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Atmospheric turbulence generally affects the resolution and visibility of an image in long-distance imaging.
In a recent quantum ghost imaging experiment [P. B. Dixon et al., Phys. Rev. A 83, 051803 (2011)], it was
found that the effect of the turbulence can nevertheless be mitigated under certain conditions. This paper gives a
detailed theoretical analysis to the setup and results reported in the experiment. Entangled photons with a finite
correlation area and a turbulence model beyond the phase screen approximation are considered.
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I. INTRODUCTION

Ghost imaging (GI) is a procedure for forming the image
of an object indirectly by means of correlation measurements.
The topic was originally developed to demonstrate the unusual
nonlocal effect of entangled photons [1], first observed as two-
photon ghost interference and diffraction [2,3]. In the context
of imaging, it has been demonstrated that GI can be obtained by
using entangled photons produced by spontaneous parametric
down-conversion (SPDC) [4] or thermal light [5,6]. The setups
of the two cases are similar. Here we focus on the quantum
case using entangled photons.

In a GI setup, one of the photons (the signal photon) is sent
to illuminate an object. The photons transmitted are captured
by a detector (the object detector) that does not need to have
spatial resolution. On the other hand, the other photon (the idler
photon) is registered by a detector (the reference detector) that
has spatial resolution capability. An image (the ghost image)
is formed by coincidence measurements between the object
and the reference detectors.

GI is so-called because the photons that provide the spatial
information regarding the object have never directly interacted
with the object to be imaged. The distributed nature of GI thus
makes it a clear candidate in distributed image processing, as
well as in distributed sensing and communication schemes.
In such applications, imaging through turbulence becomes
unavoidable. The effect of turbulence on GI performance has
begun to be investigated theoretically [7–9]. These analyses
show that the quality of the ghost image decreases as
the strength of the turbulence increases. Experiments using
thermal light and entangled photons have also been performed
recently [10,11] and interesting results have been obtained. In
particular, Dixon et al. [11] demonstrated that a certain degree
of the turbulent effect on the ghost image can be mitigated
under suitable conditions.

In this paper, we give a detailed theoretical analysis to
the experiment in Ref. [11]. The entangled photons are taken
to have a finite correlation area. We consider both the phase

screen model as well as the finite-thickness model for the
turbulent medium.

II. QUANTUM GI SYSTEM THROUGH A TURBULENT
MEDIUM

In the calculation below, we take the measurement time of
the detectors to be much longer than the variation time scale
of the turbulent medium, which is of the order of 10 ms. In this
way, a statistical average over the phase distortion imposed
by the turbulent medium is made. In addition, the temporal
behavior of the ghost image is suppressed for simplicity.

A typical quantum GI configuration with a turbulent
medium is depicted in Fig. 1(a). We assume that the photons
transmitted by the object are all collected by the object detector
so that the detector can be taken to be in the immediate vicinity
of the object. The ghost image is given by [4]

P (�xr ) =
∫

d �xo|T (�xo)|2G(2)(�xo,�xr ), (1)

where T (�x) is the object’s field transmission function and

G(2)(�xo,�xr )

= 〈Tr[ρÊ(−)
r (�xr )Ê(−)

o (�xo)Ê(+)
o (�xo)Ê(+)

r (�xr )]〉 (2)

is the second-order coherence function at the detector planes.
Here 〈· · ·〉 is the statistical ensemble average due to the
turbulence motion. Note that, because of the presence of the
turbulent medium, the quantum state is no longer a pure state
in the detector planes.

It is useful to write the second-order coherence function in
terms of that in the source planes:

G(2)(�xo,�xr ) =
∫

d �x ′
i

∫
d �x ′

s

∫
d �xs

∫
d �xi

×〈H ∗
r (�xr,�x ′

i)H
∗
o (�xo,�x ′

s)Ho(�xo,�xs)Hr (�xr,�xi)〉
× Tr[ρÊ

(−)
i (�x ′

i)Ê
(−)
s (�x ′

s)Ê
(+)
s (�xs)Ê

(+)
i (�xi)]. (3)
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FIG. 1. (Color online) (a) A generic quantum GI setup with a
turbulent medium inserted in the object arm. (b) The Klyshko picture
of a model setup for the theoretical description in this paper.

Ho(�xo,�xs) and Hr (�xr,�xi) are the propagators of the object
and reference arms, respectively. The subscripts o and r

denote object and reference photons and s and i denote the
signal and idler photons. The signal photon is used for object
illumination while the idler photon is used as the reference
beam. To proceed, we need to specify the details of the optical
systems in the object and reference arms. We consider the
double-lens configuration shown in Fig. 1(b), which is drawn
in the unfolded form (the Klyshko picture) [1,2,4]. Different
locations of the turbulent medium are considered later in
Sec. IV.

According to Fig. 1(b), The reference arm propagator is
given by

Hr (�xr,�xi) =
∫

d�ξr hd2 (�xr,�ξr )Lf2 (�ξ )hd1 (�ξr ,�xi), (4)

where

hd (�x,�ξ ) = keikd

2πid
exp

[
ik

2d
|�x − �ξ |2

]
(5)

is the free-space propagator, and Lf (�x) is the quadratic phase
factor by a lens of focal length f . We assume that the lenses are
infinitely large (i.e., much larger than the transverse beam size
of the signal and idler beams) in calculating the propagators
Ho and Hr . Note that limd→0 hd (�x,�ξ ) = δ(�x − �ξ ). On the other
hand, the object arm propagator is

Ho(�xo,�xs) =
∫

d�ξo

∫
d �ηo

∫
d�ζo hl3 (�xo,�ζo)Lf2 (�ζo)

×hl2 (�ζo,�ηo)hturb(�ηo,�ξo)hl1 (�ξo,�xs), (6)

where hturb(�ηo,�ξo) is the propagator in the turbulent medium,
which is given explicitly in the next section. Substituting

Eq. (5) into Eqs. (4) and (6), we obtain

Hr (�xr,�xi) = keik(d1+d2)

2πiδ
exp

[
ik

2δ
|�xr − �xi |2

]

× exp

[
− ik

2δf2
(d1|�xr |2 + d2|�xi |2)

]
(7)

and

Ho(�xo,�xs) = keik(l2+l3)

2πi�

∫
d �ηo exp

[
ik

2�
|�xo − �ηo|2

]

× exp

[
− ik

2�f1
(l2|�xo|2 + l3|�ηo|2)

]
Hturb(�ηo,�xs),

(8)

where δ = (d1 + d2) − d1d2/f2, � = (l2 + l3) − l2l3/f1, and

Hturb(�ηo,�xs)

= keikl1

2πil1

∫
d�ξo hturb(�ηo,�ξo) exp

[
ik

2l1
|�ξo − �xs |2

]
. (9)

III. MODEL FOR THE TURBULENCE MEDIUM

To obtain the second-order coherence function, we need to
calculate the ensemble average:

〈Hturb(�ηo,�xs)H
∗
turb(�η′

o,�x ′
s)〉

= k2

(2π )2l2
1

∫
d�ξo

∫
d�ξ ′

o 〈hturb(�ηo,�ξo)h∗
turb(�η′

o,
�ξ ′
o)〉

× exp

[
ik

2l1
(|�ξo − �xs |2 − |�ξ ′

o − �x ′
s |2)

]
. (10)

Utilizing the extended Huygens-Fresnel principle in the parax-
ial approximation, the turbulence propagator for a medium of
thickness L is given by

hturb(�ηo,�ξo) = keikL

2πiL
exp

[
ik

2L
|�ηo − �ξo|2 + ψ(�ηo,�ξo)

]
, (11)

where the complex phase ψ(�ηo,�ξo) has real and imaginary
parts that represent, respectively, the turbulence-induced log-
amplitude and phase fluctuations imposed on a spherical wave
propagating from (�ξo,0) to (�ηo,L). The mutual coherence
function of the propagation kernel hturb(�ηo,�ξo) is given by [12]

〈hturb(�ηo,�ξo)h∗
turb(�η′

o,
�ξ ′
o)〉

= k2

(2π )2L2
exp

[
ik

2L
|�ηo − �ξo|2 − ik

2L
|�η′

o − �ξ ′
o|2

]
×〈exp[ψ(�ηo,�ξo) + ψ∗(�η′

o,
�ξ ′
o)]〉

= k2

(2π )2L2
exp

[
ik

2L
|�ηo − �ξo|2 − ik

2L
|�η′

o − �ξ ′
o|2

]

× exp

[
−1

2
Dψ (�ξo − �ξ ′

o,�ηo − �η′
o)

]
, (12)

where

Dψ (�ξo − �ξ ′
o,�ηo − �η′

o) = 2.91k2L

∫ 1

0
ds C2

n(sL)

× |s(�ηo − �η′
o) + (1 − s)(�ξo − �ξ ′

o)|5/3,

(13)
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with C2
n(z) being the refractive index structure constant. Note

that Eq. (12) is applicable to the weak turbulence regime that
follows the Kolmogorov spectrum, as well as deep into the
regime of saturated scintillation [12]. Because of the fractional
power in Eq. (13), numerical computation is required in order
to proceed further. Here we take the quadratic approximation
to obtain an analytic expression [13]. This approximation only
imposes small modifications to the form and value of the
mutual coherence function. Under the quadratic approximation
and assuming a uniform C2

n profile, we have

exp
[ − 1

2Dψ (�ξo − �ξ ′
o,�ηo − �η′

o)
]

≈ e
− 1

2ρ2
0

[|�ξo−�ξ ′
o|2+(�ξo−�ξ ′

o)·(�ηo−�η′
o)+|�ηo−�η′

o|2]
, (14)

where ρ0 = (1.09k2C2
nL)−3/5 is the coherence length of a

spherical wave propagating in the turbulent medium.
We first consider the situation when the free-space propa-

gation distances are much larger than the propagation distance
in the turbulent medium (the phase screen approximation),
which is valid for the experimental conditions of Ref. [11]. A
finite-thickness model for the turbulent medium is considered
later in Sec. V. Under the phase screen approximation, we
further take L → 0 so that

〈hturb(�ηo,�ξo)h∗
turb(�η′

o,
�ξ ′
o)〉

→ δ(�ηo − �ξo)δ(�η′
o − �ξ ′

o) exp
[
−α

2
|�ξo − �ξ ′

o|2
]
, (15)

where α = 3/ρ2
0 . As a result,

〈Hturb(�ηo,�xs)H
∗
turb(�η′

o,�x ′
s)〉

= k2

(2π )2l2
1

exp
[
−α

2
|�ηo − �η′

o|2
]

× exp

[
ik

2l1
(|�ηo − �xs |2 − |�η′

o − �x ′
s |2)

]
. (16)

Using Eqs. (8) and (16), we obtain

〈Ho(�xo,�xs)H
∗
o (�x ′

o,�x ′
s)〉

= k2

(2π )2�′2 exp

[
ik

2�′ (|�xo − �xs |2 − |�x ′
o − �x ′

s |2)

]

× exp

{
− ik

2�′f1
[(l1 + l2)

(|�xo|2 − |�x ′
o|2

)
+ l3(|�xs |2 − |�x ′

s |2)]

}
exp

[
− α

2�′2 |l1(�xo − �x ′
o)

+ �(�xs − �x ′
s)|2

]
, (17)

where �′ = (l1 + l2 + l3) − (l1 + l2)l3/f1. It is noted that some
interesting observations can be seen directly from Eq. (17).
When �xo = �x ′

o, the exponent with α vanishes when � = 0. On
the other hand, when �xs = �x ′

s , the same term vanishes only
when l1 = 0. We give physical interpretations to these two
scenarios in the next section.

IV. RESOLUTION AND VISIBILITY OF
THE GHOST IMAGE

In this section, the resolution and the visibility of the
quantum ghost image are determined analytically. The tur-
bulent layer can be located in various positions of the GI
system, and we consider the four configurations depicted in
Fig. 2. It is shown below that one can obtain the results of
the other three configurations by using that of configuration
1 with proper reparametrization of the distances of the
setup.

For configuration 1, we have

l1 = z, l2 = 2f + � − z, l3 = 2f,

d1 = 2f − �, d2 = 2f, f1 = f2 = f. (18)
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FIG. 2. (Color online) The experimental configurations consid-
ered in Dixon et al. [11]. In configurations 1 and 2, the turbulent
layer (phase screen) is located in the object arm. In configurations 3
and 4, the layer is located in the reference arms. The distances li and
dj and the focal lengths of the lenses are chosen such that the four
configurations give similar results (see the text).
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As a result, the second-order coherence function is found to
be

G(2)(�xo,�xr )

= k4

(2π )4�4

∫
d �x ′

i

∫
d �x ′

s

∫
d �xs

∫
d �xi

× exp

[
− ik

2�

(|�xi |2 − |�x ′
i |2

)]
exp

[
− ik

�
�xr · (�xi − �x ′

i)

]

× exp

[
−α

2

(
� − z

�

)2

|�xs − �x ′
s |2

]

× exp

[
ik

2�
(|�xs |2 − |�x ′

s |2)

]
exp

[
ik

�
�xo · (�xs − �x ′

s)

]
×�(�xs,�xi)�

∗(�x ′
s ,�x ′

i), (19)

where �(�xs,�xi) is the biphoton wave function generated by
the SPDC process. In general, the wave function exhibits rich
spatial correlation features [14]. We consider the simplest case
of the collinear type II SPDC process, in which �(�xs,�xi) can
be approximated by the double-Gaussian model [15]

�(�xs,�xi) =
√

AB

π
e− A

4 |�xs+�xi |2e− B
4 |�xs−�xi |2 , (20)

with A > 0 and B > 0, which are related to the beam radius
and transverse correlation distance through

a0 = 1

2

√
1

A
+ 1

B
, ρc = 1√

A + B
. (21)

In this way, the ghost image is found to be

P (�xr ) = 1

(2πWFOVWPSF)2 exp

(
− |�xr |2

2W 2
FOV

)

×
∫

d �xo |T (�xo)|2 exp

(
−|�xo + m�xr |2

2W 2
PSF

)
, (22)

where

WFOV =
√

a2
0 + �2

4k2ρ2
c

(23)

is the field of view,

WPSF =
[(

ρ2
c + �2

4k2a2
0

)
+ α (� − z)2

k2

]1/2

(24)

is the width of the point spread function, and

m = ±
√

1 − ρ2
c

a2
0

(25)

is the correlation factor, with plus (minus) sign for A > B

(A < B). Note that this correlation factor is purely due to the
spatial correlation of the two entangled photons and is to be
distinguished from the magnification of the optical system,
which has unity magnification. Also it is remarked that the
forms of WFOV and the first term of WPSF exhibit the widths of
a diffracted Gaussian beam propagated for a distance of �.

From the expressions of WFOV, WPSF, and m, we see
that, under the quadratic phase screen approximation to the
turbulent layer, the turbulence only degrades the resolution

of the ghost image; it has no effect on the field of view.
As expected, no ghost image is formed when a0 = ρc, or
equivalently A = B, i.e., the object and reference photons are
disentangled. An interesting point to note is that the turbulence
never totally destroys the correlation between the object and
the reference photons (m is independent of α), even though
the entanglement between them can vanish [16]. Nevertheless,
WPSF can become larger than the spatial feature of the object
such that the ghost image is totally blurred.

As already noted from Eq. (17), the turbulence is com-
pensated when z = �. This has the same effect as bringing
the object to the plane of the turbulent layer (or equivalently
locating the turbulent layer in the central image plane) and
hence the turbulence does not blur out the feature of the object.

For configuration 2, the calculations are identical to those
of configuration 1, except that the roles of �xo (�x ′

o) and �xs (�x ′
s)

in Eq. (17) are interchanged. By setting

l1 = 2f + �, l2 = 2f + � − z, l3 = z − �,

d1 = 2f − �, d2 = 2f, f1 = f2 = f, (26)

it can be shown that the second-order coherence function is
identical to that of the first configuration. The paremeters in
Eq. (26) can be obtained by noting that, to keep Eq. (17)
invariant, l1 + l2 in configuration 2 should take the value of
l3 = 2f as in configuration 1, and l1 should take the value
� = z − �, while keeping �′, f1, f2, d1, and d2 the same as in
configuration 1. As a result, the ghost image for configuration 2
is also given by Eqs. (22) to (25). The condition to mitigate
the turbulence effect now is z = �, i.e., the turbulence phase
screen is on the real object plane instead of on the effective
object plane as in configuration 1.

The representative ghost images of Ref. [11] fitted with
Eq. (22) are shown in Fig. 3. The object is a one-dimensional
test pattern of five slits defined by

T (x) =
2∑

n=−2

θ

(
1

2
−

(x

d
− 2n

))
θ

((x

d
− 2n

)
+ 1

2

)
, (27)

where θ (x) is the step function. Using the single count data
of the reference detector with � = 0 [the envelope function
of Eq. (22)], the beam width is found to be WFOV|�=0 = a0 =
0.362 ± 0.006 mm. The correlation distance is obtained from
the ghost images with � = 0, which is WPSF|�=0 = ρc =
0.019 ± 0.003 mm. The correlation factor is thus given by
m ≈ 1.00, which is consistent with the observed images. The
fitted slit width is d = 0.124 ± 0.007 mm, which is smaller
than the given value of 0.139 mm in Ref. [11]. This discrepancy
may be due to the object being tilted with respect to the
object beam. Finally, the turbulence parameter is determined
to be α = 4.0 ± 1.3 mm−2, which differs from that reported
in Ref. [11] because of the different theoretical model used.

The visibility is defined as

V = P (0) − P (d)

P (0) + P (d)
, (28)
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FIG. 3. (Color online) Representative ghost images (cf. Ref. [11])
with theoretical fits using Eq. (22) and object transmission function
(27). The left and the right columns represent the unshifted (� = 0)
and the shifted (� = 330 mm) configurations, respectively. Note that
the unshifted data (left) are fitted with an object of five slits whereas
the shifted data (right) are fitted with an object of four slits. The top
row shows images with no turbulence. The middle row shows images
for turbulence between the lens and the object, 203 mm (right) and
229 mm (left) from the object. The bottom row shows images for
turbulence between the crystal and the lens, 483 mm (right) and
432 mm (left) from the crystal. Shown also are the single counts of
the reference detector [the envelope function of Eq. (22)] scaled by
the factors adjacent to the plots.

with WFOV set to infinity. Using Eqs. (22) and (27), and under
the conditions of the experiment, we obtain

V ≈ 1 −
2∑

n=−2

[
Erf

(
(4n + 3)d

2
√

2WPSF

)
− Erf

(
(4n + 1)d

2
√

2WPSF

) ]
,

(29)

where Erf(x) is the error function. As expected, the visibility
is governed by the ratio of the slit width d and the width of
the point spread function WPSF. The visibilities of the ghost
image for configurations 1 and 2 as functions of the location of
the turbulent medium are plotted in Fig. 4. It can be noted that
the data plotted in Fig. 4(b) do not agree with the theoretical
curves as well as the data plotted in Fig. 4(a). The reason
is that, in that setup, the turbulence source—an 800◦ heat
gun—was located fairly close to the nonlinear crystal. This
could effectively have temperature-tuned the crystal away from
correct alignment, resulting in a slightly different quantum
state. Hence the fitting of the theory to the experimental data
is poorer.

The situation when the turbulent layer is located in the
reference arm instead of in the object arm (see configurations
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FIG. 4. (Color online) Plots of the visibilities when the turbulence
layer is placed (a) between the object and the lens and (b) between
the nonlinear crystal and the lens. The solid curves are theoretical
plots from Eq. (29) with λ = 2π/k = 0.65 μm, a0 = 0.362 mm,
ρc = 0.019 mm, d = 0.124 mm, and α = 3.5 mm−2.

3 and 4 in Fig. 2) can be analyzed easily. This is done by
noting that the second-order coherence function in Eq. (19)
does not distinguish between the object or reference arms other
than the labeling of the variables. In addition, the biphoton
wave function (20) is also symmetric in the signal and idler
photons. The ghost image is thus obtained from Eq. (22) by
interchanging �xo and �xr and is given by

P (�xr ) = 1

(πWFOVWPSF)2

∫
d �xo |T (�xo)|2

× exp

(
− |�xo|2

2W 2
FOV

)
exp

(
−|�xr + m�xo|2

2W 2
PSF

)

= 1

(πWFOVWPSF)2 exp

(
− β|�xr |2

2W 2
FOV

)

×
∫

d �xo |T (�xo)|2 exp

(
−|�xr + βm�xo|2

2βW 2
PSF

)
, (30)

where WFOV, WPSF, and m are given in Eqs. (23), (24), and
(25) and

β−1 = m2 + W 2
PSF

W 2
FOV

= 1 + α(� − z)2

k2

(
a2

0 + �2

4k2ρ2
c

)−1

. (31)
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FIG. 5. (Color online) The Klyshko picture for the extended
version of the model with a turbulent layer of finite thickness L.

It is remarked that since β is a function of α, the field of view
depends on the strength of the turbulence when the turbulent
layer is in the reference arm. The correlation factor in this case
also changes with α as well as the locations of the turbulent
layer and the down-conversion crystal. These features are all
absent when the turbulent layer is in the object arm. In the limit
when ρc → 0, i.e., perfect correlation or anticorrelation in the
biphoton transverse positions, β → 1 and Eq. (30) becomes
identical to Eq. (22).

V. EXTENSION TO TURBULENT LAYERS OF FINITE
THICKNESS

We now wish to extend the model of Sec. III by allowing
the turbulent layer to have an arbitrary finite thickness L. The
generic setup of Fig. 1 now looks as shown in Fig. 5.

The calculation, though more cumbersome now, follows
essentially the same pattern as in Secs. II and III, except that
in place of Eq. (15) we use Eq. (12), which (maintaining the
quadratic approximation) we now write in the form

〈hturb(�ηo,�ξo)h∗
turb(�η′

o,
�ξ ′
o)〉

= k2

(2π )2L2
exp

(
ik

2L
|�ηo − �ξo|2 − ik

2L
|�η′

o − �ξ ′
o|2

)

× exp

{
− α

6
[|�ξo − �ξ ′

o|2 + (�ξo − �ξ ′
o) · (�ηo − �η′

o)

+ |�ηo − �η′
o|2]

}
, (32)

with α = 3/ρ2
0 , as before. As a consequence, Eq. (17) now

takes the form

〈Ho(�xo,�xs)H
∗
o (�x ′

o,�x ′
s)〉

=
(

k

2πL′

)2

exp

[
ik

2l

(
1 − l2

f1
− L1

L′

)
(|�xo|2 − |�x ′

o|2)

]

× exp

[
ik

2L1

(
1 − l

L′

)
(|�xs |2 − |�x ′

s |2)

]

× exp

[
− ik

L′ (�xo · �xs − �x ′
o · �x ′

s)

]

× exp

[
α

6

L′′l2L2
1

L3l2
1

|�xo − �x ′
o|2

]
exp

[
−α

6

L

L1
�|�xs − �x ′

s |2
]

× exp
[α

3
�′(�xs − �x ′

s) · (�xo − �x ′
o)

]
, (33)

where l and l′ are defined as previously, but we have made the
new definitions

1

L0
= 1

L
+ 1

l1
, (34)

L1 = L + l1, (35)

L′ = L1 + l − l3L1

f1
, (36)

L′′ = L

(
1 + L0

L
+ L2

0

L2

)
, (37)

� = 1 − l2L2
1

L′2L3

[
L′′ + L′L2

L1l

(
1 + 2l1

L1

)]
, (38)

�′ = l2L1L
′′

l1L′2L
− L

L′

(
1 + 2l1

L1

)
. (39)

Note that when we return to the previous thin-layer limit, L →
0, these new parameters satisfy L0

L
→ 1, L1 → l1, L′ → l′,

and L′′
L

→ 3. Instead of Eq. (19), the second-order coherence
function is now given by

G(2)(�xo,�xr )

=
(

k2L0L1

4π2δl1LL′

)2
AB

π2

∫
d �xi d �xs d �x ′

i d �x ′
s

× exp

{
−�x2

s

[
α

6

(
L0

l1

)2

� − ik

2L1

(
1 − l

L1

)]}

× exp

{
−�x ′2

s

[
α

6

(
L0

l1

)2

� + ik

2L1

(
1 − l

L1

)]}

× exp

[
ikL0L1

L′Ll1
�xo · (�x ′

s − �xs)

]

× exp

[
α

3

(
L0

l1

)2

��xs · �x ′
s

]

× exp

[
− ik

2δf2
d2

(|�xi |2 − |�x ′
i |2

)]

× exp

{
ik

2δ
[|�xi |2 − |�x ′

i |2 − 2�xr · (�xi − �x ′
i)]

}

× exp

[
−A + B

4

(|�xs |2 + |�x ′
s |2 + |�xi |2 + |�x ′

i |2
)]

× exp

[
−A − B

2
(�xs · �xi + �x ′

s · �x ′
i)

]
. (40)

Once again, we specialize to the case of configuration 1;
the expressions for configurations 2–4 may be found from
the results by making the changes discussed in Sec. IV.
Substituting the values given in Eq. (18), we find that

L0 = Lz

L + z
, (41)

L1 =L + z, (42)

L′ =−�, (43)

L′′ =L

[
1 + z

L + z
+

(
z

L + z

)2
]

≡ Lη, (44)
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�=1 − (L + z)2(z − � + L)2η

�2L2
− z − � + L

�L

(
L + 3z

L + z

)
,

(45)

1 − l

L′ =
z + L

�
. (46)

Notice that �L2 → −3[ z(z−�)
�

]2 as L → 0. First carrying out
the �xi and �x ′

i integrals, we find

G(2)(�xo,�xr )

= AB

(
k2

4π2�2|γ |2
)2

exp

(
− �x2

r

W ′2

) ∫
d �xs d �x ′

s

× exp

{
−�x2

s

[(
1

L + z

)2 (
α

6
L2� − ik

2

(L + z)2

�

)

−A + B

4
+ (A − B)2

16γ

]}

× exp

{
−�x ′ 2

s

[(
1

L + z

)2 (
α

6
L2� + ik

2

(L + z)2

�

)

−A + B

4
+ (A − B)2

16γ

]}

× exp

[
α

3

(
L

L + z

)2

��xs · �x ′
s

]

× exp

[
�xs ·

(
ik

�
�xo + ik(A − B)

4�γ
�xr

)]

× exp

[
−�x ′

s ·
(

ik

�
�xo + ik(A − B)

4�γ
�xr

)]
, (47)

where

γ ≡ 1

4ρ2
c

+ ik

2�
(48)

and

W ′2 ≡ 4�2

k2

(
1

γ
+ 1

γ ∗

)−1

= �2

4ρ2
c k

2
+ ρ2

c . (49)

Finally, carrying out the �xs and �x ′
s integrations and making use

of Eq. (1), we end up with a result for the ghost image that has
the same form as Eq. (22),

P (�xr ) = 1

[2πWFOVWPSF(L)]2 exp

(
− |�xr |2

2W 2
FOV

)

×
∫

d �xo |T (�xo)|2 exp

[
−|�xo + m�xr |2

2W 2
PSF(L)

]
, (50)

except that WPSF of Eq. (24) is replaced by

WPSF(L) =
[(

ρ2
c + �2

4k2a2
0

)
− α�2

3k2

(
L

L + z

)2

�

]1/2

.

(51)

Note that, though WPSF(L) is a complicated function of L,
it has identical dependence on the turbulence parameter α to
WPSF(0). The thickness L only alters the effective value of α.

It is straightforward to see that WPSF(L) → WPSF as L → 0.
At the other extreme, for L � max{z,�}, we find that W 2

PSF(L)
increases quadratically with the thickness of the turbulent
layer,

WPSF(L) ≈
{

ρ2
c + �2

4k2a2
0

+ α�2

3k2

[(
L

�

)2

− 1

]}1/2

, (52)

reaching a maximum value of

WPSF(Lmax) ≈
[
ρ2

c + �2

4k2a2
0

+ 4αf 2

3k2

]1/2

(53)

when L reaches its maximum value of Lmax = 2f + � ≈ 2f .
Further note that the field of view is still given by Eq. (23) and
remains independent of the turbulence strength α.

VI. SUMMARY

In this paper, a detailed analysis of the quantum GI
experiment in the presence of a turbulent medium is performed.
It is shown that ghost images can be obtained with the turbulent
medium located in either the object arm or the reference arm,
while the characteristics of the ghost images differ slightly.
Analytical expressions of the resolution and visibility under
the quadratic structure function and Gaussian wave function
approximations are obtained. The results show that, under the
phase screen model of turbulence, the turbulent effect can be
minimized by bringing the turbulent medium into the object
plane. The results are consistent with the experiments and
analysis in Ref. [11].

We have also extended the theory by allowing the turbulent
layer to have arbitrary thickness L. Under the same quadratic
approximations to the turbulence mutual coherence function
and the quantum state of the entangled photon as those for
the phase screen model, it is found that the results of the two
cases differ only in the form of the width of the point spread
function WPSF, which now depends on L in a complicated way.
As expected, the two results converge when L → 0. Though
oversimplified, the phase screen model nevertheless gives good
agreement with the experiment as well as a clear explanation
of how the turbulent effect is minimized in the GI system.

Finally, it is remarked that the biphoton analysis reported
here can be reproduced by a Gaussian-state treatment [17,18],
which allows pseudothermal and SPDC ghost imagers to be
treated on a common footing. In addition, this approach shows
that there is a classical phase-sensitive configuration for GI that
mimics almost all of the features seen in the quantum case.
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