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Abstract 

The dielectric response of an electron gas has been investigated with a view to understanding the 

small momentum behaviour of the plasmon peak in inelastic electron energy loss spectra. It is shown 

that the lifetime of the plasmon and the width of the incident beam both contribute to the apparent 

flattening of the plasmon dispersion which has been seen to occur in some metals (magnesium, 

aluminium, indium) for plasmon wavevectors less than ~O·5 A -1. Expressions, beyond the random 

phase approximation, are derived for the dispersion coefficients up to fourth order in the plasmon 

wavevector. Good agreement with experiment is obtained. 

1. Introduction 

Several authors have recently drawn attention to the rather flat dispersion of the 

small momentum bulk plasmon oscillations in some simple metals. Krane (1978) 

describes the frequency versus momentum (w versus q) relation for the plasmons in 

aluminium and indium as having two branches: 

w = wp+rx(h2/m)q2, 

= w~+rx'(h2/m)q2, 

q<O·SA-1. , 

q>O'SA-1 

(la) 

(lb) 

(note that 1 A -1 == 1010 m- 1). Here wp, hand m are the plasmon frequency, 

Planck's constant divided by 2n and the mass of an electron while rx, w~ and rx' are 

other constants. Sturm (1978b) also drew attention to the small q region, demonstrating 

that no satisfactory agreement exists between experiment and theory. This behaviour 

is not explained within the random phase approximation (RPA) even with the inclu

sion of band structure and core polarization effects (Bross 1978; Sturm 1978a). 

The purpose of this paper is to re-examine the plasmon dispersion relation and 

show that we do indeed have a reasonable description of the plasmon dispersion in 

simple metals. The dispersion relation is significant from several viewpoints: it 

describes the propagation and properties of plasmons; it gives a direct experimental 

check on exchange and correlation effects; through the dielectric function it is in

directly related to various transport properties; and the parameters in the dispersion 

relation are used as an input into some simple but illuminative models (e.g. Mehrotra 

and Mahanty 1979). 



362 P. Jewsbury 

The dispersion relation, in the notation of the hydrodynamic model, may be 

written as 

OJ2 = OJ; + p~ q2 + p~ q4 + O{q6) (2a) 

or, in terms of dimensionless parameters b, as 

OJ2 = OJ! +bo{e4jh2)q2 +b i {h2jm2)q4 + O{q6) , (2b) 

where - e is the electronic charge. The coefficient bo has been examined many times 

(e.g. Ferrell 1957; Singwi et al. 1968) but this is the first time an expression going 

beyond the RPA has been given for b i . 

The outline of the present paper is as follows. In Section 2 a model dielectric 

function based on a proposal by Hubbard (1958) is considered, and this leads to a 

dispersion relation of the form given by equations (2). From a knowledge of the 

exchange and correlation functional (Kohn and Sham 1965) the coefficients bo and b i 

are then evaluated. In Section 3 the model is extended to allow the inclusion of life

time effects. It is shown that the cQmbination ofthe energy width ofthe incident beam 

and the plasmon lifetime leads to the type of behaviour depicted by equations (l). 

Thus it is not possible to obtain reliable information about the coefficients b from 

very small q experimental dispersion relations without a careful theoretical analysis. 

Hence the recent reassessed values of this parameter by Sturm (l978b) are in error. 

Atomic units of Rydbergs (l Ry == 13·605 e V) and Bohr radii (ao = 5·292 x 10 -11 m) 

are used throughout. 

2. Basic Model 

Quite generally, the dielectric function seq, OJ) for an electron gas may be written as 

SRPA(q, OJ) -1 
seq, OJ) = 1 + 1-G{q, OJ){SRPA{q, OJ) -I}' 

(3) 

where SRPA{q, OJ) is the RPA dielectric function and G(q, OJ), which represents contri

butions from the non-bubble diagrams, gives the exchange and correlation corrections. 

Now the RPA is known to be a good approximation at high electron densities (r. < 1) 

and also to be 'reasonable' for small q values. However, it is a time-dependent Hartree 

approach and therefore does not include an exchange hole which must certainly be 

important for large q. Hubbard's (l958) proposal for overcoming this difficulty was 

to write 

G(q,OJ) ~ 1:q2j{q2+K~), (4) 

where hKF is the Fermi momentum. This is equivalent to assuming that the effective 

particle-hole interaction is static and of a particular form. In this section it will be 

assumed likewise that 

G(q, OJ) ~ G(q,O). (5) 

This is the form taken for the dielectric function by Vashistra and Singwi (l972), and 

the reader is referred to their paper for more details and references associated with 

this approximation. Note that this is a mean field approximation in the sense that 

it gives the correct result for s(q,OJ) when OJ = 0 and OJ -+ 00. In Section 3 below 

this approximation will be extended. 
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Now (Pines 1964), we may write 

G(q,O) = Yl(qjKF)2 +YiqjKF)4 + O(q6) (6) 

and determine the dimensionless coefficients Yl and Y2 by considering the exact static 

dielectric function. We can then find the plasmon dispersion relation from the zeros 

of the dielectric function. 

In the static limit we may use the density functional theorem (Hohenberg and Kohn 

1964). Thus a perturbing charge density - en,xlr) disturbs the electron number 

density nCr) = nO+nl(r) in the electron gas in such a way that the variation is given 

by the density functional 'Poisson' equation 

2 (bT.[n(r')] + bExJn(r')]) = 4ne2 {n 1(r) +n,x.(r)} , 
V bn(r) I)n(r) 

(7) 

where Ts[n(r')] is the noninteracting-electron kinetic energy functional, Exc[n(r')] is 

the exchange and correlation functional, and no is the unperturbed number density. 

It is convenient to introduce parameters fir by the linear gradient expansion 

nCr) V(bT.[n(r')] + bExc[n(r')]) 

m bn(r) bn(r) 

= fJ~Vnl(r) -fJiV3n1(r) +fJ~V5nl(r) - .... (8) 

Terms involving products of derivatives are neglected as they do not occur in linear 

response theory. With the definition of the fJ parameters in this form one can observe 

that they are just the static compressibility coefficients that enter the hydrodynamic 

model. Combination of equations (7) and (8) gives the static dielectric function as 

OJ; OJ;{n1(r)+nex.(r)} =fJ~q2+fJiq4+0(q6). 
e(q, 0) -1 n1(r) 

(9) 

The expansion coefficients here are determined by the functionals in equation (8). 

The functional Ts[n(r')] was evaluated by Kirzhnits (1957) and Hodges (1973) but 

the exchange and correlation functional Exc[n(r')] is less well known. An expression 

for the local part of this latter functional is (Nozieres and Pines 1958) 

Exc[n(r)] = f dr {-te2(~r/3 {n(r)}4/3 

me4 ( 3m3e6 ) me4 } 
+0'00518h"2 nCr) In 4n(r)h6 -0,0575 h2 nCr) . (10) 

This result should be valid in the region of metallic densities (Raimes 1972). Substi

tution of the results for both functionals into equation (8) gives 

mfJ~ = tEF(1 -0·166rs -0' 00422 r;), (11) 

where rs = me2h-2(3j4nno)t and EF is the Fermi energy. The first gradient correction 
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to Exc[n(r)] has been calculated by Rasolt and Geldart (1975). The parameter Pi is 

related to a function c(rs) which they evaluated numerically by the result 

nCr) V {bExc[n(r')]/bn(r) hLG = ~2e2not c(r.) V3n1(r), (12) 

where the subscript 3LG indicates the third-order linear gradient term. In the region 

of metallic densities, c(rs) is well parameterized by 

c(r.) = (2'68 ~0·17r.)x 10- 3 • (13) 

Hence from equation (8) we obtain 

mPi = /8 (1 +0·311 r. ~0'0197 rn· (14) 

The preceding results for p~ and Pi may now be used to calculate the values of 

Yl and Y2' From equations (3) and (6) we may write 

w2 (. A,zy) ( 1 A,zy )h2q2 
--_P- = -tvi 1- K~l + 36 - 3Ki m2 +O(q4) , (15) 

where A is the Thomas-Fermi wavevector and VF the Fermi velocity. Thus compar

ing equations (9) and (15) one finds 

Yl = t +0·00636r., Y2 = -0,0391 +0·00248r •. (16) 

Within this approximation scheme then the dielectric function is defined by equa

tions (3), (5), (6) and (16). When 

e(q, w) = 0, (17) 

an infinitesimal perturbation will produce a significant change in the charge density; 

this is the plasmon condition. Equation (17) has a solution of the form given 

by equation (2a) with 

2 2 
2 3VF Yl wp 

Po -5- - K~ , 
_ h2 12 V: W~(Y2 +yi) 

Pi = 4m2 + 175w; - K~ (18) 

Thus for the dimensionless parameters bo and b1 one finds 

2.21( ) bo = 7 1 -0,0921 r. -0,00235 r; , (19a) 

0.31O( ) b1 = -r
s
- 1 +0·806 r. -0·00418 r; -0,00101 r; -0,00000728 r; . (19b) 

Values of bo given by equation (19a) agree well with those of previous authors (e.g. 

Vashistra and Singwi 1972; see Table 1) but they do not agree with the experimental 

assignments made by Sturm (1978b). Nevertheless the corrections beyond the RPA 

are clearly in the right direction and are of the correct order of magnitude. As we 

shall see in Section 3, the discrepancy is in the interpretation of the experimental 

results. When full account of the plasmon lifetime and of the width of the incident 

beam are included, these results for bo and b1 are found to be in satisfactory agree

ment with experiment also. 
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3. Lifetime Effects 

In Section 2 the quantity G(q, w) was approximated by its static value and the 

comparison of the results with experiment was sufficiently encouraging that we might 

expect to obtain a better result with the refined approximation 

G(q,w);:::: G(q, 0) +w(aG~q,w») = G(q,O) + (!!3...)G 1(q). (20) 
w w=o wp 

However, one must be rather cautious in adopting a Taylor expansion since the sum 

rule 

{B(q, w)} -1 .~ 1 +W;/W2 as w -+ 00 (21) 

requires that 

(W;/W2)G(q, w) .~ 0 as w -+ 00. (22) 

Table 1. Comparison of values of dispersion coefficients 

Note that the experimental assignments of the coefficient bo made by Sturm (1978b) (column 2) differ 

significantly from those he gave using the results of the calculation by Vashistra and Singwi 

(1972) (column 3), but the latter results agree well with those obtained from equation (19a) in the 

present work (column 4). The present results for b i from equation (19b) are also listed here (column 5) 

(1) (2) (3) (4) (5) (1) (3) (4) (5) 

Element bo(exp) bo(VS) bo(19a) b l (19b) Element bo(VS) bo(19a) bl (19b) 

Al 0·25 0·40 0·41 0·40 Li 0·13 0·14 0·34 
Sn 0·43 0·34 0·35 0·39 Na 0·080 0·082 0·32 
In 0·29 0·27 0·29 0·37 K 0·035 0·044 0·30 
Mg 0·18 0·22 0·23 0·36 

Thus the inclusion of a finite number of terms beyond that given by equation (20) 

will contradict the sum rule. From the analytic properties of the response function 

for an electron gas (Pines 1964) it follows that G1(q) must be purely imaginary and 

given by a simple power series in q2. Indeed, as with G(q, 0) we should expect the 

leading term to be of order q2 (see e.g. du Bois and Kivelson 1969). However, plas

mons are found experimentally to have a width ",0·5 eV at q = 0 (e.g. Kloos 1973). 

Mechanisms that can contribute to this finite lifetime include phonon and impurity 

scattering, interband transitions and plasmon absorption by the incident electron. 

Thus we find 

G1(q) = i{yo +Yl(q/KF)2 +Y2(q/KF)4 + O(q6)}. (23) 

If Yo were zero we would not require Y2 to evaluate the dispersion to fourth order, 

and in the following analysis Y2 and higher terms will be omitted. The zeros of the 

dielectric function now lie in the complex plane at 

w = wp {I -tiyo + (t(EF/hwp)2 -tYI -iiYl ) (q/KF ? + O(q4)}. (24) 

Causality demands that these solutions lie in the lower half w plane. A value for Y1 
has been estimated by du Bois and Kivelson (1969) but this is an order of magnitude 

smaller than the experimental value which is approximately 

Yl '" 0·15r t s , (25a) 
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from the results of Kloos (1973). For those metals (e.g. aluminium, sodium and 

potassium) which seem to fit a quadratic behaviour for their lifetimes, Kloos's results 

also indicate 

Yo - 0'033r .. (25b) 

Plasmons can be studied experimentally using inelastic electron loss spectroscopy. 

In this method an energetic electron beam (kinetic energy - 50 keY) is fired through 

a thin film of the metal and the most probable energy loss is plotted against scattering 

angle. The probability of the incident electron losing energy hro is given in the first 

Born approximation by the loss function 

W(q,ro) = -(8ne2/hq2)Im{e(q,ro)} -1. (26) 

Using the dielectric function defined by equations (3), (6), (16), (20) and (23), from 

the relation (26) we obtain to fourth order in q the result 

W(q,ro) = (8ne2/rop hq2)ro{yo +Y1(q/KF)2}D-1 , (27a) 

where 

ro2[_ _ ( q )2]2 [ ( q )2 ( q )4 
D = ro~ YO+Y1 KF + 1-Y1 KF -Y2 KF 

.v 1 F 2 F 4 ... ,,2 { 3v,2 (12V,4 h2 ) }]2 
-- --q - --+-- q 

ro~ 5ro2 175ro4 4m2ro2 
(27b) 

There is a one to one correspondence between q and the scattering angle () which 

is approximately linear (P1atzman and Wolff 1973). Thus for a fixed () (i.e. fixed q) 

the loss function has a peak located at the solution of 

2 2 p - - q. F2 F 4 ro2ro2 [ ()2]2{ 3v,2 (12V,4 h2 ) }-2 
ro = roq - •. _2, 'L._2 Yo +Y1 KF 1- 5ro2q - 175ro4 + 4m2ro2 q + ... , 

(28) 

where roq is the plasmon dispersion in the absence of any lifetimes given by equations 

(2) and (19). It is this peak position which is interpreted as the experimental plasmon 

frequency. For typical experimental values of the widths, the corrections given by 

equation (28) are minimal when q is less than qc - 0·9r.- t . For larger q values, 

damping becomes very important and it flattens the dispersion curve (Hohberger et 

al. 1975). However, the finite lifetime does play another very significant role. Experi

mentally the incident beam is not monoenergetic but has a finite half-width -0·5 eV 

(Krane 1978). Thus the observed spectrum for energy loss IlE at momentum transfer 

hq takes the form 

I(q,llE) = h L:dro W(q,ro)tr;{(tr)2+(hro-IlE)2}, (29) 

where r is the energy width at half-height of the incident electron beam. Note that 

it is only when both the incident beam and W(q, ro) have finite widths that this integral 

is nontrivial. The maximum in the energy loss peak now occurs when 

L: dro W(q,ro)(hro-IlE)r/{(tr)2+(hro-IlE)2}2 = O. (30) 
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Note from equation (30) that for I1E > hwp + r and the widths not too large the 

Lorentzian just serves to broaden the plasmon peak. For I1E close to wp the cutoff 

in plasmon frequencies at wp combined with the finite plasmon lifetime and the width 

of the incident beam lead to a flattening of the dispersion curve defined by equation 

(30); this curve will be referred to hereinafter as the broadened dispersion curve. 

This flattening at small q values is illustrated in Fig. 1 for aluminium (r. = 2· 073), 
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Fig. 1. Position of the peak in the spectrum for electron energy loss AE in alumi

nium, shown as a function of the scattering angle O. The experimental points 

from Krane (1978) are compared with the theoretical broadened dispersion curve 

defined by equation (30) and also the dispersion calculated from equations (2) 

and (19). 

with a plasmon width given by equations (25) and an incident beam half-width of 

O' 5 eV. As can be seen from the figure, the broadened dispersion curve (defined by 

equation 30) lies consistently above that given by equations (2) and (19). For compar

ison the experimental results of Krane (1978) are also shown; these lie well below 

the theoretical curves since core polarization (Kunz 1965) and band structure (Bross 

1978) effects have not been included here. As pointed out by Sturm (1978b), the main 

consequence of these additional contributions is just to shift the dispersion curve to 

lower energies. Such a shift would bring the broadened dispersion curve and the 

experimental results into good agreement. 

4. Conclusions 

The dielectric response function for an electron gas has been considered in a 

'mean field' approximation. Within this scheme the plasmon dispersion coefficients 

bo and bi were shown to be simply related to the exchange and correlation functional. 
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Expressions for bo and bi were derived which could enable a direct experimental 

check to be made on the exchange and correlation functional expansion coefficients 

in the region of metallic densities. Both bo and bi are important in determining the dis

persion in the region 0 < q < qc for which plasmons are a well-defined oscillation. 

The values of bo derived here agree well with those found by other authors, but b i 

has not previously been calculated beyond the random phase approximation. 

By introducing a finite plasmon lifetime and width of the incident electron beam, 

we have been able to explain the 'two-branch' behaviour of plasmon dispersion, and 

hence have found that equations (19) give reasonable values of the parameters bo 
and bi for aluminium. We can therefore conclude that plasmon dispersion in simple 

metals (i.e. those which most closely resemble the jellium model) is reasonably well 

understood and that it is necessary to take into account the finite width of the incident 

electron beam in any analysis of inelastic electron energy loss spectra. 
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