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Cuplike lipid vesicles with a single hole and tubelike vesicles with two holes were theoretically analyzed by
taking into account the line tension of membrane holes and the bending energy of membranes, using the area
difference elasticity model. We numerically solved the Euler-Lagrange equation and the boundary conditions
holding on the membrane edge to obtain axisymmetric vesicle shapes that minimize the total energy. The
numerical results showed that when the line tension is very low, and for appropriate values of the relaxed area
difference between the two monolayers of bilayer membranes, the model yields cup-, tube-, and funnel-shaped
vesicles that closely resemble previously observed shapes of opening-up vesicles with additive guest molecules
such as the protein talin and some detergents. This strongly suggests that these additive molecules greatly
reduce the line tension of lipid membranes. The effect of the Gaussian bending modulus on the shape of the
opening-up vesicles was also evaluated and the effect is greatest when the size of hole is small.

DOI: 10.1103/PhysRevE.71.011913 PACS numberssd: 87.16.Dg, 82.70.Uv

I. INTRODUCTION

Lipid bilayer membranes have been studied extensively
due to their importance in many areas such as biomem-
branes, the food industry, drug delivery, and so on. Usually,
lipid bilayer membranes of single lipid components form
closed vesicles in aqueous solution with appropriate bound-
ary and initial conditionssreviews inf1gd. Since exposure of
the hydrophobic portion of the sheets to water creates high
energy costs, no tears or holes were usually formed in the
lipid membrane. To keep a closed vesicle form is important
for biological cells, particularly for physiological functions.

Recent studies have shown, however, that some chemical
agents such as the submembranous protein talinf2g or deter-
gentsf3g are capable of inducing a stable hole or holes in
lipid membranes so that the membranes transform into cup-
shaped vesicles, tubelike shapes, or lipid bilayer sheets. Al-
though a precise mechanism has not yet been clarified, melit-
tin sa bee toxind causes hemolysis, and therefore the addition
of melittin may make a hole in lipid bilayer membranesf4g.
Here we investigate theoretically how these shapes are
formed based on the principle of energy minimization.

The opening of a hole in a lipid membrane to elucidate
the physical properties of biological membranes or to utilize
lipid vesicles as carriers for drug or DNA delivery has
proven to be a challenging task. A variety of physical tech-
niques, such as electroporationf5g, osmotic shockf6g, opti-
cal tweezersf7g, and adhesionf8g, have been developed to
open transient holes in membranes. These holes have been
interpreted as the result of a mechanical balance between the
membrane tension and the line tension, the free energy cost
per unit length of the edges of the holes. By taking the line
tension energy on a small, circular hole in a spherical vesicle,
one can show that a quasistable hole opens in the membrane

under the excess of inner pressuref9g. However, this model
can only explain the transient holes, because the leaking out
of water through the holes may reduce the pressure differ-
ence across the membranesf10g. In other example of holes,
electric field and charges play an essential role in their sta-
bility f11g. However, researchers in this field have generally
assumed a very small hole opened in a spherical membrane,
and the model is not applicable to large deformations. For
the cuplike vesicle formation of lipid and talin systems, Su-
ezaki and others clarified the origin of the shape change of
cuplike vesicle using the adsorption isotherm of talin be-
tween the periphery of the cuplike vesicle and the aqueous
solvent f12g. However, the vesicle shape was estimated
qualitatively as a partial sphere.

In this paper, we study the shape of the opening-up mem-
branes, based on the idea of bending energy, which was first
proposed by Helfrichf13g and has been successfully used for
explaining the shape transformations of closed vesiclesf1g.
Membranes are assumed to have bending energy determined
by the local curvatures of the surfaces. We also incorporated
the nonlocal bending energy resulting from the elasticity of
the area difference between the two monolayers of bilayer
membranesf14g. By applying the variational method to the
total energy that comprises the local and nonlocal bending
energies and the line tension energy, we can derive the Euler-
Lagrange equation for the membrane shape and the boundary
conditions holding on the membrane edge. Recently, Tu and
Ou-Yangf15g derived the shape equation and boundary con-
ditions for the spontaneous curvature model. We apply these
equations to our model. By assuming axisymmetric deforma-
tions, we numerically solve the equations to seek out the
equilibrium shapes. The results show that the shapes ob-
served in experiments are realized when the line tension and
the relaxed area difference are appropriately chosen.
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II. MODEL

A. Free energy

We represent an opening-up vesicle as a two-dimensional
surfaceS bordered by a closed curvesor curvesd ]S. To
choose the direction, we take the inward normal to the mem-
brane as positive. The perimeter]S is oriented in the direc-
tion of the right-hand fingers if the thumb of the right hand
indicates the positive normalsFig. 1d.

The energy of the membrane is the sum of three terms
F=Fc+Fr+Fg, the local bending energy of the membrane
sFcd, the nonlocal bending energy of the membranesFrd, and
the line tension energy stored on the boundary]SsFgd. The
local bending energy is written as

Fc ;E E
S
Fkc

2
s2Hd2 + kgKGdA, s1d

where dA is the area element on the surface, andH
=s1/2ds1/R1+1/R2d and K=1/R1R2 are the mean and
Gaussian curvaturessR1 and R2 are the principal curvature
radiid f13g. The sign of the mean curvature is positive when
vesicles assume a spherical surface. The local bending
moduluskc and the Gaussian bending moduluskg describe
the elastic properties of the membrane. The spontaneous cur-
vature of the membrane is zero, because the two sides of an
opening-up membrane are chemically identical.

The nonlocal bending energy

Fr ;
kr

2

p

AD2sDA − DA0d2 s2d

stems from the relative surface dilation of the two monolay-
ers f14g. The area difference between the two monolayers
DA;Aout−Ain is given by

DA = 2DE E
S

H dA, s3d

whereD is the distance between the two monolayers. The
corresponding relaxed valueDA0;A0

out−A0
in is determined

by the numbers of lipid molecules constituting the layers.
The constantkr is the nonlocal bending modulus, whose
value can be estimated to be of the same order as the local
bending moduluskc f16g.

Finally, the line tension energyFg is given by

Fg ; E
]S

g ds, s4d

whereg is the line tension andds the line element along]S.

B. Shape equation and boundary conditions

The equilibrium shape of the surface is obtained by
minimizing F for fixed areaA=eeSdA. If the length is
normalized withR0=sA/4pd1/2, the nondimensional energy

F̂=F /kc becomes

F̂ =E E
S

f2H2 + k̂gKgdA+
k̂r

2
sm− m0d2 +E

]S

ĝ ds, s5d

where

m;E E
S

H dA s6d

and

k̂g ; kg/kc, k̂r ; kr/kc,

ĝ ; gR0/kc, m0 ;
DA0

2DR0
. s7d

The surface area is now fixed at 4p, and there are four inde-

pendent parametersk̂g, k̂r, ĝ, andm0 in the model.
The shape equation and the boundary conditions for

opening-up vesicles are derived from the variation

dG ; dsF̂ + lAd = 0, s8d

wherel is the Lagrange multiplier. Equations8d leads to the
following Euler-Lagrange equation holding on the surface:

DH + 2HsH2 − Kd + c0K − lH = 0, s9d

whereD represents the Laplace-Beltrami operator on the sur-
face andc0 is a constant given by

c0 = sk̂r/2dsm0 − md. s10d

This equation is the same shape equation for closed vesicles
obtained by Ou-Yang and Helfrichf17g for the spontaneous
curvature model except that no pressure term is involved.
The constantc0 corresponds to the spontaneous curvature of
the spontaneous curvature model.

The boundary conditions for Eq.s9d are also derived from
Eq. s8d using the method described inf15g. We introduce a
local orthogonal framest ,sd on the surface along the bound-
ary ]S such thats is along]S sFig. 1d. The boundary con-
ditions on]S are then

2H − c0 + k̂gcn = 0, s11d

2
]H

]t
+ k̂g

dt

ds
+ ĝcn = 0, s12d

FIG. 1. The orientations of an opening-up surface and the
perimeter.
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2HsH − c0d + k̂gK + l + ĝcg = 0, s13d

wherecn is the normal curvature,cg the geodesic curvature,
and t the geodesic torsion along]S. Physically, Eqs.s11d
ands12d correspond to the balance of torque and the balance
of shear force per unit length of the boundary, respectively.
Equation s13d is associated with membrane tension. Note

that the parametersĝ and k̂g are involved only in the bound-
ary conditions.

The equilibrium shape of opening-up vesicles is obtained
by solving Eq.s9d with the boundary conditionss11d–s13d
and the constraintss10d andA=4p.

III. RESULTS

A. Axisymmetric deformation

We hereafter restrict our analysis to axisymmetric defor-
mation. There are three topological types of axisymmetric
surfaces: closed surfaces, surfaces with one hole, and sur-
faces with two holes. Shape transformations of closed
vesicles have been thoroughly studied and it is known that
the shape depends on the volume of water enveloped in the
vesiclesf18g. However, in the case of no volume constraint
sin other words, no pressure termd, spherical vesicles are

stable ifc0=sk̂r /2dsm0−4pd,6 f13g. Thus, we may assume
that closed surfaces are spherical in this range. The shape
equations and the boundary conditions for axisymmetric sur-
faces with holes are described in Appendix A. The equations
were solved using the method described in Appendix B. Al-
though there are four independent parameters in the model,

as stated previously, we fixedk̂r at 1.4 according to the esti-
mation for stearoyl-oleoyl-phosphatidylcholinesSOPCd by

Miao et al. f14g. Furthermore, we assumek̂g=0 in the fol-
lowing three subsections. In Sec. III E, we examine the effect
of the Gaussian curvature modulus on the vesicle shape. Fi-
nally, we describe the result of a minimal model in which the
nonlocal bending energy is completely relaxed.

B. Surface with one hole

Figure 2 shows the deformation of opening-up surfaces
when m0/4p=0.4. Shapes with one hole bifurcate from a

sphere atĝ=7.28, in which an infinitesimal hole opens in a
spherical surface. The graph of energy versus line tension
folds at ĝ=7.22 and 8.04 so that there are three branches in
the graph: 7.22øĝø7.28, 7.22øĝø8.04, and 0øĝø8.04.
Shapes in the third branch vary from a cup shape to a dish
shape, and they have lower energy than the shapes in the
other branches at the sameĝ. Moreover, they have lower
energy than the sphere whenĝ,7.82. Therefore, a spherical
vesicle is expected to transform discontinuously into a cup
shape atĝ=7.82. After that, the cup continuously changes its
shape to become a dish asĝ decreases.

C. Surface with two holes

In addition to the cup shapes, there exists another family
of solutions in which two holes open at both ends of a sur-
face. Whenm0/4p=0.4, the shapes have higher energy than
the cup shapes as shown in Fig. 2sad, which suggests that the
shapes with two holes are unstable. However, whenm0/4p
=1.0, the energy becomes lower than that of the cup shapes
sFig. 3d. Shapes with two holes bifurcate from a sphere at

FIG. 2. The deformation of an opening-up surface whenm0/4p=0.4. sad Energies of equilibrium shapes with one holessolid lined and
with two holessdashed lined as functions of the normalized line tensionĝ=gR0/kc. Dotted line represents the energy of a sphere that has the
same area. The figure also shows typical shapes of the surface with one holesĝ=0.0,5.0,7.82d and the surface with two holessĝ=5.0d. sbd
Magnification ofsad in the neighborhood ofĝ=7.8. Only the energy of the surface with one hole is shown.

FIG. 3. The deformation of opening-up surfaces when
m0/4p=1.0. Energies of equilibrium shapes with one holessolid
lined and with two holessdashed lined are shown against the nor-
malized line tensionĝ=gR0/kc. Typical shapes of the surface with
one holesĝ=0.8d and the surface with two holessĝ=0.0,0.8,1.5d
are depicted.
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ĝ=2.0, in which two infinitesimal holes open in a spherical
surface. Asĝ decreases, the holes expand and the entire
shape becomes a short tube. The energy–line-tension graph
does not fold and the energy is always lower than that of a
sphere for 0,ĝ,2.0. Therefore, a continuous transition be-
tween the sphere and the tube occurs atĝ=2.0.

In the case of the intermediate values ofm0, the energies
of cups and tubes become very close, and the third type of
shape emerges, in which the two holes of a tube have differ-
ent sizes. We call this shape a funnel. Whenm0/4p=0.72,
the shape of the lowest energy turns out to be a cup, a tube,
or a funnel according toĝ sFig. 4d. The funnel bifurcates
from the tube atĝ=1.79 and the two holes decrease their size
unequally asĝ increases. Atĝ=3.5, one of the holes be-
comes very small and the entire shape is like a cup. Then the
other hole shrinks and the shape transforms to a tube again at
ĝ=4.11. Although funnel shapes also emerge for 0.71,ĝ
,0.80, they have higher energy than the cups and the tubes
with the sameĝ. This suggests that the funnel is unstable and
that stable cups and tubes coexist in this region.

D. Phase diagram

To obtain the phase diagram for opening-up surfaces, we
compared the energyF of the cup, tube, funnel, and sphere.
Figure 5 shows the shape of the lowest energy for givenm0
and ĝ. Note that this diagram is incomplete, because the
nonaxisymmetric shape is not taken into consideration.

In general, opening-up shapes emerge whenĝ are small,
but the conditions for hole openings and membrane shapes

also depend onm0. In particular, for m0/4p.1.23 no
opening-up shape was found. The criticalm0 corresponds to

c0=sk̂r /2dsm0−4pd=2.0 for the sphere, suggesting thatc0

,2 is a condition for a spherical membrane to open holes.
Within the rangem0/4p,1.23, largerm0 tends to stabilize
tube shapes, whereas smallm0 is favorable for cup shapes.
Funnel shapes are realized for intermediatem0. In the cup-
shape region, there is a small domainD where no cup shape
was found. What shapes are realized in this region is un-
known, for nonaxisymmetric shapes may exist. The transi-
tion between the sphere and the tube shapes is continuous,
while it is discontinuous between the sphere and the cup
shapes. Numerical calculation showed that the continuous
transition occurs atĝ=2−c0.

Opening-up shapes withĝ=0 have a striking feature.

Whenĝ=0 andk̂g=0, all the surfaces satisfyingH=c0/2 are
the solution of Eq.s9d and the boundary conditionss11d–s13d
if l=c0

2/2. From Eqs.s6d and s10d, c0 is given by c0

= k̂rm0/2s1+pk̂rd. The shapes depicted in Figs. 1–3 atĝ=0
are examples of such surfaces. Even in the axisymmetric
case, there exist an infinite number of shapes for a given
constant mean curvature. In addition, there also exist an in-
finite number of nonaxisymmetric shapes, and, furthermore,

all these surfaces have the same energyF̂= k̂rm0
2/2s1+pk̂rd.

Therefore, the surface shape cannot be uniquely determined
when ĝ=0. In that case, membranes are expected to be very
flexible and their shape fluctuates thermally.

E. The effect of the Gaussian bending modulus

The equilibrium shape of closed vesicles is considered to
be independent of the Gaussian curvature moduluskg, be-
cause the surface integral of the Gaussian curvatureK has
the same constant value for any closed surface of the same
topology. For an opening-up vesicle, on the other hand, the
surface integral ofK depends on the surface shape in general,
and the equilibrium shape may be affected by the Gaussian
curvature modulus.

FIG. 4. The deformation of opening-up surfaces whenm0/4p
=0.72. sad Relative energies of tube and funnel to cup shapes as
functions ofĝ. Solid line representssFtube−Fcupd /8pkc and dotted
line showssFfunnel−Fcupd /8pkc. sbd Stable shapes at the indicated
values ofĝ.

FIG. 5. Phase diagram of opening-up surfaces fork̂r=1.4 and

k̂g=0. The shape of the lowest energy for givenm0 andĝ is shown.
O, sphere;T, tube; F, funnel; andC, cup. In domainD, no cup
shape was found. Dashed lines represent the region of bistability
between a cup and a sphere.
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Numerical calculations showed thatkg has little effect on
the surface shape when holes largely open in the surface.
However, if the hole size is small the surface shape is greatly
affected bykg sFig. 6d. Whenkg,0, the surface is relatively
flat in the vicinity of the hole. As the hole size reduces, the
surface closes smoothly and the nondimensional line tension
ĝ shrinks to zero. On the other hand, whenkg=0 the mem-
brane around the hole is protruded to form a volcanolike
shape. As the hole size decreases, the volcano becomes
smaller but steeper. In the limit of the infinitesimal hole, the
surface becomes parallel to the axis of rotation at the lip of

the volcano, andĝ converges to 2−c0=2−sk̂r /2dsm0−4pd.
When kg.0, the surface is more protruded and the lip is
curled up. The hole never closes because the neck is infini-
tesimally narrowed before the lip is sealed. Similar transfor-
mations of the hole shape with nonzerokg are seen in the
surfaces with two holes.

These results indicate that if small holes are found in
vesicles, we may evaluate the valuesor at least the signd of
the Gaussian bending modulus by observing the hole shape.
Although one of the authors predicted a small value of the
Gaussian bending modulus for liquid membranesf19g, the
precise observation of the opening-up vesicle will clarify the
validity of the theory.

F. Membranes without nonlocal bending energy

So far, we have assumed the relaxed area differenceDA0
to be fixed. However, when a membrane has a hole, the
lipids may possibly migrate across the edge of the hole from
one monolayer to the other. ThenDA0 will be adapted to the
actual area differenceDA which is determined by the vesicle
shape. To investigate this effect, we calculated the vesicle
shape using a minimal model in which the nonlocal bending
energy is completely relaxed.

Figure 7 shows the shape change of opening-up vesicles
whenDA0=DA andkg=0. In this case, a disk with the radius
2R0 is always a solution of Eq.s9d with the boundary condi-
tions. The energy of the disks4pR0gd is smaller than that of
a spherical vesicles8pkcd when ĝ,2. The energy–line-
tension graph of cup-shaped solutions has two branches. On
the lower branch, cup shapes bifurcate from a sphere atĝ
=2.00 and the hole expands asĝ decreases to 1.52. On the
upper branch, the size of the hole increases withĝ and the

cup finally becomes a disk atĝ=2.89. Cup shapes on the
lower branch have lower energy than the sphere, which sug-
gests that they are locally stable. However, their energy is
much higher than that of a disk. Although equilibrium sur-
faces with two holes also existsnot shownd, they have higher
energy than the disk as well. Therefore, spherical vesicles are
expected to transform discontinuously to a disk-shaped
membrane sheet whenĝ decreases below 2. Conversely, a
disk becomes a sphere whenĝ increases to more than 2.

IV. EXPERIMENTALLY OBSERVED SHAPES

The observation by Saitohet al. f2g showed that the pro-
tein talin induces opening-up vesicles with both one hole and
multiple holessFig. 8d. As to the vesicles with single hole,
the transition to the cup shape seemed to be discontinuous
since no intermediate shape between the cup and the sphere
was found. Once a hole opened, the vesicle shape largely
depended on the concentration of talin. Though cup-shaped
vesicles were observed at low concentration, the hole size
became larger with increasing concentration and the cups
transformed into a dish shapefFigs. 8sad–8scdg. Conversely,

FIG. 6. Schematic diagram of the shape of a small hole opening
in a nearly spherical surface. The shape of the rim varies according
to kg.

FIG. 7. Shape transformations of vesicles predicted by the mini-
mal model. Energy of a spheresdotted lined or that of a disksdashed
lined is lower than the energy of cup shapesssolid lined.

FIG. 8. Opening-up vesicles observed by dark-field microscopy
in the presence of talinsphotographs are taken from Figs. 1, 3, and
4 in Saitohet al. f2gd. sad–scd A sequence of photographs showing
morphological changes of a vesicle at talin concentrations vary
from 0 to 2mM. sdd A vesicle with two holes observed in the pres-
ence of 1mM talin. sed A vesicle with three holes observed in the
presence of 1.5mM talin. sBar=5 mm.d
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diluting the talin caused the cup-shaped membranes to trans-
form into the original spherical vesicles. These observations
well agree with the result shown in Fig. 2, since the effective
line tension depends on the talin concentrationf12g. When
the talin concentration was further increased, the vesicles
became a flexible sheet whose shape fluctuated greatly. The
exact morphology of sheet-shaped membranes could not be
evaluated by dark-field microscopy, while the theoretical re-
sults suggest a surface with a constant mean curvature.

The fact that the calculations shown in Fig. 2 reproduce
the actual transformations of opening-up vesicles indicates
that the membranes maintained the value ofDA0. If lipids
could easily migrate across the hole edge from one mono-
layer to the other, as stated in Sec. III F,DA0 would be rap-
idly relaxed, and direct transformation would take place be-
tween the sphere and the sheet. Talin is a high-molecular-
weight protein s200 kDad. Moreover, fluorescent
micrographs showed that talin was localized mainly along
the membrane edgesf2g. Talin molecules may accumulate at
the edges of holes and prevent the migration of lipids be-
tween the layers.

Opening-up vesicles with multiple holes were observed
when the concentration of talin was abruptly increased.
Funnel-shape vesicles were frequently observed and vesicles
with three holes were also found with a high concentration of
talin fFigs. 8sdd and 8sedg. The fact that the opening of mul-
tiple holes required a high concentration of talinsi.e., low gd
corresponds with the theoretical phase diagram shown in Fig.
5. However, for some unexplained reason, only cup-shaped
vesicles were obtained when the talin concentration was
gradually increased. Therefore, it is unclear whether the tran-
sition between the sphere and the multiple-hole vesicles is
continuous or not. In addition, we could not find small holes
in the membrane to evaluate the Gaussian bending modulus.
It is unknown why tube shapes, which are predicted for small
g and largem0, were rarely found in the experiment. Some of
the experimental conditions may have had the effect of re-
ducing them0 of membranes, or another possibility is that
most of the tube shapes calculated for smallg and largem0
are actually unstable for a nonaxisymmetric deformation,
and shapes having more than two holes are realized for these
parameters. To draw more definite conclusions, further stud-
ies will be needed both theoretically and experimentally.

Cup-shaped vesicles have also been observed when deter-
gents are appliedf3g. The observations showed that, like
vesicles with increasing talin concentration, spherical
vesicles transformed discontinuously to a cup and then
gradually unfolded to become a sheet. In this case, the mem-
brane area continuously decreased due to the solubilization
of lipids by detergents, and the reduction ofĝ=gR0/kc with
R0 may be the cause of the shape transformations. Although
the area reduction rates are not always the same between the
two monolayers of opening-up vesicles,m0 may have re-
mained almost steady for a short time. In case of the trans-
formations by detergents, no multiple-hole vesicles were
found. This can be understood through the reduction ofm0,
since the detergents may extract lipid molecules mainly from
the outer leaflet of the membranes and reduce the area. In
some combinations of detergents and lipid molecules, it has
been reported that inside-out inversion of membranes took

place after the opening up of a holef3g. A greater reduction
of the area of the outer leaflet by detergents may produce a
negativem0, causing an inverse rapid bend of the mem-
branes.

We now give a rough estimation of the line tension for
opening-up vesicles. Although the critical line tension for
hole opening depends onm0, Fig. 5 indicates that opening-up
vesicles are formed whenĝ is smaller than 14. Using typical
valueskc<10−19 J andR0<1 mm gives the critical line ten-
sion asgc,1.4 pN, which is considerably lower than the
traditional value,10 pN f20g. Therefore, we can conclude
that chemical agents such as talin and detergents reduce the
line tension by a factor of 10–102 compared with mem-
branes without additive components. There are no reliable
data for membranes with talin, but the line tension with de-
tergents has been estimated by measuring the duration time
of transient membrane holesf21g or the magnitudes of mem-
brane fluctuationsf22g; both estimations showed that the line
tension is on the order of 0.1 pN. This value is in reasonable
agreement with our theoretical estimation.

V. CONCLUSIONS

In this paper, we analyzed the shapes of opening-up
vesicles by taking into account the line tension of membrane
holes and the bending energy of membranes, using the area
difference elasticity model. We formulated the Euler-
Lagrange equation and the boundary conditions holding on
the membrane edge, and numerically solved them to obtain
axisymmetric vesicle shapes that minimize the total energy.
Numerical results showed that when the line tension is very
low, opening-up vesicles may have lower energy than closed
spherical ones so that large, stable holes open in the vesicles.
However, the relaxed area difference between the two mono-
layers of bilayer membranes is also an important factor for
stabilizing the opening-up vesicles. Depending on the values
of the line tension and the relaxed area difference, the model
gives cup-, funnel-, and tube-shaped vesicles. The calculated
shapes and the phase diagram well agree with the shape
transformations of opening-up vesicles observed when the
protein talin or some detergents were added, indicating that
the line tension of the membrane is greatly reduced by these
additive molecules.

We also showed that the Gaussian bending modulus af-
fects the vesicle shape when the size of the membrane hole is
small. Since the shape of closed vesicles is independent of
the Gaussian bending modulus, its estimation has been con-
sidered to require the measurement of the energy change for
the fusion or fission of vesicles. However, our finding may
provide another way to detect the Gaussian curvature modu-
lus by observing opening-up vesicles. Although our results
showed that cup shapes with a small hole are mostly un-
stable, it is possible that we may find small, stable holes in
multiple-hole vesicles. There may be other indications be-
sides the shape of small holes to distinguish the Gaussian
curvature modulus. To develop a method to measure the
Gaussian bending modulus is an interesting task for future
study.

In the present work, we have analyzed only axisymmetric
shapes. However, some nonaxisymmetric shapes, such as a
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vesicle with three holes, have been observed in experiments.
Analysis of nonaxisymmetric shapes will be a future work to
obtain a complete phase diagram. To evaluate the thermal
fluctuations of membranes and membrane holes is another
important problem. Recent studies have shown that
opening-up vesicles are induced by proteins other than talin.
Moreover, proteins and detergents have the ability to stimu-
late various topological transformations of vesicles including
membrane fusionf23g. Approaches, such as used in this cur-
rent analysis, will also be useful in obtaining a better under-
standing of these phenomena.
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APPENDIX A: AXISYMMETRIC SHAPES

We consider the case that the surfaceS is an axisymmet-
ric shape. By parametrizing the surface shape with the ar-
clengtht of the contour and the azimuthal anglef, we rep-
resent the point vector of the surface as

pst,fd = rstdcosfî + rstdsinfĵ + zstdk̂ . sA1d

We introduce a functioncstd which represents the angle of
the contour.c is related tor andz by

ṙ = cosc and ż= sinc, sA2d

respectively, while the overdot denotes a derivative with re-
spect tot. Then the curvatures are given by

H =
1

2
Sċ +

sinc

r
D, K =

ċ sinc

r
,

cn =
sinc

r
, cg =

cosc

r
, t = 0, sA3d

and the shape equations9d becomes

1

r

d

dt
srḢd + 2HsH2 − Kd + c0K − lH = 0. sA4d

The boundary conditions att=0 are

rs0d = zs0d = cs0d = 0, sA5d

since the surface is smooth on thez axis. At t= t0, the fol-
lowing boundary conditions follow from Eqs.s11d–s13d and
sA3d:

2Ḣ + ĝ
sinc

r
= 0, sA6d

2H − c0 + k̂g
sinc

r
= 0, sA7d

2HsH − c0d + k̂gK + l + ĝ
cosc

r
= 0. sA8d

If we multiply Eq. sA4d by r cosc, integrate it witht,
divide it by r cosc, and use Eqs.sA6d–sA8d, we have

2Ḣ −
sinc

r
N = 0, sA9d

where

N =
r

cosc
F− HSċ −

sinc

r
D − c0

sinc

r
+ lG . sA10d

Differentiating Eq.sA10d gives

Ṅ =
cosc

r
N + s2H − c0dSċ −

sinc

r
D . sA11d

EquationssA9d and sA11d are convenient for numerical cal-
culations.

APPENDIX B: NUMERICAL METHOD

To get precision in the numerical integration, we intro-
duce an independent variable

t = s1/LdE
0

t

s1 + ċ2d1/2dt, sB1d

whereL is a constant determined bytst0d=1. To calculate
m=eSH dA and the area constraintA=4p, we define two
functions

astd =E
0

t

r dt sB2d

and

mstd =E
0

t

Hr dt. sB3d

Then from Eqs.sA2d, sA3d, sA9d, sA11d, sB2d, andsB3d, we
have the following set of ordinary differential equations:

H8 =
CN sinc

2r
,

N8 = CFcosc

r
N + 2s2H − c0dSH −

sinc

r
DG ,

c8 = CF2H −
sinc

r
G , r8 = C cosc,

z8 = C sinc, a8 = Cr , m8 = CHr , c08 = 0, L8 = 0,

sB4d

where the prime representsd/dt and
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C = Lf1 + s2H − sinc/rd2g−1/2. sB5d

Equationss10d andsA6d–sA8d and the area constraint give
the following boundary conditions:

rs0d = zs0d = cs0d = as0d = ms0d = 0,

as1d = 2, ms1d = sm0 − 2c0/k̂rd/2p,

Hs1d =
1

2
Fc0 − k̂g

sinc

r
G, Ns1d = − ĝ. sB6d

In a case where there are two holes on the both ends of the
surface, the conditions

Hs0d =
1

2
Fc0 − k̂g

sinc

r
G, Ns0d = ĝ sB7d

replacers0d=0 andcs0d=0. We solved Eqs.sB4d with the
conditionssB6d or sB7d using the relaxation methodf24g.
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