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Abstract: In this manuscript, we formulate a mathematical model of the deadly COVID-19 pandemic
to understand the dynamic behavior of COVID-19. For the dynamic study, a new SEIAPHR fractional
model was purposed in which infectious individuals were divided into three sub-compartments.
The purpose is to construct a more reliable and realistic model for a complete mathematical and
computational analysis and design of different control strategies for the proposed Caputo–Fabrizio
fractional model. We prove the existence and uniqueness of solutions by employing well-known
theorems of fractional calculus and functional analyses. The positivity and boundedness of the
solutions are proved using the fractional-order properties of the Laplace transformation. The basic
reproduction number for the model is computed using a next-generation technique to handle the
future dynamics of the pandemic. The local–global stability of the model was also investigated at
each equilibrium point. We propose basic fixed controls through manipulation of quarantine rates
and formulate an optimal control problem to find the best controls (quarantine rates) employed
on infected, asymptomatic, and “superspreader” humans, respectively, to restrict the spread of the
disease. For the numerical solution of the fractional model, a computationally efficient Adams–
Bashforth method is presented. A fractional-order optimal control problem and the associated
optimality conditions of Pontryagin maximum principle are discussed in order to optimally reduce
the number of infected, asymptomatic, and superspreader humans. The obtained numerical results
are discussed and shown through graphs.

Keywords: COVID-19 epidemic model; CF derivative; existence and uniqueness; Adams–Bashforth
computational scheme; optimal control

1. Introduction

COVID-19 is considered a swift-killing infectious disease and has shaken the world
to its core. The analysis of global data gathered has proven it to be an acute respiratory
syndrome. The first visible appearance was observed in December 2019 in Wuhan, China;
afterward, it spread globally, resulting in a pandemic outbreak in 2020 [1]. The COVID-19
pandemic is known as the biggest global pitfall of 2020. It spread fast across different
divisions in China. Throughout 2020, the transfer rate of this infection reached its highest
point and quickly spread to about 223 nations across the world [2,3]. The deadly virus
created a disturbance in the field of medicine and education, ruined people’s social lives,
and severely damaged economies across the world. Fortunately, Pakistan was affected at a
modest rate; it could have been more controlled if more precautionary measures were taken
by the country and its people. Different variants of the COVID-19 outbreak were observed
in different countries, namely, α, β, γ, and δ. The δ variant is highly contagious, and is
40–60% faster transmissible than the α variant, with a higher risk of health problems [4].
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Research has shown that the most common symptoms observed among patients are
respiratory problems, breathing issues, coughing, fever, muscular discomfort, fatigue, and
severe headaches. Some COVID-19 patients reported experiencing different symptoms,
i.e., sore throats, runny noses, sleeping disorders, vomiting, diarrhea, gastroenteritis, and
neurological problems of varying severity [5,6]. This disease spreads via contact with
infected individuals when they sneeze or cough, or even when via contact with surfaces
or objects that already have the virus. The disease’s pace of spread accelerated. When
we touch our eyes, nose, or mouth with contaminated hands, these delicate parts are
contaminated with germs and the germs enter inside the body. Patients with this condition
require special care.

Many researchers have formulated different mathematical models to examine the dy-
namic behaviors of this disease [7–25]. The epidemic compartmental model has symmetry
in the sense that the differential equations of the model are developed on the principle
that the rate of change of individuals in a particular compartment is equal to the inflow of
individuals minus the outflow of individuals. The relevance of the description of epidemic
models (to symmetry and asymmetry concepts with interpretations) can be found in [10,26].
Mathematical modeling is a key technique used for studying infectious diseases. Mathe-
matical models and their analyses help in understanding disease transmission mechanisms
and in efficiently controlling the spread of diseases. These models assist decision-makers
and public health planners in many ways to analyze and control infectious diseases in
a population. Recently, many mathematical models have been developed to study the
transmission dynamics of COVID-19; see, for example, [27–29]. Initially, these models were
based on integer-order derivatives. Experimental and field measurement data cannot be
accurately described by integer-order models. Additionally, the integer derivative has a
local aspect. As an alternate method, fractional-order models are extensively used. In
recent times, researchers have developed an interest in using fractional calculus to analyze
real problems in a diverse range of fields, including epidemiological modeling, image
processing, chaos theory, and more. Fractional order models (compared to classical order
models) integrate memory effects and offer more freedom [30]. Many researchers propose
fractional models due to the limitations of ordinary differential equations. A fractional
model that involves fractional derivatives makes it simple and accurate to describe physical
phenomena that cannot be understood with integer-order derivatives.

Mathematical models with fractional derivatives play an important role in under-
standing the dynamics of epidemiological diseases. Fractional calculus is considered a
generalization of classical order derivatives where the integer-order derivative is replaced
by the fractional-order derivative [31]. The study of fractional derivatives revealed that
the integer-order model is a special case of the fractional-order model and the solution for
a fractional-order differential equation must converge to the solution of an integer-order
differential equation as the derivative order approaches one. The fractional-order models,
due to their descriptions of memory and hereditary characteristics, are more resourceful
than integer-order models and, hence, overcome all restraints on the order of differential
equations while finding their solutions. However, the phenomena, which are connected
with memory properties and are affected by the hereditary properties, cannot be expressed
by the integer-order system. There are many fields where fractional-order systems are more
suitable than integer-order systems [32]. The fractional-order COVID-19 infection model
has attracted the attention of researchers [33]. Using fractional-order derivatives in the
COVID-19 infection model can explain their dynamics more precisely. Thus, researchers
noticed the importance of fractional operators with non-singular kernels to better under-
stand the dynamics of physical models. So far, many researchers have explored fractional
operators with non-singular kernels, for example, the Caputo–Fabrizio fractional operator
and Caputo proportional fractional derivative delay integro-differential equations [34,35].
Keeping the importance of fractional models in mind, we present a CF-fractional COVID-
19 model, which is a generalization of the integer-order model given in [36]. The new
fractional model will allow us to study the disease dynamics and control more precisely.
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There are numerous defined fractional derivatives in the literature; however, this
manuscript develops the Caputo–Fabrizio derivative operator with a non-singular expo-
nentially decreasing kernel. In this paper, we present the SEIAPHR fractional model to
mathematically examine the coronavirus infection. This research emphasizes the under-
standing of dynamic behaviors of the disease, preventing its long-term spread. To do this,
we demonstrated analytically key characteristics of the suggested fractional model, such
as the existence and uniqueness of the solution, the positivity of the solution, invariant
region, threshold number, and most significantly, the performed stability analysis. These
characteristics provide evidence that we created a feasible model for the COVID-19 epi-
demic. We will present a modified SEIAPQHR pandemic model in the second half of the
paper to examine the effects of quarantine strategies on disease control. The CF-fractional
SEIAPQHR model was solved using the Adams–Bashforth technique. An optimal control
problem for the suggested fractional model was examined to determine the best quarantine
technique. To further illustrate the characteristics of the control problem, various numerical
simulations were performed using a projected numerical approach. Based on the numer-
ical results, it can be concluded that the Caputo–Fabrizio operator provides an excellent
description and retains system memory effects.

Although people all over the world have been vaccinated, preventative measures are
still needed, such as maintaining safe distances from others and wearing face masks, until
the proportion of people infected with COVID-19 declines to a safe level. In the wake of
the sudden removal of strict pandemic measures, such as travel restrictions and testing
of symptomatic and asymptomatic individuals, the virus is again spreading in China at a
reasonable speed. Thus, there is a dire need to analyze disease-preventive measures and
devise a reasonable control strategy to restrict the spread of the disease. This study also
deals with the mathematical and computational analyses of the newly proposed fractional
COVID-19 model to study preventive measures in order to suggest an optimal control
strategy to minimize the spread of infection.

Our research is divided into seven different sections. In Section 2, preliminaries
concerning Caputo–Fabrizio fractional operators and their characteristics are covered in
order to develop a nonlinear Caputo–Fabrizio fractional model for the COVID-19 outbreak.
Section 3 outlines the theoretical analysis of the proposed fractional model. For instance,
by employing the Picard successive iterative approximation method, we demonstrated
the existence and uniqueness of a solution. We established two key properties of obtained
solutions: boundedness and positivity. The fractional model’s equilibrium points are also
computed here. The equilibrium points have symmetry, in that the rate of change of the
population is zero at these points. Using the next-generation method, we computed the
threshold parameter of the model in Section 3. The local and global behaviors of the
proposed model at equilibrium points are successfully examined in Section 4. Section 5
presents the modified model. We used the Adams–Bashforth method along with RK-4
to numerically solve the modified system. A comprehensive analysis was done on the
effects of the fractional order and quarantine on the model’s behavior. Section 6 presents an
optimal control analysis. All of the numerical findings are presented with the appropriate
explanations and graphic representations. The concluding remarks are given in Section 7.

2. Mathematical Model

In the field of epidemiology, nonlinear models depicting deadly coronavirus transmission
patterns are crucial [13–18]. Such models help public health planners and policymakers in a
variety of ways. In the existing literature [8–25], there are a variety of mathematical models
with varying assumptions based on coronavirus disease transmission. Since integer models
are unable to adequately capture the impact of the system’s full memory, as well as the
scope and spread of the corona infection, we present a novel real-world SEIAPHR fractional
pandemic model that takes into account the dynamics of the coronavirus disease transmission.

We identify the total population N(t) into seven compartments: susceptible S(t), exposed
E(t), infected I(t), asymptomatic A(t), superspreader P(t), hospitalized H(t), and recovered
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R(t). In the susceptible compartment, we consider the individuals who are at risk of being
infected. An individual in the susceptible class becomes infected after interacting with an
infectious individual and moving to the exposed class E(t). Inhabitants of the exposed
class are infected but not infectious yet. Those who become infectious and have symptoms
of the disease move to the infected class I(t). The compartment A(t) recruits a group of
those infected individuals who are infectious with no disease symptoms. Individuals in
the superspreader class are rapid carriers of the disease, e.g., paramedic staff, salespersons,
delivery staff, shopkeepers, etc. Infectious people with severe health issues due to the disease
move to the hospitalized class H(t). People who recover due to hospital treatment or their
robust immune systems are in the recovered class R(t). Thus at any time t,

N(t) = S(t) + E(t) + I(t) + A(t) + P(t) + H(t) + R(t). (1)

The rate of transmission to the susceptible class is Ψ. Due to interactions between
susceptible and infectious individuals, the susceptible are transmitted to the exposed class
at the rates γ1, γ2, γ3, and γ4. The natural mortality rate of all classes is denoted by σ.
Exposed individuals transmit at the rates γ5, γ6, and γ7 to the infected I(t), symptomatic
A(t), and superspreader P(t) classes, respectively. Infected individuals are hospitalized
at the rate of γ8, recover at the rate of γ9, and succumb to the disease at a death rate of ηI .
Asymptomatic A(t) individuals recover at the rate of τ1. Superspreaders are hospitalized
at the rate of τ2, recover at the rate of τ3, and die due to disease at the rate of ηP . The
transition rates to the hospitalized class H(t) from the infected I(t) and superspreader
P(t) classes are γ8 and τ2. The rate of transition from the hospitalized class H(t) to the
recovered class R(t) is τ4. The death rate for the hospitalized class due to the disease is ηH .
The transmission rate to the recovered class from the classes I(t), A(t), P(t), and H(t) are
γ9, τ1, τ3, and τ4, respectively. The model variables are assumed to be real-valued functions
belonging to C1[0,+∞).

We start by going over the basic and auxiliary definitions of the Caputo–Fabrizio
fractional operators and their associated characteristics before presenting the fractional
model in the sense of the Caputo–Fabrizio derivative.

Definition 1 ([37,38]). Let ν ∈ H1(0, T), T > 0, and γ ∈ (0, 1). Then the Caputo–Fabrizio
derivative operator of order γ is given by

CF
0 D

γ
t ν(t) =

M(γ)

1− γ

t∫
0

ν́(s) exp
[
− γ

1− γ
(t− s)

]
ds, t > 0,

where M(γ) is the normalization function satisfying the condition M(0) = M(1) = 1.

Definition 2 ([37,38]). Let γ ∈ (0, 1], then the associated Caputo–Fabrizio fractional integral
operator of order γ is expressed as

CF
0 I

γ
t ν(t) =

2(1− γ)

(2− γ)M(γ)
ν(t) +

2(γ)
(2− γ)M(γ)

t∫
0

ν(s)ds, t ≥ 0. (2)

To fully see the internal memory effects of the COVID-19 biological model, we de-
signed a fractional order model that captures the flow pattern described in Figure 1. With
the Caputo–Fabrizio derivative operator CFDρ

t of order 0 < ρ < 1, the model governing the
given flow pattern is presented as:
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CF
0 Dρ

t S(t) = Ψ− (γ1 I + γ2 A + γ3P + γ4H)S
N

− σS, (3a)

CF
0 Dρ

t E(t) =
(γ1 I + γ2 A + γ3P + γ4H)S

N
− (γ5 + γ6 + γ7 + σ)E, (3b)

CF
0 Dρ

t I(t) = γ5E− (γ8 + γ9 + σ + ηI)I, (3c)
CF
0 Dρ

t A(t) = γ6E− (τ1 + σ)A, (3d)
CF
0 Dρ

t P(t) = γ7E− (τ2 + τ3 + σ + ηP)P, (3e)
CF
0 Dρ

t H(t) = γ8 I + τ2P− (τ4 + ηH + σ)H, (3f)
CF
0 Dρ

t R(t) = γ9 I + τ1 A + τ3P + τ4H − σR, (3g)

along with the initial conditions

S0 ≥ 0, E0 ≥ 0, I0 ≥ 0, A0 ≥ 0, P0 ≥ 0, H0 ≥ 0, R0 ≥ 0, (3h)

where 0 ≤ t ≤ t f < ∞. Suppose that

g1(y(t)) = Ψ− (γ1 I + γ2 A + γ3P + γ4H)S
N

− σS, (4a)

g2(y(t)) =
(γ1 I + γ2 A + γ3P + γ4H)S

N
− (γ5 + γ6 + γ7 + σ)E, (4b)

g3(y(t)) = γ5E− (γ8 + γ9 + σ + ηI)I, (4c)

g4(y(t)) = γ6E− (τ1 + σ)A, (4d)

g5(y(t)) = γ7E− (τ2 + τ3 + σ + ηP)P, (4e)

g6(y(t)) = γ8 I + τ2P− (τ4 + ηH + σ)H, (4f)

g7(y(t)) = γ9 I + τ1 A + τ3P + τ4H − σR. (4g)

S(t) E(t)

A(t) I(t)

H(t)

R(t)

P(t)

Y

h
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h
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Figure 1. Compartmental view of the disease transmission .

Then, model (3) can be rewritten as

CF
0 D

ρ
t y(t) = g(y(t)), y(0) = y0 ≥ 0, (5)
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where g(y(t)) = gi(y(t)), i = 1, . . . , 7 is defined in (4), y(t) =
(
S, E, I, A, P, H, R

)T ∈ R7,

y0 =
(
S0, E0, I0, A0, P0, H0, R0

)T and g(y(t)) ∈ C1[0, t f ]. The values of the parameters
involved in model (3) are shown in Table 1.

Table 1. Parametric values.

Parameter Description Values Reference

γ1 Transmission rate of S to E after contacting I 0.866 [36]
γ2 Transmission rate of S to E after contacting A 0.16 [36,39]
γ3 Transmission rate of S to E after contacting P 0.8 [36]
γ4 Transmission rate of S to E after contacting H 0.0131 [36,39]
γ5 Translation of E to I 0.235 [36,39]
γ6 Translation of E to A 0.26 [36,39]
γ7 Translation of E to P 0.56 [36]
γ8 Translation of I to H 0.45 [36,39]
γ9 Translation of I to R 0.6381 [36,39]
τ1 Translation of A to R 0.8 [36,39]
τ2 Translation of P to H 0.1 [36]
τ3 Translation of P to R 0.3 [36]
τ4 Translation of H to R 0.54 [36,39]
ηI Death induced by disease in I 0.08 [36]
ηP Death induced by disease in P 0.092 [36,39]
ηH Death induced by disease in H 0.485 [36]
Ψ Susceptible recruit rate 2.5 [36]
σ Natural death rate 0.241 [36]

3. Fundamental and Biological Properties

This section deals with the existence and unique results of the Caputo–Fabrizio fractional
model (3). The characteristics of the Laplace transformation for the CF-fractional operator are
used to prove the boundedness and positivity of the solutions. In this part, the suggested
model’s reproduction number and two primary equilibrium points are also given.

3.1. Existence and Uniqueness

We employ theorems from functional analyses in this part to demonstrate the existence
and uniqueness of the solution.

Theorem 1. Let g ∈ C1[0, t f ], then function g(y) in (5) is Lipschitz continuous.

Proof. Let V be a convex compact subset of

D = {y(t)| 0 ≤ t ≤ t f , y ∈ R7}.

Let y1, y2 ∈ V, then by the mean value theorem (MVT) ∃ ζ ∈ (y1, y2), such that

g(y1(t))− g(y2(t))
y1(t)− y2(t)

=g
′
(ζ(t)),

g(y1(t))− g(y2(t)) =g
′
(ζ(t)).(y1(t)− y2(t)),

| g(y1(t))− g(y2(t)) | =| g
′
(ζ(t)).(y1(t)− y2(t)) |,

≤ ‖g′(ζ)‖∞‖y1 − y2‖∞.
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Since g ∈ C1[0, t f ], so ∃ a constant α1 > 0, such that

‖g′(ζ)‖∞ ≤ α1.

Hence,

| g(y1(t))− g(y2(t)) | ≤ α1‖y1 − y2‖∞,

sup
t∈[0,t f ]

| g(y1)− g(y2) | ≤ α1‖y1 − y2‖∞,

‖g(y1)− g(y2)‖∞ ≤ α1‖y1 − y2‖∞.

Thus, g(y) is Lipschitz.

Theorem 2. Suppose that the function g(y) satisfies the Lipschitz condition

‖g(y2)− g(y1)‖∞ ≤ α1‖y2 − y1‖∞,

then the problem (5) has a unique solution for

2α1

(2− ρ)M(ρ)

[
(1− ρ) + ρt f

]
< 1.

Proof. We prove that y(t) is a solution of (5) if and only if it satisfies the equation

y(t) = y0 +
2

(2− ρ)M(ρ)

[
(1− ρ)g(y(t)) + ρ

∫ t

0
g(y(t))dx

]
. (6)

Let y(t) be the solution of Equation (5). We apply the Caputo–Fabrizio fractional
integral (2) to the system (5); that is

CF
0 Iρ

t

[CF

0
Dρ

t y(t)
]
=CF

0 Iρ
t g(y(t)). (7)

We obtain the fractional integral Equation (6).
For converse implication, we let yn be a sequence of solutions, which converges to

solution (6) with the Picard successive iteration, defined as follows:

yn(t) = y0 +
2

(2− ρ)M(ρ)

[
(1− ρ)g(yn−1(t)) + ρ

∫ t

0
g(yn−1(x))dx

]
, n = 1, 2, . . . (8)

with y(t0) = y0.
First, we show that sequence (8) is contractive if

k =
2α1

(2− ρ)M(ρ)

[
(1− ρ) + ρt f

]
< 1.

|yn(t)− yn−1(t) |=|
2(1− ρ)

(2− ρ)M(ρ)
[g(yn−1(t))− g(yn−2(t))]

+
2ρ

(2− ρ)M(ρ)

∫ t

0
[g(yn−1(x))− g(yn−2(x))]dx |,

≤ 2(1− ρ)

(2− ρ)M(ρ)
|g(yn−1(t))− g(yn−2(t)) |

+
2ρ

(2− ρ)M(ρ)

∫ t

0
|g(yn−1(x))− g(yn−2)|dx,
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using the Lipschitz property of function g(y), we obtain the following expression,

|yn(t)− yn−1(t) | ≤
2(1− ρ)

(2− ρ)M(ρ)
α1|yn−1(t)− yn−2(t) |

+
2ρ

(2− ρ)M(ρ)

∫ t

0
α1|yn−1(t)− yn−2(t) | dx,

≤ 2(1− ρ)

(2− ρ)M(ρ)
α1 sup

t∈[0,t f ]

|yn−1(t)− yn−2(t) |

+
2ρ

(2− ρ)M(ρ)

∫ t

0
α1 sup

t∈[0,t f ]

|yn−1(t)− yn−2(t)|dx,

|yn(t)− yn−1(t) | ≤
[ 2(1− ρ)α1

(2− ρ)M(ρ)
+

2ραt f

(2− ρ)M(ρ)

]
‖yn−1 − yn−2‖∞,

sup
t∈[0,t f ]

|yn(t)− yn−1(t) | ≤
[ 2(1− ρ)α1

(2− ρ)M(ρ)
+

2ρα1t f

(2− ρ)M(ρ)

]
‖yn−1 − yn−2‖∞,

‖yn − yn−1‖∞ ≤ k‖yn−1 − yn−2‖∞.

This implies
d(yn, yn−1) ≤ k d(yn−1, yn−2). (9)

Thus, from Equation (9), sequence (8) is contractive.
Now for m, n ∈ N and m > n

|ym − yn |=|ym − ym−1 + ym−1 − ym−2 + ym−2...− yn+1 + yn+1 − yn |
≤ |ym − ym−1 | +|ym − 1− ym−2 | +... + |yn+1 − yn |
≤ km−1|y1 − y0 | +km−2|y1 − y0 | +... + km−n|y1 − y0 |
≤ [km−1 + km−2 + ... + kn]|y1 − y0 |,

where
k =

2α1

(2− ρ)M(ρ)

[
(1− ρ) + ρt f

]
< 1.

Hence, the right-hand side is a geometric series, which is always convergent for
0 < k < 1.

|ym − yn |≤kn 1− km−n

1− k
|y1 − y0 | ≤kn 1

1− k
|y1 − y0 | .

Thus, 0 < k < 1, lim(kn) = 0. Therefore, we infer that sequence (yn) is Cauchy; hence,
it is convergent. Let lim(yn) = y, then Equation (8) gives

limn→∞yn(t) = y(t) = y0 +
2

(2− ρ)M(ρ)

[
(1− ρ)g(y(t)) + ρ

∫ t

0
g(y(x))dx

]
. (10)

Equation (10) is the required solution.
Uniqueness: For uniqueness, we suppose that the sequence (yn) converges to two

different limits y1 and y2. Then, n1, n2 ∈ N, such that,

|yn − y1 |< ε1 f or n1 ≥ n,

|yn − y2 |< ε2 f or n2 ≥ n.

Let n = max{n1, n2}, then

|y1 − y2 |= |y1 − yn + yn − y2 |≤ |y1 − yn | +|yn − y2 |< ε1 + ε2 = ε,
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which implies

|y1 − y2 |= 0⇒ y1 = y2.

Hence, the uniqueness of solution (10) of (5) is proved.

3.2. Boundedness and Positivity of the Solutions

This section is devoted to proving the boundedness and positivity of solutions of the

CF-fractional-order model (3) in a feasible region Ω =
{
(S, E, I, A, P, H, R) ∈ R7

+ : 0 <

N(t) ≤ Ψ
σ

}
.

Theorem 3. All solutions of the system (3) are bounded with the given set of non-negative initial
conditions (3h).

Proof. Adding all seven equations of model (3), we have

CF
0 D

ρ
t N(t) =CF

0 D
ρ
t S(t) +CF

0 D
ρ
t E(t) +CF

0 D
ρ
t I(t)

+CF
0 D

ρ
t A(t) +CF

0 D
ρ
t P(t) +CF

0 D
ρ
t H(t) +CF

0 D
ρ
t R(t),

=Ψ− (ηI I(t) + ηPP(t) + ηH H(t))− σN(t), (11)

where N(t) = S(t) + E(t) + I(t) + A(t) + P(t) + H(t) + R(t) is the total population. Clearly,

Ψ− (ηI I(t) + ηPP(t) + ηH H(t))− σN(t) ≤ Ψ− σN(t).

Therefore, from Equation (11), it follows that

CF
0 D

ρ
t N(t) ≤ Ψ− σN(t).

We apply the Laplace transform on both sides to obtain

L
[

CF
0 D

ρ
t N(t)

]
(s) ≤ Ψ

s
− σL [N(t)](s),

and further simplification yields us

sN(s)
s + ρ(1− s)

+ σN(s) ≤ Ψs−1 +
N(0)

s + ρ(1− s)
,

where N(s) = L [N(t)](s), and N(0) is the total population at t = 0.

N(s) ≤ Ψs−1[s + ρ(1− s)] + N(0)
(1 + σ− σρ)s + σρ

,

N(s) ≤ Ψ(1− ρ)

(1 + σ− σρ)s + σρ
+

Ψρs−1

(1 + σ− σρ)s + σρ
+

N(0)
(1 + σ− σρ)s + σρ

,

N(s) ≤ Ψ(1− ρ)s0

(1 + σ− σρ)
[
s1 + σρ

(1+σ−σρ)

] + Ψρs1−2

(1 + σ− σρ)
[
s1 + σρ

(1+σ−σρ)

]
+

N(0)
(1 + σ− σρ)

[
s1 + σρ

(1+σ−σρ)

] .

Applying the inverse Laplace transformation, we have

N(t) ≤ Ψ(1− ρ)

(1 + σ− σρ)
E1,1(−Υt) +

Ψρ

(1 + σ− σρ)
tE1,2(−Υt) +

N(0)
(1 + σ− σρ)

E1,1(−Υt), (12)
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where Υ =
−σρ

1 + σ− σρ
, and Eρ1,$1 is the Mittag-Leffler function with two parameters

ρ1 > 0 and $1 > 0, defined as

Eρ1,$1(z) =
∞

∑
n=0

zn

Γ(ρ1n + $1)
,

whose Laplace transform is given by

L

[
t$1−1Eρ1,$1(±Λtρ1)

]
=

sρ1−$1

sρ1 ∓Λ
.

The Mittag-Leffler function possesses asymptotic behavior, which we use in inequality

(12). Since N(t) ≤ Ψ
σ

as t → ∞. Hence, all of the state variables of the model (3) are
bounded in Ω.

It makes no sense to have negative solutions as we are working with a biological
model. Thus, the next theorem will demonstrate that for t > 0, all state variables of model
(3) are positive.

Theorem 4. For the given set of non-negative initial conditions (3h), the solutions of the system of
model (3) are positive.

Proof. Consider the first equation of the model (3) that can be written as

CF
0 D

ρ
t S(t) = Ψ−

(
γ1 I + γ2 A + γ3P + γ4H

N
+ σ

)
S.

Since all solutions are bounded, we let I(t), A(t), P(t), H(t) and N(t) are bounded by
δ1, δ2, δ3, δ4, and δ5, respectively. Then,

CF
0 D

ρ
t S(t) ≥ −mS(t), (13)

where m = sup
(γ1δ1 + γ2δ2 + γ3δ3 + γ4δ4

δ5
+ σ

)
is a non-negative constant. Taking the

Laplace transform on both sides of Equation (13), we have

sL [S(t)]− S(0)
s + ρ(1− s)

≥ −mL [S(t)],

L [S(t)] ≥ S(0)
(1 + m−mp)[s + mρ

1+m−mρ ]
,

L [S(t)] ≥ S(0)
(1 + m−mp)

L

[
E1,1

{
− mρ

1 + m−mρ
t
}]

.

The application of the inverse Laplace transform on both sides yields

S(t) ≥ S(0)
(1 + m−mp)

[
E1,1

{
− mρ

1 + m−mρ
t
}]

. (14)

Since S(0) ≥ 0, and 0 ≤ E1,1 ≤ 1, from (14) it is concluded that S(t) ≥ 0 for all
t ≥ 0. In the same way, the positivity of E(t), I(t), A(t), P(t), H(t), R(t) can be proved
for t ≥ 0 with non-negative initial data. Therefore, the solutions in R7

+ will be positive for
all t ∈ [0, ∞).
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3.3. Equilibrium Points

If we put

CF
0 D

ρ
t S =CF

0 D
ρ
t E =CF

0 D
ρ
t I =CF

0 D
ρ
t A =CF

0 D
ρ
t P =CF

0 D
ρ
t H =CF

0 D
ρ
t R = 0,

model (3) gives two main equilibrium points. The coronavirus-free (or the disease-free
equilibrium (DFE)) point is computed as

P0 = (S0, 0, 0, 0, 0, 0, 0, 0), where S0 =
Ψ
σ

, (15)

and the endemic equilibrium (EE) point is given as

P1 = (S1, E1, I1, A1, P1, H1, R1), (16)

where

S1 =
[N(γ5 + γ6 + γ7 + σ)

β

]
, E1 =

[ Ψ
γ5 + γ6 + γ7 + σ

− σN
β

]
,

I1 =
γ5

k2

[ Ψ
γ5 + γ6 + γ7 + σ

− σN
β

]
, A1 =

γ6

k3

[ Ψ
γ5 + γ6 + γ7 + σ

− σN
β

]
,

P1 =
γ7

k4

[ Ψ
γ5 + γ6 + γ7 + σ

− σN
β

]
, H1 =

1
k5

[γ8γ5

k2
+

τ2γ7

k4
][

Ψ
γ5 + γ6 + γ7 + σ

− σN
β

]
,

R1 =
1
σ

[
γ9 I1 + τ1 A1 + τ3P1 + τ4H1

]
,

with

β =
γ1γ5

k2
+

γ2γ6

k3
+

γ3γ7

k4
+

γ4

k5

(
γ8γ5

k2
+

τ3γ7

k4

)
, k1 = γ5 + γ6 + γ7 + σ,

k2 = γ8 + γ9 + σ + ηI , k3 = τ1 + σ, k4 = τ2 + τ3 + σ + ηP, k5 = τ4 + σ + ηH .

3.4. Basic Reproduction Number

The basic reproduction number, commonly written as R0, is an epidemiological
baseline statistic that reflects the total number of secondary cases created by a single
infected individual in a completely susceptible population over an infectious period. The
differential equations relating to the classes of exposed (E), symptomatic-infected (I),
asymptomatic-infected (A), and hospitalized individuals (H) will be the key focus of this
section. We use the next-generation method to compute the value of R0 as described
in [40–43]. The matrix of new infection arrival rates in F and translation rates in V at DFE,
are defined as

F =

(
∂M
∂xi

)
P0

, i = 1, 2, 3, 4, 5,

V =

(
∂S
∂xi

)
P0

, i = 1, 2, 3, 4, 5.

where (x1, x2, x3, x4, x5) = (E, I, A, P, H) and

M =


(γ1 I + γ2 A + γ3P + γ4H)S

N
0
0
0
0

, S =


(γ5 + γ6 + γ7 + σ)E

−γ5E + (γ8 + γ9 + σ + ηI)I
−γ6E + (τ1 + σ)A

−γ7E + (τ2 + τ3 + σ + ηP)P
−γ8 I − τ2P + (τ4 + ηH + σ)H

.
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We determine the spectral radius of the matrix FV−1 to obtain the reproduction
numberR0.

R0 =
γ1γ5k3k4k5 + γ2γ6k2k4k5 + γ3γ7k2k3k5 + γ4γ5γ8k3k4 + γ4γ7k2k3τ2

k1k2k3k4k5
. (17)

4. Stability Analysis

In this part, we theoretically useR0 to examine the local stability and global stability
of model (3) at both steady states. To investigate global stability, we use the Lyapunov
theory with the LaSalle invariance principle [40–43] and the Castillo-Chavez theory [39,44].

4.1. Local Behavior of the Model

To evaluate the local stability of model (3) at DFE, the Jacobian matrix approach is
used. The following theorem gives the local stability of model (3) at P0.

Theorem 5. Model (3) is locally asymptotically stable (LAS) at P0 ifR0 < 1 and unstable forR0 > 1.

Proof. We compute Jacobian at P0 for the system (3) to give:

JP0 =



−σ 0 −γ1 −γ2 −γ3 −γ4 0
0 −k1 γ1 γ2 γ3 γ4 0
0 γ5 −k2 0 0 0 0
0 γ6 0 −k3 0 0 0
0 γ7 0 0 −k4 0 0
0 0 γ8 0 τ2 −k5 0
0 0 γ9 τ1 τ3 τ4 −σ


. (18)

We determine the following eigenvalues of the matrix (18).

λ1 =− σ, (19a)

λ2 =− σ, (19b)

λ3 =− k1, (19c)

λ4 =− k1k2 − γ1γ5

k1
, (19d)

λ5 =− (k1k2k3k4k5)(1−R0) + N1

k4k5(λ3λ4)
, (19e)

λ6 =− (1−R0)k1k2k3k4k5 + N2

k1k5(λ3λ4)
, (19f)

λ7 =− (1−R0)

λ3λ4λ5λ6
, (19g)

where,

N1 = k2k3k5γ3γ7 + k3k4γ4γ5γ8 + k2k3γ4γ7τ2,

N2 = k3k4γ4γ5γ8 + k2k3γ4γ7τ2.

From (19), we observe negativity of all eigenvalues in the case when R0 < 1. Thus,
model (3) is LAS only whenR0 < 1.
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4.2. Global Behavior of the Model

For global stability at P0, we employ the approach of Castillo-Chavez [44] and used
in [39]. We put model (3) in the form

CF
0 D

ρ
t X (t) = K(X ,Y),

CF
0 D

ρ
t Y(t) = N (X ,Y), N (X , 0) = 0,

(20)

where X = (S) represents the non-infected individuals and Y = (E, I, A, P, H) represents
the infected individuals, with X ∈ R+ and Y ∈ R5

+. Here, we ignored equation (3g) as
the state variable R is not involved in any of the equations (3a)–(3f) of a given model.
P0 = (X0, 0) =

(
Ψ
σ , 0, 0, 0, 0, 0

)
is the DFE point. To show global asymptotic stability (GAS)

of the disease-free equilibrium point, the conditions given below must be satisfied.

(H1) CF
0 D

ρ
t X = K(X , 0) = 0, X0 is GAS, (21)

(H2) CF
0 D

ρ
t Y = N (X ,Y) = BY − N̄ (X ,Y) where N̄ (X ,Y) ≥ 0 for all (X ,Y) ∈ Ω. (22)

Here, B = DYN (X0, 0) is an M-matrix and Ω is defined as the feasible region for the
model. Thus, for the global stability at DFE, due to Castillo-Chavez et. al. [44], we prove
the following theorem.

Theorem 6. IfR0 < 1 and the conditions (H1) and (H2) are satisfied, the disease-free equilibrium
(DFE) point P0 of model (3) is globally asymptotically stable (GAS).

Proof. Let X = (S) be the uninfected persons, Y = (E, I, A, P, H) be individuals with
infections, and P0 = (X0, 0) be the disease-free equilibrium point. Thus,

CF
0 D

ρ
t X = K(X ,Y) = Ψ− (γ1 I + γ2 A + γ3P + γ4H)

S
N
− σS. (23)

If S = S0, then K(X , 0) = 0, i.e.,

CF
0 D

ρ
t X = Ψ− σS0 = 0. (24)

From Equation (24) as t→ ∞, X → X0. Therefore X0 = (S0, 0) is GAS. Now,

BY − N̄ (X ,Y) =


−k1

γ1S0

N
γ2S0

N
γ3S0

N
γ4S0

N
γ5 −k2 0 0 0
γ6 0 −k3 0 0
γ7 0 0 −k4 0
0 γ8 0 τ2 −k5




E
I
A
P
H

−


κ
0
0
0
0

. (25)

where

B =


−k1

γ1S0

N
γ2S0

N
γ3S0

N
γ4S0

N
γ5 −k2 0 0 0
γ6 0 −k3 0 0
γ7 0 0 −k4 0
0 γ8 0 τ2 −k5

, Y =


E
I
A
P
H

, N̄ (X ,Y) =


κ
0
0
0
0

,

and κ =
(γ1 I + γ2 A + γ3P + γ4H)

N
(S0 − S).

Here, B is an M-matrix. Since at P0, each S, E, I, A, P, H, R ≤ S0; thus, matrix N̄ (X ,Y)
is non-negative. So, point P0 is GAS.

Next, we describe the theorem that gives the global stability of the model (3) at P1.
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Theorem 7 ([36–46]). The endemic equilibrium (EE) point P1 of model (3) is globally asymptoti-
cally stable (GAS) provided R0 > 1 and unstable when R0 < 1.

Proof. Let us define a Volterra-type Lyapunov function of the form:

Ł(S, E, I, A, P, H, R) =
[
S− S1 − S1 log

S
S1

]
+
[

E− E1 − E1 log
E
E1

]
+
[

I − I1 − I1 log
I
I1

]
+
[

A− A1 − A1 log
A
A1

]
+
[

P− P1 − P1 log
P
P1

]
+
[

H − H1 − H1 log
H
H1

]
+
[

R− R1 − R1 log
R
R1

]
.

with the application of the CF-derivative, the above expression takes the form:

CF
0 D

ρ
t Ł =

[S− S1

S

]
CF
0 D

ρ
t S +

[E− E1

E

]
CF
0 D

ρ
t E +

[ I − I1

I

]
CF
0 D

ρ
t I

+
[A− A1

A

]
CF
0 D

ρ
t A +

[P− P1

P

]
CF
0 D

ρ
t P (26)

+
[H − H1

H

]
CF
0 D

ρ
t H +

[R− R1

R

]
CF
0 D

ρ
t R.

Replacing the derivatives with the right-hand sides of the equations of model (3), we obtain

dŁ
dt

=

[
S− S1

S

][
Ψ− (γ1 I + γ2 A + γ3P + γ4H)S

N
− (σ)S

]
+
[E− E1

E

]
[

γ1 I + γ2 A + γ3P + γ4H)S
N

]
− [(γ5 + γ6 + γ7 + σ)E]+[

I − I1

I

]
[γ5 − (γ8 + γ9 + σ + ηI)]I +

[
A− A1

A

]
[γ6E− (τ1 + σ)A]+[

P− P1

P

]
[γ7 − (τ2 + τ3 + σ + ηP)P] +

[
H − H1

H

]
[γ8 I + τ2P− (τ4 + ηH + σ)H]+[

R− R1

R

]
[γ9 I + τ1 A + τ3P + τ4H − σR].

We rearrange the terms on the right-hand side to obtain:
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dŁ
dt

=

[
Ψ +

(
(γ1 I + γ2 A + γ3P + γ4H)S

N
+ σ

)
(S1)2

S
+

(
(γ1 I + γ2 A + γ3P + γ4H)S

N

)
S

+ (γ5 + γ6 + γ7 + σ)
(E1)2

E
+ γ5E + (γ8 + γ9 + σ + ηI)

(I1)2

I
+ γ6E + γ7E

+ (τ1 + σ)
(A1)2

A
+ (τ4 + ηH + σ)

(H1)2

H
+ (τ2 + τ3 + ηP + σ)

(P1)2

P

+ γ8 I + γ9 I + τ1 A + τ2P + τ3P + τ4H + σ
(R1)2

R

]

−
[(

(γ1 I + γ2 A + γ3P + γ4H)S
N

+ σ

)
(S− S1)2

S
+ Ψ

S1

S

+

(
(γ1 I + γ2 A + γ3P + γ4H)S

N
+ σ

)
S1 +

(E− E1)2

E
(γ5 + γ6 + γ7 + σ)

+
E1

E

(
(γ1 I + γ2 A + γ3P + γ4H)S

N

)
S + (γ5 + γ6 + γ7 + σ)E1

+
(I − I1)2

I
(γ8 + γ9 + ηI + σ)

+
I1

I
γ5E + (γ8 + γ9 + σ + ηI)I1 + (τ1 + σ)

(A− A1)2

A
+

A1

A
γ6E

+ (τ1 + σ)A1 + (τ1 + σ)A1 +
(P− P1)2

P
(τ2 + τ3 + ηP + σ) +

P1

P
γ7E

+ (τ2 + τ3 + ηP + σ)P1 +
(H − H1)2

H
(τ4 + ηH + σ) +

H1

H
(γ8 I + τ2P)

+ (τ4 + ηH + σ)H1 + σ
(R− R1)2

R
+ σR1 +

R1

R
(γ9 I + τ1 A + τ3P + τ4H)

]
.

Hence, we can write it as:

CF
0 D

ρ
t Ł = ξ1 − ξ2,

where

ξ1 =
[
Ψ + (C1 + σ)

(S1)2

S
+ C1S + (γ5 + γ6 + γ7 + σ)

(E1)2

E
+ γ5E

+ (γ8 + γ9 + σ + ηI)
(I1)2

I
+ γ6E + (τ1 + σ)

(A1)2

A
+ γ7E

+ (τ4 + ηH + σ)
(H1)2

H
+ (τ2 + τ3 + ηP + σ)

(P1)2

P

+ γ8 I + γ9 I + τ1 A + τ2P + τ3P + τ4H + σ
(R1)2

R

]
,
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and

ξ2 =
[
(C1 + σ)

(S− S1)2

S
+ Ψ

S1

S
+ (C1 + σ)S1 +

(E− E1)2

E
(γ5 + γ6 + γ7 + σ)

+
E1

E
C1S + (γ5 + γ6 + γ7 + σ)E1 +

(I − I1)2

I
(γ8 + γ9 + ηI + σ)

+
I1

I
γ5E + (γ8 + γ9 + σ + ηI)I1 + (τ1 + σ)

(A− A1)2

A
+

A1

A
γ6E

+ (τ1 + σ)A1 + (τ1 + σ)A1 +
(P− P1)2

P
(τ2 + τ3 + ηP + σ) +

P1

P
γ7E

+ (τ2 + τ3 + ηP + σ)P1 +
(H − H1)2

H
(τ4 + ηH + σ) +

H1

H
(γ8 I + τ2P)

+ (τ4 + ηH + σ)H1 + σ
(R− R1)2

R
+ σR1 +

R1

R
(γ9 I + τ1 A + τ3P + τ4H)

]
.

As the parameters of model (3) are non-negative, we conclude that CF
0 D

ρ
t Ł < 0 when

ξ1 < ξ2 and CF
0 D

ρ
t L = 0 when ξ1 = ξ2. The case ξ1 = ξ2 gives S = S1, E = E1, A = A1,

P = P1, I = I1, H = H1, and R = R1. So, as per LaSalle’s invariance principle, the endemic
equilibrium point P1 is GAS.

5. Updated Model with the Quarantine Compartment

Quarantining infected individuals is one way to control the spread of the coronavirus. To
implement this control strategy, the original model was updated, such that infected, asymp-
tomatic, and superspreaders were quarantined at a rate of c1, c2, and c3, respectively. Quaran-
tined individuals can die from the disease at a rate of ηQ and die naturally at a rate of σ. Those
suffering from severe disease symptoms are hospitalized at a rate of c4. Moreover, they may
receive complete COVID-19 immunity at the rate of c5. As a result, the modified coronavirus
model is represented both graphically (see Figure 2) and mathematically as follows:

S(t) E(t)

A(t) I(t)

H(t)

R(t)

P(t) Q(t)

Y

h
P

h
Q

h
I

h
H

s s

s

s

s

s s

s

g
1

t
1

t
3

t
2

t
4

g
2

g
4

g
6

g
7

g
5

g
9

g
8

c
2

c
3

c
1

c
4

c
5

g
3, ,

Figure 2. Updated compartmental presentation of disease transmission with the quarantine class.
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CF
0 D

ρ
t S(t) = Ψ− (γ1 I(t) + γ2 A + γ3P + γ4H)S(t)

N
− σS(t), (27a)

CF
0 D

ρ
t E(t) =

(γ1 I(t) + γ2 A + γ3P + γ4H)S
N

− (γ5 + γ6 + γ7 + σ)E, (27b)

CF
0 D

ρ
t I(t) = γ5E− (γ8 + γ9 + c1 + σ + ηI(t))I(t), (27c)

CF
0 D

ρ
t A(t) = γ6E− (τ1 + c2 + σ)A, (27d)

CF
0 D

ρ
t P(t) = γ7E− (τ2 + τ3 + c3 + σ + ηP)P, (27e)

CF
0 D

ρ
t Q(t) = c1 I(t) + c2 A + c3P− (c4 + c5 + ηQ + σ)Q, (27f)

CF
0 D

ρ
t H(t) = γ8 I(t) + τ2P + c4Q− (τ4 + ηH + σ)H, (27g)

CF
0 D

ρ
t R(t) = γ9 I(t) + τ1 A + τ3P + τ4H + c5Q− σR, (27h)

along with

S0 ≥ 0, E0 ≥ 0, I(t)0 ≥ 0, A0 ≥ 0, P0 ≥ 0, Q0 ≥ 0, H0 ≥ 0, R0 ≥ 0. (27i)

5.1. Solution Approximating Technique

In this section, we present the numerical technique to solve the model (27). We first

discretize the continuous domain [0, t f ] into N sub-intervals, each of width ∆t =
t f

N
,

in order to discretize the state equations of model (27). The discrete points are denoted
as ti = i∆t, i = 0, 1, 2, ..., N . By using the approximation method described below, we
estimate the state equations at these discrete points.

Let us write the Caputo–Fabrizio model (27) in the compact form

CF
0 D

ρ
t Z(t) = g(Z), Z(0) = Z0, 0 < ρ ≤ 1, (28)

where
Z(t) =

(
S(t), E(t), I(t), A(t), P(t), Q(t), H(t), R(t)

)T ,

and
g(Z) =

(
g1(t), g2(t), g3(t), g4(t), g5(t), g6(t), g7(t), g8(t)

)T .

We utilized the technique presented in [47] to design an approximation scheme for
Equation (28).

Applying the CF-fractional integral operator to both sides of (28), we have

CF
0 I

ρ
t

(
CF
0 D

ρ
t Z(t)

)
=CF

0 I
ρ
t

(
g(Z)

)
.

This gives

Z(t)− Z(0) =
2

(2− ρ)M(ρ)

[
(1− ρ)g(Z) + ρ

t∫
0

g(Z(s))ds
]
,

and in discrete form

Z(ti+1)− Z(0) =
2

(2− ρ)M(ρ)

[
(1− ρ)g(Z(ti)) + ρ

ti+1∫
0

g(Z(s))ds
]
. (29)
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Similarly,

Z(ti)− Z(0) =
2

(2− ρ)M(ρ)

[
(1− ρ)g(Zi−1) + ρ

ti∫
0

g(Z(s))ds
]
. (30)

From Equations (29) and (30), we obtain

Z(ti+1) =Z(ti) +
2(1− ρ)

(2− ρ)M(ρ)

[
g(Zi)− g(Zi−1)

]
+

2ρ

(2− ρ)M(ρ)

[ ti+1∫
0

g(Z(s))ds

−
ti∫

0

g(Z(s))ds
]

.

This implies that

Zi+1 = Zi +
2(1− ρ)

(2− ρ)M(ρ)

[
g(Zi)− g(Zi−1)

]
+

2ρ

(2− ρ)M(ρ)

ti+1∫
ti

g(Z(s))ds. (31)

A Lagrange interpolating polynomial of degree 2 was used to estimate the integral on
the right-hand side of (31). That is

ti+1∫
ti

g(Z(s))ds =

ti+1∫
ti

[ 2

∑
m=0

g
(
Z(ti−m))Lm(t)ds

]
dt,

= ∆t
[

23
12

g(Z(ti))−
4
3

g(Zi−1) +
5

12
g(Zi−2)

]
. (32)

Thus, the iterative scheme (31) in view of (32) takes the form

Zi+1 = Zi +
2

(2− ρ)M(ρ)

(
1− ρ +

23
12

hρ
)

g(Zi)−
2

(2− ρ)M(ρ)

(
1− ρ +

4
3

hρ
)

g(Zi−1)

+
10hρ

12(2− ρ)M(ρ)
g(Zi−2), i = 2, 3, 4, ..., N . (33)

By substituting ρ = 1 in Equation (33), the three-step conventional Adam–Bashforth
method for an integer-order SEIAPQHR model can be obtained.

5.2. Effect of the Fractional Order on Disease Dynamics

This section explains how the fractional order ρ of model (27) affects COVID-19 trans-
mission dynamics. To study this ρ effect, we implement the finite difference method (33)
to obtain graphical results of the proposed fractional model (27) for different fractional
orders ρ. Figure 3 illustrates the impact of the arbitrary fractional-order ρ on the number
of individuals in one class. For ρ = 0.7, 0.8, 0.9, 1, the dynamic behavior of model (27)
is simulated. It can be seen that ρ, even at a larger value that is less than 1, has little to
no impact on the dynamics of the coronavirus disease. The solution curves appear to
function differently in the early stages of the disease for a small duration of time, but
beyond some crucial values of time t, they combine to display consistent behavior. The
epidemic model’s memory effects are unchanged. This implies that changing the value of
order ρ as illustrated in Figure 3 will not stop the spread of COVID-19. We can observe that
all curves representing susceptibility for different fractional orders stabilize at the same
position, i.e., at S(t) = 8.35, which is the fraction of the total population in thousands.
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Figure 3. Effects of different fractional orders on the disease dynamics.

5.3. Effect of Quarantine Rates on Disease Dynamics

Using the suggested fractional model (27), we quantitatively investigate the influence
of quarantine rates on the dynamics of the coronavirus pandemic in this section. An
extended quarantine strategy was intended to control the spread of COVID-19 in the
human population. For this, a number of numerical simulations showing the impacts of
various quarantine levels are shown, see Figures 4–12. We use the value of the fractional-
order ρ as equivalent to 0.7, 0.8, and 0.9 for each considered case. In order to understand
the flow pattern and to control the COVID-19 disease, the numerical investigations and
observations yielded more conclusive and biologically reasonable results.

It is evident from Figures 4–6 that when the infectious quarantine rate c1 increases,
human populations in all compartments with infections, i.e., in E, I, A, P, H, except Q
decline. Thus, increasing the quarantine rate from compartment I(t) to Q(t), the curve for
I(t) will move toward a coronavirus-free state. The quarantine rate c2 of asymptomatic in-
dividuals has relatively less influence on the infected classes E(t), I(t), and P(t), compared
to classes A(t) and Q(t), where reciprocal behavior is noticed, see Figures 7–9. Almost
all other infected compartments remain unchanged with the increase in the quarantine
rate c2. However, we noticed a significant decrease in the solution curves of infected
compartments (E, I, A, P, Q, andH) with an increase in the quarantine rate c3 from the
superspreader class P(t). A slightly different behavior of the solution curve of Q(t) can be
examined in the beginning. Figures 10–12 show that our developed model moves to DFE
in a relatively short period of time when a small number of individuals are isolated from
P(t) as opposed to the first two cases. This result is very much valid as the superspreaders
are categorized as fast infection-spreading individuals. All scenarios take a 40-day time
period into consideration. Since our focus was to study the effects of different quarantine
rates on the dynamic behaviors of infections in the population, we omitted the graphs for
susceptible S(t) and recovered R(t) individuals under quarantine effects.
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Figure 4. Changing the quarantine rate c1 from 0% to 70% with ρ = 0.7.
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Figure 5. Changing the quarantine rate c1 from 0% to 70% with ρ = 0.8.
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Figure 6. Changing the quarantine rate c1 from 0% to 70% with ρ = 0.9.
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Figure 7. Changing the quarantine rate c2 from 0% to 70% with ρ = 0.7.
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Figure 8. Changing the quarantine rate c2 from 0% to 70% with ρ = 0.8.
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Figure 9. Changing the quarantine rate c2 from 0% to 70% with ρ = 0.9.
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Figure 10. Changing the quarantine rate c3 from 0% to 70% with ρ = 0.7.
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Figure 11. Changing the quarantine rate c3 from 0% to 70% with ρ = 0.8.
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Figure 12. Changing the quarantine rate c3 from 0% to 70% with ρ = 0.9.

6. Formulation of an Optimal Control Problem

Our major purpose was to examine the influences of the quarantine rates of infected,
asymptomatic, and superspreader individuals on the spread of the coronavirus disease by
applying the best optimal control approach. The goal was to decrease the population of the
infected, asymptomatic, and superspreader classes at the lowest possible control costs. In
order to identify the potential optimal control in the fractional problem (27), Pontryagin’s
maximum principle was employed to obtain the necessary conditions. Pontryagin’s maxi-
mum principle makes it advantageous to adjust the control in the mathematical models
in order to attain the required outcomes. In order to control the spread of COVID-19, we
applied three control variables described by u1(t), u2(t), and u3(t) to model (27). Quaran-
tine rates c1(t), c2(t), and c3(t) were taken into consideration as the control variables u1,
u2, and u3, respectively.

The proposed epidemic model of COVID-19 (with controls) was presented by

CF
0 D

ρ
t S(t) = Ψ− (γ1 I(t) + γ2 A(t) + γ3P(t) + γ4H(t))S(t)

N
− σS(t), (34a)

CF
0 D

ρ
t E(t) =

(γ1 I(t) + γ2 A(t) + γ3P(t) + γ4H(t))S(t)
N

− (γ5 + γ6 + γ7 + σ)E, (34b)

CF
0 D

ρ
t I(t) = γ5E(t)− (γ8 + γ9 + u1(t) + σ + ηI)I(t), (34c)

CF
0 D

ρ
t A(t) = γ6E(t)− (τ1 + u2(t) + σ)A(t), (34d)

CF
0 D

ρ
t P(t) = γ7E(t)− (τ2 + τ3 + u3(t) + σ + ηP)P(t), (34e)

CF
0 D

ρ
t Q(t) = u1(t)I(t) + u2(t)A(t) + u3(t)P(t)− (c4 + c5 + ηQ + σ)Q(t), (34f)

CF
0 D

ρ
t H(t) = γ8 I(t) + τ2P(t) + c4Q(t)− (τ4 + ηH + σ)H(t), (34g)

CF
0 D

ρ
t R(t) = γ9 I(t) + τ1 A(t) + τ3P(t) + τ4H(t) + c5Q(t)− σR(t), (34h)

along with

S(t)0 ≥ 0, E(t)0 ≥ 0, I(t)0 ≥ 0, A(t)0 ≥ 0, P(t)0 ≥ 0, Q(t)0 ≥ 0, H(t)0 ≥ 0, R(t)0 ≥ 0. (34i)
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To formulate an optimal control problem, the objective cost functional may be defined as

J(Z, u) =
∫ t f

0

[
B1 I(t) + B2 A(t) + B3P(t)

+
1
2

ω1u2
1(t) +

1
2

ω2u2
2(t) +

1
2

ω3u2
3(t)

]
dt, (35)

where I(t), A(t), and P(t) are state variables representing the highly infected classes, t f is
the fixed terminal time, and 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, and 0 ≤ u3(t) ≤ 1 are the control
variables in [0, 1]. The positive constants B1, B2, and B3 are the associated coefficients for
the number of infected, asymptomatic, and superspreader humans, respectively. Moreover,
1
2 w1, 1

2 w2, and 1
2 w3 are the costs of the implemented controls.

To find optimal quarantine strategies to control the coronavirus disease, the assumed
control set is given as

U =
{

u1, u2, u3 : ui(t) is the Lebesgue measurable on [0,1] and 0 ≤ ui(t) ≤ 1, i = 1, 2, 3
}

.

We seek to have admissible optimal controls u∗1 , u∗2 , and u∗3 for the quarantine rates
c1(t), c2(t), and c3(t), respectively, in the admissible control function space U , such that the
cost function (35) is minimized. That is

J∗(I, A, P, u∗1 , u∗2 , u∗3) = min
(u1,u2,u3)∈U

J(I, A, P, u1, u2, u3) subject to model (34). (36)

To find the optimal controllers of the fractional optimal control problem (36), we first
develop the necessary optimality conditions.

To apply Pontryagin’s maximum principle for optimality conditions, we built the
Hamiltonian for the control problem (36) as follows:

H(t, Z,U , ζ) =B1 I(t) + B2 A(t) + B3P(t) +
1
2

ω1u2
1(t) +

1
2

ω2u2
2(t) +

1
2

ω3u2
3(t)

+ ζS

(
Ψ− (γ1 I(t) + γ2 A(t) + γ3P(t) + γ4H(t))S(t)

N(t)
− σS(t)

)
+ ζE

(
(γ1 I(t) + γ2 A(t) + γ3P(t) + γ4H(t))S(t)

N(t)
− (γ5 + γ6 + γ7 + σ)E(t)

)
+ ζ I(γ5E(t)− (γ8 + γ9 + u1(t) + σ + ηI)I(t))
+ ζA(γ6E(t)− (τ1 + u2(t) + σ)A(t))
+ ζP(γ7E(t)− (τ2 + τ3 + u3(t) + σ + ηP)P(t))
+ ζQ

(
u1(t)I(t) + u2(t)A(t) + u3(t)P(t)− (c4 + c5 + ηQ + σ)Q(t)

)
+ ζH(γ8 I(t) + τ2P(t) + c4Q(t)− (τ4 + ηH + σ)H(t))
+ ζR(γ9 I(t) + τ1 A(t) + τ3P(t) + c5Q(t) + τ4H(t)− σR(t)), (37)

where Z = (S(t), E(t), I(t), A(t), P(t), Q(t), H(t), R(t)) symbolize the state variables, ζS, ζE,
ζ I , ζA, ζP, ζQ, ζH , ζR, are the associated adjoint variables.

Using the first condition of the Pontryagin principle [48,49], we obtain the equations
for controls.

∂H
∂u1

= 0 ⇒ u1(t) =
I(t)(ζ I − ζQ)

ω1
,

∂H
∂u2

= 0 ⇒ u2(t) =
A(t)(ζA − ζQ)

ω2
,

∂H
∂u3

= 0 ⇒ u3(t) =
P(t)(ζP − ζQ)

ω3
.
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Thus, the optimal control characterization for u∗1 , u∗2 , and u∗3 with bounds is given as:

u∗1 = min
{

1, max
{

0,
I(t)(ζ I − ζQ)

ω1

}}
,

u∗2 = min
{

1, max
{

0,
A(t)(ζA − ζQ)

ω2

}}
,

u∗3 = min
{

1, max
{

0,
P(t)(ζP − ζQ)

ω3

}}
. (38)

Using the second optimality condition of PMP, i.e., by differentiating the Hamilto-
nian (37) with respect to state variables, the adjoint system of the fractional-order differential
equation is obtained as:

CF
0 DρζS(t) = −

(
γ1 I(t) + γ2 A(t) + γ3P(t) + γ4H(t)

N(t)
+ σ

)
ζS

+

(
γ1 I(t)γ2 A(t) + γ3P(t) + γ4H(t)

N(t)

)
ζE, (39a)

CF
0 DρζE(t) = −(γ5 + γ6 + γ7 + σ)ζE + γ5ζ I + γ6ζA + γ7ζP, (39b)

CF
0 Dρζ I(t) = −

(
γ1S(t)
N(t)

)
ζS +

(
γ1S(t)
N(t)

)
ζE − (γ8 + γ9 + u1(t) + σ + ηI)ζ I

+ u1(t)ζQ + γ8ζH + γ9ζR + B1, (39c)

CF
0 DρζA(t) = −

(
γ2S(t)
N(t)

)
ζS +

(
γ2S(t)
N(t)

)
ζE − (τ1 + u2(t) + σ)ζA + u2(t)ζQ + τ1ζR + B2, (39d)

CF
0 DρζP(t) = −

(
γ3S(t)
N(t)

)
ζS +

(
γ3S(t)
N(t)

)
ζE − (τ2 + τ3 + u3(t) + σ + ηP)ζP

+ u3(t)ζQ + τ2ζH + τ3ζR + B3, (39e)
CF
0 DρζQ(t) = −

(
c4 + c5 + ηQ + σ

)
ζQ + c4ζH + c5ζR, (39f)

CF
0 DρζH(t) = −

(
γ4S(t)
N(t)

)
ζS +

(
γ4S(t)
N(t)

)
ζE − (τ4 + ηH + σ)ζH + τ4ζR, (39g)

CF
0 DρζR(t) = −σζR, (39h)

with transversality conditions

ζS(t f ) = ζE(t f ) = ζ I(t f ) = ζA(t f ) = ζP(t f ) = ζQ(t f ) = ζH(t f ) = ζR(t f ) = 0.

6.1. Numerical Study of an Optimal Control Problem

The numerical solutions to an optimal control problem are presented in this subsection.
Our goal is to determine the most cost-effective quarantine rates by minimizing the objective
functional (35). Consequently, this section explains the optimal control problem’s solution
together with the associated cost functional. The numerical approaches used to obtain the
approximate solutions of Equation (34) and the adjoint Equations (39) are given below.

The iterative scheme (33) used to solve the system of state Equation (34) takes the form

Zi+1 = Zi +
2

(2− ρ)M(ρ)

(
1− ρ +

23
12

hρ
)

g(Zi, ui)−
2

(2− ρ)M(ρ)

(
1− ρ +

4
3

hρ
)

g(Zi−1, ui−1)

+
10hρ

12M(ρ)
g(Zi−2, ui−2), i = 2, 3, 4, ..., N , (40)
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The system of adjoint Equation (39) in compact form can be written as

CF
0 D

ρ
t ζ̂(t f − t) = F(Z(t f − t), ζ̂(t f − t), u(t f − t)),

where

F(Z, u) =



F1(Z, u)
F2(Z, u)
F3(Z, u)
F4(Z, u)
F5(Z, u)
F6(Z, u)
F7(Z, u)
F8(Z, u)


.

Similar to the state equations, the adjoint Equations (39) are discretized as follows:

ζ̂(t f − ti+1) = ζ̂(t f − ti) +
2

(2− ρ)M(ρ)

[
1− ρ +

23
12

hρ

]
F
(
φ(t f − ti), ζ̂(t f − ti), u(t f − ti)

)
− 2

(2− ρ)M(ρ)

[
1− ρ +

4
3

hρ

]
F
(
φ(t f − ti−1), ζ̂(t f − ti−1), u(t f − ti−1)

)
+

10hρ

12M(ρ)
F
(
φ(t f − ti−2), ζ̂(t f − ti−2), u(t f − ti−2)

)
, (41)

with ζ̂(t f ) = 0 where i = 0, 1, .....N . Discrete state and adjoint variables, respectively,
given in (40) and (41) are solved first to update the control u(t), at the discrete points
ti = i∆t.

6.1.1. Solution Algorithm

For the numerical solution of the discrete necessary conditions, we follow the steps of
the following Algorithm 1:

Algorithm 1:

1. Consider an initial control uk ∈ U for k = 0.
2. Approximate state and adjoint variables, respectively, by solving discrete

Equations (40) and (41) with control uk.
3. Find control u∗ using Equation (38).

4. Update the control using uk =
u∗ + uk

2
.

5. If δ‖Θk‖ − ‖Θk −Θk−1‖ ≥ 0, then stop, otherwise move to step 2.

Here, Θ represents each of the state, adjoint, and control variables, and δ is the
required tolerance.

6.1.2. Optimal Quarantine Rates

In this part, we show the simulation results that were attained by resolving the
necessary optimality conditions obtained from the fractional-order control problem (36).
Steps of Algorithm 1 were carried out using the MATLAB simulation tool, which employs
a three-step fractional Adams–Bashforth numerical technique along with RK-4. Table 1
provides the parameter values utilized in simulations. The simulation results are shown
for three distinct values of the fractional order ρ, i.e., for ρ = 0.7, 0.8, 0.95.

The main goal of this study was to identify the optimal controls for decreasing COVID-
19 in the human population. Figure 13a–c show these optimal behaviors of the curves,
respectively, for the time-dependent control variables c1, c2, and c3 for different fractional-
orders. Under each set of optimal controls (quarantine rates), the cost function (35) reduced
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to its minimum value, as shown in Figure 13d. This result is evident in the solution of the
optimal control problem (36). The optimal quarantine rates c1, c2, and c3 have also caused
the state variables S, E, I, A, P, Q, H, R to shift from the endemic equilibrium (EE) to the
disease-free equilibrium (DFE), as shown in Figure 14.

Thus, our proposed fractional model and the corresponding optimal control strategy
of introducing a quarantine compartment suggest that the COVID-19 pandemic can be
removed from the society or human population if the infected, asymptomatic, and super-
spreaders are quarantined with the rates shown in Figure 13a–c.
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Figure 13. Optimal control variables (quarantine rates) along with the corresponding cost functional
for each fractional-order ρ = 0.7, 0.8, 0.95.
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Figure 14. State variables with and without optimal controls.

7. Conclusions

In this study, we designed a nonlinear mathematical model of the COVID-19 pandemic
to understand the dynamics of the disease as well as perform the optimal control analysis.
For a detailed analysis, we constructed a fractional-order SEIAPHR model in which the in-
fectious compartment was divided into three compartments named symptomatic infectious
I(t), asymptomatic infectious A(t), and superspreader P(t). To formulate the proposed
model, we used the Caputo–Fabrizio derivative operator that preserves the system’s histori-
cal memory. The Caputo–Fabrizio derivative operator was used because of its non-singular
kernel. Before studying the dynamics of the purposed model, we first proved that the
purposed Caputo–Fabrizio fractional model has a unique solution. To prove the existence
and uniqueness of the solution, we used well-known results from functional analysis and
calculus. After that, we proved the essential biological properties, such as the boundedness
and positivity of the solution. For the aspects regarding the future spread of the COVID-19
disease, the reproduction numberR0 is also determined. It is interesting to note that the
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reproduction number is the same for the integer-order and fractional-order models. To
complete the well-posed property of the suggested model, the stability analyses (local,
global) of both equilibrium points are also done with the help of Lyapunov–Castillo’s theory.
To give the best control strategy, we added a quarantine (isolation) compartment and then
proposed a control strategy in two different styles. In the first strategy, we examined the
effects of the quarantine rates of I(t), A(t), and P(t) one by one. From the computational
results and graphs, we conclude that the quarantine rates c1 and c3, respectively, for classes
I(t) and P(t) have significant influence in reducing the spread of the disease. If we want to
control the disease, we have to focus on these physically meaningful compartments. In the
second strategy, we constructed an optimal control problem with a target to determine the
best cost-effective quarantine rates that minimize the objective functions in such a way that
infections in humans move to disease-free states. The graphical results show that we were
successful in determining such time-dependent optimal quarantine rates that can be used
to move toward disease-free states.
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