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[1] Estimation of rainfall intensities from radar measurements relies to a large extent on
power-laws relationships between rain rates R and radar reflectivities Z, i.e., Z= a*R^b. These
relationships are generally applied unawarely of the scale, which is questionable since the
nonlinearity of these relations could lead to undesirable discrepancies when combined with
scale aggregation. Since the parameters (a,b) are expectedly related with drop size distribution
(DSD) properties, they are often derived at disdrometer scale, not at radar scale, which could
lead to errors at the latter. We propose to investigate the statistical behavior of Z-R
relationships across scales both on theoretical and empirical sides. Theoretically, it is shown
that claimed multifractal properties of rainfall processes could constrain the parameters (a,b)
such that the exponent bwould be scale independent but the prefactor awould be growing as a
(slow) power law of time or space scale. In the empirical part (which may be read
independently of theoretical considerations), high-resolution disdrometer (Dual-Beam
Spectropluviometer) data of rain rates and reflectivity factors are considered at various
integration times comprised in the range 15 s – 64 min. A variety of regression techniques is
applied on Z-R scatterplots at all these time scales, establishing empirical evidence of a
behavior coherent with theoretical considerations: a grows as a 0.1 power law of scale while b
decreases more slightly. The properties of a are suggested to be closely linked to
inhomogeneities in the DSDs since extensions of Z-R relationships involving (here, strongly
nonconstant) normalization parameters of the DSDs seem to bemore robust across scales. The
scale dependence of simple Z= a*R^b relationships is advocated to be a possible source of
overestimation of rainfall intensities or accumulations. Several ways for correcting such
scaling biases (which can reach>15–20% in terms of relative error) are suggested. Such
corrections could be useful in some practical cases where Z-R scale biases are significant,
which is especially expected for convective rainfall.

Citation: Verrier, S., L. Barthès, and C. Mallet (2013), Theoretical and empirical scale dependency of Z-R relationships:

Evidence, impacts, and correction, J. Geophys. Res. Atmos., 118, 7435–7449, doi:10.1002/jgrd.50557.

1. Introduction

[2] Radar-rainfall estimates are generally computed from
radar measurements using (semi-) theoretical relationships
between the reflectivity Z and the rain rate R. The most
classical relationships consist of power laws of the form:

Z ¼ aRb (1)

where a and b are unknown constants. These constants are
strongly dependent on the shape of the DSD. For instance, in
the case of a Gamma DSD with parameters (N0, μ, Λ),

equation (1) may be retrieved theoretically with b depending
on μ and a on the couple (N0, μ). Less restrictive hypotheses
on the mathematical form of the DSD are also compatible with
equation (1): a more general case corresponds to the “scaling”
expression of DSDs involving normalization by a single DSD
moment [e.g., Sempere Torres et al., 1994; Uijlenhoet, 2001].
[3] Also, it has been shown that more accurate “double”

power laws could be found by normalizing with two reference
DSD moments [Testud et al., 2001; Lee et al., 2004].
[4] However, the present study will be mainly devoted to

the classical case expressed by equation (1), except when
explicitly stated. In particular, (double) normalized power
laws in the form expressed by Testud et al. [2001] will be
considered more closely in section 6.
[5] However, this method for estimating rainfall rates

remains subject to many uncertainties. Numerous empirical
studies have been carried out to estimate the parameters a
and b which were found to vary in a large range of values
30–1000 and 0.8–2 [e.g., Battan, 1973; Smith and Krajewski,
1993; see Yu, 2012 for a recent review]. Various physical and
statistical phenomena are expected to contribute to this
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variability. The parameters a and b are known to depend on the
rainfall type (i.e., convective vs. stratiform), but also on the
more subtle physical processes involved in rainfall [Rosenfeld
and Ulbrich, 2003] that impact the DSD shape, such as coales-
cence, breakup, or evaporation.
[6] Complementary to these physical factors, it has also

been demonstrated that other methodological and statistical
factors affect Z-R relationships. Especially, Z-R relationship
parameters are highly dependent on methodological aspects
such as the type of regression [Campos and Zawadzki,
2000]: for instance, linear regression on the logs of Z and R
and direct nonlinear regressions on Z and R will not provide
the same parameters. Even with a given methodology, the
result will be sensitive to the choice of the “explicative”
variable (that is, Z vs. R and R vs. Z regression will provide
different parameters). On the other hand, observational errors
and uncertainties will affect the relationships in a significant
way [Ciach and Krajewski, 1999; Morin et al., 2003].
[7] Furthermore, it should be emphasized that while the

DSD should be robustly defined over large spatial and tempo-
ral domains of integration, it may be expected to be largely
variable in the interior of such domains [Uijlenhoet et al.,
2003; Lee and Zawadzki, 2005; Berne and Uijlenhoet, 2005;
Chapon et al., 2007]. Therefore, the parameters of the DSD
should be sensitive to aggregation over domains of different
volumes and durations, leading to scale-dependent Z-R
relations. It is in fact not surprising that Z-R parameters may
vary with scale, since the existence of a unique, nonlinear,
power law like equation (1) is incompatible with the physical
scale-by-scale conservation of both R and Z (while b-th and
1/b-th order moments of inhomogeneous R and Z have no
reason to be conserved with scale). Moreover, R and Z are
known from a long time to follow scaling/multifractal proper-
ties that describe statistically their variability [Tessier et al.,
1993]. These properties reveal to be very convenient for un-
derstanding Z-R laws in a scale-dependent framework.
[8] The scale dependency of Z-R relationships has also

been documented on more empirical grounds by some
authors. Morin et al. [2003] have shown empirically the
existence of a scale dependency of Z-R law parameters based
on the study of collocated radar and rain gauge data aggre-
gated at different scales (1–5 km, 5–120 min). These authors
found a quick increase of the parameter a with scale as well
as a moderate decrease of the parameter b. They attributed
a significant part of the change in parameters to the averaging
of observational errors with pixel aggregation. However,
they cannot distinguish the purely statistical contribution of
rain inhomogeneities since their study involved systematic
comparison of radar data and rain gauges which adds instru-
mental and methodological errors. Then, Steiner and Smith
[2004] used Joss-Waldvogel [1967] disdrometer data aggre-
gated at some time scales to support the existence of a Z-R
relationship scale dependency as a significant source of
errors in radar-rainfall rates. There results were qualitatively
consistent with Morin et al.’s study. Lovejoy et al. [2008]
studied series of reflectivities measured by the spaceborne
radar of TRMM and found the existence of wide range scal-
ing properties of the reflectivities, indicating extreme vari-
ability. In this context, they showed that the use of a single,
scale independent, Z-R relationship could lead to important
errors in the estimation of the mean rain rate (up to a factor
5 over the full range of spatial scales of TRMM data!).

More recently, Jaffrain and Berne [2012] have used the data
from a network of 16 PARSIVEL optical disdrometer. Their
disdrometers were distributed over a single radar pixel. They
estimated a and b from the scatterplots of the point values
of R and Z (here the reflectivity factor), and also from
the scatterplots of the 16 stations averages (which were
supposed to provide a better estimate of radar pixel size
variables). They found a significant increase of a with
space “scale” and a very low increase in b. From this
methodology, Jaffrain and Berne demonstrated that the use
of small-scale-derived a and b parameters could lead to a
biased rainfall estimate at pixel size (generally an
overestimation up to 15%).
[9] The goal of the present paper is to investigate the scale

dependency of Z-R relationships both theoretically and
empirically. Theoretically, we start from a stochastic descrip-
tion of time/space rainfall processes based on the theory of
fractals and multiplicative cascades to assess the scale behav-
ior of Z-R relationships. The demonstration reuses some
previous mathematical results established in universal
multifractal theory [Tessier et al., 1993; Lovejoy et al.,
2008]. The theoretical framework predicts a constant param-
eter b while the parameter a should grow as a power law of
scale. The other sections of the paper consist of an empirical
study to check whether the (at least qualitative) predictions
of the theory are valid on data. More precisely, the empirical
work consists in the systematic study of the measurements of
a specific disdrometer, the Dual-Beam Spectropluviometer
(DBS). From this instrument, two-year high-resolution (15
s) time series of rain rate and reflectivity factors are available.
These series are degraded at various coarser resolutions lead-
ing to an estimation of the parameters a and b at all these
scales. Note that the empirical work may be read mainly
independently of the theoretical sections (i.e., sections 2
and 3, see below) and does not involve multifractal theory.
Readers that are not familiar with the multifractal theory
may skip sections 2 at a first time if necessary (except equa-
tion (20)).
[10] The methodology followed in this study differs from

the previous ones from a few aspects. First, a single instrument
is used, which avoids problems of comparison of different
instruments. The range of scales considered here is larger than
that of Steiner’s study (15 s to 30 min vs. 1–5 min), and we do
consider many intermediary scales, contrary to Jaffrain’s
study. Moreover, most Z-R scatterplots fitted here are the
whole scatterplots of the series, not those of specific selected
storms. Even though different weather regimes may occur
during the duration covered by the series, this is not a
limitation since (1) this fit will favor the most typical weather
regimes in the location of the disdrometer, and (2) the theoret-
ical framework is a statistical one, which is expected to be
valid for long time periods. Yet, we also propose a study
intended to remove microphysical variability by using
relationships involving DSD normalization parameters (see
section 6). Another remark is that (like in Steiner and
Jaffrain’s papers) we only use disdrometer data, which is not
strictly equivalent to the use of radar data: here, we compute
reflectivity factors and rain intensities from ground-based
measurements). Moreover, only time scales are considered in
the empirical study. However, the conclusions drawn from
the empirical study should apply in space also since the statis-
tical framework considered in the theoretical sections as a
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justification of Z-R scale dependency has been proved to be
valid by many empirical studies of radar-rainfall maps (see
section 2.3 for more details and references).
[11] The rest of the paper will follow this outline. In

section 2, we recall theoretical notions of statistical scaling
and of the multifractal theory. In section 3, consequences of
these properties, assumed valid for both R and Z, are
derived for Z-R relationships. The data set and the empirical
methodology are presented in section 4, and the results are
detailed in section 5. In section 6, the previous study is
refined from the use of normalized Z-R relationships (i.e.,
involving normalization parameters of the DSD). An overall
discussion of the consequences of Z-R parameters scale
dependency is proposed in the last section.

2. Scaling and Multifractals

2.1. Scaling

[12] Statistical scaling is a property shared by many
processes and random fields. Such processes are characterized
by the existence of such symmetries relating the process aggre-
gated at different scales. Generically, the energy density at two
different wave numbers/frequencies will differ from a multi-
plicative factor that depends only of the scale factor. This
property results in power-law energy spectra:

E kð Þ≈k�β (2)

or

E ωð Þ≈ω�β (3)

where ω is the time frequency, and k the space wave number.
[13] For instance, standard and fractional Brownian

motions are scaling processes. Many financial or geophysical
processes also follow such laws, mainly on an empirical
basis. However, there are several examples where a theory
supports them. In particular, in the field of statistical
mechanics of turbulence, Kolmogorov [1941] established a
scaling law for velocity increments of a (3D isotropic)
turbulent field associated with a 5/3 power-law energy
spectrum. A related scaling law (with same spectral
exponent) has been demonstrated by Obukhov [1949] and
Corrsin [1951] for the concentration of a passive scalar
advected by a turbulent field.

2.2. Multifractal Cascades

[14] Power/energy spectra are second-order statistics of
processes as well as autocorrelations and variograms. Hence,
equations (2)–(3) above express a scaling property of a
specific (second) order of moment. However, statistics of other
orders may also have a kind of scaling behavior. For some
of these processes, the knowledge of the single spectral
exponent is sufficient to know the scaling exponents of all
other statistics from a simple linear relationship: these
processes are called “monofractal.” This is the case of frac-
tional Brownian motions or other “simple scaling processes”
[Lovejoy and Schertzer, 1995].
[15] However, many processes considered in geophysics

cannot be considered as monofractal due to their high
dynamic range and their “multiplicative” structure [Lovejoy
and Schertzer, 2007]. For such processes, called “multifractal”,

statistics of different orders follow scaling laws whose
exponent depends of the order of moments.
[16] Multiplicative cascades, introduced in the turbulence

theory [Novikov and Stewart, 1964; Yaglom, 1966] are the
conceptual tool for modeling stochastic processes and fields
with multifractal statistics. In a few words, multiplicative
cascades are an iterative construction based on a series of grid
scale refinements associated with i.i.d. random multiplicative
modulations. These constructions, which can be either
discrete or continuous in scale, can be used to simulate
multifractal fields. Depending on the nature of the random
modulations and on the discrete or continuous definition of
scale, various multifractal models have been defined [e.g.,
Schertzer and Lovejoy, 1987; She and Levêque, 1994;
Dubrulle, 1994].
[17] Multifractal cascades are characterized by scaling laws

relating statistical moments and the resolution. In order to fol-
low usual notations in the multifractal literature, the resolution
(denoted λ) is conventionally defined as the converse of the
scale of interest: in the space domain, λ=Lout/l where l is
the space scale, and Lout is a constant “outer scale” associated
with the largest scale of interest, for instance, planetary scale
[e.g., Lovejoy et al., 2008]. A similar definition holds for time
resolutions.
[18] A multifractal cascade may be viewed as a random

process/field with different descriptions at different resolu-
tions. Hence, the notations involve not only the name of the
process (in this section, Φ), but also the resolution at
which it is defined (or observed), thus the notation Φλ.
Moreover physical and mathematical constraints usually
require that the mean of the cascading process is conserved
across scales: hΦλi= hΦi (in the following, h. i denotes statis-
tical averaging).
[19] Using these notations [e.g., Lovejoy et al., 2008], the

fundamental equation of the multifractal formalism is
the following:

Φλ
qh i ¼ λKΦ qð Þ Φh iq (4)

[20] This equation expresses that for any positive q, the
q-th order statistical moment of the field follows a power
law of the time/space resolution. The exponent of the scal-
ing law, denoted KΦ(q), depends on the order q. By consid-
ering all possible values of q, we obtain the “moment
scaling function” which implicitly contains the statistics if
the process or field at all scales of interest. This function
has the trivial values KΦ(0) = 0 and KΦ(1) = 0 (the latter
for random fields with a statistical mean which is conserved
scale by scale). Moreover, it may be demonstrated that KΦ

(q) is also a convex function [Lovejoy and Schertzer, 2013,
appendix 3A].
[21] Realistic variables (in geophysics) can only be repre-

sented by continuous in scale multiplicative models for
which the choice of the distributions of multiplicative incre-
ments is strongly constrained [Schertzer and Lovejoy,
1997]. Among the possible solutions, two of them received
a great attention in the geophysical literature: the
“Universal Multifractal” model [Schertzer and Lovejoy,
1987], based on log-stable modulations, and the log-
Poisson cascade model [She and Levêque, 1994; Dubrulle,
1994]. For both models, the convex, nonlinear function KΦ
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(q) is fully parameterized by the knowledge of two
multifractal parameters. They respectively take the forms:

K qð Þ ¼
C1

α� 1
qα � qð Þ (5)

and

K qð Þ ¼ γþqþ c 1�
γþ

c

� �q

� 1

� �

: (6)

[22] For the UM model, C1 (comprised in the interval
[0,D] for D-dimensional processes) may be viewed as an
inhomogeneity index for the distribution of the mean
level of the field, and α (comprised in [0,2]) is a
multifractality index that describes how rapidly inhomoge-
neity changes with a shift in intensity threshold. For the
log-Poisson model, γ + is representative of the scaling of
the maxima of the process, while c describes the scarcity
of such maxima.
[23] Due toWiener theorem, such cascade models can only

produce fields with spectral exponent 1�K(2)< 1. However,
other possibly nonstationary models can be derived from the
previous by adding a fractional integration to the process
(i.e., mainly a power-law k-H filtering). The fractional inte-
gration preserves the power-law scaling, which must be,
however, interpreted now as a scaling of increments. For
instance, the fractional integration of a UM model is referred
as the Fractionally Integrated Flux (FIF) model [Schertzer
and Lovejoy, 1987].

2.3. Scaling Properties of Rainfall

[24] The models presented above have been shown to fit
accurately the statistics of many geophysical fields over a
wide range of scales [Lovejoy and Schertzer, 2007, 2010].
In particular, the statistics of velocity increments in the
atmosphere follow such statistics in a way that confirms
and refines Kolmogorov’s predictions. The existence of
scaling and (or) multifractal properties for rainfall both in
space and time has been advocated for a long time
[Tessier et al., 1993; Fraedrich and Larnder, 1993;
Lovejoy and Schertzer, 1995; de Lima and Grasman,
1999; Pathirana et al., 2003; Lovejoy et al., 2008; de
Montera et al., 2009; Verrier et al., 2010; Lovejoy et al.,
2012; Gires et al., 2012]. A recent review may be found
in Verrier et al. [2011].
[25] The latter study confirmed and extended previous

conclusions on the time scaling regimes of rain [Fraedrich
and Larnder, 1993; Fabry, 1996]; three main regimes could
be distinguished:
[26] 1. For time frequencies smaller than ~(3 days)�1, the

spectrum is flat.
[27] 2. For high frequencies (>(30 min)�1), the spectrum

follows a ω�1.55 power law, and the rainfall process is accu-
rately described by a FIF model.
[28] 3. Intermediate frequencies have an intermediate

spectral exponent and could be described by UM cascades.
[29] The detailed interpretation of such regimes will be

provided in another study with different data [Rysman
et al., 2013].
[30] An interesting feature of the cited studies is that

not only rainfall rates (considered in most of these

studies) but also radar reflectivities of rainfall events
seem to follow multifractal statistics—see the study of
TRMM reflectivities by Lovejoy et al. [2008], or the
ground-based radar case study by Tessier et al. [1993].
This means that in comparable space and time scaling
regimes, properties expressed by equation (4) should
hold both for rain rates and radar reflectivities (and
then, for reflectivity factors). The next section investi-
gates how such statistics interfere with the existence of
Z-R relationships.

3. From Scaling Properties of Rain to
Scale-Dependent Z-R laws

[31] The theoretical study of the properties of cascades
elevated to a (positive) power has been performed by some
works, especially devoted to the design of methods of
multifractal analysis [Tessier et al., 1993], and some impor-
tant results have been found about multifractal parameteri-
zation of Z and R fields [Tessier et al., 1993; Lovejoy
et al., 2008]. In this section, we follow the approach pro-
posed by these authors, in order to investigate the con-
straints linking moment structure functions and
multifractal parameters of both variables. From these con-
straints (which are discussed in a wider framework than
in previous papers, including the up to now neglected
log-Poisson case), the scale properties of Z-R parameters
are derived.
[32] Let us assume that Z and R follow multifractal statis-

tics over a given space (or time) scale range, with con-
served mean. Let us also write a possibly scale-dependent
Z-R law:

Zλ ¼ aRλ
b (7)

where : a ¼ a λð Þ and b assumed constant with scale: (8)

[33] Observable geophysical variables differ from cascade
products in the sense that they are spatial averages
(“dressed” cascade, Schertzer and Lovejoy [1987]) of a
top-down cascade constructed down to smaller scales.
Such “bare” and “dressed” cascades generally differ only
slightly (except for extreme values). First, take the b-th
power of R at a given scale and then perform a spatial aver-
aging may introduce small-scale breaks in the scaling.
However, the latter are corrected by the averaging steps,
justifying the scaling of dressed reflectivities, with b
constant across scales (equation (8)) [see Tessier et al.,
1993, §3 on similar issues].
[34] Let us take q-th and first-order moments on both

members of equation (7):

Z
q
λ

� �

¼ aq R
bq
λ

D E

(9a)

Zλh i ¼ a Rb
λ

� �

: (9b)

[35] The parameter amay be eliminated by combination of
both equations:

Zh iq= Rλ
b

� �q
¼ Zλ

qh i= Rλ
qb

� �

: (10)
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[36] Now, apply the fundamental equation of the
multifractal formalism (4) for both R and Z (in equation
(10)). After simple calculations with evident simplifications
of the “means” hZi and hRi, it appears that the moments
scaling functions KZ(q) and KR(q) are related as follows:

KZ qð Þ ¼ KR bqð Þ � qKR bð Þ: (11)

[37] This functional relation should hold for positive (real)
values of q (except possibly for very high orders for which
the moments may be not defined, see [Schertzer et al.,
2002] for details).
[38] Tessier et al. [1993] derived an equation identical to

equation (11) in the larger framework of powers of any
orders of any multiplicative cascades. They also considered
the case of Z-R relationships within the framework of
Universal Multifractals (see equation (5)) and highlighted
that in this case a simplification of equation (11) could
be found,

KZ qð Þ ¼ bαKR qð Þ (12)

leading to the following relationships between the universal
parameters of Z and R [Lovejoy et al., 2008]:

α ¼ αR ¼ αZ (13)

C1Z ¼ bαC1R: (14)

[39] In addition to the results found by Tessier et al., we
may emphasize that similar remarks hold for log-Poisson
cascades (see equation (6)). In this case, the log-Poisson pa-
rameterization changes as follows from R to Z:

cZ ¼ cR ¼ c (15)

γþZ ¼ c 1� 1�
γþR
c

� �b
" #

: (16)

[40] Thus, UM and log-Poisson multifractals seem appro-
priate for simultaneous characterization of multiple rainfall-
related fields. Indeed, for these parameterizations of K(q),
the apparent nondependence on b in l.h.s. of equation (11)
can be taken into account by a well-defined and unambigu-
ous transformation in the parameterization of K(q) (equa-
tions (13)–(16)).
[41] Let us now rewrite equation (10) in a slightly different

form:

Zλ
qh i= Zh iq ¼ Rλ

bq
� �

= Rb
λ

� �q
(17)

valid for all positive q, which is equivalent to the following
relationships (in distribution) between random variables:

Zλ= Zh i ¼ Rb
λ= Rb

λ

� �

: (18)

[42] Finally, combining equations (18) and (7) provides the
following scaling property:

a λð Þ ¼ Zh i= Rh ibλ�KR bð Þ: (19)

[43] In terms of spatial and temporal scales, this means that
the exponent a should follow a power law with the scale of
aggregation l (or τ):

a lð Þ∝lKR bð Þ (20a)

b lð Þ ¼ b ¼ const (20b)

a τð Þ∝τKR bð Þ (20c)

b τð Þ ¼ b ¼ const (20d)

(as noted above, b is expectedly constant across scales).
[44] In order to ensure self-consistency, it may be seen that

this scaling relation form is independent of the choice of the
“explicative” variable. This arises form an implicit symmetry
in equation (11). Let us substitute in the latter: q← q/b:

KR qð Þ ¼ KZ q=bð Þ þ q=b KR bð Þ (21)

[45] Since KR(1) = 0, the special case q = 1 gives:

bKZ 1=bð Þ ¼ �KR bð Þ (22)

which may be reported in equation (21):

KR qð Þ ¼ KZ q=bð Þ � qKZ 1=bð Þ (23)

[46] The equation obtained by dressing the field Z1/b

instead of Rb is formally similar to equation (11), leading to
the same scaling law as equation (19).
[47] However, there may be in practice a numerical differ-

ence between the scaling exponent K(b) involved here com-
pared to that deduced from Z= aRb, since the exponent b
estimates will be practically sensitive to the methodology of
regression. This will be discussed in section 5.
[48] In equation (20), it is important to see whether it

means that a increases or decreases with the scale. This
clearly depends on the sign of the KR(b) exponent. Since
the K(q) function is convex and has zeros at q = 0 and q= 1,
KR(b)< 0 for b<1 while KR(b)> 0 for b>1. This means that
in the usual case in radar-rainfall estimation, i.e., b> 1, the
coefficient awill be increasing with scale. This is fully coher-
ent with the empirical findings of the papers mentioned in
introduction [Morin et al., 2003; Steiner and Smith, 2004;
Jaffrain and Berne, 2012).
[49] It should be highlighted that the theoretical approach

exposed above could virtually be applied for any other
precipitation-related fields as long as they follow multifractal
statistics on a given range of scales, which is likely. For
instance, the conclusions of this section could be extended
to R-Kdp laws used in polarimetric radar-rainfall estimation:

R ¼ cKd
dp (with Kdp= specific differential phase shift). The

lack of empirical proof of multifractality of Kdp prevents to
affirm it; however, it seems very likely due to the multiplica-
tive structure of multifractal fields (taking power laws of the
latter gives another multifractal field), which is the idea
behind the demonstration.
[50] If laws of the form c∝ lK(d) and d(l) = const hold for

R-Kdp relationships, then the scaling exponent K(d) involved
could be closer to 1 than the K(b) exponent of Z-R relation-
ships used for conventional radars, since d has often been
suggested to be closer to 1 than b [e.g., Sachidananda and
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Zrnic, 1987] (see, however, Illingworth and Blackman
[2002] for a detailed discussion). This means that due to
the fact that polarimetric R-Kdp relationships are generally
closer to proportionality than their Z-R alternatives, the po-
larimetric estimation of rainfall rates should be more robust
with respect to scale change. Therefore, the errors in rainfall
estimation due to scale effects should be lower in the polar-
imetric case than in the conventional case. This is totally
coherent with the empirical study by Jaffrain and Berne
[2012] (Figure 5 of the cited paper), who indeed found
a smaller “scale” error in rainfall amounts by using the
R-Kdp relationships.

4. Data Set and Methodology

[51] In the following sections, the empirical study is re-
stricted to the relationships relating the rain rate R and the re-
flectivity factor Z. The data set considered here consists of the
measurements of the DBS instrument [Delahaye et al., 2006]
carried out in Palaiseau, France from July 2008 to July 2010.
From this instrument, which collects raindrops diameter, fall
speed, and time of arrival, high-resolution series of R and Z
may be computed from their DSD definitions, with a low
noise up to 15 s integration time. The detailed statistical anal-
ysis of the rain rate series (involving tools of the multifractal
framework) has been presented in another paper [Verrier
et al., 2011]. We refer the reader to this paper for a detailed
presentation of the characteristics of the series. It should,
however, be precise that the present series differs from the
previous ones by a slightly different filtering of nonrain
“drops” measurements.
[52] In order to eliminate small rain rates that will not be ob-

served by most instruments (rain gauges and radars), we ap-
plied a threshold at R=0.1 mm/h (at maximal 15 s
resolution). This conventional threshold is also chosen in order
to maintain the coherence with a previous study [Verrier et al.,
2011] where we worked with a similar threshold and demon-
strated the existence of multifractal properties over specific
scaling regimes. Note that in the case of disdrometer measure-
ments, there aremanymeasurements of small rainfall rates (and
reflectivity factors); the threshold may impact Z-R scatterplots,
hence some Z-R regressions methodologies (see below).
[53] Then, the Z and R series have been degraded using in-

tegration times that are multiples of the initial resolution of
15 s. The scale factors [i.e., λ = scale/(15 s)] involved start
from 2 to 256 (i.e., 64 min resolution, λ = 28) were chosen
so that they are equally spaced in log2 space (i.e., Int(2 n/2)
with integer n). Thus, various coarse resolution series of rain
rates and reflectivity factors are obtained. From the latter, a
scatterplot of strictly positive values of Z and R is found
and may be used as a basis for estimating the statistically op-
timal parameters a and b of equation (1).
[54] At this point, several regression methodologies may

be considered, and they are not strictly equivalent. The sim-
plest way to proceed is to perform linear regressions over
the scatterplots of the logs of the variables (for R> 0,
Z> 0), in order to linearize equation (1). However, even in
this case, the parameters a and b will be sensitive to the
choice of the explicative variable, since the regression will
not minimize the same criterion. So log Z vs. log R will not
provide the same estimates log R vs. log Z, and the departure
is generally significant. The latter regression is expected to be

more appropriate in the case of radar-rainfall estimation. An
intermediate solution would be also to consider the line asso-
ciated with the principal axis of the log-log scatterplot. In this
case, there is no explicative variable and in the case of prin-
cipal axis of normalized PCA, the slope estimate will be the
geometrical mean of that of the previous linear regressions.
[55] Another possibility is to use nonlinear regressions di-

rectly on the Z-R scatterplot, without taking the logs. This
methodology differs from the previous ones since due to
the absence log transformation, these are directly the absolute
errors (in the mean square sense) that are minimized, not the
relative errors. Therefore, nonlinear regressions will provide
a better fit of the high values of R and Z, leading to more pre-
cise rainfall accumulations [Campos and Zawadzki, 2000].
Levenberg-Marquardt methods are appropriate for such
kinds of regression [Levenberg, 1944; Marquardt, 1963].
[56] In the present study, different methods of regression

have been applied to the data, summed up by the
following nomenclature:
[57] R1: Linear regression log Z= f1 (log R)
[58] R1′: Linear regression log R= g1 (log Z)
[59] R2: Principal axis in the log R, log Z space
[60] R2’: Principal axis in the centred normalized log R, log

Z space (both logs shifted to 0 mean and divided by their
standard deviation)
[61] R3: Nonlinear regression Z= f3 (R)
[62] R3′: Nonlinear regression R= g3 (Z)
[63] R4: Bin averages of data and then linear regression log

Z= f4 (log R)
[64] R4′: Bin averages of data and then linear regression

log R= g4 (log Z)
[65] For R4 and R4′, the regressions are not performed on the

scatterplots of data but of the logs of data averaged over loga-
rithmically equally spaced bins in R. This methodology is
added in order to fit the conditional expected values of Z over
small intervals of R (the bins have a 0.1 width in logarithmic
space), in order to highlight “typical” Z-R relationships instead
of individual departures to them (due to for instance, to the
specific microphysical properties of some storms).
[66] In order to quantify the quality of the regressions, the

following statistical indicators have been estimated: the R2

for log-log linear regressions, the percentage of variance (iner-
tia) (%Iner) explained by the first principal axis for PCA-
inspired regressions, and also the percentage of “explained”
variance for nonlinear regressions (here also denoted by anal-
ogy as R2). These quality indicators are estimated on the whole
scatterplots (but on “binned” data for regressions R4(′)).
[67] The distinction established between the different

regression methodologies helps to focus on the multiscale
behavior of Z-R parameters for each of them: if similar laws
are found for several methodologies, this supports this idea
of a scale dependence of Z-R parameters that is mainly due
to the variability of the process (as predicted in section 3),
not to methodological artefacts. Moreover, observational
errors are low for the DBS data, which eliminates another
possible artefact source of scale effects (such effects were
already considered in cited Morin et al.’s paper).

5. Synthesis of Empirical Results

[68] For illustration purposes, the scatterplot of strictly
positive values of Z and R of the DBS series at 30 s resolution
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is given on Figure 1. The optimal regression curves for R1

and R3 regression strategies are shown on the figure,
highlighting the non equivalence between both methods. As
expected, R3 provides better fits for high values. As
explained in the previous section, such fits are performed
for multiple integration times and for the methodologies
listed above. To give a synthesis of the results, four graphics
are provided for each regression method:

[69] 1. The plot of the prefactor a as function of the log2 of
the scale factor, i.e., log2(λ) = log2(time scale/15 s).
[70] 2. The plot of the exponent b as function of the log2 of

the scale factor
[71] 3. The plot of an indicator of the quality of the regres-

sion (R2, % explained inertia, see section 4) as function of the
log2 of the scale factor. Note that in the case of linear regres-
sion, the R2 is insensitive to the choice of the explicative var-
iable in abscissa. The same remark holds for inertia
percentages of principal axes. This is why on some R2/inertia
graphs, some curves are undistinguishable.
[72] 4. The plot log2 of the prefactor a as function of the

log2 of the scale factor. If the prefactor follows a scaling
law such as (equation (20)), then ideally a straight line should
appear (with slope κa =KR(b)). A linear regression fit is
provided over all the available range of scales 15 s – 64
min, except when some points must be excluded: this
provides the scaling exponent κa of the prefactor.
[73] All these for graphs have the same abscissa axis that

should be read as follows: x = 0 means 15 s, x= 1 means 30
s, x = 2 means 1 min, …, x = 8 means 64 min (x = log2(λ)).
[74] Figure 2 presents the results for the regression meth-

odologies R1, R1′, R2, R2′ performed on the log-log
scatterplots. Figure 3 synthesizes the results for the regres-
sion methodologies R3 and R3′ (nonlinear regressions). The
methodology based on scatterplots averaged by intervals, i.
e., R4, and R4′, leads to the results exposed in Figure 4.
Complementary to the graphical representation, Table 1 pro-
vides a numerical summary of the regressions,

Figure 2. Estimation of Z-R parameters for linear regression strategies on the logs, R1, R1′, R2, R2 '
(curves with different colors, see legend). (top left) The estimate of coefficient a as a function of the loga-
rithmic scale factor, i.e., x = log2(scale/15s). This means that on the abscissa axis, 0 corresponds to 15 s, etc.
(top right) The estimate of exponent b as a function of the same logarithmic scale abscissa. (bottom left) The
R2/explained inertia % as a function of logarithmic scale factor. (bottom right) The same as Figure 2 (top
left) except except that vertical axis is converted in log2 scale.

Figure 1. Scatterplot log Z vs. log R in logarithmic coordi-
nates and optimal fits for regressions methodologies R1 and
R3. R1 corresponds to linear regression log Z= f1 (log R),
while R3 is the nonlinear regression Z= f3 (R).
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[75] For all regressions, the prefactor a is (as expected from
theory) a growing function of the time scale, generally starting
from values 200–250 at the finest scales up to values in the
range 350–600 at scales close to 1 h. On the contrary, the
exponent b can differ significantly from one regression to

one another, both in absolute value and scale-dependent
behavior. Regressions R1(′), R2(′) lead to scale-dependent b
(already observed in Morin et al. [2003]’s study), whereas
methodologies R3, R3′, R4, and R4′ support the theoretically
expected scale-independent b. The latter estimates of the

Figure 3. Estimation of Z-R parameters for regression strategies R3, R3′ (non linear regressions). Like in
Figure 2, the horizontal axis is the log2 of scale factor. The four graphs are organized similarly as in Figure 2.

Figure 4. Same as Figure 3, but for methodologies R4, R4′ (bin averages).
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slopes of Z-R log-scatterplots should, however, be more
reliable since these regression techniques are mainly
constrained by average and intense values and are practically
insensitive to instrumental thresholds contrary to R1(′), R2(*)
regressions which mainly fit on the numerous low and
moderate intensities/reflectivities (due to minimization of
relative errors).
[76] The most adapted regression technique to the Z-R

scatterplot seems to be that based on bin (i.e., conditional)
averages, R4(′). It shows the existence of a “typical” linear
relationship linking log (Z) and log (R) with an excellent R2,
associated with the following main features: (1) The exponent
b is almost constant (but slightly decreasing) in the range 1.5–
1.6 across scales, and (2) The prefactor a grows as power law
of time scale τ (a(τ) ~ τ κa) in the two separate scaling regimes
30 s – 4min and from 4 min to 1 h. As shown in Table 1, the
scaling coefficients κa=KR(b) of the power law are ~0.07 be-
low 4min and~0.14 for larger scales.
[77] These conclusions are mainly confirmed by other

regressions (excepting the b estimates for R1(′), R2(′)
methodologies), which also provide scale-growing values of
a that may be modeled by power laws of scale a(τ) ~ τ κa in
the same scaling regimes identified as above, with a transition
at 4 min scale. For all methodologies, it is found the scale de-
pendency becomes quicker in the second scaling regime with
larger κa estimates.
[78] The latter exponent should be compared with the theo-

retical exponent κa=KR(b) predicted in section 3. This is not
trivial since for high frequencies greater than (30 min – 1
h)�1, the power spectrum of the rain rate series has a spectral
exponent β> 1 that prevents the series to be modeled by
strictly conservative and stationary multifractal cascades
(which was an hypothesis for establishing equation (18)). In
fact, the rain intensity series should be viewed as the H-
fractional integral of a conservative Universal Multifractal flux
[Verrier et al., 2011]. In the latter cited paper, it has been found
that this flux could be modeled in the range 15 s – 32 min by
the UM model with optimal parameters α =1.8 and C1=0.13
(see equation (5)), but that a 0.4 fractional integral should be
added for smallest scales. However, the latter study also
showed that the first-order structure function of the rainfall
process flattens quickly for lags greater than ~8 min (i.e., H
exponent rapidly decreases to 0 for larger lags). So, even
though the hypotheses of the theoretical part of the present
paper (section 3) are not strictly speaking applicable in the case
of the DBS series, it seems possible to compare the empirical
estimate of κa in the second scaling regime 4 min – 1 h with

the value of KR(b) computed with the UM parameters recalled
above. Reporting these values (α =1.8 and C1=0.13) for
parameterization of the function KR(q), the values of the
theoretical exponent for the scaling of prefactors KR(b) may
then be estimated. Using typical values b=1.5–1.6 (associated
with regressions R3(′) and R4(′) and coherent with many liter-
ature estimates), it is found KR(b) = 0.09–0.12 which agrees
well with the values reported in Table 1. Regarding the regime
15 s – 4 min, we cannot conclude probably due to the discrep-
ancies associated with the additional H parameter. Physically
speaking, the transition at 4 min identifiable from structure
functions and from previous graphs could be linked with the
effect of rain/no-rain intermittency, i.e., breaks in the scaling
associated with the fractality of rainfall occurrence processes
[Verrier et al., 2011].
[79] The overall results of the regressions, and especially

those of methodologies R3(′) and R4(′), empirically confirm
the notion of scale dependence of Z-R parameters elaborated
in section 3. They are also consistent with the findings of
Morin et al. [2003], Steiner et al. [2004], and Jaffrain and
Berne [2012] (who, however, mainly considered spatial
scales). If the exponent b is constant across scales whereas
a increases with integration times, this means that the
inadequate use of high-resolution (a,b) parameters at larger
scales and on larger integration times will result in an
overestimation of rain rates from reflectivity factors using a
relation of the form R= (Z/a)1/b. If such a behavior holds in
the space domain, this means that similar errors will arise in
the estimation of rainfall rates from radar reflectivities.
Since radar pixels are large (~1 km2), whereas the parameters
a and b are often derived from disdrometer measurements at
small scales, there would be an error which would be greater
for lower resolutions radar. These ideas will be developed
with more details in section 7.

6. Normalized Z-R Relationships With the (N0*,
Dm) DSD Normalization

[80] In section 5, the regression methodologies have been
applied to the data in order to fit equation (1). Due to the
numerous data points in the series which cover a two-year
period, the Z-R relationships are only the “typical” climatolo-
gical ones. As seen in section 5, a great scatter remains in the
log Z-log R data space. The natural microphysical variability
of Z-R relationships is expected to be responsible of a signifi-
cant part of the scatter and of the low correlation coefficients.
But it could not only impact the scatter from the typical

Table 1. Scaling Coefficients κa of Prefactor a in the Scaling Ranges 15 s – 4 Min and 4 Min – 64 Min

Ref. Regression Description Ref. Fig. Range 15 s – 4min Range 4 min � 64 min

R1 Lin. Reg. log Z= f(log R) Figure 2 0.034 0.079
R1′ Lin. Reg. log R= f(logZ) Figure 2 0.065 0.126
R2 PCA-based Reg. Figure 2 0.051 0.104
R2’ Norm. PCA Reg. Figure 2 0.049 0.102
R3 Nonlin. Reg. Z = f(R) Figure 3 0.006 0.043
R3′ Nonlin. Reg. R = f(Z) Figure 3 0.100 0.244
R4 Bin. Reg. log Z= f(log(R)) Figure 4 0.077 0.143
R4′ Bin. Reg. log R= f(log(Z)) Figure 4 0.075 0.147
R5 log(Z/N0*) = f(log(R/N0*)) Figure 6 0.041 0.076
R5′ log(R/N0*) = f(log(Z/N0*)) Figure 6 0.046 0.083
R6 log Z = f(log(R Dm

2.33
)) Figure 7 0.021 0.043

R6′ log(R Dm
2.33

) = f(log(Z)) Figure 7 0.023 0.045
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regression, but the “typical” regression itself. The reason for
this is simply that the extreme and nonlinear variability of
rainfall processes will be sensitive to aggregation of scales.
This was already the same qualitative idea that was underly-
ing the equations exposed in section 3. Hence, in order to
estimate more precise Z-R relationships on less scattered data,
variants of equation (1) involving normalization parameters
of DSD should be considered.
[81] Many normalization techniques have been proposed

in the literature [e.g., Sekhon and Srivastava, 1970;
Sempere Torres et al., 1994, 1998; Testud et al., 2001; Lee
et al., 2004; Lovejoy and Schertzer, 2008]. While former
normalization procedures involved one reference DSD
moment, Testud et al. [2001] and Lee et al. [2004] have
shown improvements led by the use of a second reference
DSD moment. However, most existing DSD normalization
procedures often rely on unrealistic hypotheses (e.g., homo-
geneity, absence of scale dependency). On the contrary, the
turbulent (multifractal) character of rainfall-related variables
states that in fact DSD should be strongly scale dependent.
Then, as pointed by Lovejoy and Schertzer [2008], DSD
variability should be constrained by controlling macroscopic
(scaling) rainfall variables. This means that scaling,
macroscopic variables should be involved in normalization
procedures. Especially, Lovejoy and Schertzer [2008]
reformulated the problem in terms of nondimensionalization.
Based on a drop mass distribution formalism, they suggested
that turbulent reference variables such as the number density
of drops and the liquid water content would provide a more
correct nondimensionalization. Indeed, correct DSD normal-
izations should involve a quantity with a dimension on mass,
which is missing in other existing approaches based on
questionable homogeneity assumptions (due to implicit
conversion between drop volumes and masses using the
density of water). In the same paper, the authors found empir-
ical support of their nondimensionalization method based on
the study of high-resolution, 3D drop data associated with
several storms.
[82] Whatever the limitations associated with some DSD

formalisms, we would like to evaluate the behavior of
normalized variants of Z-R laws across scales. In the follow-
ing, attention is focused on the approach proposed by Testud
et al. [2001], which is used in practical radar precipitation
estimation algorithms such as ZPHI [Testud et al., 2000].
The idea of Testud et al. [2001] is to include in Z-R relation-
ships two additional parameters constructed from specific
combination of some moments of the DSD (of course,
moments of different orders than 6 and 3.67, associated with
Z and R, respectively). Within this approach, the DSD is
written as:

N Dð Þ ¼ N�
0f D=Dmð Þ (24)

where D is the raindrop equivalent diameter and f a “shape”
function. N �

0 (m�3.mm�1) and Dm (mm) are from the 3-rd
and 4-th moments of the DSD.
[83] Let us denote

M k ¼ ∫N Dð ÞDkdD (25)

the k-th moment of the DSD.
[84] The multiplicative coefficientN�

0 and the scale param-

eters are defined as follows:

N�
0 ¼

44

6

M5
3

M4
4

(26)

Dm ¼
M4

M3

(27)

[85] A key point with this normalization is that for any cou-
ple of orders (j,k), the adequately normalized moments of the
DSD are power law related:

M k

N�
0

¼
M j

N�
0

� �kþ1
jþ1

ζ kζ j
�kþ1

jþ1 (28)

with ζ k = ∫ f(x)
kdx.

[86] This behavior is remarkable [Testud et al., 2001] since
contrary to Z-R relationships based on Gamma distribution
hypothesis (1), equation (28) does not rely on any assump-
tion on the DSD shape and (2) the exponent b of the power
law does only depend of the orders k and j involved and not
on the shape nor parameters of the DSD.
[87] For j= 3.67 and k = 6, the rain rate and the reflectivity

factor are related in the following way:

Z

N�
0

¼ a0
R

N�
0

� �1:5

: (29)

[88] Testud et al. [2001] showed the existence of a dual re-
lation involving the normalization parameter Dm:

Z ¼ a0 0D2:33
m R (30)

[89] The measurements performed by the DBS contain all
necessary information on the DSD to estimate the moments
M3 and M4 at 15 s resolution. The obtained series are then
aggregated at coarser time resolutions. Therefore, (equations
(26)–(27)) may be applied at multiple resolutions so N�

0 and
Dm are available at all scales in the range previously consid-
ered. The normalization parameters are reestimated at differ-
ent resolutions in order to mitigate the problems evoked
above about DSD scale dependencies. Of course, the meth-
odology exposed in sections 4 can then be adapted in order
to fit the normalized Z-R relationships (equations (29)–(30)).
[90] Additional methodologies are thus defined:
[91] R5: Linear regression log Z/ N�

0 = f5 (log R/ N�
0)

[92] R5′: Linear regression log R/ N�
0 = g5 (log Z/ N�

0)

[93] R6: Linear regression log Z= f6 (log D2:33
m R)

[94] R6′: Linear regression log D2:33
m R= g6 (log Z)

[95] In the laws to be fitted, with notations

Z

N�
0

¼ a0
R

N�
0

� �b0

(31)

and

Z ¼ a0 0 D2:33
m R

� 	b0 0

; (32)

it is not assumed a priori that b′= 1.5 and b″= 1, respectively,
even though these are the expected values. Of course, the pa-
rameter a′ is here not the same as the prefactor defined in
equation (1); however, it is interesting to investigate whether
an empirical scale dependence still holds for it.
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[96] As shown on Figure 5, the scatterplot of normalized
variables is spectacularly less scattered than in Figure 1, with
an excellent correlation coefficient. This confirms the interest
of the approach proposed by Testud et al. [2001] and subse-
quent studies: if reliable estimates ofN�

0 and Dm are available,
the great microphysical scatter in Z-R space is washed out at a
fixed scale, leading to robust rainfall rate estimation equations.
[97] However, how do these equations behave across scales?

The application of methodologies R5 and R6, illustrated on
Figures 6, 7, is synthetized in Table 1. The R2 estimates are
excellent at all scales (>0.99), confirming the improvement
given by the normalization approach. For all scales, the expo-
nents b′ and b″ estimates are almost constant with scale and
very close to the theoretical values 1.5 and 1, respectively.
On the contrary, the prefactors a′ and a″ seem to vary with scale
in an increasing way. Coherently with the findings of section 5,
two scaling regimes may be identified separated by a slight
transition at 4 min scale. For each of these two regimes, both
a′ and a″ grow as a power law of scale, and the growth is faster
at scales larger than 4 min. Yet, a look at Table 1 shows a
significant difference from the study exposed in section 5.
For both scaling regimes, the scaling exponents κa of a′ and a
″ are two or three times lower than those found by the fitting
of nonnormalized scatterplots. In section 5, we have reported
κa=0.07 and 0.14 for both scaling regimes while considering
the scaling of nonnormalized Z-R relationship prefactor a. In
the caseN�

0 of normalization, the scaling exponents are reduced

to 0.04 and 0.07, while theDm-normalized fits lead to very low
scaling exponents 0.02–0.04. These low exponents are the
indicator that normalized Z-R relationships have parameters
which are more stable with scale, showing that these Z-R
relationships that are more robust to scale artefacts such as
those predicted in section 3. This is consistent with some
recently published empirical results [Berne et al., 2012].
[98] How to explain this robustness? The latter is a priori

nontrivial to demonstrate, since due to the statistical dependence
between R, Z, N�

0 , Dm, a theoretical multiscale law does not
seem to be derived from the multifractal theory. Still, simple
considerations may help to understand why the fits of

normalized laws (equations (29)–(30)) are more stable across
scales. Qualitatively, the increased scale-by-scale robustness
of these relationships (compared to those considered in
section 5) results from the huge additional information provided
by the knowledge of DSD parameters at all scales. To under-
stand this more in detail, let us recall that the DSD has been
written as the combination of the two parameters N�

0 and Dm

(multiplicative factor and scale parameter) and of a “normalized
DSD” function denoted f (see equation (27)). From equation
(28), it is evident that the prefactor a′ in (equation (29)) depends
mainly on ζ 6ζ 3.67

� 1.5 with ζ k= ∫ f(x)
kdx. Similarly, it may be

shown easily that the prefactor a″ in (equation (30)) depends
mainly on ζ 6/ζ 3.67. Hence, it is shown that even though a mod-
erate scale dependence of normalized shape functions seems to
exist, the normalization parametersN�

0 andDm contain an infor-
mation that is strongly correlated with the scale dependence of
nonnormalized Z-R relationships and likely with the underlying
extreme, nonlinear, multifractal variability of rainfall.
[99] It has been shown that the addition of the information

provided by the parameters N�
0 and Dm may partially resolve

the scale dependency of Z-R laws prefactors theoretically de-
rived in section 3 and empirically proven in section 5. Of
course, the use of adequately normalized Z-R laws is strongly
constrained in the case of applications (possibly without any
disdrometer) by the limited knowledge ofN �

0 andDm over large
intervals and over spatial domains. Yet, it should be noted that
algorithms like ZPHI [Testud et al., 2000] provide maps of es-
timates of N �

0 that could be used in a true radar case study to
investigate the scale robustness of such precipitations products.

7. Impacts and Correction of Scale Artefacts

[100] The scale dependency of the factor a in Z-R power
laws has been empirically verified above by the use of
disdrometer data aggregated at different integration times.
Yet, such a law is likely to hold also when different spatial res-
olutions are considered. Theoretically, the scaling law derived
in section 3 is valid whenever the hypothesis of multifractality
is valid, the latter seeming empirically true for both temporal

Figure 5. (left) Scatterplot log Z/N0* vs. log R/N0* in logarithmic coordinates and optimal fit for regres-
sions methodology R5. R5 corresponds to the linear regression log Z/N0* = f5 (log R/N0*). (right)
Scatterplot of log Z vs. log (R Dm

2.33) and optimal fit for regressions methodology R6. R6 corresponds to
the linear regression log Z= f6 (log D2:33

m R).
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and spatial variability. Hence spatial aggregation of scales or
changes in pixel size should impact Z-R relationships. This
means that radar-rainfall estimation applications will be
impacted by biases whenever scale issues are involved. In par-
ticular, two typical cases are concerned:

[101] 1. Two distinct radars with different resolutions should
use different Z-R relationships. This is especially true when
both resolutions differ significantly from each other: for in-
stance the estimation of rainfall intensities from reflectivity
data obtained by a ground based radar with a pixel size of

Figure 7. Same as Figure 6 but for regression strategies R6, R6′ and parameters a″ and b″ of Z vs. R Dm
2.33

law.

Figure 6. Estimation of Z/N0* vs. R/N0* law parameters for regression strategies R5, R5′. Abscissa is the
same as in Figures 2–4. The graphs are organized as in previous figures except that b′ replaces b and a′ re-
places a (see equation (31)).
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500 m–1 km should not use the same Z-R relationships as a
spaceborne precipitation radar (e.g., TRMM PR) with a
resolution of the order of 4–5 km. This is important to quantify
the errors in rain rate estimation while comparing spaceborne
radars and ground-based ones since the inversion of spaceborne
measurements using higher-resolution ground-based measure-
ments remains a problematic issue.
[102] In the range 1–20 km, rainfall maps seem to follow

multifractal properties, even in the interior of rainfall structures;
they are characterized by (conservative, UM) multifractal expo-
nents that are the same as those describing time variability in the
physically comparable range 1 min – 30 min [Verrier et al.,
2010, 2011]. This means that the exponent K(b) in equation
(19) could be identical in these time and space scale ranges
and that a relation of the form a(l)∝ lK(b) may be conjectured
at these scales in the space domain. If the parameter a that is
valid at l1 is applied at a larger scale l2, there will be (statisti-
cally) an underestimation of a and therefore (for constant b)
an overestimation of the rainfall rate [Steiner and Smith, 2004].

R̂l2

Rl2

¼ Z l2
1=b l2ð Þ�1=b l1ð Þ a l1ð Þ1=b l1ð Þ

a l2ð Þ1=b l2ð Þ
(33)

In the case of constant b, the overestimation will therefore
follow a scaling law:

R̂ l2

Rl2

¼
l2

l1

� �

K bð Þ
b

(34)

With resolutions considered above, e.g., l1 = 1 km, l2 = 5 km,
and the typical values b= 1.5 and K(b) = 0.14 (see section 5),
it is obtained R̂ l2

Rl2
≈1:162, hence +16.2% of relative error.The

relative error could even be greater in the case of intense
storms. Within the latter, the statistical scaling properties
are expected to be modified due to increased variability and
inhomogeneity. We tried to apply the methodology of
section 5 on few selected 1 h rain events contained in the
DBS series (result not shown here) and found slightly greater
scaling exponents K(b) that could lead to more than +20% of
relative error for a scale factor λ = 5.Note that since R̂ l2

Rl2
¼ Z l2

1=b l2ð Þ�1=b l1ð Þ a l1ð Þ1=b l1ð Þ

a l2ð Þ1=b l2ð Þ , the relative error slightly depends on
rainfall intensity since empirically the exponent b is not in
fact a true constant. In section 5, it has been found that b
slightly decreases with scale which means that 1/b(l2)� 1/b
(l2)> 0 and therefore the relative error is expectedly more
important in the case of intense reflectivities. Hence, intense
rainfall rates are more concerned with scale-induced biases in
Z-R relationships, with a possible impact on long-term rain-
fall accumulations estimated from radars.
[103] 2. Since radar sampling volumes widen while in-

creasing the distance from a given radar, measurements are
initially distributed over polar grids with pixel area propor-
tional to the distance. Then, it may be understood that
“raw” radar measurements in polar coordinates have an
equivalent spatial resolution that increases with distance.
Since we have shown above that Z-R relationships are not
scale independent, this means that the use of a single Z-R re-
lationship in signal processing algorithms of a given radar de-
vice will necessary induce significant biases in rainfall
estimates even if the radar-rainfall relationship would be
“perfectly” calibrated at a specific distance or at some given
locations. Opposite, a systematic bias will occur at other

distances and especially for the pixels located far away from
the radar.
[104] Similar calculations like those of previous paragraph

can show that by using a Z-R relationship that is correct at
distance r0 at another distance r, the (statistical) error will
take the form of a spurious factor of the form:

R̂

R
¼

r

r0

� �

K bð Þd
b (35)

where K(b) ~ 0.1–0.2, b ~ 1.5, and d is a geometric dimension
describing how fast the equivalent resolution increases with
the distance (hence, in 3D, d = 2/3 since the radar sampling
volume is quadratically dependent on distance). This means
that rain rates tend to be overestimated away from the radar
(and possibly underestimated very close to it).
[105] 3. An important issue is to improve the retrievement

of radar Z-R relationships using collocated raindrop size dis-
tribution information. Indeed, DSD data provide information
a priori useful for the estimation of optimal parameters in
equation (1). However, the spatial resolution of a radar is
clearly huge compared to the catchment surface of a
disdrometer, the latter leading to “point-scale” DSD estima-
tions and therefore to point-scale estimates of the prefactor
a and of the exponent b. If Z-R relationships are dependent
of the space scale in the same way as above, this would lead
to a significant error in the estimation of a and therefore in re-
trieved rainfall rates. However, relations such as (equation
(20)) are not easy to apply directly to model such errors, since
(1) there also a difference between the time resolutions of
both instruments (radar data consist in an average of a few
“instantaneous” scans), and (2) few information on possible
multifractality of rainfall at horizontal space scales< 100 m
is available in the literature (due to limited resolution of
weather radars); hence, the existence of a law of the form
(equation (20)) remains theoretically uncertain (see, how-
ever, Lovejoy and Schertzer [2008] for an empirical study).
[106] How to eliminate such practically undesirable biases?

For Z-R relationships, this remains a difficult task since this
scale dependence seems subtlety constrained by the hetero-
geneities in microphysical properties. Moreover, the errors
described above are statistical, and the spurious factors de-
scribed above should be understood in this perspective.
However, in order to improve rainfall accumulations (which
are expected to be representative of statistical averages), we
suggest three possibilities that may be used to wash out or di-
minish scale artefacts in radar-rainfall estimation.
[107] I. A conceptually simple possibility would be to

correct expected artefacts of the form (l2/l1)
K(b)/b by simply

multiplying estimated rainfall rates by the converse term.
With the values estimated in the present studies, this means
that if Z-R relations are well calibrated at spatial resolution
l, then at resolution l.λ, the outputs in terms of rainfall
intensities should by multiplied by λ�0.1 or λ�0.15.
[108] II. A second possibility consists in using extensions

of Z-R relationships that include microphysical information
and are more stable with scale. As shown in section 6, exten-
sions of Z-R relationships that involve DSD normalization
parameters (like equation (34)) are more stable across scales.
However, these modified relationships require the knowl-
edge of the variability of N�

0 and or Dm to be applied. This
could be investigated with algorithms like ZPHI that also
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work onmicrophysics. For other practical applications, solution
I) seemsmore feasible in absence of microphysical information.
[109] III. Another solution to the scale-dependent biases can

be considered. From the theoretical development in section 3,
the dependence of Z-R prefactors on scale is impacted by the de-
gree of nonlinearity of the Z-R relationships. More generally, a
relationship Y=αXβ between two multifractal fields leads to a
law of the form α(l)∝ lK(β), where the exponent K (b) will be
close to 0 when b is close to one. This means that relationships
that are closer to proportionality are expectedly much more ro-
bust to scale dependence. In particular (as noted in section 3),
the relationships used for rainfall estimation by polarimetric ra-

dars, i.e., R ¼ cKd
dp, are often less nonlinear than conventional

Z-R laws and should be more robust over many scales.
[110] An important additional remark is that the scale depen-

dency demonstrated in section 3 is a purely statistical property.
The empirical methodology followed in this paper was
designed in order to eliminate some artefacts such as the influ-
ence of observational errors (low for the DBS instrument) or
methodological ones (resolved by the systematic use of several
regression methodologies). In real radar applications, these
factors (and others) also impact Z-R relationships and possibly
differently across scales. The contributions of each source of
errors need to be quantified and compared in order to reduce
possible biases and error bars in radar-rainfall estimation.

8. Summary

[111] This paper has been structured by two main ideas. On
the theoretical side, with the help of previous ideas [Tessier
et al., 1993; Lovejoy et al., 2008], it has been shown that the
extreme variability of rainfall processes, as described empiri-
cally by scaling and multifractal statistics, could lead to a scale
dependency of the parameters in usual Z-R power-law
relationships used in quantitative radar-rainfall estimation. In
particular, it has been demonstrated that if both Z and R follow
conservative multifractal statistics, the exponent b of Z-R laws
should be constant with scale whereas the prefactor a should
increase as a power law of scale (for usual values b> 1), with
moderate scaling exponent (of the order of 0.1).
[112] Empirically, the general qualitative behavior of the

prefactors expected from theory is retrieved from the study of
DBS data at small time scales (from<1 min to ~1 h). Yet, we
noticed a transition at 4 min time scale and only the larger scales
seem to be theoretically interpretable. For nonlinear regressions
and for regressions on conditional expected values (i.e., bin
averages), the exponent b does not vary much over the consid-
ered range of scales. For most regression methodologies, the
prefactor a of Z-R laws is indeed found to follow approximate
0.1 to 0.15 power laws of integration times τ, e.g., a(τ)∝ τ0.1

that are rather coherent with theoretical considerations.
[113] While the scaling law of the prefactor a has empiri-

cally been shown for the use of different integration times
using a ground-based disdrometer, it seems likely that such a
law remains valid for small spatial scales that are in the scope
of weather radars (e.g., 1–10 km) since the hypotheses
constraining the scale behavior of Z-R laws (nonlinearity,
multifractality) are still valid at such spatial scales. The exis-
tence of such a spatial property has been empirically supported
by the works of Jaffrain and Berne [2012]. Clearly, it could
impact radar-rainfall estimation at various levels: biases asso-
ciated with radar pixel deformation with distance, inversion

of spaceborne radar measurements using ground-based radar
data, estimation ofZ-R relations at radar pixel scale using
pointwise DSD information… The correction of such errors
could be performed either by the means of the use of a supple-
mentary scaling factor estimated from resolution and from
statistical scaling parameters or by the use of alternative laws
(e.g., relationships involving normalization parameters of the
DSD or polarimetric R-Kdp laws).
[114] Further work is needed to systematically investigate

the scale unrobustness of Z-R relationships at (sub)mesoscale
and especially in the spatial domain, with the help of different
instruments (including radars). This would help to quantify the
respective contributions of all factors impacting Z-R
parameters (statistical factors considered here vs. observa-
tional and other methodological errors) and to define the best
strategy to minimize such errors. In particular, we expect that
in the case of intense convective events, the scaling bias in
Z-R relationships could be important since the underlying
variability of rainfall is higher. For such events, the errors in
rainfall estimation could be very significant, with greater rela-
tive errors than those discussed in section 7.
[115] Let us finally highlight that the approach followed in

the theoretical part of the paper seems extendable to the study
of other fields that follow multifractal statistics over a given
range of scales. Asmentioned above, a relationship Y=αXβ be-
tween two (conservative) multifractal fields X and Y necessarily
constraints the parameters α and β such that β is scale invariant
and α(l)∝ lK(β) where l is the spatial (or temporal) scale. This
could enlarge the implications of the present study to other rain-
fall fields (other DSD moments than Z and R…) or possibly to
other geophysical fields. This emphasizes the necessity to esti-
mate geophysical parameters consistently with the resolution.

[116] Acknowledgments. S. Verrier acknowledges the Centre National
d’Etudes Spatiales (CNES) for financial support.
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