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Abstract: Nanoelectromechanical resonator sensors based on graphene sheets (GS) show 

ultrahigh sensitivity to vibration. However, many factors such as the layer number and 

dimension of the GSs will affect the sensor characteristics. In this study, an analytical model 

is proposed to investigate the vibration behavior of double-layered graphene sheets (DLGSs) 

with attached nanoparticles. Based on nonlocal continuum mechanics, the influences of the 

layer number, dimensions of the GSs, and of the mass and position of nanoparticles attached 

to the GSs on the vibration response of GS resonators are discussed in detail. The results 

indicate that nanomasses can easily be detected by GS resonators, which can be used as a highly 

sensitive nanomechanical element in sensor systems. A logarithmically linear relationship 

exists between the frequency shift and the attached mass when the total mass attached to GS 

is less than about 1.0 zg. Accordingly, it is convenient to use a linear calibration for the 

calculation and determination of attached nanomasses. The simulation approach and the 

parametric investigation are useful tools for the design of graphene-based nanomass sensors 

and devices. 
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1. Introduction 

Graphene sheets (GSs) have attracted great attention due to their extraordinary mechanical, electrical and 

thermal properties [1–3]. These fascinating carbon nanomaterials have many potential applications, such as 

reinforced materials, solar cells, molecule sensors and nanomechanical resonators [4–9]. Jang and his group 

[10–12] performed molecular dynamics (MD) simulation to investigate the mass sensitivity and resonant 

frequency of graphene nanomechanical resonators (GNMRs), the temperature-dependent scaling 

transition in the quality factors of GNMRs, and the effect of polar surfaces on the quality  

(Q)-factors of zinc oxide (ZnO) nanoresonators. The basic principle of nanoresonator sensors is the 

detection of a shift of the resonant frequency or wave velocity in the nanosensors caused by attached 

nanoparticles, including atoms or molecules. The sensitivity of the sensors and their applicability in 

distinguishing distinct types of atoms/molecules have been discussed by Wand and Arash [13], who 

simulated the detection of gas atoms based on wave velocity shifts in single-walled carbon nanotubes 

(SWCNTs) and explored the efficiency of nanotube-based sensors [14]. 

For structural applications of GSs, knowing their macroscopic properties is required. Therefore, both 

experimental and theoretical studies of GSs are important issues to design optimal materials and devices. 

At present, GSs are extensively investigated for applications in optoelectronic devices,  

high-performance hybrid supercapacitors, and various types of high performance sensors. 

Nanoelectromechanical systems (NEMS) are emerging as strong candidates for a host of important 

applications in semiconductor-based technology and fundamental science [15]. Graphene-based NEMS 

resonators could provide higher sensitivity as nanomechanical mass sensor. The operation of a NEMS 

mass sensor relies on monitoring how the resonance frequency of a nanomechanical resonator changes 

when an additional nanomass is adsorbed on its surface [16–18]. There is a fast-growing interest in GSs 

for use in NEMS resonators, given that lightness and stiffness are the essential characteristics sought 

after in NEMS resonators for sensing applications [19]. NEMS resonators can be fabricated based on 

single-layered (SLGSs) or multi-layered graphene sheets (MLGSs) by mechanically exfoliating thin 

sheets from graphite and putting them over trenches in a silicon oxide layer. Vibrations with fundamental 

resonant frequency in the megahertz range were actuated, either optically or electrically, and detected 

optically by interferometry [20]. 

Current efforts in graphene synthesis include micromechanical cleavage, liquid-phase exfoliation, 

chemical vapor deposition (CVD), and carbon segregation [21–25]. Double-layered graphene sheets 

(DLGSs) consist of two single GSs coupled by van der Waals (vdW) interaction forces, and can be 

synthesized on a silicon carbide substrate [26–28]. DLGSs are of considerable interest because of their 

unique electronic bands and mechanical properties. Different from SLGSs, the bandgap of DLGSs can 

be controlled externally by a gate bias and gaps up to 250 meV can be opened, which reveals the large 

potential of DLGSs for applications in NEMS [29–32]. On the other hand, DLGSs have higher stiffness 

and natural frequency than SLGSs because of the vdW interaction forces [33–35]. Thus, the resonance 

frequency and the frequency shift of DLGSs used as NEMS mass sensors can be measured more 

obviously. 

NEMS mass sensors with a resonator can be fabricated from GSs, and the sensing mechanism is based 

on the fact that the resonant frequency is sensitive to changes in the attached mass [36]. Recently, various 

theoretical studies have been carried out utilizing the molecular dynamics (MD) method [37,38], 
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molecular structural mechanics [39], or continuum mechanics [35,40–43] to investigate SLGSs for use 

in NEMS mass sensors. Arash et al. studied the vibration properties of SLGSs with five noble gas atoms 

(He, Ne, Ar, Kr, and Xe) attached using MD simulation to evaluate the applicability of graphene mass 

sensors [37]. The results indicate that the resolution of a mass sensor made of a square-shaped graphene 

sheet with a size of 10 nm could achieve an order of 10−24 kg and the mass sensitivity could be enhanced 

by decreasing the size of the SLGSs. Sakhaee-Pour et al. investigated the vibration behavior of defect-

free SLGSs using molecular structural mechanics [39]. The principal frequency was highly sensitive to 

an added nanomass of the order of 10−24 kg, corresponding to Reference [37]. Based on a continuum 

elastic model, Lei et al. [39] analyzed the sensitivity of frequency shift of an atomic-resolution 

nanomechanical mass sensor modeled by a circular SLGS with attached nanoparticles. The sensitivity 

of such mass sensor could reach 10−27 kg. The effects of the nonlocal parameters and the attached mass 

on the frequency shifts of GSs were investigated using a nonlocal continuum elastic model [42,43]. The 

obtained results show that the frequency shift of the SLGS became smaller when the effect of nonlocal 

parameters was taken into account. Shen et al. [42] did the comparison between the continuum 

mechanics and the finite element method (FEM) and found a good agreement. This means that the 

SLGSs with an attached nanoparticle can be simulated accurately based on continuum mechanics. At 

present, the studies of the mass detection using the graphene-based nanomechanical sensor are focused 

solely on SLGSs. Because the resonance frequency and its frequency shift of DLGSs resonant could be 

measured more obviously, DLGSs based mass sensors need to be studied [44]. 

Ultrasonic vibration and attenuation are important properties related to the design and performance 

of the sensor devices. GSs appear to be excellent element materials for nanomechanical resonators 

because they can generate vibrations in the terahertz range. So far, only little has been reported on the 

resonant frequency analysis for DLGSs used as nanomass sensor, and it is the purpose of the present 

study to remedy this deficiency. We explore the potential of DLGSs used as a NEMS mass sensor, 

considering that DLGSs have higher strength and vibration frequency than SLGSs. Based on a nonlocal 

continuum theory, the influences of the mass and position of attached nanoparticles, of the dimensions 

of DLGSs, and of nonlocal parameters on the vibration response of DLGS sensor are investigated in 

detail. 

2. Experimental Approach 

2.1. Nonlocal Elasticity Theory 

According to the general elasticity model, the stress components at any point depend only on the 

strain component at the same point. In the nonlocal elasticity theory, the stress field at a certain point is 

considered to be a function of the strain distribution over a certain representative volume of the material 

centered at that point. The nonlocal elasticity theory [45–47] can be used to study several phenomena 

related to nanoscale materials. For nonlocal linear elastic solids, the constitutive equation of motion is 

given by ࢚௜௝,௝ + ௜ࢌ = ሷ࢛ߩ ௜ (1)

where ρ and fi are the mass density and the applied body forces, respectively, ui is the displacement 

vector, and tij is the stress tensor of the nonlocal elasticity expressed as 



Electronics 2015, 4 726 

 

 

( ) ( ) ( )xxσxxt ′′′−=  dVaeα ij
V

ij 0,  (2)

where x is a reference point in the body, e0 is a constant appropriate to the material and has to be 

determined for each materials independently by experiments or atomistic simulation, a is the internal 

characteristic length (e.g., lattice parameter, granular size, distance between atoms bound), |ݔ −  is |′ݔ

the Euclidean distance, and V is an integral region occupied by the body. The nonlocal kernel function ܽ(|ݔ − ,|′ݔ ݁଴ܽ) incorporates the nonlocal effects into the constitutive equation and is given as 
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where K0 is the modified Bessel function. 

In Equation (2), σij is the local stress tensor of the classical elasticity theory at any point xʹ in the body 

and satisfies the constitutive relations 

( ) ( ) ( )xεxεxσ ijkkij ′+′=′ μδλ 2ij  (4)

where λ and μ are the Lame constants and εij is the strain tensor. 

For two-dimensional nonlocal elastic beam theory, the stress–strain relation can be expressed as 

( ) ( ) ( )xεxεσσ ijkkijij ′+′=∇− μδλ 222
0 ijae  (5)

where ׏ is the Laplace operator, which is given as ߲ଶ ⁄ଵଶݔ߲ + ߲ଶ ⁄ଶଶݔ߲  in a two-dimensional rectangular 

coordinate system (x1, x2). 

The nonlocal elasticity model has been widely adopted for tackling various problems of linear 

elasticity and micro- or nanostructural mechanics. 

2.2. Single-Layer Graphene Sheets 

Based on nonlocal continuum mechanics, we consider the dynamic behavior of a single-layer 

graphene sheet (SLGS) with an attached concentrated mass mc located at an arbitrary position (x0, y0) as 

shown in Figure 1. The origin is taken at one corner of the mid-plane of the graphene sheet. The x- and y-

axes are taken along the length La and width Lb of the SLGS, respectively, and the z-axis is taken along 

the thickness h of the SLGS. 

 

Figure 1. Schematic illustration showing a single-walled GS with an attached mass. 

Using the nonlocal elasticity theory, the two-dimensional nonlocal constitutive equations of SLGS 

are given as 
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where E, G and ν are the elastic modulus, the shear modulus, and Poisson’s ratio of the GSs, respectively. 

The internal characteristic length a is the distance between two atoms in a C-C bond, which is 0.142 nm. 

The flexural moments of SLGS are obtained from 
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When neglecting the displacements of the middle surface in the x and y directions, the relationship 

between strain and displacement fields is expressed as 
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where w is the displacement along the thickness of GSs. 

Substituting Equation (6) into Equation (7) and using Equation (8), we have 
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where D is the flexural rigidity of SLGS, expressed as 

( )2

3

112 ν−
= Eh

D  (9d)
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The governing equation for the flexural vibration of SLGS carrying a nanoparticle can be given as 
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where ρ is the mass density of SLGS, mc is the mass of nanoparticles attached at the position (x0, y0), 

and δ is the Dirac delta function denoted as 
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Substituting Equation (9) into Equation (10), the governing equation can be written in terms of w as 
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The harmonic solution of Equation (12) can be expressed as 

( ) ( ) tieyxYtyxw ω,,, =  (13)

where Y(x,y) is the shape function of deflection and ω is the resonant frequency of the SLGS. 

Substituting Equation (13) into Equation (12), we obtain 
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Note that the boundary conditions of SLGS with simply supported edges are 
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Therefore, the shape function (Y) in Equation (13) can be expressed as 
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where Amn is the vibration amplitude of oscillation and m and n indicate the mode numbers in the periodic 

directions. 

Substituting the shape function of Equation (16) into Equation (14), then multiplying both sides of 
Equation (14) by sin௠గ௫௅ೌ sin ௡గ௬௅್  and integrating over the whole region with respect to x and y with the 

limits x = 0 to x = La and y = 0 to y = Lb, after some simplifications, we obtain the following frequency 

equation 
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All roots of the above equation are the desired resonant frequencies corresponding to a given shape 

function. The coefficient of Amn should be zero for the non-trivial solution. Thus, the resonant frequency 

of mass sensor can be determined from 
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When the nonlocal parameter (e0a) is assumed to be zero, the resonant frequency of a SLGS with 

attached nanoparticles can also be obtained from classical elasticity theory. 

2.3. Double-Layer Graphene Sheets 

DLGSs are composed of two single layers of GSs, interacting with each other by vdW forces. To the 

upper sheet of DLGSs nanoparticles are attached while no nanoparticles are attached to the lower 

graphene sheet. Thus, the governing equations for the vibration of the DLGS are given as the two coupled 

equations 
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where ݓ௝(ݔ, ,ݕ ,(ݐ ݆ = 1,2, are the flexural deflections of the upper (݆ = 1) and lower (݆ = 2) sheet, ݌ଵଶ	(݌ଶଵ =  ,ଵଶ) is the transverse pressure caused by the vdW forces between the two layers of DLGSs݌−

ρ is the mass density of the GSs, h is the thickness of each layer in DLGSs, t is the time, and δ is the 

Dirac delta function. The bi-harmonic operator and the flexural rigidity are given by 
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where E is the elastic modulus of GSs and ν is Poisson’ s ratio. 

In Equation (19), the distributed transverse pressure acting on the upper and lower layers of DLGSs 

can be given by 
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where c is the vdW interaction coefficient between the upper and lower layers, which can be obtained 

from the Lennard–Jones pair potential [48], given as: 
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Here, ߝ = 2.968	ܸ݉݁  and ߪ = 0.34	݊݉ are parameters determined by the physical properties of 
GSs, ݖ௝̅ = 	 ௝ݖ ܽ⁄ , (݆ = 1, 2), where ݖ௝ is the coordinate of the jth layer in the direction of thickness with 

the origin at the midplane of the GSs, and ܽ = 1.42	݊݉ is the C-C bond length. 

In Equation (19), we define the following function: 

( ) ( ) ( )00, yyxxmhyx c −−+= δδρμ  (23)

Thus, μ is the variable mass distribution function of the upper sheet. 

To obtain the vibration frequency for the governing equations Equation (19) of DLGS, we can 

introduce the substitution 
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where ௝ܻ ,ݔ)	 ,(ݕ ݆ = 1, 2 is the shape function of deflection in the upper and lower sheets and ω is the 

resonant frequency of the DLGS sensor. 

Substituting Equation (24) into Equation (19), the coupled governing equations of the vibration in 

DLGSs are written in following matrix form: 
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Algebraic manipulation of Equation (25) reduces it to a single equation: 
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where ܻ = 	 ଵܻ, or ܻ = 	 ଶܻ. 

For a simply supported boundary condition, the shape function of deflection of DLGS in Equation (26) 

can be expressed as 
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where ܥ௠௡ is the vibration amplitude of oscillation and m and n indicate the mode numbers. 

In the analysis of SLGS, the effect of the nonlocal parameter (݁଴ܽ) on the vibration characteristics 

has been investigated. For the following analysis of DLGSs, we only focus on the discussion of the layer 

numbers, attached mass and vibration frequencies. 
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After multiplying both sides of Equation (28) by sin௠గ௫௅ೌ sin ௡గ௬௅್  and integrating over the whole region 

with respect to x and y within the limits from ݔ = 0  to ݔ = ௔ܮ	  and ݕ = 0  to ݕ = ௕ܮ	 , after some 

simplifications, we obtain the following polynomial expression of the frequency 
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where and ߦ = ଴ݔ ⁄௔ܮ and ߟ = ଴ݕ ⁄௕ܮ  define the non-dimensional position of attached nanoparticles. 

The solution of Equation (29) yields the resonate frequency of DLGSs. The high frequency of DLGSs 

with anti-phase mode, in which the upper and lower layers of DLGSs moves in the opposite direction, 

can be obtained from 

0
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3. Analytical Results and Discussion 

In our simulations, the nanomechanical resonator is considered to simply consist of supported GSs 

loaded with a nanoparticle. The vibration mode is taken to be the fundamental frequency of ݉ = ݊ = 1, 

and the anti-phase mode in which the deflection of the upper and lower layers in DLGSs occurs in the 

opposite direction. In order to investigate the vibration behavior of a realistic graphene-based nanoscale 

mechanical mass sensor, the geometrical dimensions and the material constants were taken from the 

recent literature. The aspect ratio of the DLGSs is defined as the side length to thickness 2hratio, where 

the effective thickness h of each layer is 0.127 nm. The equivalent Young’s modulus E and density ρ of 

the GSs are taken to be 2.81 TPa and 2300 kg/m3, respectively [49]. 

Figures 2 and 3 show the resonant frequency and the frequency shift of SLGSs as a function of the 

attached nanomass for different nonlocal parameters. Here, the frequency shift is defined as the 

difference between the natural frequency of a GS with and without attached nanoparticles,  

i.e., ∆߱ =	∆(߱) − ∆(߱ +݉௖). The nanoparticles are attached on the center (ߦ = ߟ = 0.5) of the GSs 

with ܮ௔ 2ℎ = ௕ܮ 2ℎ = 20⁄⁄ . The resonant frequency shown in Figure 2 decreases with increasing mass 

of attached nanoparticles. It is observed form Figure 3 that the frequency shift (∆߱) of GSs carrying 

attached nanoparticles is positive because the attached particles increase the overall mass of the GS 

resonator, and the value of the shift increases with increasing attached mass. For the nonlocal parameter  ݁଴ܽ used in this simulation, we take that ݁଴ܽ is 0, 1.0 nm and 2.0 nm [50–52]. The adopted value of the 

scaling parameter ݁଴ depends on the crystal structure in lattice dynamics, and the internal characteristics 
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length a = 1.42 nm (C-C bond length) for the graphene structure. The nonlocal parameter affects the 

vibration simulation results of the GSs due to the size-dependent mechanical properties. It is found that 

the influence of the nonlocal parameter on the frequency shift becomes larger when the GSs carry a 

relatively small mass of nanoparticles. 

 

Figure 2. Variation of the resonant frequency in SLGSs as a function of attached mass for 

different nonlocal parameter (ܮ௔ 2ℎ = ௕ܮ 2ℎ = 20, ߦ = ߟ = 0.5⁄⁄ ). 

 

Figure 3. Variation of the frequency shift in SLGSs as a function of attached mass for 

different nonlocal parameter (ܮ௔ 2ℎ = ௕ܮ 2ℎ = 20, ߦ = ߟ = 0.5⁄⁄ ). 

A comparison of the resonant frequency and the frequency shift between the SLGSs and DLGSs is 

shown in Figures 4 and 5 as a function of the mass of the nanoparticles attached to the center of sheet. As 

shown in Figure 4, the value of resonant frequency decreases with increasing mass and the DLGSs have 

higher vibration frequency than the SLGSs. It is seen in Figure 5 that the frequency shift of the GS 

resonator increases with increasing nanoparticle mass, especially for DLGSs. This suggests that DLGSs 

used as nanomechanical resonator can provide higher sensitivity than SLGSs. The relationship between 

the frequency shift and the attached mass is nearly logarithmic linear for small attached masses. The 

linear relationship of DLGSs has a wider range than that of SLGSs. Thus, the result indicates that DLGSs 

can more easily be used to estimate the attached mass than SLGSs according to the changes in the 
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resonant frequency. The double logarithmic linear relationship of the DLGSs is less than about 1.0 zg. 

According to this simulation, the relationship between the frequency shift (∆߱) and the attached mass 

(݉௖) can be well represented by the exponential function of ∆߱ =  ,௖ఉ, which has a double logarithmic݉ߙ

linear relationship. The values of the parameters α and β can be determined easily by fitting the 

experimental results. It is seen that the variation of frequency shifts of the DLGSs agrees qualitatively with 

the results for circular and square SLGSs reported by Lei et al. [40] and Shen et al. [42]. The frequency shift 

appears when the attached mass is less than 1.0 zg, and thus the mass sensitivity of this kind of DLGS 

resonator can reach the range of atomic mass unit. 

 

Figure 4. Comparison of the resonant frequency variation for DLGSs- and SLGSs-based 

mass sensors (ܮ௔ 2ℎ = ௕ܮ 2ℎ = 20, ߦ = ߟ = 0.5⁄⁄ ). 

 

Figure 5. Comparison of the frequency shift for DLGSs- and SLGSs-based on mass sensor 

௔ܮ) 2ℎ = ௕ܮ 2ℎ = 20, ߦ = ߟ = 0.5⁄⁄ ). 

The effect of the location of attached nanoparticles on the frequency shift of the DLGSs is shown in 

Figure 6. The attached mass is located either at the center (ߦ, (ߟ = (0.5, 0.5) of the DLGSs, near to the 

corner (ߦ, (ߟ = (0.25, 0.25), or near to the edge (ߦ, (ߟ = (0.5, 0.25). It can be found that the location 

of the nanoparticles influences the frequency shift significantly. The value of the frequency shift rises as 

the mass is close to the center of the DLGSs, but the dependence on location becomes smaller when the 
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attached mass increases. Figure 7 shows the DLGSs aspect ratio (length to width) effect on the frequency 

shift of DLGSs with an attached nanoparticle at the center. The DLGS dimension significantly affects the 

frequency shift, which becomes larger as one side length of the DLGS decreases. The double logarithmic 

relationship between the frequency shift and the attached mass becomes highly linear when the side 

length of DLGS increases. 

 

Figure 6. Location effect of the attached nanoparticle on the frequency shift of DLGS 

resonator (ܮ௔ 2ℎ = ௕ܮ 2ℎ = 20⁄⁄ ). 

 

Figure 7. Influence of DLGS dimension on the frequency shift of nanomechanical resonator 

௕ܮ) 2ℎ = 20,⁄ ߦ	 = ߟ = 0.5). 

Finally, Figure 8 indicates the relationship between the frequency shift and the aspect ratio of DLGSs 

with different attached masses. The resonant frequency is sensitive to the side length of DLGSs due to 

the stiffness dependence of DLGS resonators, especially for small masses of the nanoparticles. It is found 

that the frequency shift of the DLGS resonator increases with increasing attached mass and decreasing 

aspect ratio. This suggests that, to provide higher sensitivity, the dimension of the DLGSs used as sensor 

elements can be changed. 
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Figure 8. Relationship between the frequency shift and the aspect ratio of DLGSs for 

different attached mass (ߦ = ߟ = 0.5). 

4. Conclusions 

Based on nonlocal elasticity theory, we present a vibration analysis of supported DLGSs carrying an 

attached mass, taking the small-scale effect into account. The DLGSs are regarded as two single-layered 

GSs coupled by vdW interaction forces. The mass of nanoparticles attached to the DLGSs can be derived 

by measuring the frequency change of the GS resonator. According to the present analytical model, the 

influences of the nonlocal parameters, the attached mass, and the position of the nanoparticles on the 

frequency shift of GSs are analyzed and discussed in detail. A logarithmically linear relationship exists 

between the vibration frequency and the attached mass when the total mass is less than 1.0 zg for DLGSs. 

Moreover, the small-scale effects considerably influence the frequency shift of GSs, especially for small 

masses of attached nanoparticles. The results indicate that GS resonators could provide high sensitivity as 

a nanomechanical mass sensor. The analytical method developed here can serve as a useful design 

approach for graphene-based mass sensor. 
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