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We review a current and popular class of cognitive models called multinomial processing tree
(MPT) models. MPTmodels are simple, substantively motivated statistical models that can be applied
to categorical data. They are useful as data-analysis tools for measuring underlying or latent cognitive
capacities and as simple models for representing and testing competing psychological theories. Wefor­
mally describe the cognitive structure and parametric properties of the class of MPT models and pro­
vide an inferential statistical analysis for the entire class. Following this, we provide a comprehensive
review of over 80 applications of MPTmodels to a variety of substantive areas in cognitive psychology,
including various types of human memory, visual and auditory perception, and logical reasoning. We
then address a number of theoretical issues relevant to the creation and evaluation of MPTmodels, in­
cluding model development, model validity, discrete-state assumptions, statistical issues, and the re­
lation between MPT models and other mathematical models. In the conclusion, we consider the cur­
rent role of MPTmodels in psychological research and possible future directions.

This article presents a detailed review of a current and

popular class of cognitive models called multinomialpro­

cessing tree (MPT) models. MPT models have been de­

scribed formally in Riefer and Batchelder (1988) and in

Hu and Batchelder (1994b), although models of this type

have been around well before the class was first formal­

ized in 1988 (e.g., Batchelder & Riefer, 1980; Chechile

& Meyer, 1976; Greeno, James, DaPolito, & Polson,

1978; Humphreys & Bowyer, 1980; B. H. Ross & Bower,

1981). However, the last 10 years have witnessed a deeper

understanding and an accelerated use of these models

within psychology. This increased popularity of MPT

models has resulted not only in the application of these

models to new areas in psychology but has also led to a

variety ofnew statistical techniques and a certain amount

of theoretical debate. Because of these developments, a

review article on this class ofmodels seems timely both for

researchers already working in this area and for others

who might benefit from using this type of modeling.

MPT models are simple, substantively motivated sta­

tistical models that can be used to measure underlying or

latent cognitive capacities. Psychological data often result

from multiple, interacting processes, and operationally
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defined statistics are quite limited in determining which

of these processes are involved in a particular experimen­

tal paradigm. One primary use ofMPT models is as data­

analysis tools, capable of disentangling and measuring

the separate contribution ofdifferent cognitive processes

underlying observed data. This approach can be helpful

in settling theoretical issues, because psychological the­

ories often focus on one process or another as the funda­

mental cause ofa particular psychological phenomenon.

The structural simplicity of the class ofMPT models also

makes it a useful framework for developing and testing

quantitative theories. It is possible to make theoretical as­

sumptions precise when incorporating them into MPT

models, and testing these assumptions is relatively straight­

forward using standard statistical theory.

An important characteristic ofMPT models is that they

are developed exclusively for categorical data (i.e., situ­

ations in which each experimental observation falls into

one and only one of a finite set of categories). Categorical

data are convenient to model because it is not necessary

to model measurement error, which is a source of concern

with continuous data. With categorical data, there is vir­

tually no uncertainty as to the appropriate category for each

observation, and, thus, the probabilistic structure of the

data can be thought to arise from underlying processes of

interest uncontaminated by error variance.

In the case of categorical data, the most general and

theoretically neutral statistical distribution is the multi­

nomial distribution, a natural generalization of the bino­

mial distribution to more than two categories. In the

multinomial distribution, observations are independent

and identically distributed over the categories. and each

Copyright 1999 Psychonomic Society, Inc.
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category has a parameter representing the probability that

a random observation falls into it. Viewed generally, sta­

tistical models for categorical data express the probability

parameters for each category as functions of the model's

parameters (i.e., they reparameterize the multinomial

distribution). Models of this type have a long history in

scientific research and include such standard model fam­

ilies as log-linear and logit models (e.g., Agresti, 1990;

Bishop, Fienberg, & Holland, 1975). Log-linear and logit

models are routinely used for categorical data in a num­

ber offields in the social, behavioral, and biological sci­

ences, and their development has paralleled developments

in modeling continuous data (e.g., analysis of variance

[ANOVA]and the general linear model). As with ANOVA

models, all that is required is a suitable factorial experi­

mental design, and then a model can be selected without

much regard to the substantive nature of the paradigm

being modeled.

In contrast, MPT models are tailored explicitly to par­

ticular psychological paradigms. Each MPT model is a

reparameterization of the category probabilities of the

multinomial distribution; however, unlike log-linear and

logit models, the reparameterization is in terms ofparam­

eters that are designed to represent underlying psycho­

logical processes, rather than a canonical decomposition

in terms of main effects and various interactions. MPT

models reflect a particular type ofcognitive architecture,

one that is represented as a tree with a single root (a type

ofdirected graph having no cycles; e.g., Gondran, Minoux,

& Vajda, 1984). Each branch ofthe tree represents a dif­

ferent hypothesized sequence ofprocessing stages, result­

ing in a specific response category. Thus, MPT models

are designed to represent situations in which an observed

response category can arise from one or more unobserved

processing sequences, represented by branches in the tree

structure. Both the sequential character of processing

stages and the many-to-one mapping of processing se­

quences into response categories are psychological prop­

erties that are conveniently represented in the rooted tree

architecture.

One important consequence of this architecture is that

category probabilities are generally expressed as nonlin­

ear functions of the underlying psychological param­

eters. This contrasts with the usual models for categorical

data mentioned earlier that have linearity built in at some

level. Thus, even though MPT models parameterize latent

processing events in a straightforward way, the manifest

category probabilities are usually nonlinear polynomial

functions ofthe processing event parameters. In this sense,

MPT models share a property with most successful sci­

entific models in the behavioral sciences-namely, that

simplicity at the theoretical level may have more complex

consequences at the behavioral level.

Even though MPT models are more substantively based

than are off-the-shelf statistical models, they are usually

much less detailed than are more theoretical cognitive

models, such as global memory models (Clark & Gron­

lund, 1996) or neural network (connectionist) models

(1. A. Anderson, 1995). MPT models capture some of the

psychologically important variables in a paradigm, but

they are necessarily approximate and incomplete and are

usually confined to particular paradigms. In this way,

MPT modeling may be viewed as a type ofcognitive psy­

chometrics in the spirit of such approaches as paired­

comparison scaling (David, 1988), signal detection mod­

els (Macmillan & Creelman, 1991), or information­

integration models (N. H. Anderson, 1982; Massaro,

1987). Despite their disadvantage as approximations to

psychological theory, MPT models share the advantage

with other psychometric models of being statistically

tractable and thus provide clear choices for data analysis

over standard, multipurpose statistical models.

The article is organized as follows. First, we present a

description of two previous applications ofMPT model­

ing from our own laboratory. The purpose is to familiar­

ize the reader with the ideas behind MPT models and,

later, to use these examples to help illustrate important

theoretical and statistical points. Next, we formally de­

scribe the cognitive structure and parametric properties

of the class ofMPT models, providing an explicit statis­

tical analysis of this class. Following this, we provide a

comprehensive review of the applications ofMPT mod­

eling to a variety of substantive areas in cognitive psy­

chology. The purpose of this review is twofold. First, it

will give the reader an idea of the scope ofMPT model­

ing as it is currently applied in psychology, with refer­

ences for researchers who want to learn more about a

particular area or application. Second, the applications

that we describe raise a number of theoretical and statis­

tical issues related to MPT modeling. These issues will

be discussed in the section following the review, and they

should be relevant to researchers who wish to develop

and use this type of modeling. Finally, we consider the

current role of MPT models in psychological research

and possible future directions.

TWO EXAMPLES

Batchelder and Riefer's Pair-Clustering Model
The first example ofMPT modeling is a model that we

designed to disentangle cluster storage from cluster re­

trieval in a standard free-recall paradigm (Batchelder &

Riefer, 1980, 1986). The paradigm involves a study list

consisting of two types of items, clusterable pairs (e.g.,

lawyer, teacher) and singletons (items without a category

partner), followed by free recall of the list. Recall of the

pairs is scored into four mutually exclusive categories: (1)

both items recalled adjacently, E j , (2) both items recalled

nonadjacently, E2, (3) one and only one item recalled, E3,

and (4) neither item recalled, E4. Singletons are scored

into two categories: (1) recalled, F I' and (2) not recalled,

F2. As we indicated earlier, MPT models can be repre­

sented by processing trees, and Figure 1 presents the tree

diagram for the pair-clustering model. The model in Fig­

ure 1 postulates two processing trees-one for the pairs

and one for the singletons-which technically makes it
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Figure I. Batchelder and Riefer's (1980, 1986) pair-clustering model for

measuring storage and retrieval processes.

a joint MPT model (Hu & Batchelder, 1994b, p. 30;

Riefer & Batchelder, 1988, p. 324), a variety of MPT

model described formally in the next section.
The model contains three parameters, c, r, and u, each

designed to measure a different cognitive process. Param­
eter c measures the probability that the members of a pair

are clustered and that the cluster is stored in memory dur­

ing study. Parameter r is the conditional probability that

a stored cluster is subsequently retrieved from memory

during free recall. Because both parameters are proba­

bilities, they must satisfy 0 ::5 c, r ::5 1. The top branch in

Figure 1 has a probability cr, which is the probability of
both storing and retrieving the cluster. The model assigns

this branch to category E1 on the assumption that re­

trieved clusters are recalled adjacently. The next branch
has probability c (1 - r), representing successful cluster

storage but unsuccessful retrieval. This branch is assigned
to category E4, indicating recall of neither item in the

pair. Notice that this is one of two branches that lead to

category E4 , the other being at the lowest branch of the

tree representing unsuccessful cluster storage. This il­

lustrates one of the main characteristics ofMPT models

mentioned earlier-namely, that a particular response

category can be obtained by more than one processing se­

quence or branch.

The third parameter, u, is the joint probability that a

singleton is stored and retrieved. The tree for singletons

is simple, reflecting a basic Bernoulli process in which

singletons are either recalled or not with probability U or
1 - u, respectively. Notice, however, that parameter u

also appears in the tree for clusterable pairs. Here, it re­

flects a deeper assumption of the model-namely, that

each item in a pair that is not clustered (with probability

I - c) is processed independently, with the same proba­

bility of recall as a singleton. In this case, u is the prob­

ability of storing and retrieving an item in a pair, condi­
tional on it not being stored as a cluster. This dual

interpretation of parameter u is a strong assumption, but

it can be evaluated by testing the model in Figure I,

which has three parameters and four degrees offreedom
(three for the pairs and one for the singletons), against

the more general model that allows the value of u for pairs

to be different from that of the singletons.

Another strong assumption in the model concerns the

recall of nonclustered pairs. Notice that with probability

(I - c)u 2, items in a pair are not clustered, and they are

both recalled independently. This branch is assigned to

category E2 , reflecting nonadjacent recall of the pair.

This assumption is surely wrong in detail, because there

is a random possibility for two nonclustered items to be

recalled adjacently. The assumption is therefore clearly an

approximation, but one that greatly simplifies the analy­

sis of the model and still allows the model to reflect the

main processing stages in the task. Even with this simpli­

fying assumption, the model equations, representing cat­

egory probabilities in terms of parameters, can be com­

plicated. For example, for event E4,

P(E4) = c(1 - r) + (I - c)(1 - u)2, (I)

which is a third-degree polynomial in the model's param­

eters. Among other things, this means that if P(E4) varies

between groups in an experiment, it could be from changes

in any subset of the three parameters.

Batchelder and Riefer's Source-Monitoring Model

The second example of MPT modeling is our model

for source monitoring (Batchelder & Riefer, 1990). Source

monitoring concerns the ability to remember the source

of information acquired earlier. In a typical source­

monitoring experiment, subjects study a list of items from
two sources, A and B (e.g., List I or List 2, male or female

voice). Subjects are then given a recognition-type test in

which they must respond to old items and new distractors

by classifying them as Source A, Source B, or New. The

model for this paradigm is presented in Figure 2, and it

specifies a processing tree for each of the three types of
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Figure 2. Batchelder and Riefer's (1990) source-monitoring model.

items. Considering all three trees, there is a total of7 pa­
rameters in the model, 15 processing branches, and 9 re­
sponse categories (3 for each tree, A, B, and N).

The model assumes that subjects first "detect" whether

an item is old with probabilities D!, D 2, or b for old A,
old B, or new items, respectively. If an old item is detected
as old, then d, and d2 measure the capacity to discriminate

the source of old A and B items, respectively. On the
other hand, if the item is new but incorrectly detected as
old, then only a guessing process, measured by param­
eter g, determines which source the item is assigned to.
If discrimination of the source of an old item fails (with
probability 1 - d., i = 1,2), then another guessing pro­

cess determines the source assignment, this time mea­
sured by parameter a. Finally, if an old item is not de­
tected as old (with probability 1 - D i ) , it is treated as a
new item, and the new-item tree is the continuation of
the tree on the 1 - D, branches.

There are a number of points that emerge from the

model in Figure 2. First, it embeds some fairly strong psy­
chological theory. For example, the model assumes that
old-new detection precedes source discrimination and
that correct source discrimination of an old item (apart
from guessing) can occur only if the item is detected as
old. A second point is that some parameters appear in more

than one tree (i.e., a, g, and b). Most of these parameters
can be interpreted as conditional probabilities, because
they appear on links later in the tree, conditional on the
success or failure ofother processes. For example, in the
two trees for old items, b is the conditional probability of
deciding that an old item is old, given that it was not de­
tected as old. But notice that b also appears in the tree for
new items as an unconditional probability, that a new item
is "detected" (biased) to be old. Thus, b plays a similar
role in all trees (i.e., as a bias for responding "old").
However, it is evoked in the trees in different places and
with different meanings when viewed as an event prob­
ability. A third point is that, as with most MPT models,
the event probabilities are sums ofproducts of the under­
lying parameters, a particular type ofnonlinear function.

For example, the probability of correctly identifying an

item from Source A is

P("A"I A) = D, d, + D!(1 - d})a + (1 - D! )bg,

which is technically a third-degree polynomial in D!, d,

a, g, and b and represents an interaction of all the cogni­

tive processes postulated in the model.

STRUCTURE OF MPT MODELS

Structural Properties
The structural characteristics of MPT models have

been described in detail in two previous articles. In Riefer
and Batchelder (1988), we discuss statistical inference

for parametric multinomial models and give three exam­
ples. All three examples are represented in a tree diagram,
and they satisfy strong structural properties. Hu and
Batchelder (1994b) formally capture these structural prop­
erties for a class ofmodels, which they term general pro­

cessing tree (GPT) models. In this paper, we use the term
multinomialprocessing tree (MPT) models to cover GPT
models, as well as a slight extension described later in this

section.
The formal requirements for constructing MPT models

cover two aspects: (I) generating the tree structure, and
(2) parameterizing the tree structure. We start by con­
sidering a single category system. For the tree structure,

there are J observable categories, C" C2, ... , CJ ; for each
category, there is one or more processing branches that
lead to that category. Each branch is composed of a se­
quence of one or more directed links. Formally, the tree
itself has three kinds of nodes: the root, the intermediate
nodes, and the terminal nodes. The root is the starting
point and is the unique node where there are no incom­
ing links. The intermediate nodes correspond to various
states of processing that may occur. The terminal nodes
are the categories themselves. At any node, except for
the category end nodes, there may be two or more di­
rected links (out arcs), and these correspond to various
directions that the processing sequence can take at that
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where Bij is the ith branch that leads to category Cj , Cij

is a positive number, and aijs and bijs are nonnegative in­

tegers (see Hu & Batchelder, I 994b, for details). The re­

quirements in Equation 2 are often met by having many

of the values for the ailSand bijsequal to zero.

To illustrate, consider the pair-clustering model in Fig­

ure I. The tree reveals that categories E I' Ez, and E3 have

only one branch, whereas E4 has two branches. The pa­

rameter vector is 0 = (c, r, u), and, to take one example,

the branch probabilities for category E4 in terms of Equa­

tion 2 are

point. Thus, the processing tree consists of a single root

and a collection or processing branches, each terminat­

ing in a particular response category.

To parameterize the tree structure, the model must

specify S functionally independent parameters, as' s = I,

... , S, and a parameter space 0 = (°1" , .,Os'" .,Os) E

[O,I]S (i.e., the S dimensional unit hypercube). The reason

for the restriction that °:::; Os :::; I is that the parameters

are interpreted as probabilities of various underlying

cognitive processes. At each nonterminal category node,

there is a probability distribution over the directed links

that proceed from that node, and these distributions are

required to satisfy a certain functional form in the under­

lying parameters, described in Hu and Batchelder (1994b).

These requirements on the functional form of the link

probabilities lead to a particular form for the branch

probabilities, given by

s b

P(Bij;0)=cijIIO;u'(I-Os)ij" (2)
s=1

P(B
1
,4;0 ) = I XCi rOu0(l - c)0(l - r)'(1 - u)O

= c(l - r)

P(B2,4;0 ) = 1 X cOrou0(l - C)l(l - r)°(l - u)2

= (l - c)(l - u)2.

In practice, the tree structure of many MPT models

has a binary, single-parameter form where there are only

two directed links from any nonterminal node, with one

link having probability Os and the other I - Os' In this

case of binary, single-parameter links, it is easy to see

that Equation 2 holds, with cij = I, because aijs and bijS

are just the number oflinks in the branch that have Os and

I - 0" respectively, This is the case with all the MPT mod­

els depicted in the figures, except Figure I, and the tree for

clusterable pairs in Figure I is easily redesigned to meet

the binary structure if the extension of the I - c link is

rewritten as two successive binary, single-parameter links

with parameter u.

Once the tree structure of the model has been estab­

lished, the category probabilities are given, from Equa­

tion 2, by

(4)

which is a derivation of Equation I.
The key to the statistical analysis ofMPT models is the

fact that, if the branch frequencies are known in addition

to the category frequencies, then the maximum likelihood

estimates (MLEs) ofall the parameters can be written in

a simple closed-form expression. Hu and Batchelder

(1994b) show this in general, but to illustrate suppose that

we have an MPT model written as a binary, single­

parameter tree. Further suppose that each branch leads to

a unique category (i.e.'!j = I for all) = 1,2, ... ,J), and,

thus, the branch frequencies, ~ , are all known. Then, it is

easy to see that the MLEs of the Os are given by

J

t»;»
j=l

where s = 1,2, ... , S. Equation 4 is easily interpreted: It

is the number of times a link with probability Os is taken,

divided by the number of times a binary link with pa­

rameter Os is encountered. In other words, Equation 4 is

just a version of the well-known fact that the proportion

of"successes" is the MLE for the probability of a success

in a Bernoulli process.

The structural and parametric requirements of MPT

models, especially those of Equations 2 and 3, are suffi­

ciently restrictive to yield many consequences that are

described in detail by Hu and Batchelder (1994b ). Most

importantly, they show that statistical inference, includ­

ing goodness offit, point and interval parameter estima­

tion, and hypothesis testing, is straightforward for mem­

bers of the model family by employing the expectation­

maximization (EM) algorithm (Dempster, Laird, & Rubin,

1977; McLachlan & Krishnan, 1997). The EM algorithm

is a well-known iterative method for obtaining MLEs for

certain statistical models, in which some of the data can

be regarded as missing. In this case, the missing data are

assumed to be the branch frequencies, subject to constraint

by the category frequencies (which are known), The EM

algorithm starts by selecting initial estimates for the

branch frequencies, then MLEs of the parameters are

computed by a formula, such as Equation 4, then the

branch frequencies are reestimated, and so on. Under

where I; is the number of branches terminating in Cate­

gory}, and} = I, ... , J. Finally, the probabilistic structure

of the model requires that L P; (0) = I, for all e =

(a" .. "Os' .. .,Os)E [0,I] s, which allows each parameter

to vary independently in [0,1]. Thus, the parameters are

functionally independent, and each has its full range in

[0,1]. Given the restrictions on the branch probabilities, it

is easy to see that the category probabilities are polynomial

functions of the parameters. To illustrate from Figure I,

P(E 4) = PCB 1,4; 0) + P(Bz,4 ; 0)

= c(1 - r) + (l - c)(l - u)2,

(3)

I
J

Pj (0) = I,P(B ij;0),
i=1
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fairly general conditions, this algorithm necessarily leads

to at least a local maximum in the likelihood function for

MPT models, as shown in Hu and Batchelder (1994b,

Observation 4).

The EM algorithm has a number of statistical advan­

tages in working with MPT models over ad hoc iterative

search routines, such as STEPIT (Chandler, 1969). First,

it is not necessary to specify step size. Second, it provides

asymptotic approximations to the variance-covariance

matrix of the parameter estimators at the end of the search.

Third, for the class of MPT models, it is guaranteed to

produce a local minimum of the loglikelihood measure

G2, the quantity whose global minimization yields the

MLEs. Fourth, it enables statistical inference to be ac­

complished within a single framework.

There are two potential disadvantages of the EM algo­

rithm that Hu and Batchelder (1994b) have shown do not

apply in the case ofMPT models. First, for some classes

of models, the EM algorithm is slow relative to other it­

erative search routines, such as ones based on gradient

search methods. However, for the MPT class, both the

expectation step and the maximization step are in simple,

closed-form expressions; so no iterative search is required

within each cycle of the algorithm. Second, the EM algo­

rithm is designed to obtain only MLEs; however, in Hu

and Batchelder (1994b), it is extended to the entire Read

and Cressie family of goodness-of-fit statistics for cate­

gorical models (Batchelder, 1991; Read & Cressie, 1988).

This family includes not only G2 but other traditional fit

methods, such as minimum chi-square and modified min­

imum chi-square.

There exists computer software based on the EM algo­

rithm that has been developed by Xiangen Hu to handle

all forms ofMPT models. Researchers can use the graphic

capabilities of this program to construct and display

model trees, modify the trees, and combine many trees

to form joint MPT models. Multiple data sets for analy­

sis by the model can be input and saved, and the program

performs all of the basic statistical calculations needed

for MPT modeling, including parameter estimation (with

confidence intervals), hypothesis testing, and model

simulation. The program can be obtained by accessing

the GPT website established in 1996 at http://irvin.psyc.

memphis.eduigpt/, where researchers can view documen­

tation and download the program. Other computer pro­

grams specifically designed for other models can also be

downloaded from this site, such as a program based on

Batchelder and Riefer's (1990) source-monitoring model.

Global Identifiability

The statistical inference results for MPT models de­

scribed above require that models satisfy a property called
global identifiability. To illustrate, the source-monitoring

model in Figure 2 has seven parameters, but there are only

6 degrees offreedom (df) in the data (i.e., each item type
is scored into three response categories, so each item type

yields 2 df). One consequence ofthis surplus of param­

eters is that it is not possible to uniquely estimate the mod-

el's parameters from data. Global identifiability ofa model

holds if there is at most one parameter vector underlying
a given probability distribution over the categories.

More formally, suppose one has an MPT model with

categories Cj, ..., CJ and parameters 8 = (el , ... , es).
Letp(8) = [p,(8), ... ,p;(8)] express the category prob­

abilities as a function of the parameter vector 8. Then,

the model is globally identifiable ifp(8) =p(8*) implies

8 = 8* for all 8,8* E (0, I)s. A consequence of global

identifiability is that if a probability distribution p =

(PI' ... ,pJ) is satisfied by the MPT model, then it is sat­
isfied uniquely for some 8. Thus, ifthe model holds, then,

in principle, one can identify the latent parameter vector

8 given knowledge of the category probabilities. Global

identifiability is a desirable condition for using the model

as a measurement tool, because the process of deriving pa­

rameter values from category data leads to unique param­

eter estimates. Of course, a model may be testable (i.e.,

falsifiable) even if it fails to satisfy global identifiability

(see Bamber & van Santen, 1985).

Batchelder and Riefer (1990) were able to achieve

global identifiability for the source-monitoring model in

Figure 2 by considering several psychologically motivated

ways to reduce the number of parameters. In particular,

they considered three restrictions of the model: (I) equal

source detection probabilities (D, = D2 ) , (2) equal source

discrimination probabilities (d, = d 2 ) , and (3) equal re­

sponse-bias probabilities (a = g). By imposing one or

more of these restrictions, a family of seven new models

can be generated (six ofwhich are globally identifiable);

Batchelder and Riefer (1990) have proposed that this fam­

ily,rather than a single model, be used to analyze source­

monitoring data.

Joint MPT Models

Psychological paradigms yielding categorical data

often involve more than one system of categories-for

example, where each category system reflects a particular

type of item. If responses to item types are independent,

then the most general statistical model is a product of

multinomial distributions, one for each category system.

Joint MPT models postulate a separate processing tree for

each of these category systems; however, if there is some

overlap in processing events among the types of items,

then a given parameter may occur in more than one of

these trees. Another natural way that joint MPT models

arise is the case in which one has data from two or more

groups of subjects in the same paradigm. To test hypothe­

ses about possible differences in parameters between

groups, one constructs an identical processing tree for each

group and then compares the fit of the versions where a

given parameter is the same or different between groups.

Joint MPT models join the separate processing trees

by representing the item types or subject groups as ini­

tial branches in one tree leading to each of the separate

processing trees. Thus, ajoint MPT model may be viewed

as a hierarchical, two-stage model, in which the first

stage reflects an experimenter assignment of item types



or subject groups, and the second reflects the subjects'

responses to each item. Both the pair-clustering model

and the source-modeling model described above are ex­

amples ofjoint MPT models. Hu and Batchelder (1994b)

formalize joint MPT models and show that the statistical

inference theory for MPT models extends naturally to

joint MPT models.

Reparameterization

Several MPT models that will be discussed later do

not satisfy the stringent parametric form required in Equa­

tions 2 and 3. For example, Batchelder, Hu, and Riefer

(1994) extended the source-monitoring model in Figure 2

to cover the case of three or more sources. The extension

required guessing parameters for each source (e.g., g"

g2' and g3 = 1 - g 1- g2 for three sources). Clearly, this

extension requires that g, + g2 :::; 1, which restricts the

parameter space from the requirement in Equation 3 that

each parameter independently can take any value in [0,1].

However, in the case of three sources one can reparame­

terize the model by introducing two new parameters, g, *
and g2*' 0:::; gl*' g2* :::; 1, where g, = gl*' g2 = (1 ­

gl*)g2*' and g , = (1 - g,*)(1 - g2*)' The reparameter­
ized model is equivalent to the original model, in the

sense that it can generate exactly the same set of proba­

bility distributions. Furthermore, it has the same number

ofparameters and satisfies the structural requirements of

Equations 2 and 3.

More generally, in this article, we include as MPT mod­

els any parametric processing-tree form that can be repa­

rameterized as an equivalent model, with the same num­

ber of parameters, satisfying Equations 2 and 3. So far,

all of the models that we classify as MPT models in this

article are easily reparameterized to satisfy these con­

straints. In fact, using the above definition, the general

multinomial distribution for, say,J categories, is itself an

MPT model. This is because it is always possible to repa­

rameterize this distribution into MPT form by using an

extension to J categories of the strategy above for repa­

rameterizing the guessing parameters in the source­

monitoring model for three sources.

It is not the case, however, that all probabilistic models

for categorical data belong to the MPT class. Any model

for J categories corresponds to a particular subset of all

possible probability distributions on J categories, and there

are many subsets (most, in fact) that cannot be modeled

exactly by the MPT form in Equations 2 and 3. Thus, the

MPT class does not contain all parametric models for

categorical data. In this sense, it would be incorrect to view

MPT modeling as a "universal framework," incapable of

being falsified and able to fit categorical data over any

set of experiments.

APPLICATION AREAS

In this section, we review the scope of MPT modeling

by describing its application to a number of different

areas in cognitive psychology. There is a rapidly growing
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literature on developing and testing MPT models for var­

ious paradigms, and the review includes over 80 articles

that involve MPT models. There are several cognitive areas

that utilize these modeling efforts, and we use these to or­

ganize the review. The examples below also provide illus­

trations for various theoretical and statistical issues that

we discuss in subsequent sections.

Models for Traditional Memory Paradigms

Perhaps the most common application of l\1PT mod­

eling has been in the area ofhuman memory. Much ofour

own published work has been in this area, including the

two MPT models in the previous section. In this section,

we describe a series of models that have been developed

for three long-standing and traditional issues in memory

research: interference, association, and short-term mem­

ory (STM).

Interference effects. One of the first examples of an

MPT type of model is a model for proactive inhibition

developed by DaPolito (1967; reported in Greeno et a!.,

1978). The experimental paradigm behind the model is

known as modified-modified free recall (MMFR), in­

volving a paired-associate task in which subjects learn a

list of A-B pairs, followed by a second list containing

the same stimuli paired with different responses (A-C).

Subjects are given the stimuli and asked to generate both

responses. Proactive inhibition occurs when the recall of

the C terms is poorer than a control group that does not

study the A-B list. The basic idea behind the DaPolito

model is that items sharing a common stimulus are stored

within the same retrieval network, which is accessed with

probabilityp. Ifthe network is successfully accessed, then

retrieval of each item occurs independently, with proba­

bility q for Item Band r for Item C. Although Greeno et al.

(1978) never presented or analyzed the model in MPT

form, Riefer and Batchelder (1988) demonstrated how an

MPT structure for the model could be generated and de­

rived closed-form MLEs and asymptotic confidence in­

tervals for the model's parameters.

A version of the DaPolito (1967) model is shown in

Figure 3. The model in Figure 3 is a general version that

is appropriate not only for situations involving two distinct

types of items (such as the DaPolito application) but also

for some tasks involving two successive tests of memory.

Like the DaPolito model, the model assumes that items

are stored in memory with probability s, and then retrieval

is conditionally independent on successful storage, with

probability r1 for the first test and r2 for the second. It

should be easy to see that parameters p, q, and r in the

DaPolito model correspond respectively to parameters s,

r" and r2 here. There are four recall events for the model:

successful recall on both tests (SS), successful recall on

Test 1 but not Test 2 (SF), successful recall on Test 2 but

not Test I (FS), and recall failure on both tests (FF). Both

Riefer and Batchelder (1995) and Bender, Wallsten, and

Ornstein (1996) have used this model for situations in­

volving repeated testing of memory, and details of these

applications will be reviewed later.
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Figure 3. An MPT model for measuring storage and retrieval
processes in paradigms involving two type of items or two suc­
cessive memory tests.

Greeno et al. (1978) were interested in investigating

the independent retrieval phenomenon, which is the ob­

servation that the recall of Band C is stochastically inde­

pendent even when strong interference effects occur. They

applied the model to an experiment in which they manip­

ulated the number of A-B presentations before the A-C

list. Even though strong interference effects were obtained

in the experiment, the number of A-B presentations did

not significantly influence the probability ofrecalling C.

In terms ofthe model's parameters, Riefer and Batchelder

(1988) were able to show that the number of A-B pre­

sentations significantly increased parameter q but had no

reliable effect on parameter r. This pattern ofresults pro­

vided strong support for the retrieval independence the­

ory of proactive inhibition.

Riefer and Batchelder (1988) have also explored a par­

adigm similar to the one for proactive inhibition described

above. In their experimental task, subjects were pre­

sented with two lists in which similar stimuli were paired
with different responses (e.g., taxi-"2" and cab-''T').

This paradigm therefore involves an A-B, A'-C task, in

contrast to the A-B, A-C task used by Greeno et al.

(1978). In addition, both presentation and testing were

alternated between the A-B and A'-C items, unlike the

Greeno et al. task in which all study trials on the A-B list

occurred before the study trials ofthe A-C list. Because

the stimulus terms in the Riefer-Batchelder (1988) task

were related and potentially confusable, subjects had to

learn to discriminate between A and A' before they could

successfully associate the proper responses.

A key component in Riefer and Batchelder's (1988)

analysis was their expansion of the traditional error­

success data to include confusion errors. These are errors

in which the response for one stimulus is actually given

for the related stimulus (e.g., responding "7" to taxi).

They also included data from unique paired associates

(i.e., ones with stimulus terms that were distinct from

one another). This yielded enough response events for the

creation ofan MPT model capable ofmeasuring the pro-

1-8

FF

-----FF

cess of stimulus-response learning separately from stim­

ulus discrimination. Riefer and Batchelder (1988) were

able to derive closed-form solutions for the parameter es­

timates, including asymptotic confidence regions. The

model was applied to a repeated-trials experiment, and it

showedthat, over early trials, the A'-C pairs exhibited less

stimulus-response learning and more stimulus confu­

sion than did the A-B pairs, which had the advantage of

being presented first on each trial. This difference disap­

peared over later trials, however, as subjects learned to dis­

criminate between the similar stimuli.

Associative recall. The study of memory for related

or associated information has a long history in psycho­

logical research. B. H. Ross and Bower (1981) explored

different theoretical accounts of associative memory in

order to determine which theories do the best job of de­

scribing empirical data. Their basic paradigm required

subjects to memorize clusters offour or five words related

by a common theme (e.g., apron, chair, brush, clip: hair­

cut), followed by a memory test in which one, two, or

three words from the cluster were provided as retrieval

cues. As B. H. Ross and Bower noted, this task goes be­

yond the traditional paired-associate methodology in

which items consist of word pairs, with one of the words

cuing the other. The purpose of using larger clusters and

potentially more cues was to provide a more detailed set

of data for discriminating between different theories.

B. H. Ross and Bower (1981) tested three formal mod­

els ofassociative recall: the horizontal model, the schema

model, and Jones's fragment model. For the horizontal

model, items are stored separately but have direct asso­

ciations to each other. The two parameters of the model

represent the probability that each item is stored within

the associative structure and the probability that a stored

item leads to retrieval of an associated item. For the

schema model, items are also stored separately but are

connected to a common schema instead ofbeing directly

associated to each other. This model also has two param­

eters: the probability that an item has access to the schema,

and the conditional probability that an accessed schema

leads to retrieval of an associated item. The final model

tested was Jones's fragment model. This model assumes

that items are not stored separately but instead are asso­

ciated within fragments, or "chunks," of different sizes,

with no associated links between the fragments. Param­

eters of the model represent the probabilities that each

type of fragment is stored within memory. The structure

of each fragment determines whether one item will suc­

cessfully cue another, because an item can cue another

item only if they share the same fragment.

All three models can be represented in the MPT class,

and B. H. Ross and Bower (1981) were able to obtain
minimum chi-square parameter estimates and assess the

goodness of fit of the models. They accomplished this
by using STEPIT (Chandler, 1969) to minimize the chi­

square difference between the models' predictions and the
actual data frequencies. In general, the fragment model

performed poorly across a series of three experiments.



The horizontal model fared somewhat better, providing

a good quantitative fit to data in one experiment but poor

fits on two others. The best overall results occurred for

the schema model, which provided the best fits over the

three studies. B. H. Ross and Bower discuss the diffi­

culty of choosing a specific theoretical framework when

exploring the underlying structure of semantic memory,

and they conclude that the schema model "may be rec­
ommended for use by investigators working on associa­

tive learning but wishing to avoid the strong commit­

ment to specific structural representations of memories

made by extant theories of the day" (p. 15).

Short-term memory. Schweickert (1993) has devel­

oped a simple MPT model designed to capture the basic

processes in immediate recall ofshort lists of items from

STM. The model assumes that ifa memory trace is intact

(with probability I), then an item is directly recalled. If

the trace is too degraded for a direct readout (with prob­

ability I - I), it may be reconstructed (with probability

R) using other cognitive processes. This model predicts

that successful recall from STM has the function

P(recall) = 1+(1 - I)R, an equation in the same form

as the one originally proposed by Waugh and Norman

(1965). The model itself does not have enough degrees of

freedom to obtain separate estimates for both I and R from
a single set ofempirical data. However,Hulme et al. (1997)

were able to apply the model to a series of experiments

examining the effects ofword frequency and word length
on serial position curves. By making two assumptions­

that the value ofI is the same for low- and high-frequency

words, and that R is a constant across serial position­

Hulme et al. were able to apply the model to data, estimate

parameter values, and measure goodness offit. The model

did a generally good job of fitting the data and correctly
predicted that recall differences between high- and low­

frequency words would increase across serial position.

Storage-Retrieval Models
Figure 1 presents an MPT model for separately mea­

suring cluster storage from cluster retrieval. In general, the

measurement of storage and retrieval processes in mem­

ory represents one of the most common applications of

MPT models. This is because a storage-retrieval account

ofmemory allows for memory failure to be explained by

more than one process (e.g., storage failure, or retrieval

failure despite successful storage). A recurring issue in

memory research is whether memory phenomena are

caused primarily by differences in storage or retrieval ca­
pacities, and a wide variety of storage-retrieval hypothe­

ses has been proposed in many areas of memory research

(e.g., Payne & Roediger, 1987; Schonfield & Robertson,

1966; Tulving & Psotka, 1971). The MPT models re­

viewed below represent different attempts to measure these

two processes separately. As will be seen, each model is
applied to a different paradigm, and, thus, each makes dif­

ferent theoretical assumptions about how empirical sta­

tistics can be translated into measures of storage and re­

trieval. Most of the following models are motivated by
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informal assumptions that have been previously used by

researchers to make qualitative evaluations of storage and

retrieval. The advantage of the models is that they are able

to take these informal assumptions and make them more

explicit, thus providing quantitative measures of these
processes that may vary as a function ofexperimental ma­

nipulations.

Chechile's storage-retrieval model. One of the first
explicit applications ofprocess-tree modeling in psychol­

ogy was a storage-retrieval model developed by Chechile
(1987; Chechile & Meyer, 1976). The experimental par­

adigm for the model involves a standard memory task in

which recall trials are randomly supplemented with recog­

nition trials. On the recognition trials, subjects are re­

quired to give a "yes"-"no" response along with a con­

fidence rating on a 3-point scale. The data events for the

model arise from the combination ofrecall data, recogni­

tion data, and confidence ratings, and these data provide

enough information to estimate storage (Os), retrieval

(OR)' and various guessing and response-bias parameters.
The basic idea behind the Chechile model rests on a

common assumption in memory research-that recall

requires both storage and retrieval (represented as Os and

OR in the model), whereas recognition depends only on

sufficient storage. By incorporating these assumptions

into a formal model, measurement ofstorage and retrieval

capacities becomes possible. More recently, Chechile

(1993) has extended this modeling approach to measure

fractional storage. The assumption behind this new work

is that storage failure (1 - Os) can be subdivided into

fractional (or partial) storage and no storage. Thus, the

new model does not make storage an all-or-none pro­

cess, and, therefore, it gives a more detailed and possi­

bly more correct measure of storage processes.

One advantage of the Chechile (1987) model is that it

can be applied to a number of different memory para­

digms. For example, the model has been used to measure

storage and retrieval processes in serial list learning (Skoff

& Chechile, 1977), paired-associate learning (Chechile

& Ehrensbeck, 1983), and the Brown-Peterson paradigm

(Chechile & Butler, 1975; Gerrein & Chechile, 1977).

Furthermore, Chechile and his associates have applied the

model to a wide range of basic memory issues, includ­
ing interference effects (Butler & Chechile, 1976), the

serial position curve (Skoff & Chechile, 1977), acoustic

similarity (Chechile, 1977), semantic memory (Chechile

& Richman, 1982), and others. This corpus of experimen­

tal results also provides a number of validation tests of

the model as a tool for separately measuring storage and
retrieval factors. Experimental manipulations have been

shown to have a selective influence on specific param­

eters; for example, increasing search time improves OR

without affecting Os (Chechile & Meyer, 1976), acoustic

similarity influences Os but not OR' and manipulating the
similarity of foils in the recognition task changes the

guessing parameter without influencing Os or OR'

Riefer and Rouder (1992). The Chechile (1987)

model uses the contrast between recall and recognition to
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measure storage and retrieval. Riefer and Rouder (1992)

have proposed a model for measuring storage and retrieval

that examines the contrast between free and cued recall.

The model is based on the assumption that free recall re­

flects both storage and retrieval processes, whereas cued

recall is a more direct indicator of storage alone. The ex­

perimental paradigm behind the model involves a paired­

associate task in which memory for noun pairs is tested

successively with free recall followed by cued recall. For

free recall, there are three possible responses-both nouns,

one noun, or neither noun in a pair can be recalled­

whereas cued recall results in successful or unsuccessful

recall of the second noun given the first as the cue. This

results in six (3 X 2) response categories when perfor­

mance is combined across both free recall and cued recall.

Rouder and Batchelder (1998) have developed a family

of closely related alternative versions of this model and

have explored a number of their statistical properties.

Riefer and Rouder (1992) used the model to investi­

gate the bizarreness effect, the observation that bizarre or

unusual stimuli are recalled better than common stimuli.

The model revealed that bizarre stimuli are retrieved bet­

ter from memory, but not stored better, than common

stimuli. Conversely, Riefer and LaMay (1998) demon­

strated in a follow-up study that common stimuli are

stored in memory better than bizarre stimuli. These find­

ings help explain why the bizarreness effect has been

weak or nonexistent in many previous studies that have

relied solely on traditional statistical analyses, such as

ANOVA. Depending on the relative contribution of stor­

age and retrieval processes, the combined empirical ef­

fect ofthese two factors, as measured by ad hoc statistics,

such as percent correct, can produce conflicting memory

results that may be hard to interpret. The above examples

are good illustrations of how MPT models can disentan­

gle the relative contributions of separate cognitive pro­

cesses, especially when these processes have opposite ef­

fects on the empirical data.

Batchelder and Riefer (1980,1986). Earlier, we de­

scribed in detail our pair-clustering model for measuring

storage and retrieval (see Figure I). The basic assump­

tion behind that model is that adjacent recall is taken as

an indication ofsuccessful storage and retrieval ofa pair

cluster, whereas nonadjacent recall is an indication of

failure to store a pair as a cluster. Variations of this model

include an extension by Riefer (1982) to clusters ofmore

than two items and Markov versions of the model by

Batchelder and Riefer (1980) and Bauml (1996a). Like

the Chechile (1987) model, the Batchelder-Riefer model

has been applied to a number of different theoretical is­

sues and experimental variables. For example, Riefer and

Batchelder (1988) showed that memory loss caused by
retroactive inhibition (RI) is due to poorer retrievability

and not storage, a finding that was replicated by Bauml

(1996b). However, another experiment by Bauml (1991)

revealed that storage factors can playa role in RI when
spaced presentation of the word lists is used, in contrast

to the blocked presentation used by Riefer and Batchelder

(1988). The model has also been used to conduct storage­

retrieval analyses on a number of basic variables that are

known to affect memory. For example, we (Batchelder &

Riefer, 1980, 1986; Riefer & Batchelder, 1987) have

shown that storage capacity is improved by longer pre­

sentation rates, higher category association, and smaller

interitem lags. In contrast, retrieval capacity benefits from

cuing during recall and large interitem lags. These find­

ings are consistent with reasonable psychological assump­

tions about the separate effects of these variables on stor­

age and retrieval.
Children's memory. Issues of storage and retrieval

play an important role in theories of children's memory.

The question is whether the main developmental changes

in memory are due to changes in storage or retrieval ca­

pacities, or possibly both. For example, the Chechile

(1987) model has been applied to this issue, showing that

both storage and retrieval abilities improve across age

groups, although not necessarily at the same rate (Chechile

& Richman, 1982; Chechile, Richman, Topinka, &

Ehrensbeck, 1981). A number ofother MPT models have

been proposed to measure these processes in children.

The models use different memory paradigms; however,

they all involve repeated recall, in which the child's mem­

ory for an event or word list is tested over a series of suc­

cessive recall tests.

Howe s trace-integrity model. The most extensive ap­

plication ofMPT modeling to children's memory has been

conducted by Howe and his associates (e.g., Howe, 1991,

1995; Marche & Howe, 1995). In their experimental par­

adigm, children learn a list ofwords to criterion, followed

at various delays by four successive recall attempts of the

list. The data events consist of the 16 (24) four-tuples that

result when all combinations of successful and unsuc­

cessful recall are tabulated for each item across the four

trials. The model itself is based on trace-integrity theory

(Howe & Brainerd, 1989), which assumes that stored

memory traces can be forgotten but that it is also possible

to restore decayed memory traces through reminiscence.

The model thus contains storage and retrieval parameters,

as well as parameters for various forms ofreminiscence.

The trace-integrity model has been used by Howe and

his associates to examine developmental trends in a large

corpus of experiments (see Howe & O'Sullivan, 1997,

for a review). The overall results of these studies are ar­

gued to support the hypothesis that age-related memory

differences tend to reflect storage capacity more strongly

than retrieval capacity. This is based on experiments in

which developmental differences are found for storage but

not retrieval (e.g., Brainerd, Reyna, Howe, & Kingma,

1990, Experiments 1and 3; Howe, 1991), as well as stud­

ies in which storage and retrieval both increase with age

but with stronger changes for storage (e.g., Brainerd et aI.,

1990, Experiment 2; Howe, 1995). In addition to age dif­

ferences, the trace-integrity model has also been applied

to a number of other factors that have been previously

known to influence memory, with theoretically plausible

results. For example, the model has shown that pictures



are both stored and retrieved better than words (Brainerd

et al., 1990; Howe, Kelland, Bryant-Brown, & Clark,

1992), that semantically related items are stored better

in memory than unrelated items (Brainerd et aI., 1990),

and that extra presentation trials benefit storage but not

retrieval (Howe, 1995). Other studies have examined the

influence of postevent information on children's memo­
ries. Howe, Courage, and Bryant-Brown (1993) found that

reinstating memories after a 3-week interval improves

storage and retrieval rates, but with a stronger effect on
storage, whereas Howe (1995) observed that RI adversely

affects storage capacity, with weak or no effects on re­

trieval capacity.

Memory in language-impaired children. A model sim­
ilar to Howe's was developed earlier by Kail, Hale,

Leonard, and Nippold (1984). Their model is also based

on the theoretical framework that stored traces can be

strengthened by recall procedures, although the specifics

of their model differ somewhat from Howe's. In addition,

the experimental task behind the Kail et al. model in­

volves only three successive recall attempts instead of

four, resulting in eight (23) data events. Despite fewer data

categories, there are still enough degrees of freedom in

the data to estimate the model's parameters.

Kail et al. (1984) used this model to explore memory

deficits in language-impaired children. Their empirical

analysis focused on the differences between free and cued

recall performance and indicated the presence of strong

storage deficits. However,these empirical results were not

clear-cut concerning whether retrieval deficits were also

a contributing factor. The model clearly revealed that

memory problems in language-impaired children were

the result of both storage and retrieval deficits. This ex­

ample and the previous studies by Howe and his associ­

ates nicely illustrate the advantages of formal modeling

over ad hoc statistics in the measurement ofcognitive pro­

cesses. When multiple cognitive processes influence be­

havior, it is sometimes difficult using traditional statisti­

cal techniques to determine whether a single factor or a

combination offactors is the primary cause of the behav­

ior. MPT models can provide a more formal and quanti­

tative measure of each cognitive process, which can be

helpful in establishing their relative contributions in dif­

ferent experimental situations.
Memory for personal experiences. Bender et al. (1996)

have also applied a storage-retrieval model to children's

memory; however, unlike the above studies, they exam­

ined memory for the real-life events experienced during

a visit to the doctor. Children (3-7 years old) made two

recall attempts for these events, one immediately after

the visit and one after a delay. This created four (22) pos­

sibilities for successful (S) or unsuccessful (F) recall: SS,
SF, FS, and FE As Bender et al. pointed out, the model

they developed was equivalent in form to the one devel­

oped by DaPolito (1967) for proactive inhibition, repre­

sented in Figure 3. As stated earlier, the model has three

parameters, a storage parameter plus a conditional re­

trieval parameter for each of the two recalls. Thus, there
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are enough degrees of freedom (3) to uniquely estimate
parameter values, but not enough to test the fit ofthe model

to data from a single group of subjects.

However, Bender et al. (1996) were able to generate a

nested hierarchy of models by constraining certain pa­

rameters to be equal across age and recall attempts. By

doing so, they were able to test the fit of different nested

models, especially those making assumptions about stor­

age or retrieval changes across age groups. The results

showed that while storage capacity improved significantly

with age, the strongest developmental improvements

were due to retrieval. This finding contrasts to the analy­

ses based on Howe's model discussed earlier, which has
recorded developmental gains for both storage and re­

trieval abilities in a different paradigm. However, Howe's

research suggests that storage improvements across age

tend to be much larger than improvements in retrieval.

Of course, the memory paradigms differ in the two stud­

ies, and further research and modeling analysis will be

needed to determine the precise circumstances leading to

storage or retrieval differences across age groups.

Recognition failure. A curious observation in mem­

ory research is that it is possible to correctly recall words

that earlier could not be recognized, a phenomenon

known as recognition failure of recallable words. This

occurs within the recognition-failure paradigm, in which

paired associates (A-B) are presented to subjects fol­

lowed by two memory tests: a recognition test for the B

terms, followed by a cued recall test ofthe B terms given

the A terms as cues. The data consist of a 2 X 2 table of

correct and incorrect responses for both recognition and

recall. Riefer and Batchelder (1995) have used a simple

MPT model to measure storage and retrieval processes in

this paradigm and, in particular, to explore the Tulving­
Wiseman (Tulving & Wiseman, 1975) function, which

predicts a systematic relationship between recognition

versus recognition given recall. One version of the model
is structurally equivalent to the one in Figure 3, where r,
and ": are the retrieval probabilities of recognition and
cued recall, respectively. Riefer and Batchelder (1995)

show that this model is actually a special case of the more

elaborate retrieval-independence theory of recognition

failure (Flexser & Tulving, 1978), which assumes that

item retrieval during recognition and during cued recall are

conditionally independent events, given that the item is

successfully stored.

In particular, we have applied the model in Figure 3 to

a large corpus of data from recognition-failure studies

collected by Nilsson and Gardiner (1993). The simplicity
of the model allowed us to explore some of the basic prop­

erties of this paradigm, as well as the Tulving-Wiseman

function itself. For example, we were able to generate

specific predictions, in the form ofmodel equations, as a

function of certain theoretical assumptions. Among other

things, the model revealed that exceptions to the Tulving­

Wiseman function occur only when weak storage is cou­
pled with strong retrieval. By assuming that storage and

retrieval capacities are positively correlated within a par-
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ticular condition, we were able to show that the MPT
model sheds light on why the Tulving-Wiseman func­
tion appears to fit data so well. However, we also showed
that the Tulving-Wiseman function has surprising con­
sequences for data that are not satisfied, and, thus, the
function itself (but not the MPT model) has a question­

able status.
Another application of MPT modeling to the

recognition-failure paradigm has been conducted by
Humphreys and Bowyer (1980). Their contention is that
priming during the recognition test plays a significant
role in this paradigm, due to the fact that the presentation
ofthe B term during recognition could boost the memory
for B on the subsequent recall task. To explore this,

Humphreys and Bowyer developed an MPT model that
incorporates a parameter for priming, as well as param­
eters for storing items and correctly recognizing them
given sufficient or insufficient storage. Given the precise
structure of the model, they were able to incorporate dif­

ferent theoretical assumptions and then determine the pre­
cise predictions ofthe model based on those assumptions.
For example, retrieval independence was incorporated in
the model by constraining two ofthe model's parameters
to be equal. By comparing the model's predictions with

the actual data, Humphreys and Bowyer were able to
argue that priming is in fact an important factor in the
recognition-failure paradigm. A related MPT model for

this paradigm can be found in Humphreys and Bain
(1983).

Models of Source Memory
A common experimental task in memory research re­

quires subjects to memorize information that comes from

multiple sources. An example of this is the source­
monitoring paradigm described earlier. Sometimes, sub­
jects are aware of these sources and are specifically in­
structed to keep track of which items come from which
sources. At other times, subjects are not informed that

different information may be coming from other sources,
such as occurs when inaccurate text information is pre­
sented in the eyewitness suggestibility effect (Lindsay,
1993). In either case, memory performance can be eval­

uated not only by accuracy on source memory but also by
the types of errors made when information is attributed
to the wrong source. The combination of successes and
errors to different sources yields a potentially rich set of
categorical data for the creation ofMPT models. In turn,
these models are capable of measuring basic cognitive
processes in these tasks, such as item detection, source
discrimination, and the cognitive effect that information
from one source can have on memories based on a differ­
ent source.

Source monitoring. Our source-monitoring model
described in Figure 2 has been used in several studies to

investigate a variety of theoretical issues. For example,
Johnson, Kounios, and Reeder (1994) used a speeded­
response paradigm (e.g., Corbett & Wickelgren, 1978) to

compare the time course of source-monitoring judgments.

Subjects were required to make source judgments at lags
ranging from 300 to 1,500msec, and analysis by the model
showed that recognition accuracy (as measured by D) de­
velops more quickly than source accuracy (as measured
by d). This is consistent with the model's assumption that
item detection necessarily precedes source discrimination.
In another study, Mulligan (1996) examined the influence
of perceptual interference (e.g., brief exposure to stimuli
followed by a pattern mask) on various aspects ofmem­
ory, including source monitoring. He found, somewhat

surprisingly, that certain levels ofperceptual interference
during encoding can actually enhance later recognition
memory, although it has no effect on source memory.
Other studies have used the model, as a supplement to

more traditional analyses, to investigate age differences
in source monitoring (Ferguson, Hashtroudi, & Johnson,
1992; Light, LaVoie, Valencia-Laver, Albertson Owens,
& Mead, 1992; Lindsay, Johnson, & Kwon, 1991) and

discrimination between true and false statements (Begg,
Anas, & Farinacci, 1992).

The source-monitoring model in Figure 2 has also

been extended in a number of important ways. Batchelder,
Hu, and Riefer (1994) have expanded the model to han­
dle situations involving any number of sources, and, in
particular, Riefer, Hu, and Batchelder (1994) used a three­
source version of this model to explore the role that re­

sponse bias plays in source judgment. Batchelder, Riefer,
and Hu (1994) have proposed a low-threshold version of
the model, as well as one based on signal-detection theory.
In a more extensive study, Bayen, Murnane, and Erd­

felder (1996) compared the original source-monitoring
model with various high- and low-threshold variations and
tested these models on data from a factorial experiment
manipulating item similarity and source similarity. They

argue that the only model to accurately account for their
data in a psychologically plausible way was a two-high­
threshold (2HT) version, which differs from the original
model by postulating an additional parameter, D

3
, repre­

senting the probability that new distractors can be detected

as new. Bayen and Murnane (1996) successfully used
this model to investigate how older adults use perceptual
and temporal information to make source-monitoring
judgments. Erdfelder and Bredenkamp (1998) used a
variation of the 2HT model to study source memory for
script-typical versus script-atypical information, pre­
sented in either whole or fragmentary form. Finally, Klauer
and Wegener (1998) provide an important new model for
the "Who said what?" paradigm in social categorization.

Process dissociation. An area closely related to source
monitoring is the process-dissociation paradigm. Jacoby
and coworkers (e.g., Jacoby, 1991, 1998; Jacoby, Toth,
& Yonelinas, 1993) have developed a two-process theory
of recognition memory based on Mandler's (1980) idea
that recognition of an item can occur either through a spe­
cific, conscious "recollection" of the item or from a suf­
ficient feeling of "familiarity." Arguments for this distinc­
tion come from experiments designed to show that these
two processes can be dissociated (i.e., that they can be



affected differentially by experimental factors or indi­

vidual differences). In an effort to separately measure rec­

ollection and familiarity, Jacoby (1991) invented the pro­

cess-dissociation procedure. Two groups of subjects each

study two successive lists, followed by a "yes"-"no"

recognition test with old list items and new distractors.

Group 1 (the inclusion group) is instructed to say "yes"

for old items in either list, whereas Group 2 (the exclu­

sion group) is instructed to say "yes" only to old List 2

items and to say "no" to old List 1 items and to distractors.

Jacoby (1991) developed a model for this paradigm,

which assumes there is a probability R that a list item is

recollected and probability F that it has sufficient famil­

iarity to be called "old." The model further assumes that

the two processes are independent, yielding the equations

PI = P("yes" I List 1 item, Group 1)

Estimates ofRand F are generated by solving for Equa­

tions 5 and 6, yielding R = PI - P2and F = P2 / (1 - R).

As Buchner, Erdfelder, and Vaterrodt-Plunnecke

(1995) note, it is easy to view the model in Equations 5

and 6 as a simple MPT model, with separate trees for

Group 1 and Group 2 responses. But Buchner et al. (1995)

also argue that there need to be trees for List 2 items as

well as distractors. In addition, unlike most MPT models

for recognition memory, there are no guessing probabili­

ties in Jacoby's (1991) original formulation. On the other

hand, because of the experimental design, it might be ex­

pected that the exclusion group would have a lower bias

for "yes" responses than the inclusion group. As a con­

sequence, Buchner et al. (1995) expanded the model to

include identifiable guessing probabilities and argued

that the model fit the data in a series of experiments de­

signed to influence guessing but not memory processes.

They also challenged the necessity of postulating that

recollection and familiarity are independent processes.

In fact, Buchner and Erdfelder (1996) discuss models

that make recollection and familiarity mutually exclusive

processes, as well as ones in which one process is condi­

tional on the other.

Yonelinas and Jacoby (1996) have proposed an alter­

native processing-tree model in which familiarity is han­

dled by a Gaussian signal detection model, rather than a

discrete-state process characteristic of Buchner et al.s

MPT model. Yonelinas and Jacoby's model is motivated

by the desire to account for receiver operator character­

istics (ROCs) based on confidence ratings, where subjects

indicate the confidence of their response assignment on

a discrete scale. With the addition ofconfidence ratings,

the data structure is still categorical, and, in fact, there are

and

= R + (l-R)F

P2 = P("yes" I List 1 item, Group 2)

= (l-R)F.

(5)

(6)
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even more categories to support a richer model. Yoneli­

nas and Jacoby (1996; also see Yonelinas, 1994; Yoneli­

nas, Regehr, & Jacoby, 1995) argue that the Buchner et al.

model is based on "high-threshold" assumptions (dis­

cussed later), which predict linear ROCs based on con­

fidence ratings. In a well-argued reply, Erdfelder and

Buchner (1998b) show that this is not the case, and they

extend their MPT model to predict confidence rating data,

as well as the more traditional data structure in the process­

dissociation paradigm.

Currently, the process-dissociation paradigm is very

popular, and a number ofresearchers are developing mod­

els, including MPT models, to handle data in this and a

variety of related paradigms (e.g., Buchner & Erdfelder,

1996; Buchner, Steffens, Erdfelder, & Rothkegel, 1997;

Buchner & Wippich, 1996; Dehn & Engelkamp, 1997;

Mulligan & Hirshman, 1997; Wainwright & Reingold,

1996). An interesting application comes from Buchner,

Erdfelder, Steffens, and Martensen (1997), who directly

compared the process dissociation and source-monitoring

paradigms. They point out the close correspondence be­

tween the response categories in each paradigm, and, by

constructing related MPT models, they argue from an

analysis of experimental data that both paradigms share

the same psychological processes. In general, the process­

dissociation paradigm appears to be an area where MPT

models, with their structural simplicity and statistical ad­

vantages, are likely to have a substantial impact.

Eyewitness memory. The eyewitness suggestibility

effect is the observation that misleading information pre­

sented after an event can distort the memory for that

event. In a typical experiment, subjects are presented with

information about an event (e.g., a car approaching a

traffic light) and later read a text containing information

that is consistent (traffic light), inconsistent (stop sign),

or neutral (intersection). An important theoretical ques­

tion concerns what happens to the memory trace of the

original stimulus. Loftus has theorized that original in­

formation can be destroyed and updated with postevent

information (e.g., Loftus, Donders, Hoffman, & Schooler,

1989), whereas McCloskey and Zaragoza (1985) claim

that the original information is still intact.

Wagenaar and Boer (1987) explored this issue by rep­

resenting these informal theories as formal models,

which they referred to as event-tree models. Each of the

models satisfied the MPT properties described earlier.

Three theories were examined: (1) destructive updating,

in which the original stimulus can be erased and replaced,

(2) coexistence theory, in which the original stimulus is

always intact but sometimes inaccessible, and (3) no­

conflict theory, in which inaccurate memories only occur

on those portion of trials when the original information

is insufficiently encoded. The experimental paradigm

was as described above, except that Wagenaar and Boer

added a final "second-guess" phase in which subjects

were informed that a traffic light was in fact the correct
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response and were then asked to state the color ofthe light.
The data events consisted of the combination of correct
and incorrect responses to questions about the traffic light
and its color.

The advantage ofrepresenting each theory in the form
of an MPT model was to make the assumptions behind

each theory explicit, thereby providing a more precise
test of each theory's ability to account for experimental

results. In particular, Wagenaar and Boer (1987) were

able to generate a series of equations representing the

specific predictions made by each theory. The results

showed that the no-conflict theory produced the best fit

to the data with the fewest parameters.

Hindsight bias. Situations sometimes arise in which

people make predictions or judgments about an event,

followed by feedback on the event's actual outcome.

Under these conditions, it is necessary to discriminate be­

tween two sources ofinformation: one's originaljudgment

and the true outcome. However, research shows that peo­

ple's memory for their original judgment often tends to

be skewed in the direction of the true outcome, a phenom­

enon known as hindsight bias (Hawkins & Hastie, 1990).

Erdfelder and Buchner (l998a) examined hindsight

bias using an experimental task in which subjects gave

their best answers to a series of difficult questions re­

quiring unique numerical responses (e.g., "What is the

melting temperature of lead?"). After a delay, subjects

were provided with feedback of the correct answers for

half of the questions, with the other half serving as con­

trols. Subjects' recall oftheir original responses was later

tested in a final memory test. The data events consisted

of the rank ordering of three numerical judgments: the

original judgment (OJ), the correct judgment (CJ), and

recollection ofthe original judgment (ROJ). Hindsight bias
occurs, for example, when the recollected judgment is dif­

ferent from the original judgment, and in the direction of

the correct judgment (e.g., OJ < ROJ < CJ). Allowing

for ties between judgments, and assuming that subjects'

original responses are incorrect (i.e., OJ *' CJ), there are

10 possible rank orderings. This creates a total of 20 re­

sponse categories when both the feedback and the control

items are analyzed.

Erdfelder and Buchner (1998a) identified a number of

cognitive factors that can be instrumental in causing

hindsight bias and developed an MPT model that incor­

porated these factors as parameters of the model. The full

version of the model contained 13 parameters, represent­

ing processes of recollection, biased and unbiased re­

constructions of the original judgment, and guessing. To

test the model, Erdfelder and Buchner (1998a) conducted

a series of validation experiments designed to show that

certain experimental manipulations selectively influence

some parameters but not others. Among other things,

these tests showed that (I) providing the correct answers

at the time of the final recall test increased reconstruc­

tion bias without affecting other parameters, (2) casting

doubt on the accuracy of the correct answers reduced

hindsight bias by improving the recollection parameters,

and (3) manipulating the number ofresponse alternatives

on the final memory test affected only the model's guess­
ing parameters. On the basis of these and other experi­

mental validation studies with the model, Erdfelder and

Buchner (1998a) concluded that reconstruction bias seems

to playa larger role in creating hindsight bias than rec­

ollection bias. All of these results are psychologically

plausible and help validate the model as a viable tool for

measuring cognitive processes in hindsight bias. In a

follow-up paper, Dehn and Erdfelder (1998) have pro­

posed a modification ofthe Erdfelder-Buchner model to

handle situations lacking unique correct judgments.

Models of Perception

It should be evident from the examples so far that many

of the applications ofMPT models have been in the area

of human memory. But MPT modeling is a framework

that, in principle, can be applied to measure any type of

cognitive processing, provided those processes result in

categorical data. This is illustrated with three MPT mod­

els that have been developed to study attention and per­

ceptual processes.

Object perception. Ashby, Prinzmetal, Ivry, and

Maddox (1996) have proposed an MPT model for feature

binding in object perception. When subjects are briefly

exposed to two stimuli, they may occasionally report per­

cepts in which the visual features of the stimuli are per­

ceived correctly but combined incorrectly, a phenome­

non known as illusory conjunction (Treisman & Schmidt,

1982). For example, iftwo letters ofdifferent colors (e.g.,

a blue C and a red X) are presented quickly, subjects may

report "seeing" a blue X. In tasks such as this, subjects can

respond with the correct target, a distractor error (based on

the other letter in the display), or a nondistractor error (a

letter or color not on the current display). These types of

responses can be combined for both letter and color fea­

tures, resulting in a large number of response categories.

One issue in this research area concerns whether illu­

sory conjunctions occur though some specific cognitive

mechanism or whether they result purely from guessing

errors. Ashby et al. (1996) assert that traditional empir­

ical measures of illusory conjunctions have been funda­

mentally flawed, precisely because they fail to adequately

account for guessing. For this reason, Ashby et al. de­

veloped a series ofmodels that incorporated different as­

sumptions about guessing and feature-binding processes.

Models that incorporated a specific parameter for feature

binding provided the best account of the data, whereas

pure guessing models performed poorly. This provided

strong, theoretically based evidence for a cognitive basis

to illusory conjunctions that previously could not be es­

tablished using purely empirical measures. Moreover, an

MPT model based on Ashby et al.s location-uncertainty

theory provided a better fit to the data than one based on

Treisman and Schmidt's (1982) feature-integration theory.

One advantage of the Ashby et al. (1996) model is that

it allows researchers to measure feature perception sep­

arately from feature binding. This can prove to be useful
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Figure 4. A version of Batchelder and Crowther's (1997) joint MPT representation ofthe fuzzy

logic model of perception.

in research on illusory conjunctions because it allows in­

vestigators to measure the effect ofexperimental variables

more precisely for each process. For example, Ashby et al.

found that increasing the interstimulus distance reduced

correct feature detection and created more feature-binding

errors. Prinzmetal, Henderson, and Ivry (1995) observed

that lengthening exposure durations and reducing atten­

tional demands had no significant effect on feature de­

tection and still resulted in illusory conjunction errors (as

measured by the feature-binding parameter). This is an

important result because it demonstrates that illusory

conjunctions can be obtained without extremely brief ex­

posures and attention-demanding tasks.

Speech perception. Batchelder and Crowther (1997)

have recently applied MPT modeling to the area of speech

perception. In one oftheir experiments, synthetic speech

stimuli were generated by combining two acoustic factors:

9 levels of vowel duration with 3 levels of the Fl offset

frequency of the vowel, creating 27 stimuli, <i,j>, 1 :::;

i :::; 9, 1 :::; j :::; 3. Subjects listened to each stimulus 30

times and were required to classify each stimulus as one of

four syllables: [b 1\. k] ("buck"), [bak] ("bock"), [b 1\. g]

("bug"), and [bag] ("bog"). This specific experimental task

is an example of a more general paradigm calledfactor­

ial categorization. In factorial-categorization experiments

subjects classify stimuli into a small set of response cat­
egories. Each stimulus factor has a finite number oflev­

els, and the stimuli are obtained by combining all possi­

ble ways of conjoining one level from each factor. Many

areas ofcognitive psychology employ such paradigms, in­

cluding concept identification, pattern recognition, and

speech perception (N. H. Anderson, 1990; Ashby, 1992;

Trabasso & Bower, 1964).

Batchelder and Crowther (1997) constructed a nested

family ofMPT models for the special case of two factors
and four responses, in which the most specific model was

equivalent to a version of Massaro and Oden's fuzzy logic

model of perception (FLMP; e.g., Massaro, 1987). In

particular, Crowther, Batchelder, and Hu (1995) showed

that the FLMP for any four-response, two-factor paradigm

is equivalent to an MPT model depicted in Figure 4 (i.e.,

it generates identical parametric probability functions).

The model for the experiment above has a total of 12 pa­

rameters, ai' bj for 1 :::; i :::; 9, 1 :::; j :::; 3; because there

are four response categories (and thus 3 df) per stimulus,

it is ajoint MPT model with 69 df [(3 X 27) - 12]. The

left panel of Figure 4 depicts its 27 separate trees, Vij,
corresponding to each stimulus; the right panel depicts

the processing tree for stimulus < i.j >, where the Tk (k =

1,2,3,4) correspond to the four syllable responses dis­

cussed earlier. The idea behind the MPT representation

is that each factor-level defines its own scale value, and

the decision process on conjointly defined stimuli depends

on the joint presence or absence of two latent cognitive

events-namely, support for vowel [1\.] or [a] ("u" or "0")

and support for final consonant [k] or [g]. In Batchelder

and Crowther (1997), the model in Figure 4 was a special

case of a more general model, called the conditional in­

dependence model, where the a, and bj in the right panel

of Figure 4 were replaced with aij and bi j , allowing both

factor levels to influence the probability of each latent

event. In this case, the joint MPT model has 54 parameters

(the aij and b i j ) and 27 cif(8l - 54). Interestingly, the

data strongly supported the conditional independence

model but not the FLMP in Figure 4.

Object identification. A recent study by Brown (1998)

has addressed the issue of whether object identification

in a multiobject array is a parallel or a sequential process.
The purpose was to test a strong sequential assumption

made by LaBerge and Brown (1989) that only one object

at a time in a visual scene is identified by the visual at­

tention system. In Brown's paradigm, observers were

given a fixed set of target letters and then tried to identify

the number of target letters in a series of horizontal two­

letter displays. The duration and luminance of each dis­

play were varied, as was the distance between the two let­

ters. There were four possible stimulus arrangements for
each two-letter display (two targets, one target on left, one
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target on right, no targets) and, in turn, four correspond­
ing responses that observers could make. This created a
rich data structure represented by a 4 X 4 item-by­

response table of category frequencies.
Brown (1997) developed and tested four MPT models,

two with a parallel-processing interpretation and two
with a sequential-processing interpretation. The parallel
models (in Brown's terminology) satisfied the condition
that the order of processes could be interchanged in the
tree without affecting the category probabilities. In con­
trast, the sequential models had a fixed order to the pro­
cesses in the tree. Brown concluded that the best-fitting

model was a parallel version, in which observers may
"chunk" the letters and process the stimuli as a whole or
process the letters independently in parallel ifthe chunk­

ing process fails. It is encouraging that different plausi­
ble accounts of object recognition can be sharply differ­
entiated when formulated as MPT models applied to the

entire data structure.

Models of Reasoning
A number of standard tasks exist for the study of log­

ical reasoning abilities, working with forms such as syl­
logisms, the propositional calculus, analogies, and so on.

Performance on these tasks is often measured simply in
terms of whether or not the logically correct response is
given. However,restricting the data analysis to correct ver­
sus incorrect responding ignores a wide range of differ­

ent response errors that can be made to these problems.
A more careful analysis ofresponse errors can potentially
reveal important insights into the underlying reasoning
processes that produce them. As can be seen in the ex­
amples to follow, MPT modeling provides a useful tool

for accomplishing this.
Wason card-selection task. The card-selection task

is a method developed by Wason (1966) for studying
propositional reasoning. In this paradigm, subjects are
presented with a rule in the form ifp then q, followed by

four cards. Subjects are told that each card depicts the
status ofp on one side and q on the other, but subjects can
see only one side ofeach card. The four possible card sides
represent p, not p, q, and not q, and the subject's task is
to indicate which cards need to be turned over to verify

if the rule is true or false. Because subjects can choose
any combination ofcards to turn over, there are 24, or 16,
possible responses to this task (the correct response being
the choice of cards p and not q). However,as Evans (1977)
pointed out, most studies using this task fail to report
their results in such detail, and some report only whether
performance is correct or incorrect.

Evans (1977) also noted that formal mathematical mod­
eling is rare in the area of thinking and reasoning, and he

set as his goal to develop a simple stochastic model for
the card-selection task based on the assumption that sub­
jects' choices for each of the four cards are made inde­
pendently, although with different marginal probabilities.

The parameters of the model represent the probabilities

of making responses based on logical reasoning versus
nonlogical response tendencies. In generating data for
this model, Evans not only considered the selection or

nonselection of each card but also included rules other than
ifp then q, created by adding negative statements (e.g.,

ifnot p then not q). This generates a large set ofresponse
categories for developing and interpreting the model. Al­
though not presented in tree form, Evans' model is in
fact an MPT model; specifically, it is ajoint MPT model,
because 16 separate trees can be generated for the selec­
tion of the four cards across four different types of rules.

Evans (1977) used the model to reanalyze data from

an experiment by Evans and Lynch (1973) and found that
the independence model did a goodjob of accounting for
the data with logically interpretable parameter values. In

a follow-up study, Krauth (1982) reformulated the model,
adding parameters for specific cognitive processes. These
included parameters for the logical operations offalsifi­

cation and verification and for nonlogical processes, such
as matching. Krauth's model revealed that logical and
nonlogical processes both occur in the card-selection task,

a result that is not directly evident from prior analyses of
this paradigm.

Klauer and Oberauer (1995). A more comprehen­

sive MPT modeling approach for studying propositional
reasoning has been developed by Klauer and Oberauer.
In their task, subjects read a major premise involving
propositions p and q and then a minor premise giving the

state of one of these two propositions (true or false).

Subjects had to categorize the state ofthe other proposi­
tion ("true" or "false") if it could be inferred and otherwise
select a "nothing follows" response. There were four major

premise types, corresponding not only to the conditional
form used in the Wason (1966) card-selection task but
also exclusive disjunction, inclusive disjunction, and bi­
conditional. When these were coupled with the four forms

of the minor premise and the three response categories,
the data structure was a 16 X 3 product multinomial, with
32 df iot modeling. Klauer and Oberauer constructed a

joint MPT model based on a general theory of propos i­
tional reasoning proposed by Johnson-Laird, Byrne, and
Schaeken (1992). The model included cognitive processes
reflecting "reasoning difficulty," "inconsistent interpreta­
tion" (e.g., reading a conditional as a biconditional), and

response bias. The model fit the data well and allowed
for the separate measurement of parameters for these
three cognitive processes. Furthermore, the rank ordering
of the reasoning-difficulty parameters was consistent
with that predicted by the Johnson-Laird et al. theory.

Rips's (1983) ANDS model. One of the most elabo­
rate information-processing theories for propositional
reasoning has been developed by Rips, called ANDS (a
natural deductive system). Rips's model can handle a wider
set of inferences than those of Wason (1966) and Klauer
and Oberauer (1995), and it has been implemented in a
computer program in the LISP programming language.
The model makes assumptions about memory and con-



trol processes and couples these with mental inference

rules. It also constructs proofs for a variety of inferences,

and Rips found the model's proofs to be similar to sub­

jects' proofs in many settings.
In one application, Rips (1983) decided to make

ANDS probabilistic and fit the proportion of valid re­

sponses to a set of32 inference problems. These problems

were created by using different combinations of quali­

fiers such as and, not, or, if... then, and so on (see Rips,

1983, Table 4). The data structure was a product binomial

with 32 problems and two response categories for each
problem ("valid" or "invalid"), thus creating 32 df The

model was made probabilistic by postulating that each of

12 inference rules mayor may not be available for a given

problem. To simplify the calculations, Rips assumed that

each rule had its own fixed probability ofavailability and

that rule availability is independent. With these assump­

tions, explicit expressions of the response probabilities for

each problem were derived in terms of the 12 availabil­

ity parameters, plus one guessing parameter, and the data

were fit using the STEPIT program (Chandler, 1969)

with a least squares criterion. The fit was judged to be

satisfactory.

With the above assumptions, ANDS can be viewed as

ajoint MPT model with 32 trees, where each branch re­

flects a sequence of available and unavailable reference

rules. In fact, a reanalysis of the data within the MPT

framework would provide statistically interpretable fit

measures and confidence intervals for the estimates. What
we think is interesting in this case is that a very detailed

information-processing model can be reduced to MPT

form with a few simplifying assumptions, such as rule

independence and availability probabilities that are iden­

tical over problems. These assumptions are, at best, ap­

proximations; however, the gain in statistical analysis may

compensate for the degree of simplification. In any event,

analyses like the one Rips (1983) provides supplements

the analyses ofthe information-processing model in a pro­

ductive way.

Class inclusion. Piaget (1952) has developed a number

of simple tasks to study reasoning abilities in children.

One set of tasks examines children's understanding of

the concept of class inclusion. For example, a child may

be informed that there are five black dogs and three or­

ange cats and then asked the question, "Are there more

dogs or more animals?" Rabinowitz, Howe, and Lawrence
(1989) have developed a model that satisfies the MPT

constraints and is capable of separately measuring mem­

ory and reasoning processes in this task. They extend Pi­

aget's standard paradigm by asking additional questions

concerning the subclasses (e.g., "Are there more dogs

than cats?") plus a series of more complicated questions

about the color of the class members (e.g., "Is the black­
est dog the same color as the blackest animal?"). Alto­

gether, there are II different questions that can be asked

in these formats. Moreover, responses can be categorized

into successes ("more animals") and two types of errors
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("more dogs" or "same number"). This generates a fairly
rich set of response categories for MPT modeling.

Rabinowitz et al. (1989) did not explicitly represent

their model in processing-tree form, but, in essence, their

model can be constructed as a series of joint MPT models

when applied to each different question. Their two main

goals were to assess the relative contributions of memory

and reasoning processes in the class-inclusion task and

to examine how these processes change across the life

span. The results of their analysis showed that children

were poorer than adults on both memory and reasoning

abilities. In fact, 7- and IO-year-old children exhibited
no understanding at all of class-inclusion logic, on the

basis of the finding that the model parameter measuring

that process was estimated to be zero. This conclusion,

based on the model's analysis, is the type of result that is

often difficult to extract from ad hoc statistics because they

are typically confounded by guessing and response-bias

factors.

In a more extensive study, Howe and Rabinowitz (1996)

found that the main developmental trend is the emer­

gence of more sophisticated reasoning processes with

the decline of less sophisticated strategies. Howe and

Rabinowitz also manipulated memory load (having the

original statement available or not at the time ofquestion­

ing) and information load (one or two dimensions per

statement), and these manipulations affected both mem­

ory and reasoning parameters. From this, they concluded

that memory and reasoning processes are not indepen­

dent, contrary to some earlier theories.

Psychometric Models
An area ofpsychology that has seen great use ofprob­

abilistic models is psychometrics. Psychometric models,

unlike most models in cognitive psychology, generally

involve individual-difference parameters and item param­

eters. One large subarea ofpsychometric modeling is test

theory, in which the data structure consists of the perfor­

mance of a set of subjects who each answer the same set

ofquestions. Although most ofthe models in this area are

not MPT models, two applications ofMPT modeling are

described below.

Cultural consensus analysis. In a series of papers,

Batchelder and Romney (1986, 1988, 1989; Romney,

Batchelder, & Weller, 1987; Romney, Weller, & Batch­

elder, 1986) developed a set of formal models for infor­

mation pooling called cultural consensus analysis. The
paradigm involves a set of respondents, each answering

the same set of objective questions. Neither the answers

to the questions nor the relative knowledge of the respon­

dents is known a priori. This is the case for many situa­

tions in the social sciences, especially cultural anthropol­

ogy, in which researchers attempt to learn about a cultural
group by asking questions to members of the group.

In one of the models designed for multiple-choice ques­
tions, each question is assumed to have a single correct

answer, and each respondent is assumed to have a com-
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petency parameter that measures the probability that the

respondent "knows" the correct answer to any particular

question. The model allows the researcher to estimate both

the competency parameters for each respondent and the

correct answer to each item, by using information from

the question-response matrix. Klauer and Batchelder

(1996) showed that the multiple-choice model described

above can be formulated as an MPT model. More specif­

ically, they explored the two-respondent case and applied

it to the problem of interjudge reliability in subjective cat­

egorization. The model extendsprevious work on this issue

by explicitly postulating and measuring category re­

sponse biases and interjudge reliability.

In another application, Batchelder, Kumbasar, and Boyd

(1997) have constructed a consensus-analysis MPT

model for sociometric measurement. The paradigm re­

quires each member of a social network to provide infor­

mation about the friendship ties between every pair of

members in the network. If the network has N members,

then the data consist of N friendship digraphs on the

same set ofN nodes, one from each member. The model

permits one to estimate a "consensus" digraph of the net­

work, as well as competency and response-bias param­

eters for each member ofthe network. Interestingly, these

member-competency parameters can vary from region to

region in the digraph, reflecting the fact that one's social

knowledge and biases can depend on how close one is tied

to other members of the social network.

Item-response theory. A popular psychometric ap­

proach to test theory is item-response theory, where

models postulate subject-ability parameters and item­

characteristic parameters (see Baker, 1992; Fischer &
Molenaar, 1995). The models are applied to a subject X

item matrix, in which each entry is a measure ofthe per­

formance of a particular subject to a particular item. In

most cases, models of this type are designed for categor­

ical data but, in general, are not MPT models (e.g., the

Rasch, 1960, model discussed earlier). One exception are

the finite-state models of Hutchinson (1982) and their

elaboration by Garcia-Perez (1987,1989,1990; Garcia­

Perez& Frary, 1991a, 1991b). In one version ofthese mod­

els, the test taker is assumed to know the status of each

alternative in a multiple-choice test independently with

probability 'A, 0 ::S 'A ::S 1. For an item with, say, three re­

sponse alternatives (only one ofwhich is correct), the test

taker can know the status of k of the items with prob­
ability Pk = n) 'Ak(l - 'A)3 - k, for k = 0,1,2,3. The

model takes into account whether the correct answer is

among the known ones, and the model includes guessing
parameters if it is not.

In another application, Garcia-Perez (1993) con­

structed an MPT model for the case in which the last op­

tion is "none ofthe above." He used the model to compare

the confidence-interval estimates of the test taker's abil­

ities for the case of"none-of-the-above" items compared

with more conventional items involving an equal number

of options. Interestingly, Garcia-Perez's (1993) analysis

using the MPT model showed that a "none-of-the-above"

option can reduce the size of the confidence interval of

'A, which is a different conclusion from some earlier

work claiming that there is no statistical advantage to in­

cluding such items.

THEORETICAL ISSUES

In this section, we address a number of theoretical is­

sues relevant to the application of MPT modeling. We

start by outlining some basic considerations that are im­

portant in the development and testing of new models.

Following this, we address a series of topics that have

generated some recent debate, including high-threshold

and discrete-state assumptions behind MPT models and

their role as approximations to more complete psycho­

logical theory. Finally, we compare MPT modeling with

other general classes of mathematical models.

Model Development

It is generally the case that given a category system

C t , C2, ... , CJ , many potential MPT models can be de­

veloped. There is no algorithm for creating models; how­

ever, there are a few useful heuristics. If one wishes to

develop an MPT model for a particular research paradigm,

three basic steps must be accomplished. First, a category

system of possible response events must be established.

Second, it is necessary to identify which cognitive pro­

cesses are involved in the paradigm. Third, one must spec­

ify how these processes lead to each of the response cat­

egories (i.e., the construction of the tree model itself).

Response categories. A crucial step in the success of

any MPT model is to define response categories in a way

that creates a rich and informative data structure. A de­

tailed, fine-grained analysis ofdata into psychologically

meaningful categories provides more information with

which to extract the contribution of different cognitive

processes. Also, the more response categories that can

be meaningfully identified, the more degrees offreedom

that can be created for estimating parameters and testing

the fit of the model. Ifthere are J categories, then an iden­

tifiable model can have at most J - 1 parameters. This

poses quite a constraint on the modeler. If one is inter­

ested in measuring a particular cognitive capacity, other

things being equal, it makes sense to seek relevant para­

digms in which there are many more degrees offreedom

to permit more model parameters.

One solution to this problem is to select paradigms in­

volving more than one category system. Sometimes, each

separate category system can be represented by a different

tree, creating a joint MPT model. The advantage of this

strategy is that if certain cognitive processes operate in

more than one tree, it may be possible to capture these

multiple processes using a single parameter. This, in turn,

keeps the number of parameters to a minimum, creating

more degrees of freedom.

Fortunately, there are several standard ways to develop

research paradigms with multiple category systems. One

common method is to investigate research situations that



involve more than one type of stimulus item. The source­

monitoring model in Figure 2 is a good example, because

separate trees are generated for Source A, Source B, and

New items. The fact that the response-bias parameters

(a, g, and b) occur in more than one tree helps to reduce

the total number of parameters needed for the model.

Other examples ofjoint MPT models based on multiple

stimuli include our pair-clustering model in Figure 1,

which examines the recall of clusterable pairs and sin­

gleton items and creates separate trees for each. The var­

ious models of reasoning reviewed earlier also fall into

this category. For example, Rabinowitz et al. (1989) ex­

panded the standard Piagetian paradigm by asking their

subjects multiple questions about class inclusion, creating

a different tree structure for each equation. Evans (1977)

and Krauth (1982) created multiple items by including

both positive and negative propositional statements,

whereas Rips (1983) created 32 inference problems by

combining different logical arguments.

A special case involving multiple items is the factorial

categorization paradigm described earlier in the section

on speech perception. For example, in a two-factor exper­

iment with I levels of one factor and J levels of the other,

there are I X J factorially generated stimuli, with only I +
J factor levels. Ifa subject repeatedly classifies each stim­

ulus into one of K categories, there are I X J X (K - 1)

degrees offreedom in the data structure. If a modeler can

assign individual parameters to each of the I + J levels
and postulate a simple combining rule (as Batchelder &

Crowther, 1997, did with the FLMP), then there may be

a large surplus of degrees of freedom.

Using paradigms with multiple category systems is

one method for creating a large set ofresponse categories

for MPT modeling. However, there are other techniques

that can be used for this purpose that do not necessarily

lead to the creation of a joint MPT model. For example,

many of the memory models reviewed earlier create a suf­

ficient number of response categories by giving subjects

multiple tests of their memory. Howe's (1991,1995)

model and Kail et al. 's (1984) model achieved this by

using repeated recall tests of the same material. Other

models have examined memory performance using a

combination ofdifferent testing procedures. For example,

Riefer and Rouder's (1992) model examines both free re­

call and cued recall, whereas Chechile's (1987) model

looks at both recall and recognition along with confi­

dence judgments.

Another useful heuristic is to examine stimuli that are
multidimensional (i.e., items that have more than one at­

tribute or characteristic). If subjects' responses are clas­

sified according to these multiple characteristics, this

can lead to a potentially large set of response categories

for model development. The pair-clustering model in Fig­

ure 1 is one example of this, in that recall ofpair clusters

is examined both in terms of the number of items re­

called and in terms of whether the items are recalled ad­
jacently. Along similar lines, the B. H. Ross and Bower's

(1981) model of associate recall examines memory sets
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containing multiple items and probes these sets with one

or more cues. Brown's (1998) paradigm varies the num­

ber and positioning of targets in a two-letter display, thus

creating different display arrangements with multiple re­

sponse categories. Perhaps the most prototypical exam­

ple of this approach is the model of object perception by

Ashby et al. (1996). In their paradigm, items are classi­

fied by such attributes as letter, color, and location, and

Ashby et al. were able to generate a large set of response

categories from this classification system.

Cognitive processes. Given a sufficiently rich data

structure, the next step is to identify and parameterize

the cognitive processes contributing to those data. One

can usually imagine a large number ofpsychological pro­

cesses that may be operating in concert to produce cate­

gorical data in a given research paradigm. Some ofthese

processes will be more important than others and, thus,

will explain more of the variance in the data. However, it

is often the case that even if less central processes are

eliminated from the model, there may still remain more

processes than categories. The consequence of this is

that if the model includes all of these processes, then it

will not be globally identifiable as defined earlier.

In dealing with this problem, one useful heuristic is to

build a more complete but nonidentifiable model and
then create a series ofnested submodels based on certain

restrictions on the parameters. This will result in a fam­

ily of identifiable models. For example, we (Batchelder

& Riefer, 1990) were able to create identifiable versions

of the source-monitoring model in Figure 2 by equating

detection (D] = D 2) , discrimination (d, = d2 ) or response
bias parameters (a = g). Other examples of this strategy

can be found in Rouder and Batchelder (1998), Hulme

et al. (1997), and Bender et al. (1996). In particular, Ben­

der et al. created nested submodels by collecting data on
three different age groups of children. They were able to

test the goodness of fit for different submodels by as­

suming that various parameters were constant across the

three groups. Of course, when a model's parameters are

restricted in this way, any comparisons between experi­

mental conditions must be made under the same set of

restrictions. This has the potential to limit theoretical

conclusions, depending on which parameters are con­

strained. However, one can usually place restrictions on

ancillary parameters, leaving crucial parameters free to

vary for comparisons across conditions.

In general, the process of model building certainly in­
volves a compromise between the goals of having an in­

complete but identifiable model, which permits unique

measurement ofthe model's parameters, and a more com­

p�ete and psychologically valid model, which represents

all of the relevant cognitive processes. Each MPT model

is at best an approximation to a complete process de­

scription ofcategorical data, and the task of the modeler

is to select the most important processes and capture

them in a valid way.
Tree structure. There are, of course, many MPT mod­

els that could be constructed for a given categorical data



76 BATCHELDER AND RIEFER

structure. Unlike general linear models that routinely de­

compose data into main effects and interactions, there is

no algorithm for generating useful processing trees or

even for discovering if they exist for a given set of data.

MPT model building for a particular paradigm is a cre­

ative process that requires a researcher to commit to cer­

tain processes and how they are arranged structurally in

a conditional processing tree. Furthermore, because

there are many possible tree structures, there will often be

psychologically uninterpretable MPT models that never­

theless fit a given set of data well. Thus, the process of

developing a valid model requires that one fit a number

of data sets in the same paradigm and that the resulting

parameter estimates be interpretable in terms of the un­

derlying processing assumptions.

As a consequence, a key question in the development

ofan MPT model is whether the model's parameters are,

in fact, valid measures of their respective cognitive ca­

pacities. Ideally, a parameter designed to measure, say,

storage capacity should reflect only storage factors and

should not be influenced by the operation of other cog­

nitive processes. Therefore, in the course of developing

and testing a new MPT model, it is necessary to conduct

validity testing of the model's parameters. This typically

involves a series of experiments in which basic indepen­

dent variables are manipulated and shown to have a selec­

tive influence on certain processes that is interpretable

on theoretical or logical grounds. In memory research,

for example, it is relatively straightforward to find vari­

ables that should have their primary influence on storage

and not retrieval, or vice versa. In general, validity testing

of a model's parameters is essential if one wishes to have

confidence in an MPT model as a valid measurement tool.

If validity tests reveal that parameter values are affected

by variables in a psychologically implausible manner, it is

at least an indication that the current tree structure ofthe

model is wrong or, more seriously, that the basic assump­

tions behind the model are incorrect.

Numerous examples of validity testing can be found in

the applications ofMPT modeling reviewed earlier. Both

the storage-retrieval models ofChechile and Howe have

been applied to a number ofdata sets examining basic ex­

perimental manipulations. Riefer and Batchelder (1995,

pp. 617-620) applied the model in Figure 3 to a large

corpus of experiments on recognition failure and gener­

ally found the model's parameters to behave logically as a

function of many experimental variables. Bayen et al.

(1996) manipulated item similarity and source similarity

in a factorial design to test different models of source

memory and concluded that only a 2HT model ade­

quately accounted for their data. Buchner et al. (1995)

validated their MPT model for the process-dissociation

procedure by showing that experimental manipulations

designed to effect response bias did, in fact, have a se­

lective influence on the response-bias parameters in their

model. Prinzmetal et al. (1995) applied their feature­

binding model to experiments that manipulated stimulus

duration, interstimulus distance, and levels of attention,

and they observed that the parameter values were af­

fected in a theoretically interpretable manner as a func­

tion of these manipulations.

Another important facet of validity is to connect the

assumptions ofan MPT model for a particular paradigm

to those ofa more complete and accepted formal theory,

if one exists. In the best of worlds, the MPT model will be

a special case, or a provable mathematical approximation,

of the more complete theory. One example of this type of

connection is our model of the recognition-failure para­

digm (Riefer & Batchelder, 1995) in Figure 3, which is

a special case of the retrieval-independence theory of

Flexser and Tulving (1978). A second example is the pair­

clustering model in Figure I, which is mathematically

related to Markov models of pair clustering in multitrial

free recall (Batchelder & Riefer, 1980; Bauml, 1996a).

Of course, it is not reasonable to expect that a tight,

mathematical connection can always be drawn between

an MPT model and a more complete theory for any given

phenomenon. In such cases, it is still important that there

be a connection at some level between the processes in

the MPT model and those of the more complex theory.

For example, we have seen this in Klauer and Oberauer's

(1995) model for propositional reasoning, which was di­

rectly motivated by the more general theory of propos i­

tional reasoning by Johnson-Laird et al. (1992). The prob­

abilistic version of Rips 's (1983) information-processing

ANDS model is another example of a close connection

between an MPT model and a more elaborate processing

theory.

Statistical Issues

Earlier, we discussed the statistical inference for MPT

models, as described in Hu and Batchelder (1994b). This

approach is based on the classical theory of inference

that utilizes asymptotic approximations requiring large

data samples (e.g., Read & Cressie, 1988). The idea is that

as sample size increases, and if a model is true, then,

under rather mild mathematical conditions, goodness-of­

fit measures such as G2 or minimum chi-square discussed

earlier have approximate chi-square distributions when

minimized over the parameter space. This is the idea be­

hind the efficiency ofMLEs, confidence intervals of the

estimators based on the observed Fisher information ma­

trix, and likelihood ratio tests of nested models. Thus, if

the sample is suitably large, then goodness offit and hy­

pothesis tests can be conducted with reference to standard
chi-square tables.

However, there is good reason to doubt that any sta­

tistical model is "true" in the sense that the observations

are independent and identically distributed and with a

probability distribution exactly consistent with the model.

Furthermore, one often has to deal with situations in which

the sample size is smaller than desired for asymptotic

approximations. It is natural to consider some of these is­

sues and how to deal with them. The next subsections take

up the use of computer simulations to supplement as­

ymptotic inference theory, how to deal with approximate



models, and whether the MPT model framework is falsi­

fiable in principle.

Computer simulation. A useful technique in the sta­

tistical analysis ofan MPT model is to conduct computer

simulations. Basically, this technique involves setting the

values of the model's parameters and then conducting a

series of simulated runs using various sample sizes. Pa­
rameter estimates, confidence intervals, and hypothesis

tests from these simulations can be compared with the

results of asymptotic estimates based on standard statis­

tical theory. A number of important issues can be ad­

dressed in this way, such as the effect of small sample

sizes or the amount of error (bias) in parameter estimates.

Another use ofcomputer simulation is to introduce small

extensions of the model, such as allowing individual dif­

ferences in the parameters (discussed in detail in the next

subsection) or adding an additional cognitive process.

The ability ofthe original model to account for data from

these extensions is a measure of the robustness of the

model. Riefer and Batchelder (1991b) provide a detailed

illustration of how these techniques can be applied to the

pair-clustering model in Figure I. Other examples of

using computer simulations to explore MPT models in­

clude Bender et al. (1996, p. 194), Erdfelder and Buch­

ner (1998a), Riefer and Batchelder (1988, p. 328), and

Riefer and Rouder (1992, p. 604).

What is especially beneficial about computer simula­

tions is that they can be used to explore the sample size

necessary to achieve sufficient statistical power when

using a particular MPT model. Of course, the issue of

power and sample size is an important one in research

generally, but it is particularly relevant to MPT modeling
because, as we discuss later, MPT models are simple and

approximate models of cognitive processing. Large sam­
ples sizes may be necessary to reveal significant differ­

ences between groups in terms of the model's param­

eters; however, sample sizes that are too large also inflate
goodness-of-fit statistics. Computer simulations can be

used to explore the potentially complicated relationship

between sample size, power, and choice of Type I error

probability for any particular MPT model. A very useful

approach to assessing power in MPT models has been

developed by Erdfelder, Faul, and Buchner (1995) based

in part on the extensive work by Cohen (1988, 1992).Their

computer program, called GPOWER, performs power

analysis for a range of common statistical tests and can

be used to establish significance levels when applied to

MPT modeling (e.g., Buchner, Erdfelder, et al., 1997,

p. 512). In several of these applications of GPOWER, it
is shown that sufficient power to test hypotheses about

the parameters of a model can be achieved using much

lower levels ofType I error for goodness-of-fit tests than

the conventional a = .05. This approach is especially

reasonable when the model has already been shown to

fit data in prior studies.
Approximation. Because of the requirement on a use­

ful MPT model to be globally identifiable, the number of

MULTINOMIAL PROCESSING TREE MODELS 77

categories places an upper bound on the number of pa­

rameters an MPT model can have. As we have stated ear­
lier, unless the paradigm provides many categories, only

an incomplete processing account is possible. In this case,

it is important to select processes that control most of the

variance in category responses and then to regard the

model as approximate. However, even if a model is only

approximate, there is reason to believe that estimates of

the parameters may provide measurements that are valid

and useful. More technically, most MPT models, espe­

cially ones that have a surplus ofdegrees of freedom, are

"misspecified," A misspecified statistical model is one

that cannot exactly model the "true" probability distribu­

tion over the categories (i.e., the probability distribution

is not in the set that is generated by varying the model's

parameters). Most stochastic modelers would readily agree

that all statistical models with a surplus of degrees offree­

dom (technically called unsaturated) are misspecified,

and this remains true for more complex and detailed ac­

counts, such as neural network or connectionist models

(1. A. Anderson, 1995) or global memory models (Clark

& Gronlund, 1996).

There is a technical theory ofstatistical inference with

misspecified models that is well developed in statistics

and econometrics (e.g., White, 1994); however, this

work has yet to make an impact in psychological model­

ing (see Golden, 1995). White (1994) presents the theory

of misspecification from the standpoint of classical sta­

tistics, as opposed to a Bayesian approach, and his early

work (e.g., White, 1982) shows that MLEs computed

from misspecified models, called pseudo-MLEs, never­

theless have useful asymptotic properties under mild

regularity conditions.

One way that an MPT model may be misspecified is

that there may be parameter heterogeneity underlying the

observations. In this case, even if the processing account

is accurate, the multinomial assumption that observa­

tions are identically distributed over the categories is vi­

olated. In the past, there have been many concerns raised

in the cognitive modeling area about parameter hetero­

geneity over subjects, items, and even subject-item in­

teractions (e.g., Curran & Hintzman, 1995; Hintzman,

1980, 1992, 1993). However, there have been only a few

efforts to productively incorporate parameter heterogene­

ity into cognitive models (e.g., Batchelder, 1975; Offir,
1972; Riefer & Batchelder, 1991b).

Fortunately, Riefer and Batchelder (1991b) describe a

straightforward way to augment an MPT model to handle

parameter heterogeneity. The idea is to assume that each

parameter is a random variable that has a marginal beta
distribution across the experimental observations. More

specifically, suppose es is a parameter of an MPT model.

The beta distribution on e, takes the form

f
r(a,.+[3J eO',-I(I_e){3-:-1

(e,) = 2 s s' O<e,<1
r(a, )r(f3,)

o , otherwise,
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where as' f3s > O. The beta distribution has mean,
E«()J = asl[as + f3sJ, and variance

Var «()s)= a sf3s

(as + f3s + l)(as + f3s)2

The idea in Riefer and Batchelder (1991b) is to assume
independence of the parameters, but with marginal beta
distributions. Observations are then produced from the
MPT model conditional on the value of the parameter
vector, creating a conditional MPT model. This extension

ofthe MPT model family is explicitly analyzed in Hu and
Batchelder (1994a). The idea is well known in stochastic
modeling (e.g., the conditional Poisson Process; S. M.
Ross, 1983), and it was used for adding individual dif­

ferences to the all-or-none and linear operator learning
models in Batchelder (1975).

The approach ofcreating a conditional MPT model has
the effect of doubling the number of parameters, in that

each ()s yields as and f3s for the beta distribution. Some­
times, when there are many degrees of freedom remain­
ing after modeling, specifically S :s (J - 1)/2, the result­
ing conditional MPT model may be an identifiable

model, and it can be analyzed in the usual way. But,
in practice, it is more usual that S > (J - 1)/2; thus, this
approach yields a nonidentifiable model. Nevertheless,
there is a useful strategy in data analysis that can still be

accomplished. The recommended approach, illustrated in
Riefer and Batchelder (1991b), is to first analyze the em­

pirical data with the identifiable ,!\1PT model obtaining,
among other things, the MLE Os for each parameter.

Next, select as and f3s' sSJ that the mean as1[as + f3 .l is
approximately equal to Os, and the variance in Equation
7 is set to some prespecified level. Finally, simulate
many data sets, each the size of the original, from the re­
sulting conditional MPT model. By examining goodness
of fit, MLEs, and confidence intervals, one can explore
the robustness of the original MPT model against con­

trolled amounts of parameter heterogeneity. This strat­
egy is straightforward and computationally fast on the
current generation of personal computers, and Xiangen
Hu's MPT software program described earlier incorpo­
rates this option.

Analysis of several MPT models by our group (e.g.,
Riefer & Batchelder, 1991b; Riefer et aI., 1994; Rouder

& Batchelder, 1998) has led to some optimism that MPT
models may be rather robust under realistic levels of'pa­
rameter heterogeneity. In particular, the MLEs are often
quite robust under individual-difference assumptions;
however, the size of the asymptotic confidence intervals
is more sensitive to individual differences. Also, it is
clear that robustness may not hold for MPT models that
contain many levels of the tree structure. To see this,
suppose there are large individual differences in overall
processing ability in a subject pool. To reach any partic­
ular node near the terminal node of the tree requires a se­

quence of conditional processing steps. Because some
nodes are reached through accurate processing and oth­
ers through imperfect processing or even guessing, the

structure will tend to separate or select good processors
(i.e., ones with high values of the process parameters) from
poor processors as conditional processing nodes are suc­
cessively encountered in the tree. A consequence ofthis is
that the estimates of the parameters that occur only near
the terminal nodes ofthe tree may be severely biased one

way or the other by subject selection.
Falsifiability. The fact that many MPT models can be

developed for a given set of categories raises the ques­
tion ofwhether the class ofMPT models can be falsified
with data. Falsifiability is an important issue that has
been raised, for example, with connectionist models. It has

been proved that the connectionist framework can model
any mapping of stimuli into response categories, each
represented by one-zero vectors, ifno bounds are placed
on the model (Rumelhart, McClelland, & the PDP Re­

search Group, 1986, p. 65). However, MPT models are
not like connectionist models in this sense because, as
we noted earlier in the section on reparameterization,

there are many models for categorical data that are not in
the MPT class. If one of these models accounts for data
in a particular paradigm, then, technically, one can infer
that the MPT class is falsified for that paradigm. Of

course, it may be possible to design an MPT model that
closely mimics or approximates the successful fits of the
non-MPT model; thus, it may be difficult to argue that

the MPT framework is falsifiable in practice.
On the other hand, an acceptable MPT model must not

only be able to fit data but its parameters must be glob­
ally identifiable, must be psychologically interpretable,

and must pass appropriate validation experiments. When
these criteria are imposed, we see no reason to expect
that an MPT model satisfying these constraints can al­
ways be found for a given paradigm. In fact, we our­

selves have tried and failed to adequately model several
cognitive paradigms with MPT models, despite some
promising initial ideas. Thus, we argue that MPT mod­
els are a useful, but by no means a universal, family of
cognitively interpretable statistical models.

High-Threshold, All-or-None,
and Discrete-State Assumptions

MPT models on occasion have been described as pos­
tulating high-threshold or all-or-none assumptions (cf.
Kinchla, 1994; Wagenaar & Boer, 1987; Yonelinas & Ja­

coby, 1996). It is true that a particular model may evidence
one of these characteristics, but it is important to realize
that MPT models as a general class are neither high­
threshold nor all-or-none. The high-threshold (HT) model
of yes-no signal detection (e.g., described in Macmillan
& Creelman, 1991, chap. 4) can be viewed as a joint MPT,
with a separate tree for old and new items. It is "high
threshold" in the sense that new distractors are never de­
tected or recognized as "old." Kinchla (1994) describes
the source-monitoring model in Figure 2 as an HT model

because if old Source A and old Source B responses are
collapsed into a single "old" category, then the model re­
duces to the HT model. However,because subjects are re-
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quired to distinguish Source A and Source B responses,
Batchelder, Riefer, and Hu (1994) argue that this col­

lapsing may not result in a psychologically meaningful

category.
If the term high threshold is to be applicable to MPT

models in general, a wider definition is needed. For ex­

ample, it is possible to formally define this term for MPT

models as applied to certain types of recognition para­

digms. Suppose subjects study a list of various types of

items and are then given a recognition test that includes

new distractors. Suppose also that the processing tree for

new distractors is a subtree of the processing trees for each

type of old item, so that when old items are undetected

and require guessing, the responses are governed by the

distractor processing tree. (This can be seen in Figure 2,

in which the tree for new items constitutes a part of the

tree for Source A and Source B items.)

The preceding definition clearly classifies the HT

model, as well as the source-monitoring model in Figure 2,

as having a high-threshold assumption. In the latter case,

it provides a logical sense to Kinchla's (1994) claim that

the source-monitoring model in Figure 2 is an HT model.

However, it seems to us that it would be difficult to cap­

ture the essence ofthis informal definition in a useful and

precise way, especially for a wider class ofmodels. In any

event, many MPT models for recognition memory do not

satisfy this definition. For example, Luce's (1963) low­

threshold model and Bayen and Murnane's (1996) source­

monitoring model based on the "double-high-threshold"

model, are both joint MPT models that fail to satisfy the

collapsing condition suggested by this informal definition.

The attribute ofall-or-none as applied to MPT models

is also difficult to formalize. The term all-or-none was

popular in the literature on Markov learning models, and

it refers to a particular model by Bower (1961) and others,

in which subjects either completely master an item on a

study trial or learn nothing. In other Markov models, the

term all-or-none is more restrictive and refers to the as­

sumption that transitions to the next stages in the learn­

ing process occur either completely or not at all. Most

Markov learning models for a finite number of learning

trials, including the all-or-none model of Bower, belong

to the MPT model family. However, outside ofrepeated­

trial learning and memory experiments, the notion ofall­

or-none as used with Markov models does not apply to

MPT models.

One way that the term all-or-none might be applied to
an MPT model of memory is the assumption that mem­

ory storage is either completely successful or completely

unsuccessful. This assumption is embodied in several

MPT models (e.g., the model in Figure 3). However, sev­

eral other models allow for memory storage to be in one

or more intermediate states. Examples include the

Schweickert (1993) model of STM, in which traces can

be intact or degraded, Chechile's (1993) model offrac­
tional storage, Howe's (1991, 1995) model, which allows

redintegration of nonstored information, and the pair-

clustering model in Figure I, which assumes that cluster­

able pairs can be stored as clusters or as two separate in­
dividual traces.

In summary, neither the attribute high-threshold nor

the attribute all-or-none can be applied to MPT models
in general, and, outside of the learning-model context,

they can be reasonably applied only to a few special cases.
What, then, is the best way to describe the basic charac­

teristics ofMPT models? In our opinion, MPT models are

best characterized as a particular class of discrete-state

models (cf. Riefer & Batchelder, 1988, pp. 319-320).

They are discrete models in the sense that they postulate

only a finite number of processing states, characterized
by the nodes of the processing trees. The assumption of

finitely many discrete processing stages may seem re­

strictive and incorrect to some theorists, but it seems to us

quite plausible, at least as an approximation ofmore com­

plete processing accounts.

The tension between finite-state and "continuous"

processing models is reflected in the literature on signal

detection models (e.g., Macmillan & Creelman, 1991).

Some theorists (e.g., Yonelinas & Jacoby, 1996) have ar­
gued that recognition memory cannot be modeled with a

finite-state processing model and instead claim that ev­

idence supports a Gaussian signal detection model that
separates hits and false alarms into d' and a response cri­

terion. However, the Gaussian assumption itself is, at best,

a convenient approximation, especially with the assump­

tion of equal variances for the signal and noise distribu­
tions. Furthermore, many other models, such as ones ob­

tained by substituting a logistic distribution for the

Gaussian or even some finite-state models, are practically
indistinguishable from each other on recognition-memory

data (e.g., Green & Birdsall, 1978).

Despite considerable discussion on this issue (see,

e.g., Mulder, Sanders, & van Galen, 1995), we know of

no conclusive empirical argument that finite-state mod­

els can be ruled out or that cognitive psychology has dis­

covered that processing is continuous and not discrete.

Even ifthe discreteness assumption is found unacceptable

in detail, that does not argue against its usefulness as an

approximation in modeling. Of course, there may exist

arguments against specific models, both finite-state and

continuous, but these arguments do not support a gener­

alization to all such models. In much of the theoretical

work since the 1980s, continuous processing models

have been the dominant variety. The issue, we think, rests
with one's goals and has a more pragmatic than scien­

tific rationale. In particular, if the goal is to model a va­

riety of empirical phenomena with the same theoretical

system, continuous processing models of global match­

ing, such as CHARM, TODAM, SAM, and MINERVA

(see Clark & Gronlund, 1996), or various connectionist

models (1. A. Anderson, 1995) have proven the more

successful. However, ifthe goal is to measure processing

capacities in precisely defined categorical paradigms,
the MPT class of models has demonstrated success in
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Figure 5. Serial and parallel versions of a simple MPT model. The left
panel portrays a serial model in which the a process occurs before (and de­
termines) the band c processes. The right panel reconstructs the tree under
the assumption that b = c, with no necessary serial ordering to the a pro­

cess and the b process.

part because it has a well-worked-out and computation­

ally simple statistical inference theory. From the mea­

surement point of view, it is essential to have an appara­

tus for workable statistical inference, and it is in this area

that the more complex models have yet to be developed.

Parallel and Serial Processes
An important issue in MPT modeling is the nature of

the processing architecture assumed. For example, the

branches ofan MPT model are designed to represent pos­

sible processing pathways that lead to a particular response

category. Each link in a branch is interpreted substan­

tially as one stage in a hypothetical sequence ofstages that

results in a particular response. This interpretation raises

the issue of whether these stages are necessarily accom­

plished serially, as suggested by the directed graph repre­

sentation of the tree or ifone or more processes can occur

in parallel.
Actually, it is quite easy to represent parallel processes

as well as serial ones in tree form. Consider the simple tree

in the left panel of Figure 5, with parameter vector e =

(a,b,c) and response categories c., C2 , C3 , and C4. In

this representation, the first process governed by param­

eter a occurs before the ones governed by band c, because

the result of the first process determines which of the

other processes operates. But if we assume that b = c,

then the tree can be restructured to create the tree in the

right panel ofFigure 5. It should be easy to see, under this

assumption, that the two MPT models in Figure 5 are

equivalent models. For this reason, the model with b = c

can be thought of as representing a case in which there

is no necessary serial ordering of the a process and the b
process, perhaps a case of parallel processing. In gen­

eral, ifthere is a node in a tree where each link from the

node leads to an identically parameterized node, then

one can restructure the model by reversing the two pro­

cesses as in Figure 5. In this case, an MPT model is nec­

essarily neutral concerning whether two underlying pro­

cesses occur in series or in parallel. This observation led

Ashby et al. (1996, p. 170) to conclude from their models

of object perception that it was not possible to order the

processes of perceiving a target's form from perceiving

its color. This is also the logic that Brown (1998) used to

differentiate parallel versus serial models of object iden­

tification, discussed earlier.

A related approach to representing sequential versus

nonsequential processes in MPT models can be found in

the model ofSTM by Schweickert (1993), discussed ear­

lier. In one version of this model, reconstruction of the

short-term trace can occur through either phonological

processes (with probability S) or lexical processes (prob­

ability L). The question is whether these phonological

and lexical processes occur sequentially. Figure 6 pre­

sents two versions of this model, with a nonsequential

version on the left and a sequential (or serial) version on

the right. The sequential version assumes that lexical pro­

cesses occur only after successful completion ofphono­

logical processes. The nonsequential version assumes

that correct responding is determined by lexical pro­

cesses with probability A or by semantic processes with

probability 1 - A. Thus, only one of these two processes

is instrumental in determining any given response.

Schweickert has shown that the two models in Figure 6

make qualitatively different predictions in specially de­

signed factorial experiments.

Comparisons to Other Mathematical Models
As we have indicated above, MPT models share some

of the goals of psychometric measurement models. For

example, consider the areas ofpaired-comparison scaling

(David, 1988) or item-response models of testing (Baker,

1992). In both of these paradigms, the goal is to estimate

parameters that reflect latent factors underlying the man­

ifest data, and these models typically have many param­

eters. In the case ofpaired-comparison scaling, the model

of Bradley, Terry, and Luce (see Luce, 1959) defines a

nonnegative parameter Vi for each choice object i, and the

model postulates that the paired comparison probabilities

are given by Pij = Vi/(Vi + Vj), where p., is the proba­
bility that object i is chosen over object j. If there are N
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Figure 6. Two versions of Schweickert's (1993) MPT model for short-term memory. The left panel depicts a ver­

sion in which the lexical process (L) and phonological process (S) occur nonsequentially. The right panel depicts a
sequential version in which the phonological process S occurs before the lexical process L.

choice objects, then there are N(N - 1)/2 choice proba­

bilities Pi} and N parameters (actually N - 1 identifiable
parameters). Despite the large number of parameters,

nothing about the detailed cognitive processes of choice

is modeled, only the basic fact that some objects are more

attractive than others.
A similar situation can be found in models of item­

response theory. In this paradigm, N examinees each takes

a test consisting of M items, and the data consist of an
N X M matrix, where the ij term is given by

1 if subject i is correct on item j

ootherwise.

One very highly studied model for this situation is the

Rasch (1960) model. In one version of this model, there

are N subject-ability parameters (Si) and M item-difficulty

parameters (d), andthe model postulates that

s(l-d)
P(X. = 1)= I J

IJ '
si(l-d) +(l-s)dj

where 0 -s; s., dj -s; 1. Again, the purpose of the Rasch

model is not to account for the complex cognitive pro­

cesses that subjects use to answer questions. Instead, it is

a measurement model with only the most rudimentary psy­

chological assumptions behind it-namely, that there are

individual differences at both the subject-ability and

item-difficulty levels and that ability and difficulty are
unidimensional and trade off in a simple way.

There is a vast literature concerning the statistical theory

behind both the Bradley-Terry-Luce model and the Rasch

model, including statistical inference issues such as pa­

rameter estimation, goodness of fit, and robustness. The

reason why we have described these two psychometric

models in some detail is to contrast them to most of the

modeling work in cognitive psychology, in which com­
plex models are created that are rich in psychological as­

sumptions. Yet, for these complex models, it is often the

case that very little is known about the statistical inference

issues that are relevant to using the parameter estimates

as measurements of underlying or latent processes.

Our pair-clustering model in Figure 1 provides a good

illustration of the use of MPT models as psychometric

tools and how they contrast with more complex cognitive

models. Note that the tree for singletons merely models

free recall as a Bernoulli process, in order to complete the

model that focuses on item pairs. It provides no insight

into the actual processing stages for single item recall. Our

model is therefore completely unsatisfactory if viewed as

a deep theory of memory. What our model does instead is

provide a means of separately measuring two latent pro­

cesses in free recall that are confounded in observable

data-namely, cluster storage and cluster retrieval. The

goal ofmodels like the one in Figure I is to separately mea­

sure latent processes such as these without commitment to

a strong processing account of recall. Like psychometric

models, this allows for a certain simplicity in the service

of statistical analysis. In fact, we have been able to provide

a complete asymptotic analysis of the model in the maxi­
mum likelihood framework, and have studied the model

from a preasymptotic viewpoint and under conditions of

individual differences in the parameters (Batchelder &
Riefer, 1986; Riefer & Batchelder, 1991b).

Because they are designed to be used as measurement

tools, MPT models may be viewed as less parsimonious in
their description ofdata than complex mathematical the­

ories. As we have discussed previously, MPT models are

designed for very specific experimental paradigms, which

may yield only a limited set of response categories. More­

over, parameters for a model need to capture the main
cognitive factors, including noncentral processes such as

guessing, response bias, singleton recall, and so on. As a

consequence, there is usually a large number ofparameters

used to account for a small number ofcategories, leaving

few, if any, degrees of freedom for testing the model's fit.

It is not unusual for researchers who have developed MPT

models to express concern that their models do not pro­

vide a particularly parsimonious account of the data. For
example, Wagenaar and Boer (1987) felt that applying

their four-parameter model to an experimental paradigm
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with six data points was "verging on triviality." Kail et al.

(1984) considered it a "drawback" that their model ac­

counted for 14dfacross two experimental conditions with

12 parameters. However, in our opinion, it is the measure­

ment of the cognitive processes in the form of parameter

estimates, and not the data-fitting capacity, that charac­

terizes the usefulness of MPT models.

The issue of parsimony depends primarily on the pur­

pose ofa mathematical model. Complex theoretical mod­

els attempt a detailed account of cognitive processing,

often by specifically modeling the dynamics of how this

processing changes across the levels of continuous vari­

ables, such as serial position, lag, trials, or time. They

provide a theoretically based account for these changes,

usually with only a few central assumptions and param­

eters. In contrast, MPT models in their capacity as mea­

surement tools normally do not specify the precise theo­

retical mechanisms that account for why parameters

increase or decrease as a function of different variables.

Once an MPT model has been established as a valid mea­

surement tool, the purpose of the model is to measure

changes in parameters over experimental conditions, and

this typically requires a separate measure of each pa­

rameter for each condition. The result is a proliferation

of estimated parameters and a model that appears not to

provide a very parsimonious description of the data.

We do not view this as an inherent problem for MPT

models, at least no more than it is for other mathematical

models for measurement. Models of signal detection, for

example, derive separate measures for item detection and

response bias from only two data observations (hits and

false alarms). These models yield many estimates of the

parameters across conditions, and, in general, there are

no degrees of freedom to evaluate the model's fit to data.

The same can be said about some of the psychometric

models mentioned earlier; however, little concern is ex­

pressed about the parsimony of these models. The main

reason for this, of course, is that all of the above models

have been extensively and rigorously tested, and they have

proven to offer useful and valid measures oftheir under­

lying cognitive constructs. This brings us back to the

point of validity testing for MPT models. As important

as it is to determine whether or not an MPT model fits the

data, we believe that an even more crucial test ofa model's

validity is to show that the model performs well under

basic experimental manipulations. If the model's param­

eters behave in a psychologically interpretable fashion,

then the model gains credence as a valid measurement tool.

Researchers should then be able to use the model with­

out concern, even if it does contain many parameters that

have to be estimated when applied to data.

CURRENT AND FUTURE DIRECTIONS

In this article, we have described a general class of sta­

tistical models, discussed some relevant theoretical is­

sues related to this type of modeling, and given a broad

overview of its many applications in psychology. MPT

models have been applied to a wide range ofdifferent con-

tent areas and to a number of diverse theoretical issues

within memory and cognition. In general, however, most

ofthese applications can be classified into one or both of

two broad categories: (I) models that formalize psycho­

logical theory, and (2) models designed to measure cogni­

tive capacities. In this section, we discuss these two general

uses for MPT models plus one other that we feel holds

great potential for future applications.

MPT modeling is particularly suitable as a methodol­

ogy for formally representing psychological theory. As

Ashby et al. (1996, pp. 188-189) have pointed out, MPT

models are flexible and easy to modify for the purpose of

incorporating and testing different theoretical assump­

tions. Their simple mathematical properties allow one to

evaluate in detail the consequences that theories have on

empirical data. This approach has been used successfully,

for example, by Riefer and Batchelder (1995) to explore

the recognition-failure paradigm, by Schweickert (1993)

to investigate STM, and by Evans (1977) and Krauth

(1982) to study propositional reasoning. Along these lines,

MPT models are also particularly useful for directly com­

paring different theories. The studies by Wagenaar and

Boer (1987), B. H. Ross and Bower (198 I), and Ashby

et al. are all excellent examples of how precise compar­

isons between competing theories can be made when put

into MPT form.

As stated earlier, an equally important use of MPT

models is as a tool for the measurement of cognitive ca­

pacities. MPT models can be used to disentangle the em­

pirical effects ofopposing latent processes and, thus, can

extract information from data in ways that ad hoc statis­

tical techniques, such as ANOYA, cannot. Numerous ex­

amples of this approach have appeared in the literature,

including models for measuring storage versus retrieval

in memory (Batchelder & Riefer, 1986; Chechile, 1987;

Howe, 1995), detection versus discrimination in source

monitoring (Batchelder & Riefer, 1990; Bayen et al.,

1996), recollection versus familiarity in process dissoci­

ation (Buchner et al., 1995), and perception versus binding

in object perception (Prinzmetal et al., 1995). Because

their mathematical properties have been worked out in de­

tail, a large number of convenient statistical techniques

are available to researchers when analyzing data using

MPT models, including confidence intervals, hypothesis

testing, goodness of fit, and computer simulations. MPT

models are capable ofproviding specific measures for dif­

ferent cognitive processes and, as such, have been used

with great success to explore a variety of important the­

oretical issues.

However, in our opinion, there is one other application

ofMPT modeling that has great potential. Because they

are designed to measure cognitive functioning, MPT

models can also be used as diagnostic tools to evaluate

cognitive deficits in clinical populations (e.g., Batchelder,

1998). There have, on a few occasions, been studies in

which MPT models have been applied to special popu­

lations. For example, both Riefer and Batchelder (199 Ia)

and Howe and Hunter (1986) have applied storage­

retrieval models to measure cognitive deficits in elderly



populations. In terms of clinical applications, Chechile's

model has been applied to measure storage and retrieval

deficits due to alcohol-induced amnesia (Gerrein &

Chechile, 1977), developmental dyslexia (Chechile &

Roder, 1998), and in mildly retarded adults (Gutowski &

Chechile, 1987). Kail et al. (1984) conducted a storage­

retrieval analysis of cognitive deficits in language­

impaired children, and finite-trial Markov models have

been used to measure storage and retrieval deficits in de­
mentia due to alcoholism and Alzheimer's disease (e.g.,

Howe, 1990; Kraemer, Peabody, Tinklenberg, & Yesav­

age, 1983).

Perhaps a prototypical example of a clinical applica­

tion of MPT models can be found in a recent study by
Batchelder, Chosak-Reiter, Shankle, and Dick (1997).

Batchelder, Chosak-Reiter, et al. examined multitrial, free­

recall data taken from the CERAD (consortium to estab­
lish a registry for Alzheimer's disease), and analyzed

these data using both traditional statistics and an MPT

model. The specific experimental task involved a mem­

ory test consisting of three study-test trials, followed by

two delayed test trials. However, unlike the usual way

that data are obtained from controlled experimental con­

ditions, these data were extracted from a large data bank

of individuals undergoing a test battery to assess possi­

ble memory deficits. Nine groups of subjects were com­

pared on this task, representing different severity levels of

Alzheimer's disease and vascular dementia, plus a con­

trol group ofhealthy elderly adults. The traditional analy­

sis involved an ANaYA conducted on the aggregate

group means, which revealed significant improvement

in memory performance across trials and significant

memory differences between some of the clinical groups.

However, Batchelder, Chosak-Reiter, et al. (1997)

demonstrated that, by analyzing the error success pat­

terns for individual items, more information could be ob­

tained from this task than by analyzing the aggregate data

with ANaYA. Specifically, examining the successful or

unsuccessful recall of items over the three study-test tri­

als creates eight (23) response protocols. This data struc­

ture is similar to the one examined by Kail et al. (1984),

except their experiment involved three successive recalls

following a single study presentation. Batchelder, Chosak­

Reiter, et al. developed an MPT model to analyze these

data on the basis of assumptions taken from traditional

Markov learning models (Wickens, 1982). The model

postulates that items can reside in an unlearned, a tem­
porary, or a permanent state of storage (cf. Howe, 1990;

Kraemer et aI., 1983) and contains parameters for the

transitions between these states, as well as memory re­

trieval parameters for both intermediate and long-term

learning states. When applied to the response protocols,

including the two delayed test trials, the model revealed

significant differences between the groups that were not
evident using the traditional ANaYA.

As indicated in the introduction, in the 10 years since

Riefer and Batchelder's (1988) study, there has been a

great increase in the development and application of

MPT models. In fact, approximately two thirds of all the
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empirical articles dealing with models in this class and

almost all of the theoretical articles dealing specifically

with statistical inference for MPT models have been pro­

duced during this period. So far, the vast majority of

MPT models have been developed within the area of

human memory and cognition. However, categorical data

are not the exclusive domain of cognitive psychology,

and, as MPT modeling continues to grow in popularity,

it is reasonable to expect an even wider range of new ap­

plications. It is our hope that in the future, even more

substantive areas ofpsychology will benefit from the ap­
plication of MPT models.
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