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ABSTRACT

Context. Solar-like oscillations have been observed in numerous red giants from ground and from space. An important question arises:
could we expect to detect non-radial modes probing the internal structure of these stars?
Aims. We investigate under what physical circumstances non-radial modes could be observable in red giants; what would be their
amplitudes, lifetimes and heights in the power spectrum (PS)?
Methods. Using a non-radial non-adiabatic pulsation code including a non-local time-dependent treatment of convection, we compute
the theoretical lifetimes of radial and non-radial modes in several red giant models. Next, using a stochastic excitation model, we
compute the amplitudes of these modes and their heights in the PS.
Results. Distinct cases appear. Case A corresponds to subgiants and stars at the bottom of the ascending giant branch. Our results
show that the lifetimes of the modes are mainly proportional to the inertia I, which is modulated by the mode trapping. The predicted
amplitudes are lower for non-radial modes. But the height of the peaks in the PS are of the same order for radial and non-radial modes
as long as they can be resolved. The resulting frequency spectrum is complex. Case B corresponds to intermediate models in the red
giant branch. In these models, the radiative damping becomes high enough to destroy the non-radial modes trapped in the core. Hence,
only modes trapped in the envelope have significant heights in the PS and could be observed. The resulting frequency spectrum of
detectable modes is regular for � = 0 and 2, but a little more complex for � = 1 modes because of less efficient trapping. Case C
corresponds to models of even higher luminosity. In these models the radiative damping of non-radial modes is even larger than in the
previous case and only radial and non-radial modes completely trapped in the envelope could be observed. The frequency pattern is
very regular for these stars. The comparison between the predictions for radial and non-radial modes is very different if we consider
the heights in the PS instead of the amplitudes. This is important as the heights (not the amplitudes) are used as detection criterion.
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1. Introduction

Oscillations of high radial order p-modes have been firmly de-
tected in several red giants, from radial velocity data (Frandsen
et al. 2002; Bedding & Kjeldsen 2006) and photometric data
from space (Barban et al. 2007; De Ridder et al. 2009). These
oscillations are stochastically excited by turbulent motion in
the outer layers of these stars. A particularly interesting case is
ε Oph, in which De Ridder et al. (2006) detected equidistant fre-
quencies from ground-based spectroscopic observations. Hekker
et al. (2006) analysed the line-profile variations and advocate the
presence of non-radial modes. For the same star, Barban et al.
(2007) used data obtained by the MOST satellite. They detected
at least 7 equidistant peaks and derived mode lifetimes of about
2.7 days. Kallinger et al. (2008a) reexamined the available data
for ε Oph and claim to detect at least 21 independent modes with
longer lifetimes between 10 and 20 days. Kallinger et al. (2008b)

� CIFIST Marie Curie Excellence Team.

claim to have detected non-radial modes with long lifetimes
(more than 10 days) in the star HD 20884 observed by MOST. A
very different result was found by Stello et al. (2006) who claim
to have detected modes with very short lifetimes in ξ Hydrae.
We finally mention the recent detection by the CoRoT satellite
of solar-like radial and non-radial oscillations in many red gi-
ants (De Ridder et al. 2009). Different kinds of power spectra
are found in these data of unprecedented quality, some of them
showing regular patterns while others are more complex. Modes
with very long lifetimes (more than 50 days) are detected.

From a theoretical point of view, an important study was
made by (Dziembowski et al. 2001, hereafter D01). They under-
line the mode trapping phenomenon present in these stars and
the role of radiative damping for several models with different
luminosities. They predict that non-radial modes not trapped in
the envelope would have much smaller amplitudes than radial
modes. Houdek & Gough (2002) carried out theoretical compu-
tations of the amplitudes and lifetimes of radial modes in the
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star ξ Hydrae. They found lifetimes of the order of 15–20 days
with a bump going up to infinite value (unstable mode) around
110 μHz. Finally, Christensen-Dalsgaard (2004) also discuss the
mode trapping and inertia of non-radial adiabatic modes in red
giants and subgiants and the possible consequences for the am-
plitudes.

In the present study, we compute theoretical lifetimes of ra-
dial and non-radial modes of several red giant models, using a
fully non-radial non-adiabatic pulsation code including the non-
local time-dependent treatment of convection by Grigahcène
et al. (2005) (G05). We discuss how these lifetimes are affected
by the mode inertia, the radiative damping in the core and the
convective damping in the upper part of the convective envelope.
Using a stochastic excitation model (Samadi & Goupil 2001;
Samadi et al. 2003b,a), we also compute the amplitudes of radial
and non-radial modes and their theoretical heights in the power
spectrum (PS). As we show below, predictions for the heights are
very different from the amplitudes. Although non-radial modes
in general have smaller amplitudes than radial modes, this is not
always the case for the heights. As the heights in the PS are used
as a criterion for the detection of frequencies, it is important to
make this distinction.

In Sect. 2, we discuss the different energetic processes de-
termining the driving and damping of the modes: the radiative
damping in the core, the coherent interaction of convection with
oscillations and the stochastic excitation by turbulent motion in
the upper part of the convective envelope. In Sect. 3, we present
the numerical tools, models and method used to solve the prob-
lem. In Sect. 4, we present our results for specific red giant mod-
els representative of the different cases that can occur.

2. Energetic aspects of oscillations

Different mechanisms lead to the driving and damping of oscil-
lations. For observed modes, two possibilities exist. Firstly, they
could be self-excited. In such case the amplitudes are expected to
grow until a large amplitude limit cycle is reached. The observed
amplitudes of the high radial order p-modes in red giants are of
several m/s. This is too small for such an interpretation and we
reject this possibility here. Secondly, the modes can be damped,
but turbulent motions supply them with energy in a stochastic
way, allowing them to reach observed amplitudes. We assume
here that the high frequency modes of red giants are stochastic
excited modes. The damping rate of the modes is given by an
integral expression of this type:

η = −
∫

V
dW

2σI |ξr(R)|2M
, (1)

where we assumed the time-dependence exp(iσt − ηt) (t is the
time,σ is the angular frequency and η is the damping rate).

∫
dW

is the work performed by the gas during one oscillation cycle. ξ
is the displacement vector, I is the dimensionless mode inertia:

I =
∫ M

0
|ξ|2 dm /

(
M |ξr(R)|2

)
, (2)

M is the total mass and ξr(R) corresponds to the radial displace-
ment at the layer where the oscillations are measured (Rosseland
optical depth τR = 0.1 in our results). In radiative zones, the
work is easily modeled. It just results from the heat given to
the gas by radiation during each oscillation cycle. In convec-
tive zones, the problem is much more complex and different
terms can lead to damping: variations of convective flux, tur-
bulent pressure, viscosity, and dissipation of turbulent kinetic

energy (G05). Stochastic excitation by turbulent motion also oc-
curs, leading to the observed amplitudes. This is discussed in
Sect. 2.3.

2.1. Radiative damping

In the g-mode cavity of red giants, the radial wave-number kr =√
�(� + 1)N/(σr) becomes huge because of the high density con-

trast between the core and the envelope (N is the Brunt-Väisälä
frequency). Large variations of the temperature gradient ensue,
with loss of heat in the hot phase, leading to radiative damping.
In the asymptotic limit, a simple expression for this damping
can be obtained (Dziembowski 1977b; Van Hoolst et al. 1998;
Godart et al. 2009):

−
∫ rc

r0

dW
dr

dr � K [�(� + 1)]3/2

2σ3

∫ rc

r0

∇ad − ∇
∇

∇adNgL

p r5
dr , (3)

where r0 is the radius of the convective core (if present), rc is
the upper radius of the g-mode cavity, K is a normalization con-
stant obtained by appropriate matching with the envelope solu-
tion, ∇ad and ∇ are the adiabatic and real gradients, g the gravity,
L the local luminosity and p the pressure. In the central regions
of red giants, Ng/r5 is very high because of the high density con-
trast. But at the same time, p increases rapidly as we enter in the
dense pure He core. As a compromise between these two tenden-
cies, the integrand of Eq. (3) reaches its largest values around the
bottom of the H-burning shell. The main radiative damping thus
occurs in this region for red giants.

On the other side, the contribution of the g-mode cavity to
the denominator of Eq. (1) is simply:

8πσ
∫ rc

r0

|ξ|2 r2ρ dr � 4πK
∫ rc

r0

kr dr , (4)

which also can be significant because of the large N (kr ∝ N
in the core). Equation (3) scales like τ−1

KH (R/Rc)7/2 (M/Mc)1/2,
where τKH = GM2/(LR) is the Kelvin-Helmholtz time, Rc is the
radius of the He core, R is the total radius, Mc is the mass of
the He core and M is the total mass. Equation (4) scales like
(Mc/M)1/2(R/Rc)3/2. As the star climbs the red giant branch, L
and R/Rc increase so that the numerator increases more quickly
than the denominator and the radiative damping of non-radial
modes increases.

2.2. Coherent interaction with convection

A very important region for the driving and damping of the
modes is the transition region where the thermal relaxation time
is of the same order as the oscillation periods. For solar-like os-
cillations, this transition region corresponds to the upper part of
the convective envelope. Moreover, in this region the time-scale
of most energetic turbulent eddies is of the same order as the os-
cillation periods. Hence, the changing physical conditions due to
the oscillations lead to periodic variations of the turbulent quan-
tities (convective flux, Reynolds stress, . . . ), which contribute to
the work (positive or negative) performed by the modes. This
is what we call the coherent interaction between convection and
oscillations. It plays a major role in the damping of high radial
order p-mode oscillations of red giants.

This interaction is difficult to model and only a few theories
have been proposed for linear oscillations. Two of them make
use of a Mixing-Length formalism. The first by Gabriel (1996)
and further developed by G05 follows the original ideas of
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Unno (1967), where a turbulent viscous term opposite to the
buoyancy is introduced. This treatment implemented in our non-
radial non-adiabatic pulsation code is used in this study. The sec-
ond theory was developed by Gough (1977b) and follows the
“kinetic of gas” picture of the MLT. Both theories can include
a non-local treatment (Spiegel 1963; Gough 1977a; Balmforth
1992; Dupret et al. 2006b). A third formulation, no longer based
on a mixing-length approach but on a Reynolds stress one was
also proposed by Xiong et al. (1997). These theories encoun-
tered some successes, for example they obtain the red edge of
the instability strip (Houdek 2000; Xiong & Deng 2001; Dupret
et al. 2004). The reproduction of the Solar mode lifetime is also
possible but not easy (Balmforth 1992; Xiong et al. 2000; Dupret
et al. 2006a).

2.3. Stochastic excitation

For stochastically excited modes, the local squared amplitude of
velocity variation at the layer where it is measured (we adopt the
optical depth τR = 0.1 in our results) is given by (e.g., Baudin
et al. 2005; Belkacem et al. 2006):

V2 =
P

2 ηM I
=

Π

2 ηM I2
, (5)

P is the power stochastically supplied to the modes:

P =
1

8 M I

(
C2

R +C2
S

)
, (6)

where C2
R and C2

S are the turbulent Reynolds stress and en-
tropy contributions, respectively (see Samadi & Goupil 2001;
Belkacem et al. 2006, for details). Both play a significant role in
red giants and are included in our study. η and I are the damp-
ing rate and inertia defined in Eqs. (1) and (2), respectively. To
isolate the effect of inertia in Eq. (5), we introduce the product
Π = PI which is, according to Eq. (6), independent of inertia.

We also introduce the maximum height of the mode profile
in the PS, which is an observable and will permit us to draw
conclusions about the mode detectability (see Sect. 4 for details).
To this end, one has to distinguish between two cases, namely
resolved and unresolved modes. The resolved modes present a
Lorentzian profile in the PS and their heights are given by (see
e.g. Chaplin et al. 2005; Belkacem et al. 2006):

H =
V2(R)
η
=

Π

2 η2 M I2
=
Πτ2

2 M I2
(7)

where τ = 1/η is the mode lifetime.
When τ � Tobs/2 (Tobs being the duration of observations),

the modes are not resolved. In the limit τ→ ∞, the heights in the
PS tend to behave like (see e.g. Berthomieu et al. 2001; Lochard
et al. 2005):

H∞ =
Tobs

2
V2(R) =

ΠTobsτ

4 M I2
· (8)

In the theoretical predictions of the heights presented in this pa-
per, we choose the very favorable case of the CoRoT long runs
with Tobs = 150 days. We use Eq. (7) when τ ≤ Tobs/2 = 75 days
and Eq. (8) when τ > Tobs/2 = 75 days, so that H is a continuous
function of τ.

Finally, the observed velocity amplitudes are obtained by in-
tegration of the projected local velocity over the visible stellar
disk (Dziembowski 1977a). This introduces a visibility factor
depending on the inclination angle of the star (through the factor
Pm
� (cos i)). We do not include this factor in our theoretical study

(the inclination angle is unknown).

Table 1. Global parameters of our models.

M/M
 Teff log(L/L
) log g R/R
 νcut

(K) (μHz)
A 2 5264 1.32 3.26 5.50 315
B 2 4892 1.80 2.65 11.0 82.1
C 2 4665 2.10 2.27 17.2 34.6
D 3 5091 2.00 2.70 12.8 88.6
E 3 5222 2.00 2.74 12.2 96.3

Fig. 1. HR diagram with the location of our five models.

3. Numerical tools, models and method

3.1. Structure models

The equilibrium models analyzed in this study were computed
with the version updated for asteroseismology of the code
ATON (Mazzitelli 1979). A detailed description of the numer-
ical techniques and implemented physics is given in Ventura
et al. (2008) and references therein. For the models in this pa-
per we adopted the classical mixing-length theory of convec-
tion (Böhm-Vitense 1958), with a value of the mixing-length
parameter αMLT = 1.8, and we assume core overshooting that
was treated as a diffusive mixing process. For the parameter de-
scribing the extension of that extra mixing we took αOV = 0.015
(see Ventura et al. 1998, for details), and for the chemical com-
position X = 0.72 and Z = 0.012. The radiative opacities are
those from OPAL (Iglesias & Rogers 1996) for the metal mix-
ture of Grevesse & Noels (1993) completed with Alexander &
Ferguson (1994) at low temperatures, and the conductive ones
come from Potekhin et al. (1999). Thermodynamic quantities
are derived from OPAL (Rogers & Nayfonov 2002), Saumon
et al. (1995) for the pressure ionization regime and Stolzmann &
Bloecker (1996) treatment is used for He/C/O mixtures. The nu-
clear cross-sections are from the NACRE compilation (Angulo
et al. 1999), and the surface boundary conditions are provided by
a grey atmosphere following the Henyey et al. (1965) treatment.
Turbulent pressure is not included in our structure models.

We focus our study on five well chosen models representa-
tive of the different situations that can occur. Some of their global
characteristics are given in Table 1. νcut = (g/2)

√
Γ1ρ/p is the

cut-off frequency of an isothermal plane-parallel atmosphere (es-
timated here at the photosphere). Evolutionary tracks with the
location of these models in the HR diagram are given in Fig. 1.
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3.2. Non-radial non-adiabatic oscillations

We use the non-adiabatic pulsation code MAD (Dupret 2002) to
compute the theoretical lifetimes and inertia of the modes. We
use the TDC treatment of G05 for the modelling of the convec-
tive flux and turbulent pressure variations entering in the non-
adiabatic equations. Different ingredients must be specified. We
keep a local treatment for the convective flux. The variations of
the turbulent pressure and entropy gradient are treated in a non-
local way, with values of the non-local parameters b = 3 and
c = 3.5 according to the definition of Balmforth (1992). Our
value of b is derived from a fit of the turbulent pressure in the
subadiabatic atmospheric layers of a solar hydrodynamic simu-
lation (Dupret et al. 2006b). We recall that our structure models
are built without turbulent pressure. We compute it a posteriori in
order to be able to determine the turbulent pressure perturbation.
This implies that the effect of turbulent pressure on the stratifi-
cation is not taken into account in our models. However, the im-
pact of this inconsistency on the theoretical lifetimes is expected
to be negligible compared to others aspects. The main source of
uncertainties in any TDC treatment comes from the perturbation
of the closure equations. In our TDC treatment, this uncertainty
appears in the form of a free parameter β, as introduced by G05.
We take by default the value β = −2 i. Adopting this value for
the Sun leads to predictions of the mode lifetimes in reasonable
agreement with observations. It also gives in all our red giant
models stable high radial order p-modes, in agreement with our
working hypothesis of stochastic excitation. However, we dis-
cuss in Sect. 4.6 the impact of changing this value.

Some changes were required in the MAD code to address
specific numerical difficulties associated with red giants. First,
we changed the formalism to a Eulerian one in the core. In the
g-mode cavity of red giants where σ � L�, we have |p′/p| �
|δp/p| and thus δp/p � (d ln p/dr) ξr. Hence, δp and ξr are not
independent functions and they do not allow us to capture the os-
cillatory behaviour of the eigenfunctions in the cavity. Therefore,
a Lagrangian formalism lacks numerical precision in the dense
region of evolved stars, which justifies our switch to a Eulerian
formalism.

Another significant numerical difficulty comes from the very
large number of nodes of the eigenfunctions in the g-mode cav-
ity. Van Hoolst et al. (1998) and D01 used a mixed treatment
to address this difficulty: numerical solutions of the fully non-
adiabatic equations in the envelope are matched with asymptotic
solutions in the g-mode cavity. Our way to proceed is slightly
different. Firstly we solve the fully non-adiabatic equations from
the center to the surface, which gives a first estimation of the
lifetimes. Second, we separate the integrals in Eqs. (1) and (2)
in two parts: region 1 where σ � L�,N and region 2 (the re-
maining). In region 1 we use the results obtained in the asymp-
totic quasi-adiabatic limit (Eqs. (3) and (4)), and in region 2 we
use the fully non-adiabatic eigenfunctions obtained numerically
in the first step. We then compare the results obtained by the
two approaches: in many cases they are very close, showing that
our fully numerical solution of the problem is precise enough.
In other cases corresponding to high luminosity red giants, the
number of nodes becomes huge (�1000), which implies loss of
numerical precision. In such cases we are more confident in us-
ing results with the asymptotic treatment in the g-mode cavity
and the fully non-adiabatic solution in the rest of the star.

A last important numerical issue is associated with the mode
trapping phenomenon, which is discussed in detail in Sect. 4.1.
Algorithms solving the non-adiabatic problem converge to-
wards the closest eigenvalue in the complex plane (the real part

corresponds to the angular frequency σ and the imaginary part
to the damping rate η). Some non-radial modes trapped in the
envelope have much lower inertia than the others. Hence, their
damping rates are much higher than for other non-radial modes,
higher than the frequency separation between consecutive non-
radial modes: η > σn−1 − σn. Hence, with a real initial guess
of the eigenvalues (e.g. the adiabatic frequencies), it is impossi-
ble to converge towards the modes strongly trapped in the enve-
lope. The only way is to adopt a complex initial value; for ex-
ample, interpolating the complex non-adiabatic eigenvalues of
radial modes gives adequate initial values, allowing the solution
to converge towards the non-radial modes strongly trapped in the
envelope.

3.3. Ingredients for the stochastic excitation models

The power stochastically supplied to the modes, P in Eqs. (5)
and (6), is computed as described in Belkacem et al. (2008).
The typical convective length-scales as well as the kinetic en-
ergy spectrum are poorly known for red giant stars. Given that
the predictions of the stochastic excitation models strongly de-
pend on them, we infer both the kinetic energy spectrum and the
injection length-scale from a representative 3D numerical simu-
lation. To this end, we computed a 3D radiation-hydrodynamical
model atmosphere with the code CO5BOLD (Freytag et al. 2002;
Wedemeyer et al. 2004). The simulation has a gravity log g = 2.5
and an effective temperature of Teff = 4960 K. The model has
a spatial mesh with 160 × 160 × 200 grid points, and a physi-
cal extent of the computational box of 573 × 573 × 243 Mm3.
Using this 3D numerical simulation, we determine the injection
length-scale in the layer where the driving is the largest (see
Samadi et al. 2003b, for details). This estimation of the injection
scale gives values larger than the mixing-length by a factor of 5–
10 depending on the model. Using the mixing-length as the in-
jection scale would give theoretical amplitudes much lower than
typical observations. We assume here that the injection scale is
constant in the driving region. In the case of the Sun, such ap-
proximation underestimates by about 25% the theoretical ampli-
tudes (Samadi et al. 2003b). The models considered in our study
have different gravities. This affects the injection length-scale
and we assume here that it scales as the pressure scale-height
at the photosphere. Such a procedure has been verified in the
case of α Cen A (Samadi et al. 2008). This allows us to compute
the excitation rates for all the models presented in Sect. 3.1. We
use a Lorentzian profile for the eddy time-correlation function
(Samadi et al. 2003a). Eventually, concerning the k-dependency
of the kinetic energy spectrum (k is the wavenumber in the
Fourrier space of turbulence), we use the Broad Kolmogorov
Spectrum (BKS) (Musielak et al. 1994) that reproduces the spec-
trum inferred from the 3D simulation.

4. Results

4.1. Mode trapping in evolved stars

Mode trapping is a very important phenomenon allowing to un-
derstand the behaviour of non-radial modes in evolved stars. D01
and Christensen-Dalsgaard (2004) discussed it in the case of red
giants. Here we recall basic aspects that are important for the in-
terpretation of our results. The Brunt-Väisälä (N) and Lamb (L�)
frequencies are huge in the dense core of red giants. Because of
these huge values, all non-radial modes with frequencies lower
than the cut-off frequency and larger than the fundamental ra-
dial mode have a mixed character. In the envelope, σ2 > L2

� ,N
2
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Fig. 2. Energy density |dI/d log T | for the mode � = 2, ν = 55.72 μHz
trapped in the envelope (grey) and the mode � = 2, ν = 53.87 μHz
trapped in the core (black), for model B.
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Fig. 3. Inertia of � = 0, 1 and 2 modes of model B.

and they behave like acoustic modes (as in solar-like main se-
quence stars). But σ2 < L2

� ,N
2 in the core and the same modes

behave there like gravity modes. The presence of an evanescent
region between the p- and g-cavities is at the origin of the mode
trapping. Some modes have significant kinetic energy in the g-
cavity and low ones in the p-cavity; they are trapped in the core.
Others have low kinetic energy in the g-cavity but high ones in
the envelope; they are trapped in the envelope.

An illustration of the distribution of energy of a mode
trapped in the core and a mode trapped in the envelope are shown
in Fig. 2, where we give |dI/d log T | = −|ξ|2 dm/(M d log T ).
Mode trapping directly affects the mode inertia. We give in Fig. 3
the inertia as a function of frequency for � = 0−2 modes. We
first notice how dense the spectrum of frequencies for non-radial
modes is, which is a direct consequence of the huge Brunt-
Väisälä frequency in the core (according to the asymptotic the-
ory, Pn,� − Pn−1,� � 2π2/(�(� + 1)

∫
N/r dr). Modes trapped in

the envelope are the local minima with low inertia in Fig. 3. The
� = 2 modes trapped in the envelope have lower inertia than the
� = 1 modes trapped in the envelope, while it is the contrary
for all other modes. In agreement with D01 and Christensen-
Dalsgaard (2004), the size of the evanescent region and thus the
efficiency of trapping increases with the degree � of the modes.
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Fig. 4. Theoretical lifetimes of radial modes of model A. The horizontal
line corresponds to our choice of the resolution limit (75 days).

This is very different from RR Lyrae stars (Van Hoolst et al.
1998) because there the evanescent region is larger for � = 1 in
the observed range of frequency. It is very interesting to notice
that when only the modes trapped in the envelope are considered,
the frequency spectrum is similar to solar-type main sequence
stars, with large and small separations appearing clearly. The in-
ertia appears directly in Eqs. (1), (5) and (8). Hence, the mode
trapping is expected to strongly affect the amplitudes, lifetimes,
and heights of the modes in the PS of red giants. In the next sec-
tion, we present our main results for different models (Table 1,
Fig. 1).

4.2. Model A: bottom of the red giant branch

We first consider the lifetimes of radial modes from the fun-
damental up to the cut-off frequency. We also give the resolu-
tion limit of 75 days (horizontal line). As can be seen, we can
separate the modes into two sets. From the fundamental to p7
(ν = 123 μHz), the lifetimes are very long and such modes could
not be resolved. On the other side, for larger frequencies the life-
times of radial modes are below 75 days and these radial modes
have a chance of being resolved. Current observations of red gi-
ant solar-like oscillations show that at least some of the modes
can be resolved. We note also that Xiong & Deng (2007) predict
unstable modes in the lower part of the spectrum. Depending on
the parameter β used in our TDC model, they can be stable or
unstable. We restrict our study to the second set of modes, in
which radial modes could be resolved. We propose to call them
solar-like modes by analogy with the solar case. Such modes are
detected (as shown in the introduction) and their physical inter-
pretation as stochastic modes has been firmly established.

In the top panel of Fig. 5, we give the theoretical lifetimes
τ = 1/η obtained for the � = 0, 1 and 2 modes of model A.
According to Eq. (1), the mode lifetime τ = 1/η ∝ I. Moreover,
we see from Eq. (7) that the heights in the PS are proportional
to (τ/I)2 for resolved modes. This leads us to consider in the
second panel the mode lifetimes divided by the inertia (τ/I). As
we showed in Fig. 3, the mode trapping leads to an oscillatory
behaviour of the inertia with the large frequency separation as
periodicity. The oscillatory behaviour of the lifetimes is a direct
consequence of the oscillations of I. But when the ratio between
the two is considered, the oscillatory behaviour disappears and
the same results are found for radial and non-radial modes.

In order to interpret this result, we give in Fig. 6 the cumu-
lated work integral W(m) =

∫ m

0
dW/(2σIM) for a typical � = 2

mode trapped in the core (ν = 201.3 μHz). The surface value
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Fig. 5. Theoretical predictions for � = 0, 1 and 2 modes of model A.
Top panel: theoretical lifetimes; the horizontal line corresponds to our
choice of the resolution limit (75 days). Panel 2: lifetimes over inertia
(τ/I). Panel 3: amplitudes (m/s). Panel 4: heights in the PS.
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Fig. 6. Work integral for the mode � = 2, ν = 201.3 μHz trapped in the
core of model A.

is −ηR3/2/(GM)1/2. We see that significant driving and damp-
ing only occur in the upper part of the convective envelope, but
there is no significant radiative damping in the core. As the ra-
dial component of the displacement dominates in the envelope,
the numerator of Eq. (1) is the same at a given frequency, what-
ever the value of �. This explains why τ/I does not depend on �.

In the third panel of Fig. 5, we give the theoretical amplitudes
of the modes. The amplitudes of radial modes are higher because
they have less inertia. The oscillatory behaviour of the inertia
due to mode trapping leads to oscillations of the amplitudes of
non-radial modes.

In the bottom panel of Fig. 5, we give the theoretical heights
in the PS. We put the resolution limit at 75 days (horizontal line
in top panel). If the mode lifetime value is larger than this value,
Eq. (8) is used instead of Eq. (7) to obtain the height. For re-
solved modes (H ∝ (τ/I)2), the same heights are found for ra-
dial and non-radial modes, except for the visibility factor (inte-
gration over the stellar disk), which is not included in our study.
The unresolved non-radial modes with long lifetimes (mainly
� = 2 modes trapped in the core) have smaller heights than the
closest radial mode. We emphasize that the predictions for the
heights are different from the amplitudes. Although non-radial
modes have smaller amplitudes than radial modes, the heights in
the PS are often of the same order. Contrary to the amplitudes,
the heights are observation dependent. If Tobs is smaller, more
non-radial modes are unresolved and their heights in the PS are
smaller.

Thus, many non-radial modes would be detectable in the PS
of stars like model A. Moreover, the interaction between the p-
and g-mode cavities leads to many avoided crossings. Hence,
the resulting frequency spectrum is very complex, particularly
for � = 1 modes and its seismic interpretation is not easy.

4.3. Model B: intermediate in the red giant branch

We now present the results obtained for model B that is slightly
higher in the red giant branch (Fig. 1, Table 1). In the top panel of
Fig. 7, we give the theoretical lifetimes obtained for the � = 0,
1 and 2 modes. Again we see the oscillatory behaviour due to
mode trapping. But considering now the ratio between the life-
time and the inertia given in the 2nd panel from the top, we find
very different results compared to model A. Now, oscillatory be-
haviour of this ratio is present for non-radial modes, particularly
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Fig. 7. Theoretical predictions for � = 0−2 modes of model B. Top
panel: theoretical lifetimes, panel 2: lifetimes over inertia (τ/I), panel 3:
amplitudes (m/s), panel 4: heights in the PS.
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Fig. 8. Work integrals for the mode � = 2, ν = 55.72 μHz trapped in the
envelope (top panel) and the mode � = 2, ν = 53.87 μHz trapped in the
core (bottom panel) of model B.

at low frequencies. To understand this, we compare in Fig. 8 the
work integral for two � = 2 modes, one trapped in the envelope
(ν = 55.72 μHz, top panel) and the other trapped in the core
(ν = 53.87 μHz, bottom panel). For the mode trapped in the en-
velope, the driving and damping occur in the upper part of the
convective envelope, as in model A. But for the mode trapped in
the core, significant radiative damping occurs around the bottom
of the H-burning shell (log T � 7.5).

In the third panel of Fig. 7, we give the theoretical ampli-
tudes of radial and non-radial modes of model B. The ampli-
tudes of non-radial modes trapped in the core are very small be-
cause of large inertia and radiative damping. The amplitudes of
non-radial modes trapped in the envelope (local maxima in the
figure) are smaller than radial modes but not negligible because
of similar inertia and negligible radiative damping.

In the bottom panel of Fig. 7, we give the heights of the
modes in the PS. Non-radial modes trapped in the core have neg-
ligible heights and would not be detected. In contrast, non-radial
modes trapped in the envelope have similar heights compared to
radial modes.

Thus, only radial modes and non-radial modes trapped in the
envelope could be observed in the PS of stars like model B. The
groups of non-radial modes trapped in the envelope are more
or less separated from each other by a constant large separa-
tion. Seismic interpretation of the frequency spectrum of such
stars would thus be easier than in model A. We notice however
that the trapping is not perfect for � = 1 modes. Hence, a small
group of � = 1 modes is detectable around each local maximum.
This would have to be taken into account in any seismic study.
Considering observed power spectra, this also means that these
groups of modes would have to be not confused with single large
line-widths modes.
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Fig. 9. Theoretical predictions for � = 0−2 modes of model C. Top
panel: theoretical lifetimes, panel 2: amplitudes (m/s), panel 3: heights
in the PS.

4.4. Model C: high in the red giant branch

We consider now the results obtained for model C, which is even
higher in the red giant branch than the previous ones (Fig. 1). In
the top panel of Fig. 9, we give the theoretical lifetimes. They are
very different from those of model B. The oscillatory behaviour
is no longer present for most � = 2 and low frequency � = 1
modes. As can be seen in the figure, the transitions to envelope-
trapped modes are very sharp; these modes, known as Strongly
Trapped in the Envelope (STE), are nearly perfectly reflected at
the internal turning point (near the top of the H-burning shell).
We give in Fig. 10 the work integral for an � = 2 mode with
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Fig. 10. Work integral for the mode � = 2, ν = 22.83 μHz of model C
(this mode is near a mode trapped in the envelope).

frequency very close to but different from an STE mode. The
very high radiative damping illustrated in this figure occurs
for all non-radial modes of this model, except the STE mode.
Because of this and the large inertia, the g-mode cavity dom-
inates the integrals in the numerator and the denominator of
Eq. (1) for all non-STE modes. Hence Eqs. (3) and (4) are good
approximations for the full integrals and the K constant simpli-
fies when the ratio between the two is considered. This explains
why the lifetimes do not show oscillations in the top panel. In
the second panel of Fig. 9, we give the theoretical amplitudes.
They are very small for all non-radial non-STE modes, because
of the high radiative damping and inertia. Finally, we give in the
bottom panel the theoretical heights in the PS. All non-radial
non-STE modes have negligible heights because of the large ra-
diative damping. Thus, only radial modes and non-radial modes
completely trapped in the envelope could be detected in stars like
model C.

4.5. Models D and E: H-shell versus He-core burning

We now compare the theoretical lifetimes, amplitudes and
heights of the two models D and E with the same luminosity,
one before (model D) and the other during (model E) the core
helium burning phase.

In Fig. 11, we give the theoretical lifetimes obtained for the
� = 0−2 modes of these two models. The behaviour is similar
for the two models.

In Fig. 12, we give the theoretical heights in the PS for these
two models. No significant difference between the two is found
except that the heights in the PS are systematically larger for the
He burning model, because of its higher effective temperature
leading to stronger stochastic driving.

4.6. Uncertainties of the non-adiabatic treatment
in the convective envelope

As discussed in Sects. 2.2 and 3.2, the time-dependent interac-
tion between convection and oscillations is subject to large un-
certainties. In the TDC treatment of G05, a free complex param-
eter β was introduced in the perturbed closure equations. In the
previous computations, we adopted β = −2 i. We now redo the
computations with β = −1.75 i. Larger changes of β would give
unstable modes in the considered range of frequencies, which is
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Fig. 11. Theoretical lifetimes for � = 0−2 modes of model D (pre-He
burning, top panel) and model E (He burning, bottom panel).

not realistic in view of the typical observed amplitudes of red
giant high order p-modes.

With β = −1.75 i, the convective damping in the upper part
of the convective envelope is larger. As shown in Fig. 13, this
results in smaller lifetimes and amplitudes of the modes trapped
in the envelope compared to Fig. 7. In the upper part of the en-
velope, the eigenfunctions do not depend significantly on the de-
gree � of the modes. Hence the uncertainties associated with the
TDC treatment affect radial and non-radial modes trapped in the
envelope in the same way.

4.7. Non-linear effects?

Our study is linear, raising the question of whether such an
approximation is valid here. Considering first the amplitudes
of the displacement at the photosphere, we find typical values
about 200 times smaller than the pressure scale height for de-
tectable modes. Hence non-linear effects in the superficial layers
are expected to be small. We consider now the oscillations in
the g-mode cavity. We can confidently neglect non-linear terms
if |vr∂u/∂r| � |∂u/∂t|. In a cavity with short wavelength oscil-
lations, this condition is equivalent to |ξr| � 1/kr. In the g-
mode cavity of envelope trapped modes, |ξr| is typically about
104 times smaller than 1/kr. Hence the risk of wavebreaking due
to non-linear effects is negligible in the core.
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Fig. 12. Theoretical heights in the PS for � = 0, 2 modes of model D
(top panel) and model E (bottom panel).

5. Conclusions

We have determined the theoretical lifetimes, amplitudes and
heights in the PS of radial and non-radial modes of several
red giant models. The predictions appear to be very differ-
ent depending on the evolutionary status of the star. What
mainly matters is the density contrast between the He core and
the envelope. During evolution, it increases considerably as
the He core contracts and the envelope expands. Moreover the
Kelvin-Helmholtz time decreases because of the increasing lu-
minosity. The consequence of these two effects is an increasing
importance of the radiative damping of non-radial modes as the
luminosity of the star increases. We can encounter very different
cases depending on the evolutionary status of the star:

– Case A: Subgiants and/or low luminosity red giants.
Our model representative of the class is model A at the bot-
tom of the giant branch for 2 M
. In these stars, the density
contrast is not large enough to imply significant radiative
damping of non-radial solar-type p-modes (Rc/R = 0.0075
in model A). The amplitudes of non-radial modes are smaller
than radial modes because of larger inertia. However, if we
consider instead the heights in the PS, they are similar for
radial and non-radial modes as long as they can be resolved.
As the heights are used as detection criteria in a Fourier
analysis, many non-radial modes could be detected in the
PS of such stars. The interaction between the p- and g-
mode cavities leads to many avoided crossings. The resulting
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Fig. 13. Theoretical predictions for � = 0, 1 and 2 modes of model B,
but with another value of the free parameter of our TDC treatment β =
−1.75 i. Top panel: theoretical lifetimes, bottom panel: heights in the
PS.This figure can be compared with Fig. 7 for which β = −2 i.

frequency spectrum is thus very complex. Asteroseismology
of such stars would be challenging.

– Case B: Intermediate models in the red giant branch.
Our models representative of this class are model B, D and
E with greater luminosity compared to the previous case
(log(L/L
) = 1.8−2). In these stars the radius ratio be-
tween the core and the envelope is smaller (Rc/R = 0.003 in
model B). As a consequence, the radiative damping around
the bottom of the H-burning shell becomes large enough
to destroy the non-radial modes trapped in the core. Only
the non-radial modes trapped in the envelope and the radial
modes can survive and have similar heights in the PS. The
non-radial modes trapped in the envelope are more or less
separated from each other by a constant large separation, al-
lowing us to build echelle diagrams. However, the trapping
is not perfect for � = 1 modes. Hence, a small group of
� = 1 modes is detectable around each local maximum in the
PS corresponding to an envelope trapped mode. Such struc-
tures would not have to be interpreted as single large line-
width modes. Seismic interpretation of the frequency spec-
trum of such stars would be easier than in the previous case.

– Case C: High luminosity red giants.
Our model representative of this class is model C with
M = 2 M
, log(L/L
) = 2.1. This case is not very different
from the previous one, except that the density contrast be-
tween the core and the envelope is very large (Rc/R = 0.002

in model C). As a consequence, the radiative damping is
stronger in the core and destroys all non-radial modes except
those strongly trapped in the envelope. These modes and the
radial modes are the only ones that could be detected in these
stars. The trapping is efficient enough in � = 1 modes and
only single envelope trapped modes are detectable. Seismic
interpretation of the frequency spectrum of such stars would
also be easier.

We also notice that the duration of observation is very impor-
tant, as it determines the frontier between resolved and unre-
solved modes. Non-radial modes have always much longer life-
times (τ) than radial modes because of their greater inertia. If
τ � Tobs/2, the modes cannot be resolved and have much smaller
heights in the PS. With too short observations, as is typically the
case with ground based observations, only radial and strongly
trapped non-radial modes have a chance of being detected. On
the other hand, future space missions will provide longer obser-
vations: e.g. 5 years for Kepler, 3 years for Plato, increasing the
ability to detect more non-radial modes.

Asteroseismology of red giants is a very promising field as
the theoretical predictions depend strongly on the physical char-
acteristics of both their deep and superficial layers.
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