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Abstract

Reward-modulated spike-timing-dependent plasticity (STDP) has recently
emerged as a candidate for a learning rule that could explainhow local learning
rules at single synapses support behaviorally relevant adaptive changes in com-
plex networks of spiking neurons. However the potential andlimitations of this
learning rule could so far only be tested through computer simulations. This ar-
ticle provides tools for an analytic treatment of reward-modulated STDP, which
allow us to predict under which conditions reward-modulated STDP will be able
to achieve a desired learning effect. In particular, we can produce in this way
a theoretical explanation and a computer model for a fundamental experimental
finding on biofeedback in monkeys (reported in [1]).

1 Introduction

A major puzzle for understanding learning in biological organisms is the relationship between ex-
perimentally well-established learning rules for synapses (such as STDP) on the microscopic level
and adaptive changes of the behavior of biological organisms on the macroscopic level. Neuromod-
ulatory systems which send diffuse signals related to reinforcements (rewards) and behavioral state
to several large networks of neurons in the brain, have been identified as likely intermediaries that
relate these two levels of learning. It is well-known that the consolidation of changes of synaptic
weights in response to pre- and postsynaptic neuronal activity requires the presence of such third
signals [2]. Corresponding spike-based learning rules of the form

dwji(t)

dt
= cji(t)d(t), (1)

have been proposed in [3], wherewji is the weight of a synapse from neuroni to neuronj, cji(t) is
an eligibility trace of this synapse which collects proposed weight changes resulting from a learning
rule such as STDP, andd(t) = h(t)− h̄ is a neuromodulatory signal with meanh̄ (whereh(t) might
for example represent reward prediction errors, encoded through the concentration of dopamine in
the extra-cellular fluid). We will consider in this article only cases where the reward prediction
error is equal to the current reward. We will refer tod(t) simply as the reward signal. Obviously
such learning scheme (1) faces a large credit-assignment problem, since not only those synapses
for which weight changes would increase the chances of future reward receive the top-down signal
d(t), but billions of other synapses too. Nevertheless the brainis able to solve this credit-assignment
problem, as has been shown in one of the earliest (but still among the most amazing) demonstrations
of biofeedback in monkeys [1]. The spiking activity of single neurons (in area 4 of the precentral
gyrus) was recorded, the current firing rate of this neuron was made visible to the monkey in the

1



form of an illuminated meter, and the monkey received food rewards for increases (or in alternating
trials for decreases) of the firing rate of this neuron from its average level. The monkeys learnt quite
reliably (on the time scale of 10’s of minutes) to change the firing rate of this neuron in the currently
rewarded direction1. Obviously the existence of learning mechanisms in the brain which are able to
solve this difficult credit assignment problem is fundamental for understanding and modeling many
other learning features of the brain. We present in section 3and 4 of this abstract a learning theory for
(1), where the eligibility tracecij(t) results from standard forms of STDP, which is able to explain
the success of the experiment in [1]. This theoretical modelis confirmed by computer simulations
(see section 4.1). In section 5 we leave this concrete learning experiment and investigate under what
conditions neurons can learn through trial and error (via reward-modulated STDP) associations of
specific firing patterns to specific patterns of input spikes.The resulting theory leads to predictions
of specific parameter ranges for STDP that support this general form of learning. These were tested
through computer experiments, see 5.1.

Other interesting results of computer simulations of reward-modulated STDP in the context of neural
circuits were recently reported in [3] and [4] (we also referto these articles for reviews of preceding
work by Seung and others).

2 Models for neurons and synaptic plasticity

The spike train of a neuroni which fires action potentials at timest(1)i , t
(2)
i , t

(3)
i , . . . is formalized

by a sum of Dirac delta functionsSi(t) =
∑

t
(n)
i

δ(t − t
(n)
i ). We assume that positive and negative

weight changes suggested by STDP for all pairs of pre- and postsynaptic spikes (according to the
two integrals in (2)) are collected in an eligibility tracecji(t), where the impact of a spike pairing
with the second spike at timet − s on the eligibility trace at timet is given by some functionfc(s)
for s ≥ 0:

cji(t) =

∫ ∞

0

dsfc(s)

[
∫ ∞

0

dr W (r)Spost
j (t − s)Spre

i (t − s − r)

+

∫ ∞

0

dr W (−r)Spost
j (t − s − r)Spre

i (t − s)

]

. (2)

In our simulations,fc(s) is a function of the formfc(s) = s
τe

e−
s

τe if s ≥ 0 and 0 otherwise, with
time constantτe = 0.5s. W (r) denotes the standard exponential STDP learning window

W (r) =

{

A+e−r/τ+ , if r ≥ 0
−A−er/τ− , if r < 0

, (3)

where the positive constantsA+ andA− scale the strength of potentiation and depression,τ+ and
τ− are positive time constants defining the width of the positive and negative learning window, and
Spre

i , Spost
j are the spike trains of the presynaptic and postsynaptic neuron respectively. The actual

weight change is the product of the eligibility trace with the reward signal as defined by equation (1).
We assume that weights are clipped at the lower boundary value0 and an upper boundarywmax.

We use a linear Poisson neuron model whose output spike trainSpost
j (t) is a realization of a Poisson

process with the underlying instantaneous firing rateRj(t). The effect of a spike of presynaptic
neuroni at timet′ on the membrane potential of neuronj is modeled by an increase in the instan-
taneous firing rate by an amountwji(t

′)ǫ(t − t′), whereǫ is a response kernel which models the
time course of a postsynaptic potential (PSP) elicited by aninput spike. Since STDP according to
[3] has been experimentally confirmed only for excitatory synapses, we will consider plasticity only
for excitatory connections and assume thatwji ≥ 0 for all i andǫ(s) ≥ 0 for all s. Because the
synaptic response is scaled by the synaptic weights, we can assume without loss of generality that
the response kernel is normalized to

∫ ∞

0
ds ǫ(s) = 1. In this linear model, the contributions of all

inputs are summed up linearly:

Rj(t) =
n

∑

i=1

∫ ∞

0

ds wji(t − s) ǫ(s) Si(t − s) , (4)

1Adjacent neurons tended to change their firing rate in the same direction, but also differential changes of
directions of firing rates of pairs of neurons are reported in[1] (when these differential changes were rewarded).
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whereS1, . . . , Sn are then presynaptic spike trains.

3 Theoretical analysis of the resulting weight changes

We are interested in the expected weight change over some time intervalT (see [5]), where the
expectation is over realizations of the stochastic input- and output spike trains as well as a stochastic
realization of the reward signal, denoted by the ensemble average〈·〉E

〈wji(t + T ) − wji(t)〉E
T

=
1

T

〈

∫ t+T

t

d

dt
wji(t

′)dt′

〉

E

=

〈〈

d

dt
wji(t)

〉

T

〉

E

, (5)

where we used the abbreviation〈f(t)〉T = T−1
∫ t+T

t
f(t′) dt′. Using equation (1), this yields

〈wji(t + T ) − wji(t)〉E
T

=

∫ ∞

0

dr W (r)

∫ ∞

0

ds fc(s) 〈Dji(t, s, r) νji(t − s, r)〉T

+

∫ 0

−∞

dr W (r)

∫ ∞

|r|

ds fc(s + r) 〈Dji(t, s, r) νji(t − s, r)〉T ,(6)

whereDji(t, s, r) = 〈d(t)| Neuronj spikes att − s, and neuroni spikes att − s − r〉E is the
average reward at timet given a presynaptic spike at timet − s − r and a postsynaptic spike at
time t − s, andνji(t, r) = 〈Sj(t)Si(t − r)〉E describes correlations between pre- and postsynaptic
spike timings (see [6] for the derivation). We see that the expected weight change depends on how
the correlations between the pre- and postsynaptic neuronscorrelate with the reward signal. If these
correlations are varying slowly with time, we can exploit the self-averaging property of the weight
vector. Analogously to [5], we can drop the ensemble averageon the left hand side and obtain:

d

dt
〈wji(t)〉T =

∫ ∞

0

dr W (r)

∫ ∞

0

ds fc(s) 〈Dji(t, s, r) νji(t − s, r)〉T

+

∫ 0

−∞

dr W (r)

∫ ∞

|r|

ds fc(s + r) 〈Dji(t, s, r) νji(t − s, r)〉T . (7)

In the following, we will always use the smooth time-averaged vector〈wji(t)〉T , but for brevity, we
will drop the angular brackets. If one assumes for simplicity that the impact of a pre-post spike pair
on the eligibility trace is always triggered by the postsynaptic spike, one gets (see [6] for details):

dwji(t)

dt
=

∫ ∞

0

ds fc(s)

∫ ∞

−∞

dr W (r) 〈Dji(t, s, r) νji(t − s, r)〉T . (8)

This assumption (which is common in STDP analysis) will introduce a small error for post-before
pre spike pairs, since if a reward signal arrives at some timedr after the pairing, the weight update
will be proportional tofc(dr) instead offc(dr + r). For the analyses presented in this article, the
simplified equation (8) is a good approximation for the learning dynamics (see [6]). Equation (8)
shows that if the reward signal does not depend on pre- and postsynaptic spike statistics, the weight
will change according to standard STDP scaled by a constant proportional to the mean reward.

4 Application to biofeedback experiments

We now apply our theoretical approach to the biofeedback experiments by Fetz and Baker [1] that
we have sketched in the introduction. The authors showed that it is possible to increase and decrease
the firing rate of a randomly chosen neuron by rewarding the monkey for its high (respectively low)
firing rates. We assume in our model that a reward is deliveredto all neurons in the simulated
recurrent network with some delaydr every time a specific neuronk in the network produces an
action potential

d(t) =

∫ ∞

0

dr Spost
k (t − dr − r)ǫr(r). (9)

whereǫr(r) is the shape of the reward pulse corresponding to one postsynaptic spike of the rein-
forced neuron. We assume that the reward kernelǫr has zero mass, i.e.,ǭr =

∫ ∞

0
dr ǫr(r) = 0. In

3



our simulations, this reward kernel will have a positive bump in the first few hundred milliseconds,
and a long tailed negative bump afterwards. With the linear Poisson neuron model (see Section 2),
the correlation of the reward with pre-post spike pairs of the reinforced neuron is (see [6])

Dki(t, s, r) = wki

∫ ∞

0

dr′ ǫr(r
′)ǫ(s + r − dr − r′) + ǫr(s − dr) ≈ ǫr(s − dr). (10)

The last approximation holds if the impact of a single input spike on the membrane potential is
small. The correlation of the reward with pre-post spike pairs of non-reinforced neurons is

Dji(t, s, r) =

∫ ∞

0

dr′ ǫr(r
′)

νkj(t − dr − r′, s − dr − r′) + wkiwjiǫ(s + r − dr − r′)ǫ(r)

νj(t − s) + wjiǫ(r)
.

(11)
If the contribution of a single postsynaptic potential to the membrane potential is small, we can
neglect the impact of the presynaptic spike and write

Dji(t, s, r) ≈

∫ ∞

0

dr′ ǫr(r
′)

νkj(t − dr − r′, s − dr − r′)

νj(t − s)
. (12)

Hence, the reward-spike correlation of a non-reinforced neuron depends on the correlation of this
neuron with the reinforced neuron. The mean weight change for weights to the reinforced neuron is
given by

d

dt
wki(t) =

∫ ∞

0

ds fc(s + dr)ǫr(s)

∫ ∞

−∞

dr W (r) 〈νki(t − dr − s, r)〉T . (13)

This equation basically describes STDP with a learning ratethat is proportional to the eligibility
function in the time around the reward-delay. The mean weight change of neuronsj 6= k is given by

d

dt
wji(t) =

∫ ∞

0

ds fc(s)

∫ ∞

−∞

dr W (r)

∫ ∞

0

dr′ǫr(r
′)

〈

νkj(t − dr − r′, s − dr − r′)

νj(t − s)
νji(t − s, r)

〉

T
(14)

If the output of neuronsj andk are uncorrelated, this evaluates to approximately zero (see [6]).

The result can be summarized as follows. The reinforced neuron is trained by STDP. Other neurons
are trained by STDP with a learning rate proportional to their correlation with the reinforced neuron.
If a neuron is uncorrelated with the reinforced neuron, the learning rate is approximately zero.

4.1 Computer simulations

In order to test the theoretical predictions for the experiment described in the previous section, we
have performed a computer simulation with a generic neural microcircuit receiving a global reward
signal. This global reward signal increases its value everytime a specific neuron (the reinforced
neuron) in the circuit fires. The circuit consists of 1000 leaky integrate-and-fire (LIF) neurons (80%
excitatory and 20% inhibitory), which are interconnected by conductance based synapses. The short
term dynamics of synapses was modeled in accordance with experimental data (see [6]). Neurons
within the recurrent circuit were randomly connected with probabilitiespee = 0.08, pei = 0.08,
pie = 0.096 andpii = 0.064 where the ee, ei, ie, ii indices designate the type of the presynaptic
and postsynaptic neurons (excitatory or inhibitory). To reproduce the synaptic background activity
of neocortical neurons in vivo, an Ornstein-Uhlenbeck (OU)conductance noise process modeled
according to ([7]) was injected in the neurons, which also elicited spontaneous firing of the neurons
in the circuit with an average rate of4Hz. In half of the neurons part of the noise was substituted
with random synaptic connections from the circuit, in orderto observe how the learning mecha-
nisms work when most of the input conductance in the neuron comes from a larger number of input
synapses which are plastic, instead of a static noise process. The functionfc(t) from equation (2)
had the formfc(t) = t

τe

e−
t

τe if t ≥ 0 and 0 otherwise, with time constantτe = 0.5s. The reward
signal during the simulation was computed according to eq. (9), with the following shape forǫr(t)

ǫr(t) = A+
r

t

τ+
r

e
− t

τ
+
r − A−

r

t

τ−
r

e
− t

τ
−

r . (15)

The parameter values forǫr(t) were chosen such as to produce a positive reward pulse with a peak
delayed 0.5s from the spike that caused it, and a long tailed negative bump so that

∫ ∞

0
dt ǫr(t) = 0.
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Figure 1: Computer simulation of the experiment by Fetz and Baker [1]. A) The firing rate of the
reinforced neuron (solid line) increases while the averagefiring rate of 20 other randomly chosen
neurons in the circuit (dashed line) remains unchanged.B) Evolution of the average synaptic weight
of excitatory synapses connecting to the reinforced neuron(solid line) and to other neurons (dashed
line). C) Spike trains of the reinforced neuron at the beginning and atthe end of the simulation.

For values of other model parameters see [6]. The learning rule (1) was applied to all synapses in the
circuit which have excitatory presynaptic and postsynaptic neurons. The simulation was performed
for 20 min simulated biological time with a simulation time step of0.1ms.

Fig. 1 shows that the firing rate and synaptic weights of the reinforced neuron increase within a few
minutes of simulated biological time, while those of the other neurons remain largely unchanged.
Note that this reinforcement learning task is more difficultthan that of the first computer experiment
of [3], where postsynaptic firing within 10 ms after presynaptic firing of a randomly chosen synapse
was rewarded, since the relationship between synaptic activity (and hence with STDP) is less direct
in this setup. Whereas a very low spontaneous firing rate of 1 Hz was required in [3], this simulation
shows that reinforcement learning is also feasible at rate levels which correspond to those reported
in [1].

5 Rewarding spike-timings

In order to explore the limits of reward-modulated STDP, we have also investigated a substantially
more demanding reinforcement learning scenario. The reward signald(t) was given in dependence
on how well the output spike trainSpost

j of the neuronj matched some rather arbitrary spike trainS∗

that was produced by some neuron that received the samen input spike trains as the trained neuron
with arbitrary weightsw∗ = (w∗

1 , . . . , w∗
n)T , w∗

i ∈ {0, wmax}, but in additionn′ − n further
spike trainsSn+1, . . . , Sn′ with weightsw∗

i = wmax. This setup provides a generic reinforcement
learning scenario, when a quite arbitrary (and not perfectly realizable) spike output is reinforced, but
simultaneously the performance of the learner can be evaluated quite clearly according to how well
its weightsw1, . . . , wn match those of the target neuron for thosen input spike trains which both of
them receive. The rewardd(t) at timet is given by

d(t) =

∫ ∞

−∞

dr κ(r)Spost
j (t − dr)S

∗(t − dr − r), (16)

where the functionκ(r) with κ̄ =
∫ ∞

−∞
ds κ(s) > 0 describes how the reward signal depends

on the time difference between a postsynaptic spike and a target spike anddr > 0 is the delay
of the reward. Our theoretical analysis below suggests thatthis reinforcement learning task can
in principle be solved by reward-modulated STDP if some constraints are fulfilled. The analysis
also reveals which reward kernelsκ are suitable for this learning setup. The reward correlation for
synapsei is (see [6])

Dji(t, s, r) =

∫ ∞

−∞

dr′κ(r′)
[

νpost
j (t − dr) + δ(s − dr) + wji(s + r − dr)ǫ(s + r − dr)

]

[ν∗(t − dr − r′) + w∗
i ǫ(s + r − dr − r′)] , (17)

whereνpost
j (t) = 〈Spost

j (t)〉E denotes the mean rate of the trained neuron at timet, andν∗(t) =

〈S∗(t)〉E denotes the mean rate of the target spike train at timet. Since weights are changing very
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slowly, we havewji(t − s − r) = wji(t). In the following, we will drop the dependence ofwji on
t for brevity. For simplicity, we assume that input rates are stationary and uncorrelated. In this case
(since the weights are changing slowly), also the correlations between inputs and outputs can be
assumed stationary,νji(t, r) = νji(r). We assume that the eligibility functionfc(dr) ≈ fc(dr + r)
if |r| is on a time scale of a PSP, the learning window, or the reward kernel, and thatdr is large
compared to these time scales. Then, for uncorrelated Poisson input spike trains of rateνpre

i and the
linear Poisson neuron model, the weight change at synapseji is given by

dwji(t)

dt
≈ κ̄f̄cν

∗νpre
i νpost

j

[

νpost
j W̄ + wjiW̄ǫ

]

+κ̄fc(dr)ν
pre
i

[

νpost
j W̄ + wjiW̄ǫ

] [

ν∗ + ν∗wji + w∗
i νpost

j

]

+fc(dr)w
∗
i νpre

i

[

νpost
j

∫ ∞

−∞

dr W (r)ǫκ(r) + wji

∫ ∞

−∞

dr W (r)ǫ(r)ǫκ(r)

]

+fc(dr)w
∗
i wjiν

pre
i

[

νpost
j W̄ + wjiW̄ǫ

]

∫ ∞

0

dr ǫ(r)ǫκ(r), (18)

where f̄c =
∫ ∞

0 dr fc(r), W̄ =
∫ ∞

−∞ dr W (r), ǫκ(r) =
∫ ∞

−∞ dr′ κ(r′)ǫ(r − r′) is the con-
volution of the reward kernel with the PSP is the integral over the STDP learning window, and
W̄ǫ =

∫ ∞

−∞
dr ǫ(r)W (r).

We will now bound the expected weight change for synapsesji with w∗
i = wmax and for synapses

jk with w∗
jk = 0. In this way we can derive conditions for which the expected weight change for the

former synapses is positive, and that for the latter type is negative. First, we assume that the integral
over the reward kernel is positive. In this case, the weight change is negative for synapsesi with
w∗

i = 0 if and only if νpre
i > 0, and−νpost

j W̄ > wjiW̄ǫ. In the worst case,wji is wmax andνpost
j

is small. We have to guarantee some minimal output rateνpost
min such that even ifwji = wmax, this

inequality is fulfilled. This could be guaranteed by some noise current. For synapsesi with w∗
i =

wmax, we obtain two more conditions (see [6] for a derivation). The conditions are summarized in
inequalities (19)-(21). If these inequalities are fulfilled and input rates are positive, then the weight
vector converges on average from any initial weight vector to w

∗.

−νpost
minW̄ > wmaxW̄ǫ (19)

∫ ∞

−∞

dr W (r)ǫ(r)ǫκ(r) ≥ −νpost
maxW̄

∫ ∞

0

dr ǫ(r)ǫκ(r) (20)

∫ ∞

−∞

dr W (r)ǫκ(r) > −W̄ κ̄

[

ν∗νpost
max

wmax

f̄c

fc(dr)
+

ν∗

wmax
+ ν∗ + νpost

max

]

, (21)

whereνpost
max is the maximal output rate. The second condition is less severe, and should be easily

fulfilled in most setups. If this is the case, the first condition (19) ensures that weights withw∗ = 0
are depressed while the third condition (21) ensures that weights withw∗ = wmax are potentiated.

Optimal reward kernels: From condition (21), we can deduce optimal reward kernelsκ. The
kernel should be such that the integral

∫ ∞

−∞ dr W (r)ǫκ(r) is large, while the integral overκ is small
(but positive). Hence,ǫκ(r) should be positive forr > 0 and negative forr < 0. In the following
experiments, we use a simple kernel which satisfies the aforementioned constraints:

κ(r) =

{

Aκ
+(e

− t−tκ

τκ
1 − e

− t−tκ

τκ
2 ) , if t − tκ ≥ 0

−Aκ
−(e

t−tκ

τκ
1 − e

t−tκ

τκ
2 ) , otherwise

whereAκ
+ andAκ

− are positive scaling constants,τκ
1 andτκ

2 define the shape of the two double-
exponential functions the kernel is composed of, andtκ defines the offset of the zero-crossing from
the origin. The optimal offset from the origin is negative and in the order of tens of milliseconds
for usual PSP-shapesǫ. Hence, reward is positive if the neuron spikes around the target spike or
somewhat later, and negative if the neuron spikes much too early.

5.1 Computer simulations

In the computer simulations we explored the learning rule ina more biologically realistic setting,
where we used a leaky integrate-and-fire (LIF) neuron with input synaptic connections coming from
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Figure 2: Reinforcement learning of spike times.A) Synaptic weight changes of the trained LIF
neuron, for 5 different runs of the experiment. The curves show the average of the synaptic weights
that should converge tow∗

i = 0 (dashed lines), and the average of the synaptic weights thatshould
converge tow∗

i = wmax (solid lines) with different colors for each simulation run. B) Comparison
of the output of the trained neuron before (upper trace) and after learning (lower trace; the same
input spike trains and the same noise inputs were used beforeand after training for 2 hours). The
second trace from above shows those spike times which are rewarded, the third trace shows the target
spike train without the additional noise inputs.
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from equation (18), and the es-
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(see Table 1).2 A) Weight change
values for synapses withw∗
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wmax. B) Weight change values
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i = 0. Cases
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a generic neural microcircuit composed of 1000 LIF neurons.The synapses were conductance
based exhibiting short term facilitation and depression. The trained neuron and the arbitrarily given
neuron which produced the target spike trainS∗ (“target neuron”) both were connected to the same
randomly chosen, 100 excitatory and 10 inhibitory neurons from the circuit. The target neuron
had10 additional excitatory input connections (these weights were set towmax), not accessible to
the trained neuron. Only the synapses of the trained neuron connecting from excitatory neurons
were set to be plastic. The target neuron had a weight vector with w∗

i = 0 for 0 ≤ i < 50 and
w∗

i = wmax for 50 ≤ i < 110. The generic neural microcircuit from which the trained and
the target neurons receive the input had 80% excitatory and 20% inhibitory neurons interconnected
randomly with a probability of 0.1. The neurons received background synaptic noise as modeled in
[7], which caused spontaneous activity of the neurons with an average firing rate of6.9Hz. During
the simulations, we observed a firing rate of10.6Hz for the trained, and19Hz for the target neuron.
The reward was delayed by0.5s, and we used the same eligibility trace functionfc(t) as in the
simulations for the biofeedback experiment (see [6] for details). The simulations were run for two
hours simulated biological time, with a simulation time step of 0.1ms. We performed 5 repetitions
of the experiment, each time with different randomly generated circuits and different initial weight
values for the trained neuron. In each of the 5 runs, the average synaptic weights of synapses with
w∗

i = wmax andw∗
i = 0 approach their target values, as shown in Fig. 2A. In order totest how

2The values in the figure are calculated as∆w = w(tsim)−w(0)
wmax/2

for the simulations, and with∆w =
〈dw/dt〉tsim

wmax/2
for the predicted value.w(t) is the average weight over synapses with the same value ofw

∗.
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Ex. τǫ[ms] wmax ν
post
min [Hz] A+106 A−

A+
τ+,τκ

2 [ms] A
κ
+ tsim [h]

1 10 0.012 10 16.62 1.05 20,20 3.34 5
2 7 0.020 5 11.08 1.02 15,16 4.58 10
3 20 0.010 6 5.54 1.10 25,40 1.46 16
4 7 0.020 5 11.08 1.07 25,16 4.67 13
5 10 0.015 6 20.77 1.10 25,20 3.75 3
6 25 0.005 3 13.85 1.01 25,20 3.34 13

Table 1: Parameter values used
for the simulations in Figure
3. Both cases where the con-
straints are satisfied and not sat-
isfied were covered. PSPs were
modeled asǫ(s) = e(−s/τǫ)/τǫ.

closely the learning neuron reproduces the target spike train S∗ after learning, we have performed
additional simulations where the same spiking inputSI is applied to the learning neuron before and
after we conducted the learning experiment (results are reported in Fig. 2B).

The equations in section 5 define a parameter space for which the trained neuron can learn the target
synapse patternw∗. We have chosen 6 different parameter values encompassing cases with satisfied
and non-satisfied constraints, and performed experiments where we compare the predicted average
weight change from equation (18) with the actual average weight change produced by simulations.
Figure 3 summarizes the results. In all 6 experiments, the sufficient conditions (19)-(21) were cor-
rect. In those cases where these conditions were not met, theweight moved in the opposite direction,
suggesting that the theoretically sufficient conditions (19)-(21) might also be necessary.

6 Discussion

We have developed in this paper a theory of reward-modulatedSTDP. This theory predicts that re-
inforcement learning through reward-modulated STDP is also possible at biologically more realistic
spontaneous firing rates than the average rate of 1 Hz that wasused (and argued to be needed) in the
extensive computer experiments of [3]. We have also shown both analytically and through computer
experiments that the result of the fundamental biofeedbackexperiment in monkeys from [1] can be
explained on the basis of reward-modulated STDP. The resulting theory of reward-modulated STDP
makes concrete predictions regarding the shape of various functions (e.g. reward functions) that
would optimally support the speed of reward-modulated learning for the generic (but rather diffi-
cult) learning tasks where a neuron is supposed to respond toinput spikes with specific patterns of
output spikes, and only spikes at the right times are rewarded. Further work (see [6]) shows that
reward-modulated STDP can in some cases replace supervisedtraining of readout neurons from
generic cortical microcircuit models.
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