08 

3.27 

3.46 

3.64 

3.82 

'4.00 

4.18 
------

00 
I 

}., (S) 

In 2=.6932 

(In 2) /2 = .3466 

(In 2) /3 = .2311 

(In 2) /4= .1733 

(In 3/2) /3 = .1352 

(In 3/2) /4= .1014 

(In 3/2) /5 = .08109 

(In 3/2) /6 = .06758 

(In 4/3) /5= .05754 

(In 4/3) /6 = .04791 

(In 4/3) /7 = .04110 

(In 4/3) /8 = .03596 

(In 5/4)/7=.03188 

(In 5/4) /8 = .02789 

(In 5/4) /9= .02479 

(In 5/4) /10= .02232 

(In 6/5) /9 = .02026 

o 

Consequently, Theorem I-B holds for A> - A" and S<9/2 In the case n = 1. 

Appendix C 

Proof of Theorem B for n = 2 

The function gl (k: Z2) is given by 

Theorems on Extended Ising Model with Applications 1255 

A'>A>-A"; A"=_I __ ln(-~) 
2S-I 2S-I 

and 

. A'=min {In(2/I) In (3/2) ... (S- [S- -~J)ln--[~J---}, 
2S-3 ' 2S-5' , 2 [S]-I 

(B·3) 

Then, none of the roots of the equation f' (z) =0 have an absolute value larger 
than 1 on the condition (B· 3) in terms of the Enestrom-Kakeya theorem. There
fore, all the roots of Eq. (B ·1) have the absolute value equal to 1 for A'> A> A" 
in term~ of the Schur-Kohn-Yamamoto theorem. On the other hand, it is easily 
confirmed (see Table) that 

for 2<S<9/2. (B·4) 

Table. }.O (S) is a lower bound in Theorems I and II. }.~ff, is an effective lower bound. }., (S) is 
an upper bound appearing in Appendix B, which should be compared with }.o (S). 

S 
I 

}.o (S) 

1/2 -00 

1 -ln2 

3/2 0 

2 .1221 

5/2 .1406 

3 .1346 

7/2 .1229 

4 .1108 

9/2 .0997 

5 .0900 

11/2 .0817 

6 .0745 

13/2 .0683 

7 .0629 

15/2 .0582 

8 .0540 

17/2 .0504 

9 .0472 

19/2 .0443 

10 .0418 
----- ------ --~--~-~---- - - -- -

00 0 

}.°eff=S2}.O 

-00 

-ln2 

0 

0.49 

0.88 

1.21 

1.51 

1.77 

2.02 

2.25 

2.47 

2.68 

2.88 

3.08 

3.27 

3.46 

3.64 

3.82 

'4.00 

4.18 
------

00 
I 

}., (S) 

In 2=.6932 

(In 2) /2 = .3466 

(In 2) /3 = .2311 

(In 2) /4= .1733 

(In 3/2) /3 = .1352 

(In 3/2) /4= .1014 

(In 3/2) /5 = .08109 

(In 3/2) /6 = .06758 

(In 4/3) /5= .05754 

(In 4/3) /6 = .04791 

(In 4/3) /7 = .04110 

(In 4/3) /8 = .03596 

(In 5/4)/7=.03188 

(In 5/4) /8 = .02789 

(In 5/4) /9= .02479 

(In 5/4) /10= .02232 

(In 6/5) /9 = .02026 

o 

Consequently, Theorem I-B holds for A> - A" and S<9/2 In the case n = 1. 

Appendix C 

Proof of Theorem B for n = 2 

The function gl (k: Z2) is given by 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/40/6/1246/1871601 by guest on 21 August 2022



1256 M. Suzuki 

gl(k; Z2) = Tr'<klexp (KB1 ·S2) Ik)Z2-S2Z
• 

By a simple manipulation, we obtain 

<tlexp (KS1 • S2) It) =A exp (h'Sn, 
where 

h'=2 tanh-l (x/4) , 

a = e-
K

/
4 
(cosh ~ +} sinh ~-) and x= (taIlh K)/(2+tanh K). 

,2 2 

(C ·1) 

(C·2) 

(C·3) 

The~e'fore, J>O (or K>O) corresponds to h'>O. Moreover, the relation be
tween the functions gl and fl is represented by 

gl (k; z) = AlI (e- h
'/2z l,;). (C· 4) 

This means that' The~rem B holds for n = 2. 
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