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Abstract 

In this paper, charging capacitor in RC circuit, to a final voltage, via arbitrary 

number of steps, is investigated and analyzed both theoretically and experi-

mentally. The obtained results show that the stored energy in the capacitor is 

constant independent of N, but the dissipated energy in the resistor and the 

consumed energy by the power supply decreases as number of steps N in-

creases (adiabatic charging). The limit when the step number goes to infinity 

is examined and our result shows that the dissipated energy vanishes theoret-

ically. This limit is carried out experimentally by using a ramp potential. 
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1. Introduction 

Charging and discharging capacitors play important role in many applications of 

electrical energy storage [1] [2] [3]. During the charging process of a capacitor, 

the energy dissipation is usually of great concern [4] [5] [6] [7], so the efficient 

charging is a crucial factor and has been recently investigated [8] [9] [10]. Fur-

thermore, reduction in energy dissipation has become one of the major concerns 

in communications and computing [11] [12] [13]. Recently, there has been more 

concern about energy storage and dissipation with the emergence of Graphene 

and other nanomaterials in recent development of supercapacitors [14] [15] [16] 

[17]. The usual treatment of charging a capacitor is the traditional R-C circuit, in 

which a capacitor of capacitance c and resistor of resistance R are connected in 

series with a power supply of constant voltage, V0. It is widely well-known that 
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the dissipated heat energy, Q in the resistor is equal to the energy stored, U in 

the capacitor when it is finally fully charged, namely 

2

0

1

2
U Q cV= = .                        (1) 

Therefore, the consumed energy by the power supply is divided equally between 

the stored energy in the capacitor and the dissipated energy regardless of the value 

of the resistance, R. It has long been recognized that abruptly charging the capaci-

tor is accompanied by energy loss given by Equation (1). However, workers sug-

gested gradual (adiabatic) charging to lower the energy loss [18] [19] [20] [21]. 

In this paper, we consider RC circuit in which the capacitor is charged up to a 

final potential V0 through N steps. We derive the energy stored, the dissipation 

energy, and the consumed energy at the end of arbitrary jth step. We also setup 

an experiment for this adiabatic charging and compare the theoretical derived 

quantities with the experimental ones. It is shown that, the final energy stored in 

the capacitor is a conserved quantity (given by Equation (1)), but the dissipated 

energy and the consumed energy by the power supply decrease as the number of 

steps increases. We also consider, theoretically, the special case, N →∞ , in 

which case the dissipation energy vanishes and the consumed energy is just the 

energy stored in the capacitor. Experimentally, this special case is considered by 

using a ramp potential in the RC circuit and we show that the experimental re-

sults are in good agreement with the theoretical ones. 

The structure of the manuscript is as follows: In Section 2, charging a capaci-

tor in RC circuit using stepwise potential is theoretically examined and analyzed, 

so as the dissipation energy and the consumed energy are expressed in terms of 

the number of steps. In Section 3, the charging process of the capacitor in RC 

circuit is carried out experimentally using N steps potential, so the final charge 

on the capacitor is measured as the area under the current-time curve for each N. 

This enables us to compute the stored and the consumed energies, so the dissi-

pation energy is computed from the difference between the two. Section 3 is de-

voted for conclusions and discussion. 

2. RC with N Steps Charging: Theoretical Analysis 

We consider RC in which a capacitor of capacitance c is connected in series to a 

resistor of resistance R and a power supply. The procedure is to charge the capa-

citor to a final potential V0 through N steps. So in the process, the potential is 

carried out as 

0 0 0 0
0

2 3
, , , , , ,

V V V jV
V V

N N N N
= ⋯ ⋯ .                 (2) 

So considering the jth step, the potential of the power supply is 0jV N  and 

thus Kirchhoff law yields 

0 0
V q
j iR
N c
− − = ,                       (3) 

whose solution gives the charge on the capacitor during the jth step; 
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( ) 0 e t Rc

j

V c
q t j

N

− = −  .                     (4) 

So the final charge at the end of the jth step is 0
j

jV c
q

N
= . It is noticed that the  

amount of charge during each step is the same, which can be seen from  

1j jq q −−  which is clearly equals to 0V c N . 

The heat energy dissipated in the resistor during the jth step is: 

2 2
2 20 0

20 0

1
d e d

2

t Rc

during j

V V
Q i R t R t c

NR N

∞ ∞ − = = = 
 

∫ ∫ ,          (5) 

where the current, 
d

d

jq
i

t
=  is found from Equation (4). It is clear that the dis-

sipated heat energy is independent of the step number, and thus it is the same  

for each step. Therefore, the accumulated dissipated heat energy at the end of the 

jth step, Qj is 

2

0

2

1

2
j during j

V
Q jQ c j

N
= = ,                    (6) 

and therefore, at the end of the final step (j = N), the total dissipated heat energy 

is given by 

2

01

2

V
Q c

N
= .                          (7) 

This shows that Q decreases as N increases and thus the dissipated heat energy 

vanishes as N →∞ . 

Now we consider the energy stored in the capacitor during this process: 

At the end of the jth step, the potential 0jV jV N=  , so the stored energy is 

2

2 01 1

2 2
j j

jV
U cV c

N

 = =  
 

.                    (8) 

This can be proved by mathematical induction as follows; 

1) For 1j = , 
1

1

0
0

2

1

1
d d

2

q
q

q
q

q
U V q q q

c c
= = =∫ ∫ . 

But, 0 0q =  and 0
1

V
q c

N
= . Therefore 

2

0
1

1

2

V
U c

N

 =  
 

. 

2) We assume it is true at j and need to show it is true at j + 1. 

Energy stored between steps j and j + 1 is 

( )1

2
2 20

, 1

1
d 1

2

j

j

q

j j q

Vq
U q c j j

c N

+

+
   = = + −    

∫ . 

But the stored energy at end of the ( )1
th

j +  step is 

( )
2

22 20
1 , 1

1
1

2
j j j j

V
U U U c j j j

N
+ +

   = + = + + −    
. 

So, ( )
2

20
1

1
1

2
j

V
U c j

N
+

 = + 
 

. 
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That completes the proof, therefore the energy stored in the capacitor at the  

end of the jth step is: 

2

01

2
j

V j
U c

N

 =  
 

, So that when j = N , it gives 2

0

1

2
U cV= ,  

which shows that the energy stored in the capacitor is a conservative quantity, i.e 

it depends on the potential difference between the initial and final states. It is in-

teresting to note, by comparing Equation (6) and Equation (8), that at the end of 

the jth step j jU Q≥ . The equality sign holds only for j = 1. 

Finally, we consider the consumed energy by the power supply (input energy): 

This can be achieved by two methods: In the first, we calculate the work 

done by the power supply throughout the whole process and, in the second, we 

add the energy stored in the capacitor to the dissipation energy. 

For the first method: We compute the input energy for each step and then we 

sum to the required step (say the jth step). Letting 1,i iE −  be the input energy 

between the ( )1
th

i −  step and the ith step, one may write 

2

0 0 0
1, 1, 2i i i i i

cV iV cV
E q V i

N N N
− −

  = = =  
  

.               (9) 

Therefore, the input energy, Ej up to the jth step is given by 

( )2 2

0 0
1, 2 20 0

1

2

j j

j i ii i

j jcV cV
E E i

N N
−= =

+
= = =∑ ∑ .           (10) 

The total input energy, E is obtained by substituting, j = N, with the result; 

2

0 1

2
j

cV N
E

N

+
= .                       (11) 

Obviously, in the limit N →∞ , Equation (11) gives 2

0

1

2
E cV=  which is  

equal to the energy stored in the capacitor. This is expected since, in this case, 

the dissipation energy vanishes. 

For the second method: At the end of the jth step, the input energy is the sum 

of the energy stored in the capacitor and the dissipation energy, which with the 

help of Equation (6) and Equation (8), one gets 

2 2

0 0

2

1 1

2 2
j j j

V j V
E U Q c c j

N N

 = + = + 
 

.              (12) 

The above equation can be simply written as 

( )
2

0

2

1
1

2
j

V
E c j j

N
= + ,                     (13) 

which is exactly the same as Equation (10). It reproduces the total input energy, 

given by Equation (11), when j = N. 

3. RC with N Steps Charging: Experimental 

In this section, we consider RC circuit with applied voltage that can be set at any 

number of steps, N to achieve a final voltage V0. The potential steps was applied 
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using computerized PGZ 402 universal potentiostate (radiometer analytical). 

Connection to RC circuit was established using two electrode connections mode 

as shown in Figure 1. 

The procedure goes as follows: The voltage source is set at the required num-

ber of steps with duration time for each step much greater than the time con-

stant (RC) of the circuit. The current in the circuit is plotted as function of time. 

The total charge, q delivered by the power source and accumulated at the capa-

citor is calculated by finding the area under the current-time curve. The final 

energy stored in the capacitor is calculated from the formula, 2 2U q c= . The 

input energy (consumed energy) is calculated as follows: 

avgE qV= ,                         (13) 

where Vavg is the average potential the process of N steps and is given by 

0 0

21 1

1 N N

avg j j

V V
V j j

N N N= =
= =∑ ∑ .                (14) 

Using ( )
1

1 2
N

j
j N N

=
= +∑ , Equation (14) becomes 

0

1

2
avg

N
V V

N

+
= ,                       (15) 

so the input energy becomes 

0

1

2

N
E qV

N

+
= .                       (16) 

The dissipated energy is calculated from the difference between E and U, 

namely 

2

0

1

2 2

N q
Q E U qV

N c

+
= − = − .                  (17) 

The experimental measurements were taken for different values of the num-

ber of steps, N. The special case N →∞  was considered by applying a ramp 

potential from the power source. For each value of N, a graph for current vs. 

time is obtained and these graphs are shown in Figures 2-12. Each contains the 

stepwise potential for the given value of the step number, N. Figure 2, for N = 1, 

represents the conventional charging capacitor by a constant voltage source. The 

current for any value of the step number N can be found from Equation (4), namely 

 

 

Figure 1. Schematic diagram for RC circuit connected to PGZ 402 Universal Potentios-

tate using two electrode mode connection. 
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Figure 2. I vs. t for abrupt potential (N = 1). 

 

 

Figure 3. I vs. t for step potential (N = 2). 

 

 

Figure 4. I vs. t for step potential (N = 4). 
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Figure 5. I vs. t for step potential (N = 5). 

 

 

Figure 6. I vs. t for step potential (N = 8). 

 

 

Figure 7. I vs. t for step potential (N = 10). 
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Figure 8. I vs. t for step potential (N = 20). 

 

 

Figure 9. I vs. t for step potential (N = 25). 

 

 

Figure 10. I vs. t for step potential (N = 40). 
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Figure 11. I vs. t for step potential (N = 50). 

 

 

Figure 12. I vs. t for ramp potential (N = ∞). 

 

( ) 0d
e

d

t RcVq
i t

t RN

−= = .                     (18) 

At the beginning of each step (t = 0), the initial current, 0 0i V RN= . Using 

the values, V0 = 1 V, and R = 104 Ω, the initial current for each step becomes  

0

100
Ai

N
= µ . This value is in agreement with the experimental value for each  

step number in all stepwise potentials. Figure 12 represents the current-time 

curve for the ramp potential which corresponds to the special stepwise case, 

N →∞ . In order to explain this case, we derive below the current as function of 

time when the power source is a ramp potential. Consider the ramp potential  

( ) 0VV t t
τ

= , where ( )Rcτ =  is the time constant of the RC circuit. Applying 

Kirchhoff law to the circuit gives us 

0Vq
iR t

c τ
+ = ,                        (19) 

https://doi.org/10.4236/jamp.2020.81004


S. M. Al-Jaber, I. Saadeddin 

 

 

DOI: 10.4236/jamp.2020.81004 47 Journal of Applied Mathematics and Physics 

 

which can be written as 

0d 1

d

Vq
q t

t Rc Rτ
+ = .                      (20) 

The above equation is a linear, inhomogeneous, first-order differential equa-

tion, which has the same structure as the standard form, namely 

( ) ( )d

d

x
p t x f t

t
+ = .                      (21) 

The well-known method to solve the above equation is by the integrating fac-

tor method. In this method, defining an integrating factor ( ) ( )d
e
p t t

u t ∫= , then 

the solution for Equation (21) is 

( ) ( ) ( ) ( )( )1
dx t u t f t t A

u t
= +∫ ,                 (22) 

where A is a constant to be found from the initial condition. Applying this me-

thod to our differential Equation (21), we get ( ) ( ) 0e ,t Rc V
u t f t t

Rτ
= = , so that 

the integral in Equation (22), gives (after integration by parts) 

( )20 0e d et Rc t RcV V
t t Rct Rc

R Rτ τ
 = − ∫ .               (23) 

Therefore, with ( ) ( )x t q t→ , the solution of Equation (20) is 

( )
2

0 0 e t RccV RV c
q t t A

τ τ
−= − + .                 (24) 

Since the capacitor is initially uncharged, so q = 0 at t = 0 determines the con-

stant A, and the substitution, Rcτ = , enables us to write Equation (24) as 

( ) ( )0
0 1 e t RcV

q t t cV
R

−= − − .                  (25) 

The electric current is now readily obtained, using d di q t= , with the result 

of 

( )0 1 e t RcV
i

R

−= − .                       (26) 

Therefore, after a long time t τ≫  , the electric current attains a constant 

value, V0/R. This explains the plateau behavior in Figure 12. The almost linear 

behavior of the current for very short time t τ≪  in Figure 12 can be ex-

plained by expanding the exponential in Equation (26) and retaining the first  

two terms to get 0

2

V
i t

R c
→ , which is linear in time. 

Chrono-coulometry experiment has been performed in order to determine the 

capacitance best value, c of the used commercial capacitor. In this method, a 

constant voltage, V0 = 1 V is applied and then the charge accumulated on the 

capacitor is plotted as function of time as shown in Figure 13. 

The maximum stored charge in the capacitor, q = 478.24 μC (measured 

when the current is close to zero as the area under the corresponding current-time  
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curve. Therefore, the capacitance, 
0

478.24 C
478.24 F

1 V

q
c
V

µ
= = = µ . The expe-

rimental and theoretical values of the stored energy are respectively 

22
0

exp ,
2 2

th

Vq
U U

c C
= = ,                     (27) 

while the experimental and theoretical values of the dissipated energy and the 

input energy are calculated from Equations ((17), (7), (16), and (11)) respective-

ly. Our experimental and theoretical results are tabulated in Table 1. 

Our results show a good agreement between the experimental and theoretical 

values. For comparison purposes, we compute the ratios between both the stored 

energy and the dissipated energy on one hand, and the input energy on the other 

for the experimental and the theoretical values. These quantities are shown in 

Table 2. 

 

 

Figure 13. The charge and current as function of time to find the capacitance, c. 

 

Table 1. Experimental (exp) & theoretical (th) results for input energy (E), stored energy 

(U), and dissipated energy (Q) for different values of the step number N. 

N q (μC) Eexp (μJ) Eth (μJ) Uexp (μJ) Uth (μJ) Qexp (μJ) Qth (μJ) 

1 478.24 478.24 478.12 239.12 239.12 239.12 239.12 

2 481.2 360.90 358.68 242.09 239.12 118.81 119.56 

4 478.3 298.93 298.90 239.18 239.12 59.75 59.78 

5 487.44 292.46 286.94 248.41 239.12 44.05 47.82 

8 477.17 268.41 269.01 238.05 239.12 30.35 29.89 

10 485.77 267.17 263.03 246.71 239.12 20.47 23.91 

20 463.5 243.34 251.07 224.61 239.12 18.74 11.96 

25 475.51 247.26 248.68 236.39 239.12 10.87 9.56 

40 464.86 238.24 245.10 225.93 239.12 12.31 5.98 

50 482.39 246.02 243.90 243.28 239.12 2.74 4.78 

∞ 481.41 240.71 239.12 242.30 239.12 -1.59 0 
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Table 2. Stored energy and dissipated energy ratios relative to input energy, both experi-

mentally and theoretically. 

N ( )%
exp

U

E

 
 
 

 ( )%
th

U

E

 
 
 

 ( )%
exp

Q

E

 
 
 

 ( )%
th

Q

E

 
 
 

 

1 50 50 50 50 

2 67.1 66.7 32.9 33.3 

4 80 80 20 20 

5 84.9 83.3 15.1 16.7 

8 88.7 88.9 11.3 11.1 

10 92.3 90.9 7.7 9.1 

20 92.3 95.2 7.7 4.8 

25 95.6 96.2 4.4 3.8 

40 94.8 97.6 5.2 2.4 

50 98.8 98.0 1.2 2 

∞ 100.6 100 -0.6 0 

 

 

Figure 14. Experimental ratios of both the stored and dissipated energy relative to the 

input energy. 

 

It is noticed that we achieved a very high percentage for the stored energy ra-

tio, and thus a very low percentage for the dissipation energy ratio. We show in 

Figure 14, the experimental ratios between the energy stored and the dissipated 

energy relative to the input energy by the power source. 

4. Discussion and Conclusion 

In this paper, we investigated the stepwise charging of a capacitor in RC circuit. 

The potential step was applied using the PGZ 402 universal potentiostate. In the 

first part, theoretical investigation is carried out: Analytical results for the dissi-

pation energy and the consumed energy were derived when charging the capa-

citor by N steps to achieve the final voltage. It was shown that each of the energy 
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dissipation and the consumed energy decreases as the step number N increases, 

while the energy stored in the capacitor is independent of N. An interesting re-

sult is that the dissipation energy vanishes as N →∞  and in this case the con-

sumed energy is equal to the stored energy in the capacitor. In the second part, 

experimental analysis is investigated: This has been carried out by plotting cur-

rent vs. time in each case and the charge on the capacitor is computed from the 

area under the curve. The calculated charge was used to find the energy stored in 

the capacitor and the use of Equations (16) and (17) yields the dissipated energy 

and the consumed energy. Our theoretical results were verified by carrying ex-

periment measurements of the consumed energy, stored energy and the dissi-

pated energy using stepwise potential and the ramp potential that corresponds to 

the case N →∞ . Our experimental results were found to be in good agreement 

with the theoretical ones. 
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List of Symbols and Variables with Their Definitions 

R, Resistance; 

C, Capacitance; 

N, Number of steps; 

V0, Power supply voltage; 

q, Charge on the capacitor; 

U, Stored energy in the capacitor; 

Q, Heat energy dissipated; 

E, Consumed energy; 

τ, Time constant. 
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