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Theoretical analysis of an

alphabetic confusion matrix*

A study was undertaken to acquire a confusion matrix of the entire upper-case English

alphabet with a simple nonserifed font under tachistoscopic conditions. This was
accomplished with two experimental conditions. one with blank poststimulus field and

one with noisy poststimulus field, for six Ss run 650 trials each. Three mathematical

models of recognition, two based on the concept of a finite number of sensory states and

one being the choice model, were compared in their ability to predict the confusion
matrix after their parameters were estimated from functions of the data. In order to

ascertain the facility with which estimates of similarity among the letters could lead to a

psychological space containing the letters, 'l1ij, the similarity parameter of the choice

model was input to an ordinally based multidimensional scaling program. Finally,

correlation coefficients were computed among parameters of the models, the scaled

space, and a crude measure of physical similarity. Briefly, the results were: (I) the

finite-state model that assumed stimulus similarity (the overlap activation model) and the

choice model predicted the confusion-matrix entries about equally well in terms of a

sum-of-squared deviations criterion and better than the ali-or-none activation model,

which assumed only a perfect perception or random-guessing state following a stimulus

presentation; (2) the parts of the confusion matrix that fit best varied with the particular

model, and this finding was related to the models; (3) the best scaling result in terms of a
goodness-of-fit measure was obtained with the blank poststimulus field condition, with a
technique allowing different distances for tied similarity values, and with the Euclidean as
opposed to the city-block metric; and (4) there was agreement among the models in terms

of the way in which the models reflected sensory and response bias structure in the data,

and in the way in which a single model measured these attributes across experimental
conditions, as well as agreement among similarity ami distance measures with physical
Similarity.

The study reported in these pagessought

to pursue several related goals. The broad

goal was establishment and investigationof
a tachistoscopic confusion matrix obtained

from human observers attempting to
identify single members of the complete

upper-case English alphabet. Despite the

abundance of data concerning legibility of
alphanumeric characters (e.g., see Cernog &

Rose, (967), some of the results are of
marginal significance to the psychologist
because (1) of the highly specific applied
nature of the study, (2) too few trials or

subjects were run. (3) only a few of the
letters of the alphabet were used, or (4) no
attempt was made to use mathematical
models to separate the response-bias

characteristics from the stimulus or sensory

characteristics. This study was intended to

complement the literature by rectification

of these limitations.

Within the above-stated broad goal was
the subsidiary aim of examining the ability
of three simple mathematical models to

predict average behavior in a complete

identification confusion study. Because of

the large array of data represented by the

'The data were gathered and part of the
analysis of this study was accomplished at the
Univerxity of Hawaii with the aid of a University
of Hawaii intramural research grant.

26 by 26 confusion matrix, it was required

of the models that they be of sufficiently

simple structure that parameter estimation
be feasible. One of the few extant models

that possesses this property without
simplifying assumptions is the choice
model (Luce, 1959, 1963a). However,

work with finite-state detection models
(e.g.. see Atkinson & Kinchla, 1965; Luce,
1963b) also suggested the possibility of
extension of this type of model to more
complex situations. Because of the very
explicit nature of assumptions of these
models about the sensory and bias
processes. they can be helpful in
investigation of perceptual characteristics
by manipulation of these assumptions, To

this end. two generalizations of the

activation model suitable for application in

the present experiment were developed. As

will be seen, one of these is like the choice

model in that it possesses structure for
description of psychological similarity, but

the other assumes only two psychological

sc nsor y states relating to perfect

information or no information at all. It was

of interest to learn if better predictions are

obtained with models that assume sensory
confusion states as opposed to the
two-state type of model just mentioned as
well as to compare the choice model with

the activation representative. In addition, a

simple correlational analysis was carried
out in order to acquire a rough idea as to
what extent the models seemed to be

consistent in different conditions and,
among themselves, to be measuring or
reflecting the same attributes within the

data. One limitation, of course, in the

present type of study is that the models

purport to explain individual behavior.

Hence, the work reported here must be

viewed as testing the ability of the models

to handle a large amount of averaged

human confusion data but not as providing

a critical test of the models' assumptions
that are meant to apply at the level of the

individual. An experiment is in progress
collecting long-term confusion data at the

individual level.

A second major type of analysis

included in the present study was the use

of an ordinal-based multidimensional

scaling procedure applied to estimated

similarity parameters in the hope of

learning more about the characteristics of

psychological space for letter

identification, when all letters are in the
stimulus population. The results of this and

the analysis with the substantive models
are discussed, interrelated, and compared
to a simple. physical measurement of

interletter similarity.
Apart from the hypothesis-testing

function of an experiment. there exist
aspects that perhaps should be viewed as of
an information-gathering nature. In this

context, latencies and confidence ratings

were collected and the summary results

commented on, although the models
employed here were not developed to the

extent necessary to make predictions

concerning these.

THEORETICAL DEVELOPMENTS
It was of interest in the present study to

compare two models selected from a class
of finite-state models with the choice
model (Luce, 1963a). and a "threshold"
finite-state model with models postulating
sensory confusion. The class of finite-state

models from which the two representatives

were selected was motivated by the simple
finite-state models used in some detection
experiments (Atkinson & Kinchla, 1965;

Kinchla, Townsend. Yellott, & Atkinson.
1966) and multisymbol recognition

situations (Townsend, 1966). In order to

provide continuity with the intuitions and

structure developed earlier. we will refer 10

the finite class of models as the general
activation model.

General Activation Model
The nature of the activation model in

our development supposes a mapping of
the set of N possible stimulus events to a
(finite) set of n hypothetical internal
sensory states. On the basis of the
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particular internal state activated, S is

assumed to make a decision as to the

stimulus event, thus yielding a mapping of

the n internal states to the set of N possible

responses. For the complete identification

experiment with N stimuli. the sensory

activation matrix would appear as S = (ajj)
where i = I, 2,' ., Nand j = 0, I. 2, •• , n.

The second subscript refers to the

hypothetical sensory states so, s\ , ••• , Sn'

Similarly. we may write the decision- or

bias-process matrix as D = (bi.j), where
i=0.1.2,···.n and j=I.2... ·,N.

Finally. we obtain the general theoretical

confusion matrix by premultiplying D by

S:

where i = 1,2, ... , Nand k= 1,2. -, N,

where. in general, the only constraints are
that

n N
L ai' = 1 and that L b~ = I.

j=O I j= I

The interpretation of the internal sensory

states we wish to make in this paper is in

terms of sensory confusions among the

various stimuli. For example, depending on

the actual set of stimuli, it might be
possible that S is certain that the presented
stimulus is one of a particular subset of

stimuli (the cardinality possibly being

equal to zero or to the number of possible

stimuli) and hence, S must choose from

this subset on the basis of learning or

motivational factors.

It should be noted that one can devise

con tinuous-state models that possess

properties that reasonably mimic

finite-state models. For example, if the

sensory results of each stimulus

presentation could be described by a
uniform distribution, then there would

exist, in general, areas of nonoverlap of
probability density; if an observation
occurred in such an area, a reasonable
strategy would be for S to respond with
the associated response, with probability
one. On the other hand, if an observation
were obtained at a point where, say. k
stimuli gave rise to equal a priori densities,
S might well guess on the basis of his

knowledge of the presentation

probabilities. For example, he might
choose the signal with the highest a priori

or a posteriori probability (which
maximizes average number correct), or he

might employ a Bayesian probability

matching strategy. The second strategy

would occur when S chooses, say, S. from
the k alternatives with probability

(k )

peS)

k (k l

L P(Sj)
j= 1

(k)

In this expression, P(Si) represents the

a priori probability of stimulus Si and the
superscript merely indicates that the

stimulus is a member of the k-stimuli

subset of equal-density stimuli at the
observed point. Under the expressed

circumstance this above quantity is both

the Bayesian probability (hence the term
"B ay esian probability matching") of

stimulus Sj given the particular observed

point and the conditional probability of Sj
given the stimulus must be in the k-stimuli

subset. We will not attempt to distinguish
such theories from the finite-state theories
here.

In order to obtain tractable special cases
and to investigate the relative importance
of pairwise sensory confusions as opposed
to "pure" guessing (where S is in a state of

complete uncertainty regarding the

presented stimulus), we develop the

all-or-none and overlap activation models

for application to letter-recognition

experiments.

All-or-None Activation Model
The first specialization posits that S

either obtains such information from the
display as allows him to respond perfectly
or he is thrown into an uncertain state
where he has no partial information and
must respond by guessing. Note that S
could be in this uncertain state either
because he fails to detect anything at all or

because such characteristics of the letter as
he observes do not aid in identifying it. If

we index the letters of the alphabet by the

numbers I through 26 and refer to S. as

stimulus i (i.e .. the it h letter of the

alphabet) and R
1

as response j, we may

write the appropriate sensory activation

matrix as S =' ai.,) where i = I, 2,' , 26,
j = 0, I, 2, ..• , 2/;' and where

1
1 a, when j = 0,1

aii = at when j = i,

ootherwise,

where, as before, j refers to sensory state si'
These sensory states are related to the set

of overt responses by the decision matrix

D = (b i , ), where i = 0, I, "',26,

j = I, 2, ..• , 26, and

I
Pj when i = 0 )

bil '" I when i = j,

ootherwise.

Hence, s, through S26 represent "certain"

sensory states since P(Rilsj) = I; but in the

"uncertain" state, so. S is assumed to guess

Si with probability Pi. which may depend

on learning and motivation variables.

Multiplying these two matrices yields the

theoretical confusion matrix C '" (Cij)
where i = I, 2, ". 26, j = I, 2,.. •• 26. and
Cjj = ajo ij + (J ~. aj)pj where

0"= /1 wheni=j'l
II 0 otherwise.

A few comments are in order concerning

related work on this model. For the

two-signal case. when a, = a2, this model

reduces to that developed for two-interval

forced-choice detection experiments by

Atkinson and Kinchla (1965) and by

Kinchla and associates (1966). Smith

(1968) has studied properties of confusion

matrices generated by this mode, which he

terms a "pure perceptibility" model, and

he has shown that it can be viewed as a

special case of the choice model; this result

will be mentioned again after the brief

presentation of the choice model.

The all-or-none activation model

requires estimation of 2N - I parameters,

51 in the present experiment.

Overlap Activation Model

The basic intuition for the overlap
activation model is that in addition to a
unique activation state relating a letter in a
one-one fashion to the correct response.
there exist partial-information states such
that S is in a state of uncertainty with

respect to two letters; thus. this model

assumes that pairwise similarity can affect

interletter confusability. When in a state of

confusion, S is postulated to respond

according to the relative magnitude of the

two concerned response-bias probabilities.

We thus express the sensory activation

matrix as composed of entries for the pairs

(S" tLk)' where i = 1,2, .' ,26,
j = 1,2, • ,26, and k= i.i + I. ",26.

and where the entry for (S], tj.k) is given
by

~jk = I~Jk when j = i, k = i, or both, I
I 0 otherwise.

Note that ti,i is the certain state for Sj, and

tt,j is the uncertain state for Sj and Sj, i =1= j,

and can proceed from presentation of

either s, or s, (~ij = ~jj). The corresponding
decision matrix is given by entries

corresponding to the pairs (tj,b Rill) where
j.k are as before and m = I, 2, •• '. 26, The

entry for ('I,k, Rill) is equal to one when
j = k = m, to gl/(gj + gk) when j = m =1= k, to

gk/(gj + gk) when k = m *- j, and to 0
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P(Rj ISj)P(Rj lSi)

1)jj = peRi I Sj)P(Rj I Sj) .

Multidimensional Scaling Model

Although the preceding substantive

models possess sufficient structure to

describe interletter (sensory) confusability

and one (choice model) posits a function

relating the similarity scale to distance in a

metric space, they cannot be used facilely

to test assumptions about the appropriate

metric or the number of dimensions in a

hypothesized underlying visual space. To

this end, a program developed by Kruskal

(1964a, b) was employed to obtain

information about possible dimensions of

confusion, as well as to test applicability of

the Euclidean vs the city-block metric to

an interletter confusion matrix. Kruskal's

method, an extension of Shepard's ordinal

scaling procedure (Shepard, 1962a, b),

permitted this to be accomplished with a

minimum of substantive assumptions.

METHOD

~jj = peRi ISj) +P(Rj lSi)

21)

Apparatus

A Gerbrands two-field, two-mode

tachistoscope (Model T-2B-I) was used to

present the letters. A simple mechanical

shutter was employed to increase the

1-(N-I)7)

~ j j = I + (N - 1)7)'

where N is again the number of

experimental stimuli. But, for

1)> I/(N -- I), a reasonable possibility for

confusable stimuli, ~ i j < 0, which is

contradictory to the overlap model.

Presently, we know of no corresponding

theoretical results against the choice model

when we map from the overlap to the

choice model. Thus, it may be that the

choice model is the more general of the

two despite the almost equal number of

parameters.

constant for constant stimulus and

sensitivity conditions.

Similarly, a mapping from the

parameters of the choice model to the

overlap model or vice versa may be

provided. Under some circumstances, this

may imply nontestability of the two

models against one another. However, the

models do not predict identical

relationships in the data, and in certain

cases data may support one and falsify the

other. For example, suppose that

1)ij = 1)kl= 1), for i *- j and k *- I, and that

{3i = (3j =~, for all i, j. The mapping from

the choice model parameters to the overlap

model parameters is then given by

(l-oj)Pi

OJ+(1- OJ)Pj'

(I - 0j)Pj

OJ +(I -- 0j)Pj

If we now substitute the theoretical

expressions for P(Rj I Sj) from the

threshold model, we obtain

1)jj ~j
c·· =

1) 26

~ 1)jk ~k
k=l

and this shows that for the threshold

model and the choice model to hold for a

given set of data, 1)ij must be factorable

into independent numbers associated with

Sj and Sj. Hence, although it can be

developed from entirely distinct

conceptions, the threshold model can be

viewed as a special case, when one neglects

underlying assumptions giving rise to the

parameters, of the choice model. To see

that they are, nevertheless, not the same

theory, it suffices to note that for the

two-signal case, the threshold model

generates linear and the choice model

curvilinear isosensitivity curves. Or, to put

it another way, if the threshold model

provided good fits to several sets of data

generated by varying motivational

conditions, then only the Pi parameters

would change; but by Smith's result, this

would perturb not only the bias parameter

(3j, but also the similarity parameter 1)jj

which in terms of the theory should remain

response, as given by multiplying the scale

values of the bias and similarity

parameters, relative to the total strength

relating the given stimulus to other stimuli.

For the present study, this results in the

theoretical confusion matrix C = (Cij),

where i=I,2,"',26, j=I,2,"',26,

and

In addition, the similarity parameters are

symmetric (1)ij = 1)jj), and it is assumed that

1)ii= I for all i, thus fixing the unit. As

indicated above, this results in

(N(N + 1)/2] - I (350) free parameters

to be estimated from the data.

For our purposes, the most important

part of Smith's (1968) result relating the

threshold to the choice model can be

shown readily by viewing the relationship

that is assumed to obtain between the

confusion matrix probabilities and the

similarity parameters:

Choice Model

The ch oice model requires less

discussion, being a straightforward

application of that model as presented by

Luce (1963a). As does the overlap

activation model, this model postulates an

influence of pairwise similarity on stimulus

confusions. Both the similarity parameters

and bias parameters are assumed to lie on

ratio scales. Given a particular stimulus, the

probability of any possible response is

assumed to be the strength of that

Cjj = ~jj (gj; g)when i *- j.

Now, it is clear that this model

represents a deviation from the all-or-none

model since not only is stimulus confusion

allowed, but a pure, no-information,

guessing state is precluded. It is also a

one-step extension in the sense that we

could have postulated the existence of

k-wise confusion states. In general, this last

possibility generates an unmanageable

number of parameters. However, if one is

will ing to posit further theoretical

structure, then the number of parameters

may be reduced. This approach was taken

by Nakatani (1968) in the development of

a hybrid model that results in a set of

confusion states, where from two to all N

objects may be confused. Although

Nakatani's work was independent of the

present results, both have employed the

expedient of using the ratios of the

relevant bias, for example, gi/(gj + gj), to

describe the S's guessing bias for a

particular confusion state.

The overlap model is favored by

properties relevant to the present aims:

(I) It allows comparison of a two-way

confusion activation model with an

activation model that allows only N-way

confusion or no confusion, and (2) it

possesses just one more parameter,

(N(N + 1)]/2, than the choice model,

which allows for a fair comparison between

them for the large amount of data reported

herein. Hence, for the present experiment,

351 parameters were estimated for the

overlap activation model and 350 for the

choice model.

and

otherwise, where gi is the response bias

parameter for Rj.

The theoretical confusion matrix, given

as the result of the two foregoing processes

is written C = (Ci,j) where i = 1, 2,"", 26,

j = I, 2," -, 26,
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number of independent fields to three.

Stimuli were presented on 8 x II in.

white index cards, using an IBM Executive

Directrix typewriter, one letter per card,

with the stimulus population consisting of
one deck made up of five English
upper-easealphabets in a quasirandom (i.e.,

shuffled) order. A prestimulus fixation

point was placed approximately 10 min
below the locus of the letter presented in

the stimulus field. A singleletter subtended
an angle of about 30 min and the fixation

point an angle of about 6 min at S's eye.

The possible visual fields were white with

fixation point, white with letter, and noise.

The noise field was produced by typing

alternately with "normal" and "expanded"

spacing modes on the Executive Directrix

typewriter, and successive rows of letters

were made to overlap. The characters
typed were selected haphazardly from the

upper-case English alphabet. Use of the

resulting noise field made perception of

presented letters much more difficult.

The luminance for CI (Without noise),
the first experiment, was at all times

5.6 fl., and for CII (with noise)i the second

experiment, the luminance was 5.6 fl, for

the prestimulus and stimulus fields and for

the noise field was 4.0 fl.

Procedure

The stimulus exposure sequence for CI
was: white prestimulus field with fixation

point; stimulus field containing a randomly
selected letter; poststimulus field
containing fixation point. The sequence for

CII was: white prestimulus field; stimulus
field containing a randomly selected letter;

noise field with jumbled letters; white

poststimulus field containing fixation
point.

The trials were S-paced, S initiating a

stimulus exposure following an alerting

buzzer sounded by E. The displayed letter

followed the press of the start button by

I sec. The only instruction to S with regard

to his response speed was that a letter
response was to be made within 5 sec after

the stimulus exposure, after which he was
to rate his sensory accuracy by giving a
confidence rating (CR) of I to 4. Ss were

instructed that a CR of I meant absolute
certainty, 2 relative certainty, 3 relative

uncertainty, and 4 absolute uncertainty,
i.e., guessing at random. Following S's

response, E told him the letter that had

been presented. Each trial consumed about

15 sec, with approximately 5 sec

intervening between feedback and the next
buzzer sound. Latencies were recorded by
E on each trial from a Hunter timer linked
to a voice-operated relay and a microphone
positioned close to S's mouth.

Two days of practice and calibration
preceded 5 experimentaJ days in CJ. A

stimuJus duration was selected for each S

such that his overall probability correct

was about 0.5, that is, at threshold. The

selected duration was then used for that S

the remainder of CI. Following CI, I day

was taken to recalibrate Ss for CII.
However, performance with the

poststimulus noise proved much more
variable; therefore, each S was recalibrated

every day during the five experimental

sessions. Both conditions included 20

warm-up trials at the beginning of each
session.

Each experimental condition consisted

of calibration followed by five

experimental sessions, each session

occupying approximately I h during which

130 triaJs of five pseudorandomized

(shuffled) alphabets were presented. Each

row of the resulting confusion matrices
thus contained J50 points for both
conditions. The amount of data per

individual was insufficient to estimate
stability but the group-average confusion
matrices appeared quite constant from the
first half to the second half of the

conditions. All the models assume

steady-state behavior is generating the
response proportions.

The study required 13 consecutive days,

including two weekends. A S was run at
the same time each day.
Estimation

In all three models, estimation of the
sensory and bias parameters was effected

by setting each parameter equal to a

function of confusion-matrix values

associated with the parameter within a

particular theory. The exact formulae used

are given in the appendix.

The stimulus durations, chosen to yield

probability-correct values close to 0.50,

were large enough to allow zero probability

of confusion entries in the confusion

matrix. This caused a problem in

estimation since the functions used to

estimate the parameters often contained

observed (P(Ri/Sj) terms in the
denominator. In order to allow estimation
of all relevant parameters, a convention
was uniformly adopted across the models.
Since each row in the confusion matrix was
based on 150 trials, it was decided to take
the best estimate of the "zero" confusion
probabilities (in terms of sum of squared
deviations of predicted from observed
values) lying between 0.000001 and 0.01.
That is, the computer performed a seriesof

iterations, and on each iteration exactly

one value in the above range was tried for

all the zero confusion entries. For each
such value, the set of parameters was
estimated for the model at hand and the
sum of squared deviations computed; that
value associated with the smallest sum

of squared dcviations was chosen as

the best estimated overall value of the zero
entries. The rationale behind the

convention was that if the "true"

confusion probabilities were greater than

0.0 I, then one or more confusions would

have occurred on the average in the 150

trials represented in each row of the
confusion matrix. On the other hand, if the

probability of confusion were less than
0.01 but greater than zero, one would

expect to observe caseswhere the entry for

150 trials turned out to be zero. Thus, in a

sense, one extra parameter was estimated

for each of the models. The calculated sum

of squared deviations varied between the

obtained minimum and about 1.50 for the

overlap and choice models but varied only

a few I OOths for the threshold model. As it
turned out, when estimates were also
obtained for "zero" confusion probabilities
between 0.01 and 1.00, in only one case
was the sum of squared deviations reduced
and that by only 0.02; this occurred for

the choice model in CL
It should be noted that in addition to

the analytical difficulties associated with
division by zero, the scaling properties of

Luce's choice theory require stronger

assumptions when the set of choice

alternatives consists of some perfectly and

some imperfectly discriminable pairs
(Luce, 1959). The overlap activation model

and the choice model required estimation

of 351 and 350 parameters, respectively,

and the all-or-none activation model

required estimation of 51 parameters. The
number of degrees of freedom associated

with the empirical confusion matrix was
650.
Subjects

Six females recruited from introductory

psychology classes at the University of

Hawaii were employed as Ss. Their vision

was required to be 20/20 after correction.

RESULTS AND DISCUSSION

Tables I and 2 show the empirical

confusion matrices for the two
experimental conditions. Table 3 shows
predictions from the three models
compared with the empirical values for the
letter "p"-a symbol possessing curved- as
well as straight-line features. The table
illustrates the superior ability of the

overlap and choice models to reflect
similarity as well as the tendency to altered
structure from CI to CIl.1 Although the

predictions do seem to follow the general

pattern of the confusions in the empirical

matrix. a numerical index of precision may

be helpful in interpretation. An idea of

relative accuracy of the three models can

be gained from Table 4, which indicates
the sum of squared deviations of predicted

from empirical points over all 676 cells for
each confusion matrix.
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Tahle 1

________ E = I : . : . : n r : p i r i c ~ . L . ! - · o n f u s i ( ) . ! ! _ M a t r i x : Condition I

ABC D E F G H

Response

J K L M N 0 P Q R STU V W X Y Z

B

C

D

E

F

G

H

.58 .00 .00 .01 .00 .01 .00 .02 .02 .03 .10 .02 .00 .02 .01 .02 .00 .05 .00 .04 .00 .01 .00 .06 .00 .01

.02 .26 .02 .05 .02 .00 .04 .07 .01 .02 .01 .01 .03 .08 .03 .03 .03 .18 .01 .01 .06 .01 .00 .01 .00 .00

.01 .01 .50 .01 .05 .03 .03 .02 .01 .01 .03 .04 .00 .00 .07 .03 .01 .02 .01 .04 .01 .01 .01 .01 .01 .01

.01 .04 .01 .46 .01 .00 .05 .04 .01 .01 .00 .00 .01 .01 .12 .02 .05 .05 .00 .02 .06 .01 .00 .01 .01 .00

.01 .03 .03 .01 .36 .07 .00 .03 .03 .04 .06 .11 .00 .00 .03 .05 .00 .01 .00 .07 .01 .01 .00 .01 .03 .01

.00 .01 .00 .01 .02 .33 .01 .03 .09 .05 .03 .07 .01 .01 .00 .03 .00 .01 .01 .18 .01 .01 .00 .01 .07 .01

.01 .01 .08 .01 .01 .01 .34 .09 .01 .01 .02 .03 .00 .04 .11 .03 .03 .03 .01 .01 .07 .02 .00 .00 .01 .00

.01 .01 .01 .OJ .00 .01 .01 .50 .01 .01 .01 .01 .03 .15 .03 .02 .00 .04 .00 .03 .04 .01 .03 .00 .01 .00

.00 .00 .00 .00 .01 .03 .01 .01 .57 .08 .01 .11 .00 .00 .01 .01 .00 .02 .00 .09 .00 .01 .00 .00 .03 .00

J .01 .00 .00 .OU .00 .01 .01 .02 .15 .48 .01 .03 .00 .00 .03 .01 .00 .01 .01 .08 .04 .01 .00 .02 .05 .01

K .03 .01 .01 .OJ .01 .02 .00 .06 ,1")5 .01 .50 .04 .01 .02 .04 .03 .00 .03 .00 .01 .01 .01 .01 .05 .03 .00

L .01 .00 .01 .01 .01 .01 .00 .03 .14 .03 .02 .60 .00 .01 .03 .01 .00 .nl .00 .07 .00 .00 OJ .00 .02 .00

M .00 .01 .00 .01 .00 .00 .01 .10 .00 .01 .01 .00 .1i2 .08 .05 .01 .01 .01 .01 .01 .01 .01 .05 .01 .00 .00

N .03 .01 .00 .01 .00 .00 .01 .06 .00 .00 .03 .00 .07 .54 .03 .01 .03 .04 .01 .01 .02 .02 .04 .01 .01 .01

o .01 .01 .06 .05 .00 .01 .11 .01 .oo .02 .01 .00 .01 .03 .51 .02 .10 .01 .00 .02 0') .00 .01 .00 .00 .01

P .01 .02 .02 .01 .01 .09 .01 .05 .03 .01 .01 .01 .01 .01 .06 .52 .00 .06 .00 .03 .01 .01 .00 .01 .01 .01

Q .01 .01 .01 .01 .00 .00 .11 .06 .00 .01 .01 .01 .00 .03 .28 .01 .36 .01 .00 .00 .05 .00 .01 .01 .00 .00

R .00 .04 .01 .00 .01 .01 .01 .09 .02 .01 .03 .03 .02 .05 .03 .05 .00 .49 .01 .02 .01 .01 .01 .03 .01 .00

S .01 .01 .03 .01 .02 .00 .02 .06 .03 .03 .06 .03 .00 .03 .04 .05 .00 .03 .43 .03 .01 .02 .00 .03 .01 .02

T .01 .00 .00 .01 .04 .05 .01 .01 .16 .04 .01 .05 .01 .01 .04 .04 .00 .00 .01 .42 .01 .OJ .01 .01 .05 .01

U .00 .00 .01 .01 .00 .00 .01 .11 .01 .00 .01 .02 .02 .05 .07 .01 .01 .01 .00 .02 .)5 .04 .04 .01 .00 .01

v .00 .00 .00 .01 .01 .00 .00 .03 .02 .02 .01 .01 .00 .01 .02 .02 .01 .01 .00 .02 .07 .60 .02 .01 .09 .01

W .01 .00 .00 .01 .00 .00 .00 .08 .00 .01 .02 .01 .05 .07 .05 .01 .01 .02 .00 .02 .05 .08 .45 .03 .01 .01

x .01 .00 .00 .00 .01 .00 .00 .03 .02 .01 .07 .01 .00 .04 .02 .01 .00 .00 .00 .05 .00 .03 .01 .55 .08 .04

Y .01 .00 .00 .00 .00 .01 .00 .05 .02 .03 .03 .03 .00 .03 .06 .01 .00 .00 .01 .06 .01 .08 .01 .03 .51 .01

Z .01 .01 .01 .01 .01 .00 .00 .03 .01 .06 .03 .00 .00 .00 .02 .00 .01 .00 .01 .03 .01 .01 .01 .05 .03 .66
-- _._-------------

In order to acquire some intuition on

the size of these errors, we may compare

the obtained values in Table 4 with a

prediction following from random

prediction (i.e., on the average, uniform or

equiprobable confusions and probability

correct) on the part of a model. That is, all

confusion entries are simply 1/26. If we let

Pij refer to entries in the empirical

confusion matrix, then the sum of squared

deviations under random prediction would

be

26 ( 1)2 26
L Pij - -26- = L Pij - I.

1,)= I 1,)= I

This index is largest when one value on

each row is I and the rest are 0; it then

attains the value of 25. Table 4 indicates

the sum of deviations squared, as well as

this (equiprobable) index, for the two

conditions. Also, it shows the sum of

squared deviations for the main diagonal

only and the index figured only on the

------------

main diagonal. This table can be used to

discuss several points. First of all, the

choice model and the overlap model are

about equal in their ability to fit the data

for CI, although the overlap model appears

a little more accurate in CII. Secondly, it

appears that the large increment in number

of parameters (in fact, a factor of seven)

for the two activation models permitting

sensory confusion does not seem to

purchase a corresponding increase in fit,

relative to the calculated index. In fact, it
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Table 2
Empirical Confusion Matrix: Condition 2

'"-3 Response

JAB C D E F G H I J K L M N 0 P Q R STU V W X Y Z
Vi

A .83 .01 .00 .01 .00 .01 .00 .01 .01 .01 .01 .02 .00 .00 .02 .00 .00 .00 .02 .01 .00 .03 .00 .00 .00 .01

B .02 .36 .01 .05 .01 .04 .03 .07 .02 .03 .01 .03 .01 .02 .10 .05 .00 .01 .02 .04 .01 .03 .01 .01 .01 .01

C .00 .00 .79 .01 .00 .01 .03 .02 .01 .01 .00 .01 .01 .00 .05 .01 .00 .01 .02 .00 .00 .01 .00 .01 .01 .00

D .01 .01 .01 .73 .01 .01 .00 .03 .00 .01 .00 .00 .00 .01 .11 .02 .03 .01 .01 .00 .01 .01 .00 .01 .00 .01

E .03 .01 .03 .00 .43 .09 .01 .01 .05 .01 .03 .09 .01 .00 .06 .01 .00 .01 .03 .03 .00 .01 .00 .02 .03 .01

F .05 .01 .02 .03 .05 .42 .01 .05 .04 .01 .01 .05 .01 .00 .05 .03 .01 .00 .01 .07 .01 .03 .00 .01 .04 .01

G .00 .00 .11 .01 .01 .01 .57 .04 .00 .01 .01 .00 .00 .01 .12 .02 .01 .01 .00 .00 .03 .03 .00 .00 .00 .01

H .05 .01 .00 .03 .03 .05 .03 .19 .09 .01 .01 .05 .03 .03 .10 .03 .01 .02 .02 .05 .05 .07 .00 .01 .01 .03

I .05 .01 .01 .02 .01 .03 .01 .07 .38 .03 .00 .12 .00 .01 .07 .01 .00 .01 .01 .05 .01 .05 .00 .00 .02 .01

J .03 .00 .00 .02 .01 .03 .01 .03 .08 .49 .01 .03 .00 .00 .06 .01 .01 .00 .02 .05 .01 .06 .01 .00 .01 .02

K .03 .00 .00 .00 .00 .03 .00 .05 .01 .01 .61 .05 .01 .00 .04 .01 .00 .01 .00 .02 .01 .01 .00 .06 .03 .02

L .03 .01 .03 .02 .02 .02 .01 .03 .04 .00 .02 .59 .02 .00 .07 .01 .00 .00 .01 .03 .01 .00 .01 .00 .02 .00

M .09 .01 .01 .01 .01 .01 .04 .06 .04 .03 .01 .03 .41 .05 .08 .02 .00 .01 .00 .00 .00 .05 .01 .01 .01 .03

N .• 04 .00 .01 .02 .01 .02 .01 .05 .05 .01 .01 .05 .01 .39 .09 .01 .01 .01 .01 .07 .01 .05 .02 .00 .03 .00

o .01 .00 .01 .02 .00 .01 .07 .01 .01 .00 .00 .01 .00 .00 .72 .02 .06 .00 .02 .01 .00 .01 .00 .01 .00 .01

P .00 .02 .01 .02 .01 .01 .00 .02 .03 .01 .01 .02 .00 .00 .05 .67 .01 .02 .03 .01 .01 .01 .00 .01 .02 .01

Q .02 .00 .03 .00 .00 .02 .02 .01 .01 .00 .00 .00 .00 .00 .32 .01 .52 .01 .03 .01 .00 .00 .00 .00 .00 .01

R .02 .01 .01 .03 .00 .01 .00 .08 .01 .00 .01 .03 .01 .00 .03 .13 .01 .52 .01 .03 .01 .02 .00 .00 .03 .01

S .03 .01 .01 .01 .00 .00 .03 .07 .01 .01 .00 .01 .00 .00 .01 .00 .00 .01 .78 .01 .00 .01 .00 .00 .00 .01

T .01 .00 .01 .01 .01 .OJ .01 .01 .08 .03 .01 .05 .00 .01 .OJ .01 .00 .01 .01 .58 .01 .03 .00 .00 .03 .02

U .03 .02 .01 .01 .01 .00 .01 .OJ .05 .02 .02 .01 .01 .00 .01 .OJ .00 .00 .04 .01 .53 .05 .00 .02 .01 .01

v .02.01.01.01.01.01.00.01.02.00.00.01.01.01.05.01.00. 00 .01 .01 .00 .69 .01 .02 .05 .01

W .05 .01 .01 .01 .00 .OJ .01 .05 .01 .02 .00 .02 .02 .03 .09 .04 .00 .01 .OJ .02 .OJ .37 .09 .03 .OJ .01

x .03 .01 .00 .00 .00 .01 .01 .06 .03 .00 .06 .04 .00 .00 .03 .01 .00 .00 .01 .OJ .00 .07 .01 .47 .09 .OJ

Y .01 .00 .01 .01 .01 .01 .00 .04 .03 .00 .02 .04 .01 .01 .07 .01 .00 .02 .03 .04 .00 .22 .00 .01 .36 .03

Z .01 .00 .00 .00 .00 .01 .00 .00 .01 .01 .00 .01 .01 .00 .01 .01 .00 .00 .01 .01 .00 .01 .00 .00 .03 .88

is possible to estimate how much the theoretically assigned parameters account

choice and overlap model contribute with for approximately half of the error

their extra 199 parameters via their reduction (.44 for CI, .49 for CII)

similarity structure as compared with free produced by this discounting of the 199

assignment of parameters to those 199 cells largest deviations. As might also be

in the threshold confusion matrix expected from Table 4, the off-diagonal

associated with the largest deviations from entries were disproportionately represented

the empirical matrix. That is, we simply in the lists of 199 largest squared

insert the observed confusion probabilities deviations for the threshold model. Thus,

in those specified cells, recompute the sum the all-or-none model may be more

of squared deviations, and contrast this efficient in this sense. Thirdly, it is

number with the sum of squared deviations apparent that the overlap model found

for the other two models. We find that the greatest difficulty on the main diagonal,

Perception & Psychophysics, 1971, Vol. 9 (IA)

the all-or-none with the off-diagonal cells,

and the choice model distributed the error
between the diagonal and off-diagonal cells

more than the other two models. One

reason the all-or-none activation model

performs as well as it does may therefore

be due to its potential for fitting the

diagonal values associated as they are with

greater possibility of variation.

This last result suggests that an

act iva tion model that included the

ali-or-none and the overlap might describe

much of the structure of the data:
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Table 3

. ._ .__ ._. .__.__ 1!~J>r_e~I.1I:Itive 1"heor~tic:11 Predictions

Condition I

Response

A BCD E F G R I J K 1 M N 0 P Q R s T u V W x y Z

EHP .01 .02 .02 .01 .01 .09 .01 .05 .03 .01 .01 .01 .01 .01 .06 .52 .00 .06 .00 .03 .01 .01 .00 .01 .01 .01

AON .02 .02 .02 .02 .02 .02 .02 .04 .02 .02 .02 .02 .02 .02 .02 .53 .02 .02 .02 .02 .02 .02 .02 .02 .02 .02
p

OlP .01 .02 .02 .01 .02 .04 .01 .04 .02 .01 .02 .01 .01 .01 .05 .56 .00 .05 .01 .04 .01 .02 .00 .01 .01 .00

eRe .01 .01 .02 .01 .02 .03 .01 .05 .02 .01 .02 .01 .01 .01 .05 .57 .00 .06 .00 .05 .01 .01 .00 .01 .01 .00

P
I:

Condition 2

Response

.00 .02 .01 .02 .01 .01 .00 .02 .03 .01 .01 .02 .00 .00 .OS .67 .01 .02 .03 .01 .01 .01 .00 .01 .02 .01

.01 .01 .01 .01 .01 .01 .01 .02 .01 .01 .01 .01 .01 .01 .04 .68 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01

OLP .00 .02 .01 .02 .01 .02 .01 .02 .02 .00 .01 .02 .00 .00 .05 .64 .01 .05 .02 .01 .01 .01 .01 .00 .01 .01

eRe .00 .01 .01 .02 .01 .02 .00 .03 .02 .00 .01 .02 .00 .00 .06 .70 .00 .03 .00 .01 .01 .02 .00 .00 .01 .01

EMP = empirical. AD}\' = all-ot-none activation model. DLP = overlap activation model, Cllt: = chotec model

Model

and

N gi
~(R(S) =0· + L ok--

I I II koFi I gi + gk

Figures Ia and Ib show the curves for a

fairly typical S relating, in the first part,

probability correct to latency and, in the
second, probability correct to confidence

rating. As the figures indicate, there is a
continuous decrease in probability correct
as latency increases for both conditions.

Such a relationship between accuracy and

latency has also been found to hold for

multisymbol processing tasks (Estes &

Wessel, 1967; Townsend, 1966), and

suggests that the phenomenon may be

connected with the same mechanisms in

both cases, perhaps with the processing

characteristics of individual symbols. Other
characteristics, shown in Fig. I a, are the

longer mean latency and standard
deviations for CI than for CII. This is
probably connnected with the fact that
after recalibration on CII, the Ss' average
performance was better than on CI. To be
sure, performance actually decreased in CII
on letters H, I, M, N, W, X, and Y,
indicating again a possible shift in
confusion structure, perhaps due to the

presence of the poststimulus noise mask.

Only one S did not exhibit this pattern; he

had a larger mean in CI but a smaller

standard deviation.
Figure Ib shows the typical relationship

of probability correct to confidence rating.

Although this result has been taken as

indicative of the continuity of perceptual

states (as, in fact, it may be), Krantz

( I 969) and Wickelgren ( 1968) have
pointed out, in essence, that one must

consider the S's processes that evaluate his
perceptual states and lead to the

distribution of confidence ratings found in
the data.

In addition to acting as parameters of

the probability of the certainty states vs

the uniqueness of the probabilities of the

sensory confusion states. Too, they would
perhaps aid in the interpretation of the

significance of the number of parameters
per se. For example, suppose the first

subcase above fit no better than the

ali-or-none model and the second subcase

fit as well as but not better than the

overlap model. This would provide an

indication that the number of parameters

might have more influence than the

particular structure of the models. Another

possibility suggested by Smith (1968)

might be to fit probability mixtures of any

two activation models or even an activation

model and the choice model, i.e.,
aMI + (I - a)MII, where MI refers to
Model I and Mil to Model II and a is less

than 1 and greater than O. To the extent
that the sum of errors squared is
independent of the value of a are the two
models explaining the same aspects of the
data. Estimation techniques and computer
programs are currently being developed to
allow fits of these subcases to the data.

One interesting outcome was that ell
was not better fit by the ali-or-none model

than was CI. The absence of fading
afterimages undegraded by noise docs not
seem to have diminished the sensory

confusability of the stimuli. It appears that

the combination of the increaseof stimulus
duration necessary for adequate

performance in CII and the effects of the

mask did not radically affect the processing
characteristics of the Ss, at least with

reference to the fitting ability of the
models tested here. It does appear that the

choice model predicts less successfully in
CII, although it is not clear why.

5.98
7.84

.07

.14
CI
CII

Condi- All-or- Equi-
tion Choice None Overlap probable

Entire Confusion Matrix

CI .23 .49 .26 6.97
CII .36 .49 .23 8.14

Main Diagonal
.02 .18
.06 .18

Table 4
Sum of Squared Deviations of Theoretical

from Empirical Points

gj
P(R(S) = 0' --

) I I) gj +gj

+ (1- ~ Qik) gj' i oF j,
k=1

Two subcases of this model of interest

could be extruded by (I) Jetting all 0jk be
equal but allowing the Oji to be different

(this case would have just one more
parameter than the all-Of-none model), or
(2) letting all the Ojj be equal but allowing

the 0ij to be different. This case would
have just one more parameter than the
choice models and the same as the overlap
model. These cases should give some idea
of the relative importance of uniqueness of
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Two of the possible dimensions

mentioned above, roundness and vertical

linearity, correspond to two of the

dimensions reported by Kunnapas (1966).

Nevertheless, despite this finding and

despite the hopeful outcome of Brown and

Andrews's (1968) comparison of the scaled

space of a discrimination and judgment

task, it should not be surprising if results

should differ in the Kunnapas and the

Fig. 2b. Kruskal measure of fit as a

function of number of dimensions in the
space, Condition II.

2 3 4 5 6 7 8 9 10

DIMENSIONS

Fig. 2a. Kruskal measure of fit as a

function of number of dimensions in the

space, Condition I.

letters having "tied" similarity scores to

have different distances in psychological

space without penalty in terms of stress.

The other, the secondary approach,

augments the stress value when tied pairs

of letters fail to be associated with equal

distance.

As can be seen in Figs. 2a and 2b, in

general the Euclidean metric is superior to

the city-block metric, the primary

approach is superior to the secondary

approach, and CI is more easily fit into a

multidimensional space than is CII. The

exception to this is CII, r = I, which,

except for spaces spanning three and IWO

dimensions, is associated with lower stress

values than is CIl, r =2. The reason for this

exception is not clear at present.

Each of the eight stress curves in fig. 2a

reaches Kruskal's (1964a, b) criterion of

.10 in less than 10 dimensions, and rather

nice "elbows" are present. Also, from

Klahr's (1969) recent results we can also

infer the "significance" of at least the

primary curves. For example, in 50 sets of

randomly generated sets of )6 points, 5'lr,

of the cases were associated with stress

values of .170 or less for three dimensions

when fit with the Kruskal program. We

would expect this result in even fewer cases

with our greater number of points (26).

Nevelthclcss, there was some inconsistency

of spatial configurations for the two

experimental conditions, for the two

met rics, and even of the primary as opposed

to the secondary approach. Perhaps even

more unsettling was failure of a set of

dimensions clearly related to our intuitions

concerning visual similarity to reveal itself.

This result points up the difficulty inherent

In using scaling techniques as a detective

device unless the scaled dimensions either

arc very elementary and obvious or unless

they turn out to be equivalent to some

previously hypothesized dimensions From

examination of letters having relatively

large projections on various dimensions one

could infer the Importance of direction of

lines and angles, roundness, and vertical
linearity. hut, again. these did not appear

in the same form for the different

conditions and approaches. and the letters

associated with onc of these attributes

were not always the same or even

completely consistent with the attribute.

The difference in the ability of CI and

CII to be fit into a multidimensional space

may part wily follow from the recalibrat ion

procedure carried out in ell. To take an

extreme example, if a S's performance

varied because of daily fluctuauons In

at tention. equal accuracy. as given by the

rccahbration. may not have implied the

same underlying visual space. The

confusion matrix for CII would then be a

composite of several underlying spaces.

2 3 4

CONFIDENCE RATING

I 2 3 4 5 6

RESPONSE LATENCY
IN SEC

Fig. I b. Probability correct as a function

of confidence rating for a typical S.

similarity in the choice model, T/i i as

cst imarcd by thc formula has been

suggested as possessing several properties

appropriate for a measure of similarity

(Shepard. 1958); for this reason. the

resulting values were used as input data for

the multidimensional scaling analysis. The

present application of Kruskal's ( 1964h)

program included two fit iechruqucs as

well as fitting the Euclidean and city-block

mctrics. One technique, referred to as the

primary approach, allows two pairs of
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Fig. Ia, Probability correct as a function

of latency for a typical S.
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Table 6
Correlation Coefficients for Similarity Parameters, Distance

Measures, and a Physical Similarity Measure.

OlP CHC de ds----
Model CII Cl CII CI CII CI ell PHOVlP

OlP
Cl .58 .43 -.67 -.61 .48
ell .64 -.67 -.54 .53

CHC
CI .97 -.75 -.70 .70
CII -.76 -.65 .65

de
CI .63 .86 ~-.69

CII .75 -.58

ds
CI .57 -.67
CII -.54

,. See text for further explanation.

Table 5
Correlation Coefficients for the Bias Parameters
for the ThreeModels and theTwoConditions·

OlP CHC AON

Model CII CI CII CI elI

AON CI .48

OlP
CI .53 .88 .53
CII .89 .83

CHC
CI .23 .70
CII .60

,. See text for explanation of headings.

present type of studies; one demands

conscious evaluation of perfectly

perceptible stimuli and the other

immediate identification of severely

degraded images produced by

tachistoscopic exposure.

The finding that a Euclidean metric is
generally most appropriate for the present

data may at first seem bizarre. Torgerson

(1958) and Shepard (1964), for example,

have suggested that certain types of visual

dimensions may be conducive to the

appearance of a city-block metric, such

dimensions being "perceptually distinct"

and "compelling." Letters, such as ''0''
and "I," for instance, may seem to be

made up of perceptually distinct types of

elements. There are several possibilities

that might be related to this finding. Some

of the structure that appears to be

independent may actually be related. For

instance, the extent of linearity of, say, an

ellipse is inversely related to its degree of

roundness, and perceptual blur due to

tachistoscopic conditions might produce

several gradations of linearity, thus

producing perceptual dimensions better

suited to a Euclidean metric. Also, of

course, since letters are made up of several

kinds of elements, this would tend to
promote perceptual continuity among the

letters themselves. A third possibility is

that restricted (in time) observations such

as those in the present study could lower

the probability of sampling information

from several dimensions simultaneously

and thus improve the fit of a Euclidean

metric relative to the city-block metric

(e.g., see the discussion by Hyman & Well,

1967). It should be mentioned that the

lack of clear-cut results relating to

particular dimensions of similarity and

perhaps even the support of a Euclidean

metric may be due to an artifact caused by

scaling group data, especially if Ss employ

different dimensions in their identification

process. An experiment is in progress that

includes the gathering of long-term data for

individual Ss and the application of the

present analyses to them.

In an effort to obtain a rough idea of the

extent to which the various models were

reflecting the same underlying structure in

the data, correlation coefficients were

obtained for analogous parameters in the

three models, and these are shown in

Tables 5 and 6 for bias and similarity

parameters, respectively. In Tables 5 and 6,

AON =ali-or-none activation model, OLP =
overlap activation model, and CHC =
choice model. The two conditions are given

by CI and CII. Table 6 includes

correlations with and among two possible

metrics and a crude physical measure of

interletter similarity. The metrics are ones

suggested by Luce (1963a) to be associated

with the choice model (del and the other is

that obtained from application of the

scaling program (d.), The measure of

physical overlap or similarity (PHOVLP)

was found by taking blown-up versions of

the font used in the experiment and

superimposing them in pairs on a 10 by 10

grid (the letters were eight units high and

about five units wide, on the average).

Then, the relative intersection was

computed for each pair, the intersection

divided by the union of cells covered in the

matrix.

Bearing in mind that we usually

interpret the correlation coefficient r or r2

as referring to a linear relationship, the

obtained values are surprisingly large.

Within the bias table, the correlations

within a condition are higher than across

conditions; this may indicate an actual

change of biases by Ss from CI and Cll.

Also, the highest correlations are obtained

between the overlap activation model and

the choice model, suggesting that despite

their differing heritage, these two models

reflected bias processes in a similar way,

and different from the ali-or-none model,

by virtue of their ability to depict stimulus

similarity.

Among the similarity parameter
correlations, the most salient result was the

remarkable r of .97 of the choice model in

the two conditions, as contrasted with the

lowest correlation of biases for the choice

model across conditions, which, of course,

we would expect if bias changed and

stimulus similarity did not, and a model

reflects these properties. To be sure, the

differences in the scaling fits indicate that,

at the least, the psychological spaces may

not have been identical for the two

conditions. When examining the correlations

with the supposed metrics, we may note,

as a reference, the correlation of about .75

obtained by correlating l'lij with -In(71ij)

(de). The overlap parameters correlated

slightly higher with -In(71ij) than they do

with 71ij. Also, a favorable relationship is

found between the metric -In(71ij) and the

metric from the multidimensional scaling

program. It is interesting to note that if the

relationship between 71ij in CI and CII were

by way of a similarity transformation

(y = ax, "a" constant) as choice theory

demands if the similarity structure is the

same in CI and CII, then the correlation

coefficient for -In(71ij) for the two

conditions would also be large. The fact

that it is not (r =.63) tells us that the

relationship must have been affine

(y =ax + b, "a," "b" constan ts) rather

than strictly simply a stretch or shrinkage

relationship. This probably followed from

fewer estimated similarities of zero in CI

than in CII. Of course, conventional

application of the theory would assume no

zero similarities.

Concluding the correlation analysis is

that of the physical overlap measure, a

measurement that does not suffer from the

built-in dependencies that characterize the

other numbers in the correlation tables.

The results are again substantially in the

expected direction with the highest

correlations found with the choice

similarity parameters and with the scaling

metric.

The approach assumed in this paper has

been of a twofold nature. On the one hand,

mathematical models were employed as
investigatory structures to reveal and

explicate various aspects of the data; the

substantive recognition models and the

scaling technique were complementary in

this aim. On the other hand, there was a

theory-testing facet of the study which
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and the bia\ naramctcr- are e ... unrated hy:
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(i = I. 2..... NI.
, I
gi = TN:­

y ...1,[
~ I'

i=] ji

which. of course. cancc}, out in the CXpre"\10J1"

for Pit.

I t may be obxcrvcd that instead of \clcding a

single letter to Lise in estimating all the bia-,

ratios. in order to possibly give more stability to

the estimates. tor each bias parameter. each letter

wa-, used as the denominator and the average

taken. In terms of the model. this simply results

in an overall multiplication of the {31 bv the

con-rant

Choice Model

The choice model and the relevant formulae

arc well known; hence. we shall simply list them

and remark that this model possesses the same

number of similanty and gue ... ,ing parameter' lL's.,

one as the overlap model for a tOlal of 3511 Ihe

sunilaritv parume tcr functions arc:

11 _[Pili i
] ' "' \i..J·~1.2.·".Nl

ii - 1'..1'."
. Il It

N

. L Pji.
j= \ .

#01

and the guessing biases were obtained from the

formula:

Substitution of the theoretical expressions for

the confusion matrix entries, Pij' will suffice to

show that the above arc the appropriate

Iormulac.

~ ' i ~ Pij + Pii· ti.] z: 1,2.•••. N. i i= II

Overlap Activation Model

In this model. structure existed to measure or

reflect pairwise stimulus similarity. The

parameters assigned this function we called ~iJ'

designating the overlap or similarity of stimulus i

and stimulus .1. To denote the probability that

"perfect" sensory information was obtained. we

used the symbol ~ii' As this model included no

pure guessing state. only perfect information and

pairwise confusion states, we employed the

assumption that when in a confusion state, say

between s, and Sj. the S gave response Ri with

probability gi!(gi + gil, where gi is the response

strength or response bias (like Pi in the

all-or-none activation model); this implies the

con-rant ratio rule on the guessing biasev,

The expressions which yielded the sensory

parameters for tim model were:

Alt-er-None Activation Model

It will be recalled that there exist no similarity

parameters as such in this model, only stimulus

parameters reflecting the likelihood of obtaininu

sensory information, which is related in a

one-one fashion to the (correct) response (0,1. In

addition, if the S docs not find himself in this

certain state, he must guess from all 2h

alternatives and he picks alternative "i" \\ ith

probability Pi. This model possesses a total 015 I

parameters for this experiment as compared with

650 degrees of freedom in thc data rill'

estimates for the sensory parameters were:

0i" {Ph <I

+ £lI z; I

*i

ti = 1.2, .... Nl

• N 2
p' ~ ----~---- (i ~ 1.2.' ". N)

1 N N P'k
~ ~--2+N 2

]=1 k> I Pji

*, #o,.j

where. as before, N is the number of surnuli. and

responses m an experiment. TIll' estimates for the

guessing bia-, parameter" were given hy

APPENDIX

Although there exist maximum likelihood

estimation procedures for the choice model and

the ali-or-none model, for convenience and

homogeneity of estimation technique, all

parameters were estimated by setting each

parameter equal to a function of the data Ii.c.,

the modified method of moments (aush, 1963) I '
the particular function, of course, being related

to the particular model and the specific

parameter. For simplicity_we will here denote

1>(RjlSi) as l'ij'

especially manifested itself in the

evaluation and comparison of the
recognition models. Although this

approach proved fruitful in delineating
some of the characteristics of alphabetic
confusion and suggesting the type of model
necessary to deal with visual confusions,
the spatial configurations resulting from
the scaling analysis were less than
satisfactory, in terms of describing a
psychologically intuitive set of dimensions.
To some extent, this may be a function of
the sheer complexity of the English

alphabet; it may prove valuable to build up
a psychophysics of simple visual elements,
such as lines at various orientations, and

then begin to construct more complex.
alphabets with these. In this way the laws
relating to the emergent properties of the

more complex stimulimay become known.
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NOTE
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Documentation Institute.
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