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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.
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Theoretical and Experimental Aspects of the Energy Loss
~of Relativistic Heavily lonizing Particles

’ t

Steven P. Ahlen

Lawrence Berkeley Laboratory and Space Sciences Laboratory,
University of California, Berkeley, California 94720

We review the theory of the electromagnetic interactions between
rapidly moving‘charged particles and the matter through which they
pass. -The emphasis wifl be on very massive electric (-100 <7, ¢ 100).
and magnetic (]|g| = 137e and 137e/2) particles moving with relativis-
tic velocities (B > 0.2, Y < 100). Consideration will be given to
both the stopping power of the projectile and.to the response of the

absorbing medium to the excitation caused by the projectile.

e TMaili_ng Address: Department of Physics, UhiverSfty of California
Berkeley, California 94720 '



I. INTRODUCTION

Various aspects of the penetration of charged particles in matter
have occupied the thoughts of some of the finest physicists of this
century (Thomson, 1903; Rutherford, 1911; Bohr, 1913, 1915, 1948a; : .~
Bethe, 1930, 1932; Mott, 1931; Bloch, l933a; 1933b; Fermi, 1940; and
Landau, 1944). Thé theoretical and experimental investigations of
this problem have, . in fact, played a very important role ‘in the develop-
vment of modern physics. The distinction between large and small angle
Coulomb s;attering led to the discovery of the nuclear atom. The
manner iﬁ wHich o and B rays were influenced by the matter through
which they were allowed to pass enabled their identification as
stripped helium nuclei and energetic electrons respectively and pro-
.vided important information on nuclgar transmutations. Particle
track detectors (cloud chambers, bubble chambers, nuclear emulsions,
etc.) have been directiy responsible for the discovery of.most of the |
known élementary particles,Aand charged partfclé detectors in genéra]
‘have been at least indirectly responsible for all ‘of the experimental
resul ts in'high, medium, and low energy physics. Reseérch in astro-
physics, nuclear physics, atomic physics, molecular physics, biophysics,
and_many bther fiélds relies on éXperimental techniques utilizing hfgh
eﬁergy radiatioﬁ and'theqretical'know]edge regarding the subsequent
interaction between the radiation and matter. Many review artiéles o’
have’been»wriften on the subject of charged particle penetration in
matter. Among these are those by Bethe (1933); Livingston and Bethe
(1937), Bohr‘(l948é),Bethe énd'Ashkin (1953), Allison andYWarshawrr

(1953), Ueh]ing»(1954), Fano (1963), Northcliffe (1963), Bichsel (1968),

-



and Bichsel (1972). Many textbooks and monographs contain discussions
of the stopping power and range of charged particles. Those by Rossi
(1952), Landau and Lifshitz (1960), and Jackson (1975) are particularly
recommended for an introduction to the subject.

Being based on either semi-classical physiés or a first order

~quantal perturbation approach, most of the above works yield a result
for the stopping power of a projectile] which is proportional to the
square of the projectile charge and to a function of the projectile
velocity.2 In this Review we will be concerned primarily with the
limitations of these results. Corrections to the stopping power for-
mula due to higher order terms will be enumerated and evaluated. These
corrections are most important at very low energies, at very high
energies, and for very large charges. Severe complications are
encountered in the low energy regime so we will devote most of our
attention to heavily ionizing particles moving at large velocities.
These particles will include familiar species, such as stripped heavy
nuclei, and hypothetical particles, such as heavy anti-nuclei and
magnetic monopoles.

In addition to being intrinsically interesting in itself With,
regard to atomic, molecular, and solid state physics, this problem is
quite important due to its intimate connection with a variety of
research and development prdgrams in quite diverse fields. The develop-
ment and application of high energy heavy ion accelerators3 (see
White et al., 1971; Grunder gt al., 1971; and Grunder and Selph,‘l977)
is enhanced by a good understanding of how these fast heavy ions inter-

act with the matter through which they pass. The correct interpretation



of the ultrtheavy cosmic ray data (lsrael et al., 1975; Fowler et al.,
1977; Shirk and Price, 1978), which is quite important in order to
understand various high energy astrdphysiéal phenomena, depends on
accurate knowledge of both the manner in which: very heévy nuclei slow
in matter and the manner in which particle detectors respond to these
hucléi. One of the most effective means of treating cancer is to apply
high enefgy radiation to the tumor. For a véfy readable feview of this
' technique, see Bleehen, 1972. Practical considerations have thus far
limited the radiation sources so ptilized to sources of x-rays and :
Y-rays. Fowler (1965) has emphasized the advantages of charged par-
'ticleibéams over electromagnetic radiation for cancer therapy. In
additibn to having a more favorable dose distribution for selective
cell destruﬁtion; charged partiéles have more favorable RBE (relative
bioloéical effectiveness) and OER (oxygen enhancement ratio) charéc-
teristics than their electromagnetic counferpafts. Tobias andvTodd.
(l966)vhave advocated the use of fast heavykions for cancer therapy.
Experimental results along this line can be found in'ded et al. (1971)
and Tobias et al. (1971). It is clearly desirable to achieve as good
an uhdeféténding as possible of the interactions of fast heavy ions
with matter in order to optimize these techniques. Another very
exciting program which requires én uﬁderstanding of heavy ion inter-
actions with matter is that of'heavy ion fusion (Bangerter et al.,
1976). The use of {ntense, energetic, heavy ion beams to ignite
deuterium pellets has attracted a great déal of attention in recent
iyears (PT, 1978). There are still unresolved problems involving the
interactions of these heavy ion beams with the pellets. Some of the

theory summarized here should be useful in éddressing these problems.



Finally, we should mention that successful searches for exotic, heavily
ionizing particlesh depend on a thorough knowledge of detector response
and energy loss rates of the exotic particles. Price et al. (1978)
summarize the sfétus of the peculiar.cosmic ray event which has
variously been interpreted as being a magnetic monopole (Price et al.,
1975) and a heavy anti-nucleus (Hagstrom, 1977). They point out the
difficulties involved with the experiment and essentially conclude

thét the event was unlike anything yet observed, although they do not
know what caused it. The early excitement caused by this event can

be attributed to a lack of sufficient knowledge of the behavior of

> Jt will be

the nuclear track detectors employed in the experiment.
impossible for us to delve too deeply into any of these particular

problems invblving heavily ionizing particles. However, we hope to
present a sufficiently clear and concise summary of the state of our

understanding of the electromagnetic interactions of these particles

with matter so that the above mentioned problems can be easily attacked.



1. SCOPE

We will be solely concerned with the electromagnetic interactions
of very massive, heavily ionizing particles with matter. For these
partic]gs, multipie Coulomb scattering is quite small and it is a very
good approximation to assume that the particles travel in straight
trajectories. Large angle Coulombic nuclear scattering is a raré
occurrence and it will not be considered. The subject of multiple
scattering is reviewed in detail by Scott (1963). We will also neglect
the effects of inelastic nuclear collisions. Again, these occur
~relatively rarely and are only a serious consideration in the context
of the range of high energy particles for which the probability pf
at least one inelastic collision in the total pathlength can approach
unity. |

With regard to the range of .velocities to be considered, we will
limit ourselves from below by the velocity at which shell corrections
become important for singly charged particles (B ~ 0.2 depend}ng on
the atomic weight of the absorber) and from above by Y ~ 100 at which
point radiative corrections and spin effects, among other things (to
be discussed in detail at a later point), start becoming significant.

The conclusions reached in this Review can be meaningful only if
the words negligible, insignificant, etc., are complemented by firm
numerical estimates of the error incurred by the exclusion of the
effects so qualified. We will, therefore, endeavor to make such
estimates whenever the need should arise. The importance of the
effects mentioned in the above paragraphs of this section will be

so quantified in subsequent sections.



In the next section we will present key results from the first
order treatment of energy loss.v These will include a discussion of
shell corrections, the density effect, energy loss and range straggling,
and the hean ionization potential. In section IV we will systematically
consider the various approximations involved with the results of sec-
tion Illland we will present algorithms for correcting for these approxi-
mations should they fail. We will consider the energy loss of magnetic
monopoles in section V. General characteristics of energy deposition
in matter will be described in section VI. In this section we will
briefly discuss the response of various particle detectors to heavily
ionizing charged particles. The notation to be employed in this work

is given in Table I{-1.



. 'STOPPING POWER OF ELECTRICALLY CHARGED PARTICLES

IN THE FIRST BORN APPROXIMATION

In this section we will summarize the status of stopping power
theory from the point of view of semi-classical physics or a first - o
order quantal perturbation treatment. In doing so we will draw heavily

from the work of Fano (1963), Bichsel (1972), and Jackson (f975).

A. Statement of the Problem and the Nature of the Interaction Between

Particle and Medium

A particle of mass M; and electric charge Z;e penetrafes a material
composed of atoms of atomic number Z, and atomic mass M, (M, = Azkamu).
The projectile interacts with the medium via the electromagnetic force
with the electrons and protons and via the strong nuclear force with
the'nuclei of the absorber. For the moment we Will completély dis-
regard the nuclear force due tp the vanishingly small ratio of the
nuclear to atomic cross sections (~lb'1°)._ The projectile slows down
by lqsing energy to the atoms of the absorbing medium. The collisions
responsible for this energy transferrmay be elastic (ife., the atom
is displaced buf its internal state remains unchanged) or inelastic
(the atom is both displaced and internally excited). In his classic
paper oh the theory of the passage of fast charged particles thrOQgh
métter, Bethe (1930) showed that for inelastic collisions the ratio
of.the atomic excitation energy to that due to atomic displacement is vv et
larger than M,/m where m is the mass of the electron. It can also be
§hown, by using an expression for the elastic cross section obtained

by Bethe (1930), that the ratio of energy lost in elastic collisions



to that lost in inelastic collisions is of the order mZ,/M, (or smaller
than this if realistic multi-electron wave functions are employed).
Hence, less than 0.1% of the projectile energy goes into atomic dis-
placement. In calculating the stopping power we merely need to sum
over the various atomic excitation energies weighted by the cross sec-
tion for excitation (by excitation, we mean to include ionization
processes). Bethe (1930) showed that this cross section is independent
of the mass of the atom provided M, >> m. Consequent]y, negligible
error fs incurred in the calculation of stopping power by assuming the
target atom to be infinitely heavy.7

The proBIem is then successfully reduced to one involving the
interaction between the projectile and atomic electrons bound to
infinitely heavy nuclei. As we have seen, the interaction between fhe
projectile and the target nucleus results in negligible energy loss.
Large angle Coulomb scattering off of the nucleus is a rare but possible
occurrence. In this sense it is in the same category as inelastic
nuclear collisions. As such it will be considered. in more detail in
a later section. We will also consider at a later point the small
angle multiple Coulomb scattering off of nuclei and electrons experienced
by a projectile in passing through matter. For the heavy particles
considered in this Review, this scattering is quite small and results
in very small corrections (<1%) which need to be applied to energy loss
and range calculations. For the duration of this section, we will
assume that the incident par}icle trajectory is very closely approxi-

mated by a straight line.



In the following subsections we will briefly review the calcula-
tions of stopping power as performed by Bohr (1913), Bethe (1930), and
Bloch (1933a). In addition to adding a sense of completeness to this
Review, it is important to consider this eérlier work so that we can
isolate various features of these different treatments which are rele-
vant to very recent experimental and theoretical work on stopping
power .

B. The Bohr Solution

Bohr (1913, 1915) realized that binding effects are crucial for
a proper treatment of energy loss. Earlier workers (Thomson, 1912
and Darwin, 1912) had treated the problem as one involving collisions
with free electrons for which a maximum impact parameter was imposed
in order to prevent the result from diverging. This divergence is
due to the fact that the integrated Rutherford cross section is infi-
ﬁite. The limiting impact parameters chosen by -the early workers were
ad hoc in nature. Darwin (1912) assumed that the maximum impact para-
meter should correspond to tﬁe atomic radius, outside of which the
force on a passing charged particle is zero and Thomson (1912) suggested
that the limiting impact parameter should correspond to the mean inter-
electronic spacing. Bohr (1913) pointed out the flaws with these
selections and proposéd that the effective maximum impact parameter
should be that distance b for which the collision time ~b/v is com-
barable to the atomic orbital time = 1/v. Bohr justified this propo-
sition with a rigorous calculation which was based on the following
assumption:

There exists an intermediate impact parameter b, (impact parameters

-10_



being defined to be the distance of closest approach to the
assumed infin%tely massive nucleus) for which collisions with
b > b; can be treated as electromagnetic excitations of charged
harmonic oscillators in a spatially uniform electric field due to
the passing particle and for which collisions with b < b, can be
treated as free electron scattering by the projectile in the
center of momentum frame.
The justification of the assumption of an infinitely massive nucleu;
was brovided by Darwin (1912). Needless to say, it was ihplicitly
assumed thét.collisions could be Iegitimatély characterized by impact
parameters since the advent of wave mechanics was still tén years in
the future. With the assumption that M; >> m and expressed in the
notation of this Review, Boh; obtained the following results:

2Z,%e" o .
BE(b) = —=— [E2K, 2(E)+E%K *(E)/¥*], b > b, A

where £ = (wb)/(yv), w is the circular frequency of the oscillator:

and Ko(g), K,(£) are modified Bessel functions of order 0 and 1 respec-
tively (see Abramowitz and Stegun, 1970). AE(b) .is the energy lost

to one electron, initially at rest at the nucleus. Eq. IIl.1 is
obtained with the assumption that only the electric force acts on the
electron and that the electron sees a spatially uniform field. This
latter assumption is often referred to as the impulse apprdximation.
Various integral representations of the Bessel functions establish

the 1ink between eq. I1l.1 and the electric force on the electron:

_]1_



o fax

= e
ZaKl(a) {w TT+x2) 372 dx 111.2a

o

iax
. _ xe ‘ ‘ ,
2iaK (a) = {w a7z 9 I11.2b ,

I ax e

ZKO(a) f W dx l.2c

A derivation of eq; 111.1 can be found in Jackson (1975).
' For b < b,, Bohr assumed that the electrons could be treated as

if they were free with the resulf:

Zlee” :
AE(b) = ! b < b 1.3
mv? b2+ (Zle ) 2 1 )
. mv2y
Equation 111.3 is valid classically for arbitrary impact parameters for

B << 1 and is valid for B ~ 1 for those values of b for which the CM
(which denotes the center of momentum frame for the electron-nucleus
system) scattering angle is small. |In any case, this expression
reduces to the correct one for b = 0 as long as my << M;.

The energy lost in collisions with b > b, is found by integrating

eq. I11.1 fromb = b, to b = o (Jackson, 1975):

4Nz, 2e® &
$>b1 =-—————m [E K, (E )K (E ) -—— 12(K12(£1) - Koz(gl))] 1.4
S = - dE/dx, N is the number of electrons per unit volume and

g, = E(bl). Similarly, the close collision energy loss is found by

integrating eq. 111.3 fromb =0 to b = b,:

-12-



2ﬂNZ vzyb

S = ————— zn[l +

<b, mv2 Z,e? ) 1.5

Equation 111.4 diverges as b, >~ 0 and eq. 1I1.5 diverges as
b, > «, indicating the failure of the respective approximations in
these limits. By choosing b, << yv/w (which corresponds to the adia-
batically limited impact parameter beyond which energy transfer is
inefficient; this is due to the exponential decay of the Bessel func-
tions for large arguments) and b, >> |Z,|e?/(mv?®y) (which may be thought

of as the ''size'' of the scattering center) one obtains the total energy

loss by adding eq. t11.4 and eq. Il1.5:

4Nz, 2e" ' 3 -
_ 1.123mv - _n2 _ 2
S = mv 2 ['Q'n Zl 2w Q'n(] B ) B /2 + RI] ) |||6
where:
' Z.e? g
1,1 2 .1 2 2p,. “Ney2
Rl = z(mvzybl) + 14 gl [] 2(0-577+/an 2 ),/Y
. El
~ 2B%(0.077+%n 5—) ] 1.7

2

The small argument limits for the Bessel functions have been used.

A

For hw = 100 eV, B = 0.5, b y/w = 11 A and b_ = |lee2/(mvzy)

ad ‘
= 9.7 F|z,| where 1F = 1073 cm. If b, = 107° cm and |Z,| = 10 then

the remainder term, R,, is of the order -7 x 10”*. The other terms

1’
in the bracket add up to give a number of the order of 10 which means
that R, provides a correction of -0.01%. This gives an indication

of the insensitivity of the classical stopping power formula to the

choice of b1'

;13_.



C. The Bethe, Fano Solution

Several attempts were made to incorporate quantum effects into
the energy loss problem in the 1920's. Henderson (1922) applied the
concept of discrete energy levels to the problem by limiting the
possible energy transfer to an atom from below by the ionization
potential. In this manner he obtained an expression for the stopping
power which is roughly half of the correct one (Henderson essentially
ignored the distant collision contribution to the energy loss which
accounts for fhe other half). The original classical result of Bohr
was recreated in a quantum mechanfcal treatment by Gaunt (1927), who
treated the perturbation of an atom by the passage of a heavy charged
particle moviﬁg with constant velocity. Bethe (1930) solved the prob-
lem quantum mechanically in the first Born approximafion whereby the
entire system (chargeﬁ particle f atom) is considered within the frame-
work of quantum theory. His result differed from that of Bohr (1913)
and Gaunt (1927) and he attributed the deviatioﬁ between his and
Gaunt's results as being due to the failure of Gaunt to take the
recoil of the heavy particle into account. However, it was shown by
Mott (1931) that it iS completely legitimate to do as Gaunt did, pro-
vided the electron mass is much less than that of the incident particle.
Mott pointed out that Gaunt had made an error in one qf his -approxi-
mations which led to the erroneous result. The extension of the Bethe
formula to relativfstic velocities for the incident particle was
accomplished by Bethe (1932) and Mgller (1932).

In this subsection we will outline the Bethe-Born technique as

reviewed by Fano (1963). Fano's article is highly recommended as a

-14-



lucid summary of the penetration of protons and mesons in matter.

The significant difference between Bethe's approach and that of
Bohr is the use by Bethe of momentum transfer rather than impact para-
meter to characterize collisions. The principles of wave mechanics
prohibit the formation of an infinitely localized wave packet for a
particle with well defined momentum. For very close collisions the
classical treatment, which presupposes the ability to use such wave
packets, must break down. Hence, there exists a class of collisions
for which a classical calculation is illegitimate. Bethe (1930)
attacked the problem with the lowest order fully quantal approximation
developed by Born (1926) and subsequently referred to as the Born
approximation. This is essentially equivalent to Fermi's Golden Rule
(see Merzbacher, 1970 or any textbook on quantum mechanics) whereby
the transition rate per unit time from state |s> to state |[k> under
the action of a perturbation V,; is:

<k|V1|m><m[V1|s>

E_-E
s m

dP 2m

ol p(E) 11.8 -

f''s

<k |V, [s> + 2 2
m

Es and Em are the unperturbed energy eigenvalues for states |s> and

|m> respectively and pf(ES) is the energy density of final states

evaluated at the initial energy. |If Ek £ E, dP/dt = 0 which must be

regarded as an auxiliary condition to eq.- I11.8. It is important to
realize that the matrix elements in eq. III;8 do not assure energy
conservation.

In accord with the discussion of section II1l.A the target atom

is assumed to be infinitely massive. |If B(P') denotes the initial

(final) momentum of the projectile and if [0>(|n>) denotes the initial

_]5_



(final) atomic states, |k> and |s> are given by:

| k> V-% exp(i;'-EYh)|n> 111.9a

n

|s> 2 exp(ip *R/m)|0> 111.9b

V is the volume of é large box in which the system is placed and [

is the position vector of the projectile. Note that we are neglecting
internal degrees of freedom of the projectile (such as spin) in describ-
ing its quantum state. This is permissible due to the assumed large
projectile mass. The perturbation V,"is taken to be the interaction
between the incident particle and the atomic electrons. The particle-
nucleus interaction does not lead to atomic excitation and hence is
neglected. V, is most conveniently expressed in the Coulomb gauge

in which the interactions amongst a system of charged particles are
given by the instantaneous Coulomb interactions plus the interactions
of the particle_cufrehts with the transverse vector potential which
describes the free photon field (see Sakurai, 1967). By quantizing
the transverse vector potential one achieves a fully relativistic,
quantum mechanical formalism. Sakurai (1967) gives the quantized
vector potential: |

> 3 h ~a_ikex
R() = (/)7 3 cqf5= [a, €% :
w >
kol ko

. + .
e~ Tkexy 111.10

_]6_



where a_ (aj ) is the annihilation (creation) operator for a photon
ka ko A s A T
with momentum hk and linear polarization €%*(k+c® = 0 since V - A =0

in the Coulomb gauge). The perturbation is:

Zz 2162
. V,=-3 ———-2Zea + AR) + Zea, + A(F)) 1.
21 IR-2 ] j
j=1 |R-rj| J

where E and ?j are the coordinates of the projectile and the jth atomic
electron respectively and o and &j are the corresponding Dirac velocity
operators. Since the Dirac formalism is utilized for the interaction,
the spin and magnetic moment of the electrons are properly treated.
By imposing the small scattering angle approximation Fano (1963) shows
that the above considerations lead to the conclusion thatvthe cross
section for excitation to the atomic state |n> is, to lowest order
inZ:

21z, %e" an(E)IZ
o, = — 2 ZZ[Q"—(HQ/ZmCZY2

HERGIE

+ [Q(1+Q/2mc2)-En2/2mc2]]

Q
(1+ EE?) dQ .12

where a = E - ;', Q(1+Q/2mec?) = gq2%/2m (Q is the energy transferred to

>
an unbound electron for momentum transfer q) and

> >
N . iger./h ’
-, "% j
» F(a) =2, ® L <nle lo> 111.13a
j .
el
> . 1 - lq'l"./h
6 () =2, ¢ <n|&je 5 o>, L1.13b
j :

_]7_



and §t =% - (B+q)a/q?. The stopping power is given by:

S=N I [Edo ETTRT
n
where Na is the number of atoms per unit volume.8 It has been assumed
here and above that the ground state energy, Eo’ is zero. |In order
to evalﬁate eq. 111.14 Fano (1963) consjders three regions for Q:

1. For Q very small it is assumed that 3 . ?j/h << 1 so that
egs. I11.13a,b reduce to dipole matrix elements. This is assumed valid
for Q < Q.

2. For Q1 < Q < Q, only the first term in eq. IV.12 is assumed
to contribute. This is the so callea lonQitudinal term which arises
from the instantaneous Coulomb interaction (the other term is called
the transverse term; it arises from the coupling to the photon field).
Q, is assumed to be much less than mcé.

3. For Q> Q, it is assumed that the electrons can be considered
to be free.

By imposing the above approximations Fano (1963) obtains the
relativistic Bethe formula:

4Nz, %e"

2
5 = 2mv

7 [ 57— - an(1-8%)-8%] JYRE:

mv

where | is the logarithmic mean excitation potential per electron and

is given by:

nl = If 2nE_ 11.16
nn n

2mE
where f_ = ﬁqiﬂ |Z<n|xJ.|0>|2 is the dipole oscillator strength for the
2

-18-
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£

nth energy level (a sum over degenerate states is implied). The
Thomas-Reiche-Kuhn sum rule gives the result that an = 1,

D. The Bloch Solution

The difference between eq. |11.6 and eq. HI.159 prompted Bloch
(1933a) to investigate the manner in which the classical and quantum
mechanical formulae complemented one another. He began by showing
that Bohr's distant collision energy loss formula was completely valid
quantum mechanically for a bound system provided that AE(b) was inter-
preted as a mean energy loss, summed over all possible atomic transj-
tions. Bloch needed to impose the dipole approximation (i.e. b >> o
where ro is a typical ''radius'' of the atom) to show this and in this
approximation he noted that the higher order corrections to the energy
loss at impact parameter b vanished for odd powers of Z;, and that the
Z,* term was a factor (Zlezro)z/(bhv)2 smaller than the le term.

This corresponds to a fractional correction of order

2 rv

(Z,0/8) 2 s—/%n(=>—) (v_ is a typical atomic electron velocity) for
1 2b, blvo o
energy loss in'collisions with impact parameter greater than b,.

Bloch then proceeded to analyze the close collisions quantum
mechanically. He considered an intermediate impact parameter b,, just
as Bohr had done, inside of which the electrons could be treated as
if they were free. However, unlike Bethe, Bloch did not assume that
it was valid to consider the electrons to be representable by plane
waves in the center of momentum frame. The confinement of the elec-

trons to the interior of the cylinder of radius b, introduces transverse

.momentum components which interfere with one another under the influence

of the scattering potential. This interference leads to a scattering
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cross section which can be quite different from the quantum mechanical
Cbulomb Ccross séction for plane wave scattering. Of course, for a

very weak scattering center the confinement size b, should be large
enough to permit the use of plane Wave quantum mechanical results in
which 1imit the Bethe formula should obtain. At the other extreme the
effective size of the scattering center should be large enough to per-
mit the construction of wave packets which scatter as classical objects
in which case the Bohr formula should result. This in fact is the
result that Bloch obtained. In the non-relativistic limit the Bloch

formula is:

hﬂNZIZe" 2mv 2 Z.a

S = ——p— [ 5 +¢(1)-Rew(1+i—é——)] 1117

where Y(z) is the logarithmic derivative of I'(z), the gamma function.10
In the limit of weak scattering, |Z,|a/B << 1 and the non-relativistic
Bethe formula results. For |Z,|a/B >> 1, Re y(1+iZ,a/B) + 2n(|Z |a/B)
and P(1) = #n(1.123/2) and the non-relativistic Bohr formula results.
Bloch's relativistic formula, |

: lHrNZIZel+

mv 2

2
[en 2= - 2 n(1-87) - 82/2

. & '
+ P(1) - Re w(HiZ\f/B)] , 111.18

does not reduce to the Bethe‘formula as Z,0/B + 0. This Is due to

tﬁe fact that Bloch used an incorrect closé collision.cross section
for the scattering of free, infinitely Broad electron wave packets

by the projectile. It does not necessarily imply that the non-relati-
vistic correction ferm; P(1) - Re P(1+izZ,0/B), is incorrect in the

relativistic limit. There is, however, some question as to the
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validity of this correction for relafivistic velocities. -One might
expect.to shed some light on this by considering the relevant parameter,
Z,a/B, which determines the magnitude of the correction. Z,0/8 can be
tﬁought of as the ratio of the classical size of the scattering center,
Zlez/(mvz) to the deBroglie wavelength of the scattered electron in

the CM frame. Each of these quantities would be reduced by a factor

of order Y in a relativistic situation which would leave the ratio
unchanged. Hence, one would expect the size of the correction to

approach a constant value as 8 - 1. By accurately measuring the range

of 600 MeV/amu °%Fe nuclei, Tarlé and Solarz (1978) have found that

the results are slightly less than two standard deviations away from
being consistent with the Bloch corrections, when other effects are
taken into account. They find that the magnitude of the observed Bloch
correction is less than that given by the non-relativistic term. On
the other hand, Andersen et al. (1977) find that the observed Bloch
correction is about one standard deviation larger than the calculated
value. The former measurement was made at B = 0.8 and the latter at
0.08. Thus, it seems that further theoretical and experimental work

is required to clarify the role of the Bloch correction5

E. Summary of the Bohr-Bethe-Bloch Results

In this sub-section we will summarize the assumptions ana approxi-
mations ultilized by the various authors in the derivatioh of the
above formulae and we will illustrate the effect of some of these
assumptions by comparing the different results. Although it is
difficult to pin down precisely the assumptions made by the various

authors, particularly when one assumption may involve several effects,
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the following list emphasizes the most crucial points:

1. The projectile veiocity is'much smaller than that of fight in
vacuum (Bohr, Blech).11

2. The projectile velocity is much larger than characteristic
orbital electron velocitiec (Bohr, Bethe, Bloch).

3. The absorber is a dilute, cold gas (Bohr, Bethe, Bloch).

4. M, >> my (Bohr, Bethe, Bloch).

1

5. Internal structure.of the projectile is neglected (Bohr, Bethe,

6. Projectile bremsstrahlung. is neglected (Bohr, Bethe, Bloch).
7. Radiative corrections are neglected (Bohr, Bethe, Bloch).
8. Close collisions are considered to be interactions of the

projectile with free electrons (Bohr, Bethe, Bloch).

9. The close collisions take place between the projectile and
electrons which follow classically well defined trajectories (Bohr).

10. The close coilisions take blace between a very heavy projec-
tile and electrons which-are Characterized by plane wave initial states
in the CM frame of reference (Bethe) . 2

1. Distant ccllisions are‘treated as first order dipole excita-
tions (Bethe, Bloch).

12. Dfstant collisions are_treeted as classical energy transfer
to a charged harmonic oscillator in the impulse approximatfon (Bohr) .

13. fhe validity of the first Born approximation is assumed (Bethe).

4. The projectile charge state is'constant (Bohr, Bethe, Bloch).

15. The spin of the electron is neglected in all types of colli-

sions (Bohr, Bloch).
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There is considerable overlap and intefplay between the assumptions
listed above. For example, it was éhown by Bloch (1933a) that in the
dipole approximation, there are no corrections to the stopping power
which contain odd powers of Z,. However, Hill and Merzbacher (1974)
showed that for a harmonic oscillator model of the atom, there is a
213 correction term which arises from the quadrupole term which is
considered as a perturbation. Bloch's conclusion was not incorrect but
it did place more emphasis on the validity of the dipole abproximation
than was deserved. The lesson to be learned from this example is that
one must be quite careful in correcting lowest order approximate results.
All assumptions must be isolated and accounted for with equal weight.

If this is done improperly the corrected version could be in greater

error than the lowest order approximation. The stopping-power problem

is particularly susceptible to this effect. One has distant and close
collisions (as well as means of connecting the two) and one has large
and small projectile velocity and charge. Many approximations are
involved, some of which start breaking down at the same point. This
hinders experimental clarification and one must rely to a considerable

extent on very careful analysis of data.
Assumption 1 poses no particular difficulties since the Bethe

theory is generally chosen as that which is most readily amenable to

correction for failure of the above assumptions. Assumption 2 can be
c&rrected for in the case of singly charged particles with the use of
the semi-empirical shell corrections described in the following section.
Failure of assumption 3 is taken into account by channeling theory and

the density effect corrections described in sub-section 111.G. Al though
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the densfty effect corrections are effectivély berformed to lowest
order, one would not expect higher order terms to significantly affect
thé resul ts. Aséumptions L through 7 rely on the projectile moving with
non-ultra-relativistic velocities. These will be discussed in some
detail in sub-section IV.A. 'Assuhptions»B through 12 iﬁvolVe the coupling
of the close to the distant COflisions. fhese will be discussed in sub-
section IV.C following the treatment in sub;section IV.B of higher order
Born terms (assumption 13). Electron capture:and foss processes (assump-
tion 14) wiil be'discussed in sub-section IV.D. Assumption 15 is essen-
tially a consequence of assumption.l. Furthérmore, neglect of the elec-
tron spin affects only the close cbllisionstas evidenced by agreement of
Bloch's relativistic distant colliéion stopping power result with that
of Bethe.13

Aside from details associated with.physical processes of only
secondéry importénce, the most crucial assumptions are those involving '
the validity of the Born approximatfbn and the validity of a classicél
descfiptibn. It is fhese féaturesvwhich cause the maiﬁ differences
between the Bohr, Bethe and Bloch formulae. We now turn our attention
to the quantitative comparison of these expressions. |

To sfmplify notation we note that each of egs. 111;6, 111.15 and

111.18 can be written as:

S = (lewpzez/vz)L , 11.19.
where w * = kmNe?/m is the bulk plasma frequency and L is defined by
eq. lil.19 according to the particular stopping power formula which

is chosen. The comparison of the models of Bohr, Bethe and Bloch is

=24~
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simplified if we adopt as a standardized ''atom,' one which consists

of a single harmonically bound electron. |t can then be easily shown

that | = hw where w is the circular frequency of the electron. Then:
L = 22 g (1-g2) - g 111.20a

BETHE ho )

o 2mv? 1 a2\ L a2
Yprocn = A1 T T 7 Mn(1-87) - 8772

+ P(1) - Re Y(1+iZ,0/B) 111.20b
3 .
L.123mv” _ g (1-82) - g2/2 111.20c

Ygour = " Tz Te%w

It is noted that the relativistic corrections are similar but not
identical for the three models. Cafeful analysis shows that exactly
one half of Bethe's relativistic correction is due to distant céllisions
and the other haff.is due to close collisions. Both Bloch and Bohr
obtain distant collision relativistic corrections which agree with
those of Bethe (namely --% 2n(1-R2) - B2?/2). Their close coilision
corrections are incorrect since incorrect physics involving these
collisions was utilized. |t should be noted that Bethe's close
collision relativistic corrections are valid only within the first Born
approximation; This confuses comparison with Bohr's and Bloch's cal-
culation which are not restricted in applicability in an identical Qay
with those of Bethe. For the moment then we neglect all relativistic
corrections, noting only that they amount to about -7% at B = 0.5 in
Bethe's model.

In Fig. I1l.1 we plot the non-relativistic forms of LBETHE,

L and L as a function of &nB for hw = 100 eV and for Z; = 1,

BLOCH BOHR
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10 and 92. Note that L

BLOCH = FBETHE for Z; = 1. Note also that for
Z, =92 LBLOCH is nearly qual to LBQHR from B.= 0.05 to B ='0.5: For
Z, =10 L as B+ 0.5 and LBLOCH - LBOHR as B > 0.05. It

sLoch ~ “meTHE @
is interesting and important to note that al_though‘LBETHE = LBOHR at

5]
|

B =0.13 for Z, = 10, they differ from L by 5%. This is indicative

BLOCH
of the general situation in which a classical caléulation yields a -
résult which equals that of a first order quantal calculation. One
may not on this basis conclude that either calculatfbn is correct.
Rather one is forced to conclude that théy are both fn error by the
same amount. In each of the modelg‘considered L:becomés-negative for
small values of»B. This is clearly‘uhphygiéal and indiéates failure
of each of fhe-models at low velocities. We will discuss this feature
in the next subséction in the context of Befhe's quantal tr;atment.

It is apprbpriaté at this point to comméﬁt on the underlying
physical principles which give rise to the differences between the
varidus.solutions as iﬁdiéated‘in Fig. 111.1. At the Qery heart of
the matter is the distinction between'qﬁantal and classical physics.

.Tﬁe First Born Approximation is équivalent to any lowest order
qguantal perturbation approach.  Bethe's theory utilized this approxi-
mation for all ciasses of collisiohs while Bloch's treatment required
a first order approximation only for the distant collisions which were ”
éonsidered invthe'dipole.approximation. The close collision§ were
treated (in tHé non-relativistic limit) by Bloch with the use of the ?J
exact asymptotic form of the scattering amplitude for Coulomb scattering

with a suitable approximation of the structure of the electron wave

packets in the CM frame imposed to allow for the finite lateral extent
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of the projectile scattering center in this frame. It has been seen
that in the limit |Z,|a/B << 1 the non-relativistic Bloch result
approéches the non-relativistic Bethe result. This corresponds to the
oft quoted regime of validity of the first Born approximation which
is simply the limiting case of'a very small perturbation compared to
the unperturbed energies and forces. The opposite limit, |Z,|a/B >> 1,
is the limit of very strong interactions and corresponds to the regime
of validity for Bohr's result. Mott and Massey (1965) discuss the
range of validity of the Born and classical approximations; for. a
classical treatment to hold there are two conditions: a) the orbit
of the particle must be well defined in relation to other relevant
distances and b) the angular deflection due to the collision must also
be well defined. For unscreened Coulomb scattering, these two require-
ments determine the above criterion, namely |Z,|o/B <<.1 (>>1) for
Born approximation (classical approximation) validity. This is the
condi tion which characterizes the appropriate approach to close collision
energy loss. The distant collisions are more difficult to characterize
due to the interference of the dipole with the Born approximation.
However, since the treatment of the distant collisions by Bloch and by
Bethe rely on essentially the same assumptions and since Bloch's dis-
tant collision result is identical to that of Bohr even up to relati-
vistic corrections, we see that any differences between the three
theories must involve the close and/or immediate collisions.

This contention is supported by the simple plausibility arguments
given by several authors (Rossi, 1952 and Jackson, 1975) for construc-

tion of the Bethe formula from semi-classical considerations. The
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usual trick is to proceed as Bohr did for b >,51' For b < Bl, one
recognizes that the exact result of Bohr can beiobtained by setting
b, equal to (z,e?)/(mv®y) and using only the ''distant collision' energy
loss. Physically, this amounts to cutting off the impact parameter

at the value for which the kinematically limited energy transfer obtains
with a simplified 1/b? function fer energy transfer. However, as the
argument goes, if the deBroglie wavelength of the electron in the CM
frame exceeds (Z,e?)/(mv?y), it must be used in place of the classical
minimum imnact parameter because smearing of the wave packet of the
electron eliminates energy transfer for the close collisions. Hence,
if Z,a/B < 1, the quantal value of b; leads to Bethe's formula and if
Z,o/B > 1, Bohr's result is obtained. These conditions are precisely
the‘sahe as thqse given by the criterie for the validity of the first
Born approximation and the classical approximation respecfively. One
must be careful not to attribute too much significance to the above
argnment. It is in fact little more than dimensional analysis where
characteristic classical and quantal distances are inserted into
%n(bad/bmin) where bad'is the adiabatically limited impact parameter
(see Lindhard, 1976). One should realize that there is actually no
division of validity befween the close and intermediate collisions as
might be guessed from the simple plausibility argument. In fact, the
derivation of the criterion for Born (classical) validity is independent
of impact parameter and applies equa]ly to intermediate and close
collisions.

It is important to appreciate the importance of binding in assess-

ing the validity of the different formulae. Mott and Massey (1965),
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following Williams (1945), discuss the connection between the Bohr
and Bethe theories by assuming free electron scattering. In terms
of the scattering angle of an incident electron, they find that the

stopping power is proportional to ln(em /emin) with emax ~ 1 and

ax
0 i = h/(mvbad) for a/g << 1 and 6 . =.e2/(mv2bad) for a/B >> 1.

It seems then that the distinction between classical and quantal
stopping power lies in the distant collisions, which correspond to
small scattering angles. 'The apparent paradox is resolved when one
realizes that emin = 0. This is so since energy transfer.is possible
wi thout scattering by means of having the atomic nucleus absorb any
transverse momentum which is necessary. Thus a more careful analysis
is actually required. The success of the above approach in obtaining
the correct answers is again due to the usefulness of dimensional
analyses.

It is amusing to consider yet one more way of obtaining the Bethe
formula for stobping power. As will be described in more detail in
sub-section 111.G, Landau and Lifshftz (1960) calqulate the distant
collision energy loss by a semi-classical method where-in the wave
vector k of the Fourier transforms of the classical fields is inter-
preted as the wave vector of an exchanged photon. By adding this to
the close collision energy loss obtained with the\use of the classical
Rutherford cross section in terms of momentumbtransfer one may obtain
the exact Bethe formula in the non-relativistic ]imit, Thus, the
only guantum mechanics required has been the ihterﬁrefation of small
momentum transfer processes in electromagnetic interactions as being

mediated by discrete, exchanged quanta. It is interesting to speculate
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on theYCOQrse of events had someone taken what was known in 1910 and
-added  the notion of virtual photons to correctly derive the Bethe
formula twenty ygars'ahead of time. For.very Iargé values of Z, this
treatment would break down due to the need to‘include mul ti=photon
exchange processes, in which case the imbact parameter approach of
Bohr would'be-valid. Lest one bécome too enamored with the semi-
classical physics embodied in the Landau approach, we should point
out that it may merely be fOrtuitous that the correct answers are
obtained due to the equalfty_of'the classical and quantal Coulomb
scattering cross section. lndeed, it'is clearly untenable to adopt
the position that electrons follow well defined trajectories and that
itis merely:in'a statiStical‘obsérvatignal sense thatvthe uncertainty
pffncip]evappliés. Otherwise, the Bohr formula would be correct,

which it is known not to be for Z,0/f < 1.

F. Low Ve]ocities; Shell Corrections From the Bethe Theory

“In thé remainder of this section we will concentrate our atten-
tionvoh fhe first ofder quantal treatment of Bethe. Most of the
experimental and theoretical work on stopping powér has been confined
to a regime where this theory is most épprbpriaté. .Jn section IV we
will indfcate how this theory mﬁst be modified_%n order to remain
applicable in other regimes. : v : -
It was remarked'in the prevfous subsection that L becomes negative
at very low velocities. As Fano.(1963) emphasizes, the validity of
the Bethe formula relies on the assumption that the speed of the inci-
deﬁt particle is much gfeatér than that of the elegtrons bound to the

absorbing medium. Only in this case can one cleanly separate low
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momentum transfer collisions from intermediate momentum trangfer colli-
sions and in such a way apply the generalized sum rule first derived

by Bethe (1930). In principle one can correctly calculate the stopping
power within the framework of the first Born approximation without
recourse to the generalized sum rule. The formal expression for this

is given by:

2
L= a0 2 - 9n(1-82) - 8% - C/2, 1121

C/Z, is referred to as the shell correction term. Bichsel (1972)
indicates how the theoretical work of Walske (1952, 1956) and Bonderup
(1967) are incorporated with experimental work in order to obtain a
semi-empirical expression for C/Z, which is valid for Z, = 1. The

fitting procedure described by Bichsel yields experimental values for |

in addition to the shell corrections. Since higher order Born terms

are probably included in C/Z,, Bichsel cautions the reader that the
shell corrections are only valid for particles with Z, =1,
Figure 111.2a is a reproduction of the results obtained by Bichsel
(1972) for C/Z,. In Fig. I11.2b we reproduce the figure given by
Fano (1963) for the shell corrections which were obtained by techniques
similar to those employed by Bichsel (1972). In each of these figures
the shell corrections are plotted as a function of proton kinetic
energy. To apply them to other singly charged particles it is necessary
to use that proton energy which corresponds to the same velocity of
the other particle type under consideration.

A comparison of Fig. Ill.2a and Fig. 111.2b reveals significant

differences between the results of Fano and Bichsel. For example, at
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a proton energy of 8 MeV in lead, the Fano shell correction is 0.30 and
the Bichsel shell correction is 0.25. The difference befween these
two corrections amounts to a difference in stopping bower of about

2%. Since this is roughly the magnitude of the error of stopping power
measurements at these energies, such differences should be regarded as
being a measure of the uncertainty of these semi-empirical estimates

of the size of the shell corrections.

\ For the purpose of this Review, the shell corrections are intended

to serve as a cushion tb soften the transition into the complex low
velocity region. For this réason we ahticipate some of the discussion

to appear invsection IV regarding the extraction of the true .shell
corrections, apart form higher order Born terms. Andersen et al. (1977)
have‘empirically detgrmined the 213 and ZI“ corrections to the stopping
power. They have used these measured correctiong to separate the shell
corrections from the higher order Born terms. In Fig. 111.2¢c to 2f

these COrréctions, (C/z,), are compared with those which include higher
orde} corrections (C/Z,') énd those calculated by Bonderup (1967)
(C/ZZ)Th' Good égreem;nt is obtained between (C/Z,) and (C/ZZ)Th‘ Note
that (C/Z,) becomes quite close to (c/Z,)' at large velocities (the
difference amounts to less than 1% in stopping power above 5 MeV/amu) .
This is due to the small higher ordef corrections to proton stopping

power at these velocities. Hence, if one adobts the reasonable point

of view that the ghell corrections can be looked upon as a purely velocity

dependent contribution which corrects for the failure of the generalized

sum rule, then one is in error by less than 1% in stopping power if he
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uses the Fano or Bichsel shell corrections above 10 MeV/amu for any

charge.

G.

Condensed Matter Effects

1. Channeling

In all of the preceding discussion it has been tacitly
assumed that the medium through which the charged particle passed
was é very dilute gas. Only for such a situation is it legitimate
to incoherently add the energy lost to individual atoms to obtain

. 1 .
the total stopping power. 4 In condensed media one encounters

‘'several problems not present for gaseous absorbers. |If, for

example, the solid possesses symmetry with respect to spatial
displacement (i.e. it is a crystal) one would not expect a priori
that its stopping power -relative to an impinging beam of charged
particles would be independent of the crystal orientation. One
might expect that any such orientation dependence would be negli-
gible for absorbers of finite thickness and for beams with non-
zero divergence. However, as was first predicted by Stark and
Wendt (1912) and was first observed by Piercy et al. (1963) and
Lutz and Sizmann (1963), cHarged particles which enter a crystal
lattice at small angles relative to the crystal rows or planes
undergo a set of correlated small angle scattering events which
tend to force them to move down crystal “channéls.“ Lindhard
(1964) derived the following expression for thé,critical angle
between the incident particle trajectory and the crystal axis for

channeling:
22,2,e% |

v, = c(——EE———JE oL 22
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where C is a number between 1.5 and 2 and d is the interatomic

spacing along the direction of the channel. As it stands,

eq. 111.22 is applicable for non-relativistic velocities. It is

eésily modified to be generally applicable by replacing E with

Ipv (p is the-momentum of the projectile; see Esbensen et al. : .
1977). fy > wc thé penetration into the crystal is essentially

the same as for a random medium. |f we take C = 1.75 then:
- 3 3 E3 :
b, = (Z,2,/A)) (aO/d) /(16708Y7) 111.23

where ao is the Bohr radiusr If we assume Z /A, = 0.5, then

b, ~ 1° for 2, = 79 (gold) at B = 0.1. This is cleérly a manage-
able alignment angle (i.e. one must be aware of the»aljgnment
conditions so that channeling can either be avoided:of achieved,
depending on the experimentai goals.) At higher velocities it
becomes much more difficult to meet the channeling criterion.

For this reason and due to the absence of sufficiently thick
crystals to match the penetration depth of high energy pérticles
we will subsequently assume that solid absorbers are amorphous.]5
For a more complete treatmeht of charged particle penetration in
crystals, including a discussidg of channeled particle stopping
power and how this differs from.that in amorbhous absorbers, the
reader is referred to the review articles by Datz et al. (1967)
and by Gemmell (1974). A discussion of relativistic channelihg -
. of positive and.negative pions, kaons and protons is to be found

in Esbensen et al. (1978).

2, The Density Effect |
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The neglect of the channeling effect is implicit in the Bohr

formulation by the prescription:

oo

S = Nf AE(b)2mbdb 111,24
o

and in the Bethe formulation by:

S =N, I J Edo_ L1k
n.

In each case, a thin slab of absorber of thickness dx is assumed to
contain atoms distributed randomly across the slab. Another implicit
assumption reflected by eq. 111.14 and eq. 111.24 is that the tota]
energy lost is that given by an incoherent sum of energy lost to iﬁdi-
vidual atoms (or molecules). |f the absorber is a gas, the intermo-
lecular separation is equal to 33 A at STP (standard temperature and
pressure: T = 273° K and p = 1 atm). For hw = 100 eV the adiabati-

16

cally limited impact parameter is equal to:

b, =20 ByA for hw = 100 eV . 111,25

ad

For typical gases at energies less than those at extreme relativistic
velocities, it is seen that at any given time the projectile is inter-
acting with no more than one gas molecule. The incoherent sums

eq. I11.24 and eq. I1l.14 are thus valid for gases except at extreme
‘relativistic velocities. For solids, the density is increased relative
to gases by about a factor of 1000 so that the interatomic spacing is
reduced by a factor of order 10. 1In this case it is no longer true

that the projectile interacts only with one atom at a time. Nor is
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it legitimate to think of the atoms as independent of each other. A

correct theory would be based on eq. I11.14 where the "atoms'' would

be considered to be aggregates of matter which were essentially complete

in themselves, i.e. they don't interact strongly with the remainder of

the absorbing medium. |If this is done properly the dielectric screen- e
ing of the macroscopic electric fie]d, i.e. the lonéitudinal inter-
action, is automatically accounted for. Dielectric screening is,
after all, nothing more than the effeét of electrons interacting with
each other in response to the electric field of the projectile.
Another modification which is required in order to extend the Bethe
theory of energy loss to condensed media involves the use of the
quantized vector potential (eq. 111.10) to describe the transverse
interaction. ‘Neamtan_(l953) has pointed out that the strength of the
interaction between the electrons of a medium and the photon ffeld is
characterized by the index'of.refraction.n = [e(w)]%.' If nis signi-
ficantly different from unity it is no longer legitimate to think in
terms of free photons prbpagating with the speed of light through the
medium. Alternatively one must consider the propagation of combined
electronic-electromagnetic excitations with the Qroup velocity c/n
through the medium. |t is thus inappropriate to use eq. Il1.10 as a
basis for the description éf the transverse interaction.

Fano (1956a, 1956b, 1963) has discussed how the quantal theory
of Bethe is to be modified to take into consideration the ''density et
effect" discusséd in the preceding‘paragraph. It is‘to be eﬁphasized
that Fano'svtheory treated the entire problem within the framework of

quantum mechanics, without recourse to classical macroscopic electro-
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dynamics as was the case with early treatments of the density effect

by Swann (1938) and Fermi (1940). Crispin and Fowler (]970) have
reviewed the theoretical and experimental aspects of the density effect
in the ifonization energy loss of fast charged particles in matter.

They indicate the degree of equivalence between the quantal and classi-
cal techniques and conclude that, although the quantal approach is in
principle capable of giving higher order corrections, the classical
approach of Fermi (1940) as modified and refined by Sternheimer (1952,
1956, 1961), should be used as a ''theoretical yardstick for comparison
with experiment.'" The quantal approach will become more desirable as
more detailed information on photo-ionization cross sections and form
factors, which serve as input to the theory, become available. For
these reasons we will henceforth consider the density effect frém the
classical macroscopic point of view. This should be satisfactory, at
least in the regime of energies where consideration of the density
effect can be thought of as giving rise to a correction to the stopping

power, rather than being the dominant effect.

A very fine presentation of the classical density effect can be
found in Landau and Lifshitz (1960). Their approach can be more pro-
perly called semi-classical in that distant collisions are considered
from the péint of view of classical macroscopic electrodynamics but
are characterized by momentum transfer rather than impact parameter,
as was done by Fermi and Sternheimer. This characterization is made

possible by interpretation of the vector E which appears in the Fourier

.transforms of the classical fields as the wave vector of an exchanged

photon. Landau and Lifshitz calculate the work done on the particle
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by the electric field produced by this particle. This is the energy
lost by the particle in distant collisions. Their result can be sum-
marized by the expression:

LNz, 2e" YBcq
= . [&n 2 - 82/2 + p2/(2w_%y?)] [11.26
<q mv2 Q p ’

° : <.

where hqo is the maximum momentum transfer for which the above treat-

ment is valid and p = w(0)/i where w(q) is defined by: -
w?(q) [e(w(q)) - 1/8%] ¥.c2q2 111.27

where e(w) is the complex dielectric constant of the medium. The quan-

tity @ plays the role of the mean excitation frequency and is defined

by: - 1
_ 2 _ L 2, o\Z :
Lnd. = EB;? g wim [ ERZJJ Qh(w +0%)? dw 111.28
In those cases for which there are two roots to eq. 111.27 with

q = 0, that value of w(0) with the largest imaginary part is to be used

in the definition p = w(0)/i. Hence, if B% < l/eo (where e, = e(0)),

p=0and if g2 > 1/80, p is defined by B2e(ip) = 1. For conductors
€, = ® so that the latter value of p should always be used.

The close collision energy loss is just that from the Bethe theory

(Fano, 1963)

bNz  2e*

= 2mv. 1 a2y -1 a2
S3q vz [ == - 5 an(1-8%) - 5 B*] 11.29
o 0 .
By adding eq. 111.26 to eq. 111.29 one obtains the total energy loss:
bz %e* 2my?
S = —— [&n == - an(1-8%) - B* - §/2] 111.30
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where the mean ionization potential, |, and the density effect correc-

tion, §, are given'by:

2 1
nl = FB;T £ wlm[ - ETET] Lnhwdw 111.31
and
2 m 1 2 T
§ = 'IT(A)pz [(J; (L)Im[" ‘—(_)_e m ] .Q,n(1 + -(%z—)dw - 7 02(1_62)] 111.32

For the case of a non-conducting absorbing medium, €, is finite and
there is a sharp dividing velocity below which there is no density

effect correction, namely BO = l//E;. | is then just the experimentally

measured mean ionization potential, if the measurements are done at

velocities below 80.17 Sternheimer (1952, 1956) has expressed | and

8§ in terms of the oscillator strengths and energy levels of isolated

atoms:
1
= 2 212 .
nl = i f zn[hwn(1+wp f/w %)*] 111.33
and
§=1f Zn(]+p2/wn2) - (1-82) pz/wpz 111.34
n )
Note that eq. 111.33 does not agree with that from the Bethe theory
(eq. 111.16), except in. the limit wp - 0 as one would have for a gas.

There is a low velocity density effect which is caused by the dielec-
tr{c screening of the longitudinal interaction which reduces the stopping
power by a small but finite amount.

By expressing p in terms of atomic properties, namely:
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1/82 - 1 = E f wpz/(wn2+p2) 111.35
Sternheimer (1952, 1956, 1966, 1967) has calculated § for a number of
substances by incorporating optical measurements of fn’ w, and experi-
mental determinations of | in a semi-empirical fit. Sfernheimer (1952,
1956) used values of | which differ from the presently accepted values .
(which will be discussed in subsection I1l.H). For this reason, and
in order to extend the calculation of the density effect to substances
not previously considered, Sternheimer and Peierls (1971) obtained a
general expression for .the den%ity effect based on updated information
regarding fn’ W, and |.. The funétional fofm for § originally proposed

by Sternheimer (1952) is still used and is given by:

0 X < X 111.36a

(o]
6= 4.606 X + C +a(x;=x)" X <X<X 111.36b
4.606 X + C X, < X 111.36c
where
| X = log, ,(BY) 11.37

The values for C, a, Xo’ X. and m to be used are given in Table [Il1.1.

1
The maximum error in stopping power is claimed to be *2% by Sternheimer

and Peierls (1971) while the average error is less than 1% in stopping -
power. In Fig. Ill.3a,b we plot § as a function of log,,(By) for »
various solids, liquids and gases, as obtained with the parameters

from Table I11.1. Table 111.2 contains a list of plasma ehergies for

several kinds of substances which were used in computing values for Fig.

111.3. The values for | which were used in these computations were
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those given by Barkas and Berger (1967). A more complete discussion
of these seleétions follows in subsection lI}.H.

H. The Mean lonization Potential 1

The centralvparametér to sfopping power theory in the first Born
approximation is |, the mean ionization potential. Neglect of the
density effect leads to a definition of | which depends only on atomic
(or molecular) properties as ihdicatéd by eq. I11.16. We have seen
that inclusion of the density effect in stopping power theory yields
an ekpression for | which depends on the physical state of the absorbing
medium (eq. 111.33). Since measurements of | a;e for the most part
done with solid abéorbers, comparison with theoretical values tends to
be clouded by this physical state or atomic aggregation effect. We
will delay this comparison until we first separateiy discuss the experi-
mental and theoretical determinations. of 1.

1. . Experimental Determfnations of |

There are several ways in which | can be determined experi-

‘mentally:

a. One can directly measure the eneégy lost in thin
absorbéks by measuring initial and final energies with some
configuration of electromagnetic fields. One then requires
that:

hﬂNzlze“

2p2.,2
s = [en 2 BY- - g2 - ¢/z, - §/2] 111.38

mv 2

Since S is related to the measured value of AE in a manner
which depends on the thickness of the absorber and on the

18
velocity and charge of the projectile one can measure the
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quantity n | + C/Z,, provided log,,(BY) < X, so that § = 0.
This velocity is at least that of an 820 MeV proton for all
solids and gases (see Table I11.1). All of the key experi-
ments related to the determination of | utilized particles
with energies less than that at which the density effect
"turns on.”19
b. One measures energy lost by calorimetric techniques
(Andersen et al. 1966). Subsequent analysis proceeds as in
(a) above.
c. One measures relative stopping powers by determining the
amount of matter which causes the same amouﬁt of slowing as
in a reference absorber.
d. One measures ranges at different energies. | is found
from the shape of the range-energy curve or from direct
integration of the stopping power formula.
Recommended values of | which are based on experiments such as
those above and in Table 111.3 can be found in NCRP (1961), Fano
(1963), Bichsel (1968), Turner et al. (1970), Bichsel (1972),
and Andersen and Ziegler (1977) . These values are givén in
Table t11.4. Several comments regarding these values are in
ordef. The refarkable agreement of the various sources on the L
~value of | for aluminum (the average of the 6 values from
Table 111.4 is 164 + 1 eV) was achieved by neglecting the early ~
result of .150 eV obtained by Mather and Segré (1951) on the

basis of range measurements of 340 MeV protons. The discrepancy

between this measurement and those obtained at low energies was
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attributed by Barkas and von Friesen (1961) to an improper decon-
volution of the Bragg ionization curve obtained by Mather and
Segré (1951). This explanation was convincingly verified by
Zrelov et al. (1974) who went to great pains to include every
correction in the deconvolution of their Bragg curve (in most
respects this experiment, which utilized 660 MeV protons, was
quite similar to that performéd by Mather and Segré). In so doing
they obtained a value of | for copper of 320 * 4 eV which agrees
very well with the average value of 317 + 2 eV from Table 111.4.
Hence the evidence is qufte strong for the conclusion that | is
independent of energy, as it must be from the Bethe theory.

It is important to note that the experimental values for |
should be independent of whether or not higher order corrections
are included in the stopping-power formula. This is so because
all velocity dependence (and hence dep?ndence on higher order
Born corrections) is included in the shell corrections. Of course,
proper evaluation of the shell corrections requires some knowledge
of higher order corrections. This will be discﬁssed in more
detail in section IV.

2. Theoretical Determinations of |

Bethe (1930) was able to calculate a value of | for atomic
hydrogen with the use of the exact hydrogenic wave functions. Of
course his results only applied to a gas of atomic hydrogen; a
situation not encountered in the laboratory. In any case Bethe
obtained that by = 15.0 eV. Bethe (1930) attempted to extend

his caluclations to heavier atoms through the use of hydrogen-iike
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~wave functions but met with little success. He overestimated the
stopping power in gold by about 100%. Bloch (1933b) used the
Thomas-Fermi model for atoms to show that | should be proportional
to Z,. This is in fact a good approximation for Z, > 20 which
corresponds to the domain of applicability of the Thomas-Fermi
model. Ball et al. (1973) have obtained Bloch's proportionality
constant and have found that 1/Z, = 4.95 eV in the Thomas-Fermi
model. This is too small by about a factor of 2 to account for
the data in Table 111.4 and hence rigorous application of the
Thomas-Fermi model cannot be accepted as corresponding to reality.20

Dehmer et al. (1975) summarizg the status of calculations21
of various moments of dipole oscillator-strength distributions for
isolated atoms with 2 g Z, < 18. Included in these calculations
are those for I. Generally speaking, one can divide these cal-
culations into rigorous ones utilizing realistic atomic wave func-
tions and based on eq. I11.16 and into those based on the local
plasma model of Lindhard and Scharff (1953) as performed by Chu
and Powers (1972).

In Fig. IIl.4 we plot a variation of Fig. 9 from Dehmer
et al. (1575). We show the results of the local plasma approxi-
mation calculations of Chu and Powers (1972) as open circles.
The results of the accurate calculations performed by Dehmer et
al. are displayed as solid circles and the mean value of all the e
accurate calculations summarized by Dehmer et al. are displayed

as dots with error bars representing a standard deviation for the

mean value. Experimental data have been plottéd as solid squares.
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These have been obtained by averaging the values of Table I1l11.4
as follows: 1) For solids and liquids we average the tabulated

values with equal weight to obtain: [I(Li) = 40.0 eV, |(Be) =

63.9 eV, 1(C) 79.0 eV, I(N) =85.1 ev, 1(0) = 98.3 ev, I(Al) =

164 eV, I(Si) 169.3 eV, 1(C1) = 173 eV; 2) For rare gases we
average the tabulated values with equal weight to obtain:

I(He) = 42.3 eV, I(Ne) = 133.3 eV, I(Ar) = 188 eV. In all cases
the error of the mean is smaller than the solid square.

It can be seen from Fig. tI1l.4 that the shapes of the results
of the two types of calculations as a function of Z, are quite
similar but are offset by a nearly constant amount. Inokuti
(1978) suggests that this difference may involve the parameter
Y introduced by Lindhard and Scharff (1953) to relate the exci-
tation energy with the local plasma energy via E = thp(r). wp(r)
is not the same as the bulk plasma frequency we have been using;
it is the local plasma frequency of the atom. Intuitive arguments

advanced by Lindhard and Scharff suggest that y = V2. However,

other choices cannot be ruled out.

The general shape of |/Z; can be seen to be roughly constant;
in qualitative agreement with the Bloch (1933b) theory, modulated
by a periodic dependence on Z, which is correlated with atomic
shell structure. Increased binding for closed shell atoms seems
to cause an enhanced value for 1/Z,. There is rather remarkable
agreement between those values for |/Z, obtained from accurate
calculations and from experiments for those cases for which such

a comparison is justified, namely for the rare gases. This obser-
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vation strengthens the conclusion that the differences between
measured value of | for solids and the calculated values for the
corresponding atoms repreSentva real effect, which will now be
- discussed ih'the context_of the Bragg rule and the low velocity
density effect.
3. Suggested Values of | for Gases, Liquids, Solids and Compounds:
Bragg's Rule and the Low VelocitY'Density Effect
Starting with Bragg and Kleeman.(l905) it has almost»uni;
versally been assumed in any application of stopping power theory
that chemical and atomic éggregation pheﬁomena affect stopping-
power to a very iimited extent. YThES‘is embodied in the Bragg

rule for the evaluation of the mean ionization potential:
NZn =N &nil, +N, &ni,+... © .39

where Ni is the number density of electrons aésociéted wi?h élément
i and Ii is the atomic mean ionization potential per electron for
‘that element. The implication of eq. 1I1.39 is that the stopping
boWer in a compouhd.js the sum of the stopping powers of the
individual elements.

It is not obvious that Bragg's rule shoula work at all.
When several atoms combiné to form a molecule, the energy levels
of the valence electrons can change consfderably. As an example
recall that Bethe calculated that I(H) = 15.0 eV.22 Platzman
(1952) has calculated | for molecular hydrogen and has obtained -
i(Hz) =19 eV.23 Thié result, wﬁich is corroboratgd b; experi-

mental measurements of H, gas (averaging these values from
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Table I11.4 yields I(H,) = 18.5 eV), is not surprising in view

of the fact that the bond dissocigﬁion energy for the hydrogen
molecule is 4.52 eV (CRC, 1968). The effect is not so easily
seen by compafing 1(N,) and 1(0,) with the corresponding theore-
tical values I(N) and 1(0) from Fig. I1!1.4. The experimental
values plotted there are for liquid nitrogen and 6xygen. I(OZ) =
99.6 eV from the averaged value for oxygen gas from Table 111.4.
The value 1(N,) = 87 eV seems to be inconsistent with the fairly
well established value of 1(Air) = 85 eV. By accepting this
latter value we obtain I(Nz) = 80 eV. Dehmer et al. (1975) refer
to experimental works which give 1(0,) = 101 eV and 93 eV and
I(N,) = 90 eV and 78 eV. The smaller values are from work by
Hanke and Bichsel (f975) on N, and 0,. Dehmer et al. (1975)
obtain the theoretical values I(N) = 77 eV and 1(0) = 82 eV for
atomic nifrogen and oxygen respectively. Other theoretical treat-
ments quoted in this reference yield 1(N) = 77 eV, 82 eV and

1(0) = 99 eV. Treating these measurements and calculations wifh
equal weight we obtain I(N,) =83 + L4 ev, 1(0,) =98 + 3 eV and

I(N) =79 £ 2 eV, 1(0) =91 =9 eV. Although it is tempting to

ascribe these values to binding effects, the measurements and calcula-

tions are not accurate enough to convincingly demonstrate this.
Indeed, the molecular dissociation energies for N, (9.84 eV) and
0, (5.16 eV) are small enough to be masked by the experimental
and theoretical fluctuations.

It seems clear from these observations that chemical binding

does affect the mean ionization potential but that the effect



decreases rapidly with increasing atomic charge. This conclusion
is consistent with the observations of Thompsdn (1952), who com-
pared the stopping power of 270 MeV protons in liquid hydrogen,

nitrogen and oxygen and in solid carbon with that in condensed

(3

compounds containing these elements. Thompson observed that the
largest discrepancies from Bragg's law. involved hydrogen and were
of the order of 2% in stopping power. The deviations were negli-
gible for chlorine (and presumably for heavier elements). Com-
poqnds containing carbon, nitrogen and oxygen obeyed Bragg's law
" to within ~1% in stopping power. For the proton energy utilized
by Thompson, a difference of stoppingbpower of 1% in C, N, O
corresponds to a difference in | of the order of 10 eV. Similarly
a difference of 2% in H corresponds to a difference in | of 4 eV.
These energies are comparable in size to those discussed in the
preceding paragraph. The increased validity of Bragg's law with
increasing Z, relies on the increased dependence of | on inner
shell electrons which are insensitive to chemical effects. The
NCRP (1961) data in Table Ill.4 on elements from different chemi=

cal bond configurations are based on those from Thompson's thesis.

They have been renormalized to agree with (A1) = 164 eV.

Dehmer et al. (1975) interpret the good agreement of their

.
&

calculations with observations of | for N, and 0, gases as indi-
cating that the larger discrepancy between theoretical values of "
I and those observed in solids is due to an atomic aggregation

effect. Sternheimer (1953b) calculates the ratio 1(gas)/!(condensed)

based on his low velocity density effect calculations. Brandt
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(1956) finds 1(gas)/1(condensed) due to the rearrangement of
valence electrons in the condensed phase. These ratios are given
in Table I11.5 along with the '‘observed' ratio, using the accurate
calculations quoted by Dehmer et al. (1975) as a guide to a mea-
sure of I1(gas). One would supposedly multiply Sternheimer's
results by Brandt's to obtain the total effect. This is clearly
too small to account for the Dehmer et al. ratios.

Deviations from Bragg's rule should be more apparent at low
energies for which the logarithmic term in the Bethe formula
becomes a sensitive function of |I. This feature has been cépi-
talized on in many recent experiments. Chan et al. (1977) examined
the stopping power of low energy He ions (0.06 - 0.5 MeV/amu) in
saturated alcohols and ethers in the gas phase. They found that
Bragg's rule holds to within 1% in stopping power for single
bonds at all energies. This was not the case for double bonds.
The stopping powervfor double bonded oxygen was found to be 6%
higher than that expected from application of Bragg's rule to
single bond data at 0.5 MeV/amu. Lodhi and Powers (1974) per-

formed a similar experiment with C-H, C-F and C-H-F, C-Br-F

compounds. They found that the stopping power of hydrogen com-
pounds was larger than that expected on the basis of experimental
data for H,.

Baglin and Ziegler (1974) tested Bragg's rule in solid com-
pounds with 0.5 MeV/amu He nuclei and found no breakdown within
the 2% experimental uncertainty of measurements of stopping power.

Langley and Blewer (1976) have tested Bragg's rule in erbium and
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erbium oxide with 0.1 - 0.6 MeV/amu He nuclei and protons of the
same.range of velocities. They observe slight deviations from
Bragg's rule below 2 MeV but none at the 1% level above 2 MeV.
Feng et al. (1974) have used Mg, Al, Si, Fe and their oxides
to test the Bragg rule with 0.25 - 0.5 MeV/amu He nuclei. They o
observe no deviations from Bragg's rule at the 2% level. By
. choosing absolute stopping crcss sections from other work, these
authors conclude that the stopping power of solid oxygen is from
6 - 22% smaller than would be'expected‘from gas phase stopping
bpower measurements. They conclude that this is a physical state
.effect which consists of the two separate effects of the sort
considered by Sternheimer (1953b)and Brandt (1956).

All of these low energy experiments are consistent in quality
with what one would expect on the basis of Thompson's'hjgh energy
experiments. Detailed quantitative agreement between theory and
experiment with regard to deviations from the Bragg ruie and to
atomic aggregation effects, be they predominantly due to polari-
zation effects (Tow velocity density effect) or valence electton

rearrangements, has not yet been achieved. It seems safe to

conclude that experimental determination of 1| is sufficiently

accurate to ensure accurate calculation of stopping power for

v k&

heavy sung]y charged partlcles in the reglme between 10 and 1000

B

o«

MeV/amu. The error in stopplng power should be less than l/
In Flg III 5 we plot the data of Table 1 h (excludlng

those of Andersen<and Zleg%er) along with two semi-empirical

functions which have been advocated for use in calculating I.
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Sternheimer (1963) suggests the use of the following formula
for the adjusted mean ionization potential 'adj:
12 + 7/Z, eV, Z, <13

| /2, = 111,40
2diT )9.76 +58.8 27119 ev, 2z, > 13 -

where ladj is defined by:

gn l_y.o=8n | + C/Z,(8=1) L1141

adj

Iadj is so defined to avoid the necessity of using the large
velocity limit of the shell corrections. Iadj differs from I
significantly only for very large values of z,.
Dalton and Turner (1968) have suggested that the expression:
1.2 +11.72,ev, Z,< 13

I = | LiE.b2
52.8 + 8.71 Z, eV, Z, > 13

be used to evaluate |I.

The large scatter of experimental points for Z, <'10 is due
primarily to physical and chemical variations rather than experi-
mental error. This emphasizes the fact that it is not legitimate
to quote a value of | for such elements. It is crucial to specify

whether the element is in a compound or not and to specify if it

is }n a so]fd, liquid or gas phase. The scatter of the large

22 data is a measure of £he experimental error in this regime.
We feel that there are no significant systematic trends

present in the 6 sets of recommended | values of Table II1.4.

For this reason we recommend use of averaged values. We also
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would place more emphasis on the unspecified | vélues of -nitrogen -
than on Fano's molecular value of 88 eV. These give an average
value of 82 eV which is consistent with the established value

for air, namely 85 eV. Similarly we treat the unspecified values
of | for 0, on an equal basis as the gas values. In Table II1.6
we present our recommended values and the corresponding values |
for 1| and Iadj_as given by eq. 111,40 and eq. 111.42 respectively.
The quoted errors for the recommended values are equal to the
étandard deviation for the mean value of | obtained from the
author to author averaging procedure.

In Fig. 111.6 we plot the fractional error in stopping power,
|as/s|, és a function of fractional error in the mean ionization
potential, IAI/iI, for various values of | and B. We use the
Bethe formula with Bichsel's shell corrections (Fig. 111.2a).

The energies are small enough so that the density effect cofrec-
tions are equal to zéro.

l. Distributions for Energy Lost in Absorbers: Landau, Vavilov,

Bohr and Tschaldr Distributions

The entirety of our preceding discussion has involved average
values of‘the stopping power. This leads to no confusion if one
is dealing with a regime of projectile charge and velocity and absorber
thickness for which the distribution of energy lost in the absorber
is Gaussianly disfributed, as one .might expect would be the case on
the basis of the central limit theorem. This theorem states that
the probability density function of the sum of a set of commonly dis-

tributed random variables approaches a Gaussian distribution in the
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limit of an infinite number of random variables. See Feller (1968)
for a rigorous discussion of this very important theorem. |f we
identify our random variable as being the energy lost in a very thin
slab of an absorber, then the sum of the energies lost in the complete
set of slabs which constitutes an absorber of finite thickness should
be determined by a Gaussian distribution, provided the absorber is
thick enough to ensure the validity of the central limit theorem.

As is always the case‘for application of the central limit theorem
to a specific problem, it is difficult to estimate how large the number
of random variables (in this case, the thickness of an absorber for a
given projectile éharge and velocity) should be before one can be
assured that the probability density fucntion is reasonably approxi-

mated by a Gaussian function. Bohr (1915) considered the problem by

assuming the absorber to be thick enough so that this criterion is actually

satisfied. He then obtained the standard deviation of the resulting
distribution by adding in quadrature the standard déviations of the
distributions of the thin slabs. The central limit theorem does not
require the thin slab distributions to be Gaussian to validate this

prescription. This can be written as:

w
max dn

X f dwdx

w

min

2=

Io} w2 dw F11.43

where it has been assumed that the projectile velocity is constant
d . -

throughout the absorber. EW%; dw is the number of collision events

per unit pathlength which result in an energy loss between w and

w + dw. Bohr assumed that the collision spectrum could be approxi-
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mated by the free electron spectrum which is given by a suitable trans-

‘position of the Rutherford cross section:

2mNZ  %e*
(90 = - R
dwdx’ R mv 2w 2 .
By assuming nén-relativistic projectile motion, Whax = 2mv? for M, >> m.
It i ] d that >> 24 hi
is also a;sume atw._ >>w ., in which case:
0,2 = 4NZ, %e*x | 11145

B

This is the result obtained by Bohr (1915) and it is the one against
which theory and experiment is.qsually compared. Hvelplund (1978)
empﬁasizes that the Bohr formula requires- the following conditions for
its validity: 1) fhe target must be randomly oriehted; 2) the energy
lost must be much less than the incident energy; 3). the projectile
veiocity must be much larger than thg 6rbital electron velocities of
the target; 4) there must be no correlation effects among scaftering
atoms; 5) there is no straggling due to variation in incident energy;
6) there is no straggling due to nuCTear scattering. To this list
should be added the requirement that the projéctile‘charge does not
fluctuate due to electron capture and loss processes. "Much recent
work has been involved with unraveling energy loss fluctuations in the
" non-relativistic regime. Bonderup and Hvelplund (1971) discuss a

modification of the straggling theory of Lindhard and Scharff (1953).25

Hoffman and Powers (1976) present evidence that the Bonderup and
Hvelplund technique does not fit the data well at low energies
(~100 keV/amu). Sigmund (1976) pointed out the importance of pair

correlation effects in straggling and Chu (1976) has calculated o2
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with the use of Hartree-Slater-Fock wave functions. Besenbacher et al.
(1977) and Bednyukov et al. (1977) have observed effects due to

;harge state fluctuations. The latter group observes that OBZ fits

the data well for protons in aluminum at 1 MeV and is still accurate
to within 10% (5% accuracy for og) at 100 keV.

As it is well known by experimentalists, it is much more difficulf
to measure the width of a distribution with any degree of accuracy
than it is to locate the peak. Hence the experimental data for the
widths of energy straggling distributions are not as reliable as those
for the mean value which, as we have previously noted, becomes less
reproducible below 1 MeV/amu. In addition, a great multitude of prac-
tical and fundamental complicating factors come into play at these
low energies. Much work needs to be invested in order to separate
the various contributions to low energy straggling. For the purpose
of this Review, we will assume that Bohr's formula is valid above
1 MeV/amu (with appropriate modifications for relatiQistic effects)
for those cases where a Gaussian distribution is in order. For lower
velocities the reader should consult the referen;es named above for
a more complete discussion.26

Bohr's formula is easily modified for relatiyistic velocities.
One merely replaces the Rutherford cross section with the first Born

approximation of the Mott cross section. In this Review, we will

reserve the description ""Mott cross section' for the differential
cross section for the Coulomb scattering of Dirac particles by an

infinitely heavy scattering center. See Mott (1929, 1932) for a
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derivation of the exact cross section, without recourse to perturba-
tion technlques, via an exact phase shift analysns This term is
often applied to the cross section obtained from the first Born approx«

mation (which considers only single photon exchange brocesses). The

L3

first Born approximation to the Mott cross section yields the free

electron pfoduction spectrum analogous ‘to eq. |11.44:

27TNZ, 2e*

1 . ;
(dwdx)FB 5tz (1-B%W/w ) 11146

where W= 2mc?B2y? for my << M;. In the above equation FB denotes.

first Born. Wifh the use of eq. 111.46, eq; 111.45 becomes:
0% = o (1-8%/2)/(1-8%) L1147
Although eq. [11.47 is actually a Qalid expression for the yarianée

of the energy 1ossloVer a wide range of experimental conditions, itviﬁ
a measure of the width in the sense that the FWHM (full width at hélfv
maximum) is equal to 2.355 o for only a rather limited regime. This
regime is that of the abqve mentioned Gaussian distribution. For any
 Charge and velocity we can always imagine an absorber which 35 thin
enough so that only a very small probabilify exists for ejectfng-a
high energy electron (i.e. a delta ray). If we let wo denote some

energy well above an atomic electron energy, P(w ) = f "max

W,
is the probability per unit length of ejecting a delta® ray with an

(dn/dwdx) dw

)

energy at least as great as W - If P(wo)x is less than unity, the "
differential spectrum for total energy loss A, f(x,A), must approach
(dn/dwdx) x with the tranécription w = A for A > W, and A >> Sx. This

is manifestly different from a Gaussian distribution, and eq. 111.47
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cannot be used as a measure of the width of the distribution. Bohr
(1915) recognized this problem and he realized that the resulting dis-
tribution would be asymmetric with a tail on the high energy loss side.
The experimentally meaningful quantities in this case become the most

27

probable energy loss and the FWHM. It remained for Landau (1944) to

solve the transport equation for f(x,A) in the limit that Wmax.+ o,
Landau's treatment also relied on the assumption that the mean energy
lost in the absorber is much greater than typical atomic energies.
This enabled him to legitimately neglect the effects of distant colli-
sions and to use the free electron production cross section.

The key parameter in Landau's theory is:
g = (ZﬂNZIZe“/mvz)x . Fi1.48

If &/w < 0.01, (where W= 2mc2B%y?) there are a sufficiently small
number of high energy delta rays so that Landau's approximations are

valid. One obtains:

f(x,4) = ¢(x)/£ 111.49
where:
! Ot+ie®
S o(A) = ——T-f explufnutiul du 111.50
27i = joo
and:
A= [A - E(enE/e'+1-C) 1/ i11.51
with:
gne' = Ln[(1-B2) 12/2mv?] + B2 111.52
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and C = 0.577... is Euler's constant. Results of the appropriate -
numerical integration enabled Landau to conclude that the most probable

energy loss becomes:

App(Landau) = E[&n(/e’) +0.373] 111.53a

Maccabee and Papworth (1969) have re-examined this problem. These

authors élso perform the indicated numerical integration and obtain:

A = g[zn(a/s') + 9.198] . ‘ 111.53b -

This differs from Landau's result by 3% for 10 MeV protons in 0.1 mg/cm?
Al, by 2.2% for 50 MeV protons in 1.0 mg/cm® Al, by 1.7% for 100 MeV
protons in 10 mg/cm? Al and by 1.2% for 1 GeV protons in 0.5 g/cm? Al.

Maccabee and Papworth (1969) also find .that the FWHM is:

FWHM = 4,02 & : 111.54

These expressions neglect the polarization phenomena aSsociatéd
with the density effect. Since the density effect is essentially {nde-
pgﬁdent of the close collisiéns which go;ern the dyefall shape of the
energy 1oss distribution, one,mgrely subtrécts the mean density effect
correction from'eq.|||;53béo obtain tﬁe cofréct va]ﬁe fdr the most

probable energy'loss:v

oo = glin(g/e’) +0.198 - &) 111.53¢

The expression for the'FWHM remains unchanged. From eq. I11.36c and
Table 111.1, we see that & » 2£n(8thp/l) -1as B~+1. This implies

that in this limit:
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w 2Z,%e%x 1.2192,%x

Amp(8=l) = —PTCg— on —a—o—— 111.55

where a, is the Bohr radius. Equation Il11.55 is remarkable in that it
is independent of thg detailed atomic properties of the absorbing
medium (| has been cancelled by the density effect correction) and of
the projectile energy.

Crispin and Fowler (1970) have reviewed the experimental status
of the density effect. Interpretation of measurements related to this
effect rely on proper evaluation of the experimental mode (i.e. does
one measure the mean or most probable energy loss). Hence any con-
clusions implicitly contain an assumption of the validity of the
Landau theory (most density effect related experiments are such that
E/wm < 0.01). It is found (see Crispin and Fowler for references)
that within experimental errors (typically ~t5% in stopping power)
eq. l111.53¢c is valid (any distinction between Landau's result and that
of Maccabee and Papworth is lost in the noise) when one calculates 6.
by Sternheimer's procedure.

Symon (1948) and Vavilov (1957) have dealt with the regime between
that of Bohr and that of Landau. As with their predecessers, Symon
and Vavilov assumed negligible élowing and each assumed the free elec-
tron collision spectrum. Corrections from this latter assumption should
be small (as are those for the Bohr formula for T > 1 MeV/amu). They
are discussed by Bichsel and Yu (1972), Bichsel (1970), Shulek et al.
(1967) and Blunck and Leisegang (1950). Vavilov's distribution function

is the same as Landau's for E/wm < 0.01. For 0.01 < E/wm < 1 the
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distribution function is rather complicated and is given by eq. 16 of
Vavilov (1957). For E/wm > 1 the distribution becomes nearly Gaussian
and a relatively simple expression for the difference between the mean
and most probable values of the energy loss can be obtained in terms of
Airy functions. Sellers and Hanser28 (1972) express this difference

as:

z Y
A Amp = (é tp) n I11.56

where Z(Amp) is the mean (most probable) energy lost and where
n=E@)7H (0 -2 ks, a = (2010 - 58301 - 5 62)-2/8

and tp is found from:

1/a ='—A|(tb)/Ai (tp) f11.57-

The properties of the Airy function, Ai(t),.can be found in Abramowitz
and Stegun (1970). In Fig. I11.7 we reproduce Fig. 1 of Sellers and
Hanser (1972) which»gives (Z-Amp)/n as a function of 1/a. As an example
we use Fig. I11.7 to calculate (Z-Amp)/ﬁ for a 600 MeV/amu Nel® nucleus
‘in 5 1 cm thick plastic scintillator. It is found that =A6band that
(Z-Amp)/ﬁ = 0.2% which is indicative of how rapidly the distribution
Becomes symmetric fqr K> 1,

For very thfck absorbers, in which a substantial fraction of the
incident energy is lost, the work of Tschalar (1967, 1968a, 1968b)
should be consulfed. Bichsel (1972) gives the following approximations

to Tschalar's results for moderate energy losses:

o2 = Qoéz(l-BZ/Z)/(l-Bz) 111.58
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where

' T
- (T y1/3 B _*
Q = (T1) for 7, 2.3 and = > 0.4
= 0.99 (1—01/2 for B . 3.5 and Ii > 0.4
' T1 Z2 ) T :
= 0.985 (1;92/3 for B . 6.9 and Il > 0.6
. T, Z . T .

and where T(T,) is the initial (residual) kinetic energy per atomic

2my 2
I

mass unit and B/Z, = &n(=—) - &n(1-8%) - B* - ¢/Z,, B being the
incident velocity.

Finally we briefly consider how these fluctuations in ene}gy loss
affect the straggling in range of a projectile. It is straightforward
to invert the standard problem and to inquire as to the range required
to bring a particle of fixed energy to rest rather than the energy lost
in a fixed thickness. In both cases, the quantity which is not fixed
is subject to fluctuations. Bichsel (1972) presents results from a
calculation of range straggling for which quantum mechanical effects
involving distant collision fluctuations have been included. The dis-
tribution of.ranges is well represented by a Gaussian function with a

fractional standard deviation for protons, o/R, given in Fig. 111.8.

For other particles of mass M, the fractional straggling is given by:

m
S1n, = | <
JuM ’Ml R(T)mp 1.59

where T is the same energy per amu for protons as for the heavier.

particle. To a very good approximation one can write o/R ~ 3Vm/M,
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which.is of the order of the fractional fluctuation in the number of
electronic collisions needed to bring the heavy particle to rest.

We next turn to a rather critical review of the assumptions and
approximations which have been utilized in this section. The results
which have been summarized agree very well with experimental results
obtained with singly charged, fully stripped particles for data in the
regime 10-1000 MeV/amu (~1%). At smaller energies, use of shell correc-
Vtions extends the regime of accurécy to ~1 MeV/amuvana for very large
energiesv(y ~ 1000) Sternheimer's density effect correction and Landau's
energylloss distribution provide agreement with data to within several
percent. The question naturally arises as to what point in charge and

energy significant deviations from this first order theory will arise.
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IV. FAILURE AND EXTENSION OF THE BOHR,

BETHE, BLOCH STOPPING POWER THEORIES

In the previous section we summarized the early theoriés‘éf Stopping
power and indicated the required conditions for their validity. In
this section we will discuss the modifications which must be made in
order to extend the applicability of these theories. We will concen-
trate on the list of fffteen assumptions and approximations given in
sub-sectioh IH1.E. However, in sub-sectiéns IV.F and G we will also
discuss the effects of multiple Coulomb scattering and nuclear inter-

actions which can be important in certain instances.

A. U]tra-ReIativistichffects

1. quiative Correction

In this sectibn we will discuss modifications of the re]ati-
vistic Bethe formula at ultra-relativistic velocities. It is con-
venient to separately consider ultra-relativistic effects for dis-
tant and close cojlisions. These effects are hot severe for the
distant collisions, which involvé interactions between atomic elec-
trons and the projectile with impact parameters of the order 1 A
or larger. This distance is huge compared to any éssociated wi th
particle size or wave packet dimensions so that interactions given

by classical relativistic electromagnetic fields (or their quantized

counter parts) should be adequate. There is, of course, the density

effect correction which involves the macroscopic polarization of
the medium, but this again should be adequately handled within the
framework of classical electrodynamics.

The close collisions, on the other hand, are more subject to

non-classical ultra-relativistic effects since this class of collisions
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involves very small impact parameter events where a quantum-electro dynami-
cal description is required. If we consider close collision energy loss

to be represented by free electron scattering in the CM frame, then:

w
' _ 47N M do 7
Sow W J (Eﬁgelastic wdw
o m |w .
W -
| do -
* £ (dQ brem ndw .1
o
where S>W is the energy loss of the projectile per unit pathlength
5 ,

due to collisiéns wi th the_eléc;rons of the absorbing material which
involve losses greater than Wy W is the maximum energy which can
be lost by the projectile in the laboratory frame in such a collision
and is given by:

Zligézszyzl

Wi = Zliy+M12+m2 .2

and w is the projectile energy loss in the lab frame for elastic

scattering with the CM scattering angle 0:

=w sin2 @
w=w sin® 3 : V.3
(99) . is the CM cross section for electrons to be scattered into . .
d@"elastic v : -

dQ with an energy (in the CM frame) of mc?y within an energy fesolution
window AE. AE characterizes how accurately we can determine if the -
particle-electron collision resulted in the emission of a bremsstrahlung

photon. g%)brem is the CM cross section for the scattering of an
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electron into d? accompanied by a bremsstrahlung photon with an

energy between AE and mc?y. 1 is the total energy lost by the heavy
particle in the collision.29 It should be noted that eq. IV.1 does not
include energy Iosf by primary bremsstrahlung radiation by the projec-
tile. The magnitude of this effect will be considered at the end of
this sub-section.

By considering the nature of the bremsstrahlung spectrum (it is
proportional to the inverse of the frequency of the emitted photon) it
can be shown from conservation of energy in the CM frame that on the
average:

2
ﬁ~[1-1/2n(m%El)], large vy, w >> m?

2 ' :
= mcz/ln(mﬁgx) , large y, w << m? V.4

cosH )
. 2 mB2c?,’’
é sin 6£n(~EZE—)

\w (1 + small B

By assuming the heavy particle is sufficiently massive we can

doy

in terms of the elastic cross section (Bjorken and
d2 brem

express (

Drell, 1964):

%-5%7 , W << mc 2
do _ 2 (do max
(dQ brem 7 OL(dQ)eIastic In V.5
min 2w 2

The above expression is applicable to scattering off of a Coulomb
potential for soft photon emission. With the same assumption of soft
photon emission it can be shown that the ratio of bremsstrahlung to

elastic cross section is independent of the exact form of the static
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(whefe we assume the projectile to be sufficiently massive so that it
is at rest in the CM frame) electromagnetic interaction (each of these
cross sections is proportional to IGfAu(E)YuUi_I2 where Au(a) is the
Fourier t;ansform of the static interaction and a is the momentum
transfer). The above expression is therefore applicable to very maésive
magnetic monopoles with the same accuracy as for nuclei and anti-nuclei.
Furthermoré, the radiative corrections to the elastic cross section
derived from the.Dirac equation arise from multiplicative vertex and
propégator correcfions which depend only on the momentum transfer and
not on the nature of the scattering potential.30 This means that our
treatment of radiative corrections below is equally valid for magnetic
monopoles as for nuclei and anti-nuclei.

We now estimate the size of the breﬁsstrahluﬁg correction to

=)

= 2 . . . . . .
S>wb. We use (dQ elastic 1/w® which is valid withina multiplicative

constant to a first approximation for both magnetic and electric charges.

We also make the very crude extrapolation of eq. IV.5 to include hard

. . 2 - s,
photon emission by setting kmax = mc?(y=1) and kmin AE. We thus find:

w
LN M do
Sow = [1+F(B)] f P elastic Waw V.6
o “m
Yo
where: ) 5 :
2 mB2c? mB2c?
AoiB (Rn SAE )/(2 W _) small B
F(B) = TR
a me Y my 2¢ 2
E’(ZnhYZ)z(%n )/ (%n =—) large Y
Yo
with A ~ 1.

Although AE has been described as characterizing the energy resolu-

tion width it has been used here to divide photon energies into those
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for which it is legitimate to replace n with w and those for which it
is not. AE -~ YW, certainly serves this purpose. However, since n
deviates from w by the fraction 1/(2n miéx) the choice for AE is com-
pletely arbitrary provided this fraction is small and can be neglected
to this order of approximation. Hence, AE is not experimentally relevant
for the energy loss process. Even if we measure the energy loss with
a detector insensitive to hard photons, AE is not important since on
the average, hard photons remove much less energy from the massive
particle than the electrons do. To eliminate AE we must consider the
radiative corrections to the elastic cross section.

If we assume that my << mp, it is possible to write the elastic
cross section in terms of the Dirac cross section and the radiative
corrections.B] By using the rédiative corrections given by Eriksson

et al. (1963) it is found that:

w

_ A4mN M do o
My W [1+F (B) +G(B) ] £ (EﬁoDirac wdw V.8
o
where:
2,2
- do B2/ (&n 2me’ BTy gmall R
m W, O (goy2)?
o 2)2( mczx) ( 2mc2Y2) g Y V.9
G(R) =¢- = (nky n /(2n + — .
m AE W on 2mc“y
+ =% on B X 4 0(a)  large ¥
m  AE
and where (gg)Dirac is the cross section obtained by assuming the

scattering center to be infinitely massive.
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For B < 0.9 F + G can be safely neglected. For large y the big
AE term in G cancels that with F and AE can be made large enough so

that:

2.,2
F a2 (enby?)?/(an ﬁ“;cv—L) IV.10a
(e}

In Table IV.1 we list the fractional correction to total energy
loss as given by eq. I1V.10 for heavy projectiles in argon gas. The
density effect is not considered. We also list the radiative correc-
tions given by Jankus (1953) for the same situation and for two values

of his parameter Q:

_ e 3 2
(F+G) /2 = =[0.333(2n2y)°+2.42(2n2y) 1V.10b

2.,2
-7.268n2y-1.544n & +6.18]/ (an22EX)
[o]

Jankus' result is more reliable than that obtained here due to his more
realistic treatment of hard bremsstrahlung radiation. However, it is
encouraging to note that there is not a large disagreement between
eq. IV.10a and b below Y ~ 100. Thus we expect our remarks regarding
mondpole radiative corrections to have approximate va]idity
in this regime. It should be noted that the radiative corrections are
positive, which correspond to the added channel of energy loss via
secondary bremsstrahlung. Consideration of only the corrections to
elastic scattering leads to a negative energy loss correction (Jauch,
1952) .

Generally speaking, we see>that it is legitimate to ignqre the
radiative corrections for y <-100. The close collision energy loss is

then given by:

-68~

wi



«
LE]

-~

w
LN M do
S = 2N <o
W w J (dQ)Dirac ww .1
) moowg
In evaluating (%%)Dirac’ the renormalized values for electric

(or magnetic) charge are to be employed. If, as indicated by Schwinger
(1966), magnetic and electric charges are renormalized by the same
factor, then eq. IV.11 allows comparison between magnetic and electric
stopping powers with no systematfc discrepancies. In the event that
renormalization is not universal, such a comparison may be subject to

a systematic error of several percent.

2. Kinematic Correction

do

If one uses the first Born-Mott cross section for (==).. and
. d2’Dirac
lets | =w , M = = then:
o’ 1
2TNZ Zeq 252..2
_ ! 2mcByT _ L2 ’
S, = ———— [0 < 82] V.12

which indicates that 1/2 of the total energy loss occurs for close
collisions. Equation IV.12 is essentially that obtained by Bethe for
close collisions. It is based upon the assumption that the projectile
is an infinitely heavy point projectile with no internal structure
with a value of Z,a/B << 1 so that the first Born approximation is
valid for determining the projectile-electron differential scattering
cross-section. Motz et al. (1964) discuss in great detail elastic
electron scattering off of atoms and nuclei. They present numerous
cross sections and their conditions of validity. Here we consider
some of the simpler cases which indicate approximate degrees of validity

for the assumptions mentioned above. In the next sub-section we will
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discuss in some detail the effect of large values of Z,/8 on the close
collision energy loss.
Motz et al. (1966) give the Mott-Born formula for electron-nuclear

scattering, valid for large momentum transfer, finite nucleus with

recoil and no atomic screening:

2
2. 2 2 1 qO ]
do _ Mo et g 2(Q) V.1 )
T T g m_ 9.7, G ‘¢ 13
(o] [1 +T4-;- ZEI]

where dg = ZBlylsin(G'/Z)(G' is the electron scattering angle in the
frame where the nucleus is initially at rest), Fo = e?/mec?, E, = Y1
B,c is the initial projectile velocity in the lab frame and

Y12_= 1/(1-812). GE(Q) is defined as the nuclear form factor and

is given by:

6:(Q) = [ o(F) exp(iG-F) d°r V.14
T

where T is the nuclear volume, Zoep(?) is the nuclear charge density
distribution and Q = four dimensional momentum~energy transfer. GE =1
for a point charge nucleus or for Q = 0. Equation IV.13 is valid only

for nuclei with negligible spin effects,, i.e. (qo/Zé)z(m/mp)? << 1. In
order to utilize eq. IV.11 to evaluate the close collision energy loss
we must first express eq. 1V.13 in terms of CM coofdinates. This is

straightforward and to first order in y = my/M; one obtains for GE =1:
_ ZHNZOZe“ b

2n2.:,2 2
[2n ZTETﬁél— - B2 - an(142y) - y & V.15

° v

>l T mv?
It is important to note that all corrections occur within the

brackets so that rather than being of order y, the corrections are of
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2,2
order y/%n(ngTE—XEJ.

in Table IV.2 we tabulate the kinematical corrections to the
Bethe formula for protons in Argon gas. We have neglected the density
effect for this tabulation. As for the radiative corrections we tabu-
late corrections to total energy loss, not just to the close collisions.
It is seen that the correction is quite small. Even when my/M, is
equal to 0.5 the correction is only ~2%. For the purposes of this
Review, where, for the most part y < 100 and M1 > mp, it is seen to be
legitimate to neglect radiative and kinematical corrections. This is
accurate at least at the 1% level.
3. Projectile Structure Correction

A more severe problem is encountered with respect to the internal
structure of the projectile. This is represented by the nuclear form
factor. One might suspect that problems relating to non-point like
charge distributions would arise when the de Broglie wavelength of the
electron in the CM frame becomes comparable to the nuclear radius.
With R_ = 1.07 All/3 F (Hahn et al., 1965) for the 50% peak charge

E

density radius, internal charge structure effects should be important
at y = 361/A,1/3.

For extreme relativistic energies one can replace Q by mcqo/h.
Nuclear form factors can be found in Herman and Hofstadter (1960). It
is beyond the scope of this work to give accurate correction factors
for nuclear charge distribution effects based on detailed electron
scattering information for individual nuclides. However, it is valuable
to have a ready estimate for the size of these correction factors.

To this end we utilize a model of the nucleus in which there is uniform
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charge density out to a radius RA, beyond which the charge density

vanishes. Motz et al. (1964) give:

R, = 1.44 A 1/3 F. - | V.16

The form factor is easily shown to be:

l . . .
G = age [sinQR, - QR cosQR,] V.17 ..
where _
p = (0.080/A ) F-3 V.18

By inserting eq. IV.i7 into eq. 1V.13 énd setting M, = « (i.e. neglect-
ing recoil effects) we can numerically evaluate the correction‘factor
to the close collision energy Iosé due to internal charge structure.

in Table IV.3 we list the correction factor to total energy loss

(which is 1/2 of that for close collision energy loss) for w, = 200 eV
(the correction factor changes by only 10% in going from W= 100 eV

to w, = 1000 eV) and for several vafues of A;. This has been done in
the first Born approximation of the M&tt cross section. This corre-
sponds essentially to tHe case of an Argon gas absorbing medium and
hence can be directly compared to the radiative and recoil corrections
in Tables IV.1 and 1V.2 respectively. It sﬁould be noted that the
radiative corrections are independent of projectile mass and that the -
recdil corrections scale approximately as I/Al. It should also be
noted that the signs of all three of these corrections are i ndependent

of the sign of the projectile charge and hence apply equally to anti-

nuclei as to ordinary nuclei.
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The form factor given by eq. IV.17 is most suitable for describing
very heavy nuclei. In addition, it is to Be emphasized that it con-
tains only information regarding charge structure. Nuclear spin effects
are taken into consideration by inclusion of the magnetic moment and
magnetic form factor in the scattering cross section such as in the
Rosenbluth and Walecka-Pratt formulas (see Motz et al., 1964). Turner
et al. (1969) calculate corrections to the Bethe formula for protons

in several solid absorbers by including the complete set of form factors

and by treating the kinematics exactly. Vera and Turner (1970) do the
same for deuterons. In Table IV.4 we list their correction factors
to the Bethe formula for an aluminum absorber, neglecting the density
effect. In the proton column, we list in parentheses the correétion
obtained by adding the appropriate numbers in Table I1V.2 and Table
1IV.3. The discrepancy is due to the naive structure for the proton
imposed by eq. IV.17

It is quite easy to estimate the size of the correction to the
total stopping power due to the magnetic moment of the projectile by
using the Walecka-Pratt formula (this formula as given by Motz et al.,
1964, p. 905, is in error; their My should be replaced by the proton
mass; see for example Ginsberg and Pratt, 1964). Again, in the first

Born approximation (as 8 + 1):

‘ - 2.2
s = S(Bethe) [1 + (X 2(2y/(gn 2 - y)] V.19
1
where u = A 2;hc-is the nuclear magnetic moment of the projectile and

J is the nuclear spin. For most nuclei J is of the order 1 (wiEhin a

factor of 2) and )\ is of the order 3 (within a factor of 2). For
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extreme relativistic énergies the above fractional correction is, for
these typical values of A and J, (my)z/(ZZImp)zqwhich'is less than
0.1% for all nuclei if vy <.100. It should be‘emphasized that the
magnétic moment affects the close collisions much more strongly than
the distant collisions (due to the r~® behavior of dipole fields) and
so is combletely negligible in considering the latter class .of colli-

sions. This is reflected by the Walecka-Pratt formula insofar as it
approaches the purely electric moment cross section as Q N 0).

L, Particle Bremsstrahlung and Pair Production Correction

To conclude this sub-section webshould briefly consider means by
which heavy charged particles can lose energy via electromagnetic
interactions other than by elastic and inelastic atomic colliéions.
Such interactions include primary particle bremsstrahlung as well as
higher order quantum electrodynamical processes such as pair prdduc-
tion (electron-bositron pairs predominantly).

A rough comparison of radiative loss to collision loss is given

by Jackson (1975):

z,%2

b ei;_ib o_ g2 1 B << 1

dE 3w 137 © M, L }
rad

—_e - 1v.20
aEcor i z,%z, %n(é%g%;% ‘

o) By B2y >

3m 137 ° M, L

2n2.,2 ’
where L = Qn(gms—ﬁ—x—d - g2 and A~ 1. Using the electron-positron

pair production cross section given by Bhabha (1935) it is straight-
forward to show that the ratio of pair production to radiative (i.e.

primary bremsstrahlung) energy loss is roughly:
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dE__.
d—E-PPJ- ~ M /(1000mZ,2) oy > 1 V.21
rad

For ordinary nuclei this ratio is ~4/Z1 which indicates that relativistic
cosmic ray nuclei lose roughly the same fraction of their energy to
pair production as they do to primary bremsstrahlung. Muon pair pro-
duction is down by a factor 200.

In Table IV.5 we list the ratio given by eq. 1V.20 for various
values of A, and y for the case of an argon gas absorbing medium.

We see from Tables 1V.1 to 1V.5 that for y < 100, the ultra-
relativistic corrections are less than 1% (when summed) for protons.
For vy ~ 100 the corrections are significant for heavy nuclei due to
form factor contributioﬁs and to the large amount of bremsstrahlung
radiation (and pair production). We should emphasize that ouf treafment
in this sub-section has involved average energy loss. If one is
interested only in setting limits on the size of corrections to the
stopping power, then he need not be too concerned with the distinction
between mean and most probable energy loss. On the other hand, if
quantitative comparisons with experiment are to be made, a careful
treatment of energy loss statistics will be required, particularly since
the ultra-relativistic effects involve the relatively infrequent close
collisions. However, for E/wm > 1, it should be a good approximation
to set the mean and most probable energy loss equal to one another. For
this case, there is a sufficient number of high energy delta rays
produced'up to the kinematic limit so that Gaussian statistics should
prevail. The small effect§ discussed in this sub-section should not

alter this conclusion.
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B. Failure of the First Born Approximation
In the non-relativistic limit, a well known broperty of the Coulomb

force is that its differential scattering cross section is identical

as obtained‘by classical tﬁeory,'first Born quantal theory or exact

gquantal theory. Unfortunate[y, this does not remain the case as - Yo
relative particle velocities approach.the speed of light. |If projec- |
tile recoil and internal structure effects are'jgnored (corrections

for which are indicated in the ﬁrevious sub-section) one requires the
elastic scattering cross section for an electron off of a point source
located at the origin. Radiative corrections have been shown to be
quite small in the previous sub;section and it is sufficient to evaluate
the cross section for scattering in a static field with complete neQ-
lect of the electromagnetic field. Mott (1929? 1932) performed this
calculation within the frameQ&rk of the Dirac theory of the relativistic
electron; The cross section thus obtained is knqwn as the Mott-exact
''phase shift' formula and it is given a{qng with other theoretical

cross sections in Motz ét al. (1964). As related.by Jackson and
McCarthy (1972), it was Fermi whq first considered the effect of the
actual Mott cross section on the stopping power of oppositely charged
particles. He atfempted to explain the range discrepancy between
positive and negative pions measured by Barkas et al (1956) with an
incorrect form éf the second Born approxiﬁation to the Mott cross
section. Jackson and McCarthy (1972) repeated Fermi's calculation .
with the correct form of this approximate crosé section as given by

McKinley and Feshbach (1948). Due fo the slowly converging Legendre

expansions which are necessary for an evaluation of the exact Mott
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cross section, it is difficult to evaluate the accuracy of these
corfections. These expansions have been summed numerically by Doggett
and Spencer (1956), among others (see Doggett and Spencer for additional
references). However the tabulated cross sections are not easf]y
incorporated into the close-collision energy-loss formula since an
integration over CM scattering angles is required. Eby and Morgan
(1972) and Morgan and Eby (1973) have performed such calculations for
several values of Z, and B which agree with Jackson and McCarthy's
results for Z, < 20. Ahlen (1978a) has taken advantage of the 217
expansion derived by Curr (1955) for the Mott cross section to obtain
an analytical expression for the stopping power which is valid to with-
in 1% for |Z,]/B < 100. According to Ahlen (1978a):

lmNlee'+

mv 2

2 Z.0
[2n 39¥31— - B2 -1 - o.zoz(—%roz

wn
]

1 1 1
YTl 5 6(Z,,8) - 5 8(B)]

[1.+ zle(v)/zz%] ' , V.22

X

G(Z,,B) is the close collision Mott correction which is given by:

G(z,,R) (Z,aB)[1.725 + 0.527 cosx-z(wo/wm)%ﬂ cosy]

+

(Z,0)2(3.246 - 0.4518%)

(Z,0) *(1.5228 + 0.987/8)

'
+

+

(z,0)*(4.569 - 0.4948% - 2.696/B%)

+ (2,0)%(1.2548 + 0.222/8 - 1.170/8%) V.23

where W = 2mv2y2, Vwo = ZfiVﬁwi is the mean square-root ionization
i
potential. Values for the oscillator strengths fi and the ionization
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potentials hw can be obtained from the early work by Sternheimer.
Accurate values for w_ are not critical. |t can be set to zero with
'negligible error in stopping power for all but the heaviest absorbers.
The function cosy is defined by Doggett and Spencer (1956) and various
values of this term as a function of |Z,|a/B are given in Table IV.6 ‘.
(note that there is a typographical error in the 215 term in Ahlen
(1978a). The remaining expressions within the first set of brackets
in eq. IV.22 correspond to: a) an abproximate form of Bloch's correc-
tion which yiel&s the correct stopping power to better than 1% for:
[ZII/B < 137 and b) the density effect correction discussed earlier.
The remaining term in brackets corresponds to a distant collision
correction which will be discussed next.
It is to be emphasized that Zlvcan be positive or negative,

corresponding to ordinary nuclei or to anti-nuclei. Since -

G(z,,B) #* G(-ZI,B), and since the same holds true for the distant

collision correction, it is apparent that the stopping power is different

for particles of opposite charge at the same velocity. The physical
reason for this is that positively charged projectiles draw atomic
electrons closer to them while negative charges repel the electrons.
For both the distant and close col]isions the dynamics is sufficiehtly

different for those two cases to alter the energy transfer. It is

!

hot legitimate to explain the enhanced stopping power for positive

charges as being due simply to the greater 'kick' given to the electrons. | h
This argument should apply equally to close collision classical stopping |

power. It does not in fact apply due to the rather remarkable fact

that the CM scattering angle is the same for positive and negative
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scattering éenters with the same impact parameter, in spitevof the
fact that the positive charge draws the electron much closer to it
than the negative charge does. Relativistic quantum effects or exter-
nal interactions (atomic binding) are required to break this rather
peculiar symmetry of the non-relativistic Coulomb force.

As mentioned above, deviations from the first Born approximation
are more difficult to evaluate for the distant collisions than for the
close collisions due to the interference of the dipole approximation.
In a quantal approach the dipole and first Born approximations are
imposed separately. The classical impulse approximation used by Bohr
includes both approximations in a natural way. Barring a completely
second order solution via quantum mechanics, it seems that the most
promising strategy for examining distant collision corrections lies
in the classical approach of Bohr. It is to be recalled that the
fundamental assumption of the impulse approximation is that the electron

sees at all times a spatially uniform electric field. For very small
projectile velocities this will be valid if the separation between
projectile and traget electron is very large (dipole approximation) .
For very large projectile velocities, it seems physically plausible
that small spatial separations will permit the validity of the impulse
approximation if the electron does not move appreciably until the pro-
jectile has completely passed out of sight. This will be the case for
very weak interactions (i.e. the analog to the quantal first Born-
approximation) .

By allowing for the first order motion of the harmonically bound

electron, Ashley, Ritchie and Brandt (1972, 1973) have calculated the
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first order correction to the classical impulse approxima;ion. The
expansion is carried out with the ratio of electron displacement to
electron-projectile separation.as the expansion pa;ameter. Ashley et
al. separate the dfstant collisions from the close ones by an impact |
parameter given roughly by the atomfc radius. Close collisions are
treated in the free electron apprgXimation and hence energy loss scales
as 212 for these collisions in the non-relativistic limit. Jackson

and McCarthy (1972) have extended the non-relativistic calculations

of Ashléy.et al. to the relativistic case, using a slightly different
dividing impact parameter (which is also given essentially by the atomic
radius). The relativistic corrections are shown ‘to be small (in the
sense that the value of the correction to which the re]ativistiﬁ correc-

tion is applied becomes very small at large velocities) and the correc-

tion can be expressed as:

1
= 2z
C, = Z,F(V)/z, V.24

where C1 is the fractional correction to total energy Ibss and
V = 1373/22%. C,/Z, is plotted as a function of B for various values
of Z, in Fig. IV.1.

Hill and Merzbacher (1974) performed a non-relativistic quantum
vmechanical calculation of the energy loss to a harmonic oscillator
by treating the quadrupole term as a perturbatidn. The dipole intér-
action waS treated exactly, Without recourse to perturbation theory.
They_obtained fhe same result as obtained by Ashley et al. (1972, 1973)
as one might expect for a harmonic.oscillator. The questién_of whether
‘or not this equivélence will obtain for realistic atomic systems remains

to be shown.
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Lindhard (1976) and Esbensen (1977) have.used an alternative
approach to that of the above authors in that they consider the atoms
to be well représented by a plasma absorbing medium. In their éalcu-
lation, both close and distant collisions are subject to the polariza-

tion effect considered by Ashley et al. (1972, 1973). This is reflected

by their result which is about a factor of two greater than eq. IV.2L4,.

C. Complete, Corrected Stopping Power Formula and Comparison with

Experiment

Andersen et al. (1977) have utilized an elegant method for measuring
the stopping power of thin metal foils by means of a calorimetric tech-
niqde (see Andersen et al., 1966 for details) to determine the absolute
stopping power of 0.8 - 7.2 MeV/amu H, He and Li ions in Al, Cu, Ag
and Au. Their quoted accuracy is 0.5% which is good enough to isolate
higher order contributions to the stopping power. In Fig. IV.2 we

and L2 where:

reproduce their figure which displays the terms Lo’ L,

4Nz e )
S = ——mvz— [Lo'i'lel'ijLZZ1 ] Iv.25
v, = ac is the Bohr velocity. The quoted uncertainty in Lo is 0.5%,

and is 25% for L1 and L,- Hence the detailed shapes of the L, and'L2
curves are of no.significance. For comparison the theoretical calcula-
tions of Jackson and McCarthy (1972) are displayed for L, and those of
Bloch (1933a) for L,. 1t is seen that the measured L, is a factor of
~2 larger than the Jackson, McCarthy result which supports the theory
of Lindhard and that the L, correction is, within experimental errors,
consistent with the Bloch correction. Andersen et al. (1977) also

found that the scaling predicted by Jackson and McCarthy (1972), namely
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L, é F(I37B/22%)/22Jz is approxihate]y valid but is more accurately
given by F(1378/221/3)/22%. Andersen et al. (1977) compared their

scaled stopping power Z1 correction with that measured by Heckman and

" Lindstrom (1969) for'positive.and negati?e pions in emulsion. This

comparison is shown in Fig. I1V.3 where it is seen that the results S
essentially agree.

Inclusion of the distant collision correction of Lindhard and the
Bloch correction in eq. 1V.22 reflects the experimental justificétion
provided by Andersen et:al. (1977). Such verification is absent in
the channeled stopping power data of Datz et al. (]977). However,
various channeling effects and.distribution asymmetry effects (Ahlen,
1977 and Datz, 1977) afe quite possibly sufficient to explain the
differences.

It is interesting to note that for a classical harmonic oscillator

with frequency w, the Jackson and McCarthy (1972) correction can be

written:

LICHPI 1.60v

[0
E—,; me? 2w |V.26

V 3

in the non-relativistic limit; a corresponds to the minimum impact
parameter for which the correction is required. If one chooses
a ~ h/(2mu) , which corresponds to the atomic radius, the logarithmic

term is given by %-Qn(S.lvaz/(hw)).\ As Lindhard (1976) points out, -

.

there is no obvious reason why this choice for a should be sufficient.
In the usual semi-classical derivation of the stopping power formula, ”
one typicaily evaluates the distant collision result via the classical

Bohr approach and incorporates quantum physics by letting the minimum

impact parameter be given by the de Bfoglie wavelength of the electron
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in the CM frame.32 That this technique works so well .is convincing
evidence that there may be more validity to the Bohr approach than one
might suspect. This is further evidenced when one inserts h/(mv) for
a in eq. 1V.26, thus obtafning an(1.60mv?/.(hw)) which is of the order
of 2 time§ the result obtained when a is given by the atomic radius.
This is the experimental result. It seems then that the close colli-
sions are not really those involving free electrons: polarization
effects are as significant for close collisions as for distant
collisions.33
Andersen et al. (1977) used. their measured higher order correc-
tions to separate the charge-independent (to first apprbximafion)
shell corrections from higher order Born terms.‘ In Fig. t11.2c~111.2f
these corrections, (C/Zz), are compared with those which include higher

order corrections (C/Z,)' and those calculated by Bonderup (1967)
(C/ZZ)Th' Good agreement is obtained between (C/Z,) and (C/Z2)Th'
Finally, the Mott and Bloch corrections from Ahlen (1978a) are
shown in Fig. IV.ﬂ for an aluminum absorber for nuclei with atomic
numbers 26, 52, 80 and 92. Electron capture has been accounted for
in a manner to be subsequently discussed. The quantity L in Fig. IV.4
is given by n(2mv2y2/B%) - B2 and the distant collision correction is
shown for Zo =.26. The solid black circles are taken from the exact
calculations of Eby and Morgan (1972) for the Mott corrections. The
open circles are taken from Morgan and Eby (1973). They agree within
1% for total stopping power with those values obtained from the formulae
of Ahlen (1978a) for the Mott corrections. Morgan and Eby (1973) show

that similar accuracy is obtained for [ZII/B < 20 with the second Born

_83_



approximation to the Mott cross section and for |Z,|/B < 55 with the
third Born approximation.

The first measurement of higher order deviations from the Bethe
theory for relativistic heavy ions has been recently achieved by Tarlé
and Solarz (1978). They very accurately measured the range of 600 MeV/amu
S6Fe ions in a variety of samples. The particles stopped short of the
range predicted by Bethe theory by ~3%, compafed with a predi;ted range
discrepancy of ~2% (Ahlen, 1978a).

D. Electron Capture and lLoss

The results of the previous sections and sub-sections can be
unambiguously applied to projectiles such as fully stripped nuclei or
anti-nuclei. Héwever, it is well known that as ordinary nuclei slow
in matter, atomic electrons become attached to the nuclei until they
become fully neutralized, at which point nuclear scattering becomes

the dominant energy loss process. The question naturally arises as

to what one should use for ZI: should one use the root mean square
charge as measured with static electromagnetic fields or is it more
appropriate to use the nuclear charge Zo’ or something in between

Zrms and ZO? Betz (1972) reviews theoretical aspects of charge states

and charge-changing cross sections of fast heavy ions in gaseous and

solid media. He gives numerous references to earlier work to which

ok

the interested reader is directed. Most of this work involves energies
outside of the scope of this Review (in particular, energies less than .
~1 MeV/amu). At these low energies there are a multitude of effects

which serve to cloud interpretation'of stopping power data. However,

it is relatively straightforward to measure initial and final charge
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states with any of a number of possible electro-magnetic field confi-
gurations. Betz presents'é number of semi-empirical formulae for the

ion charge state as a function of Z,, B, Z, and density. The long

2
known density effect, whereby charge states as measured with solids

are larger than those in equivalent gases (i.e. fewer electrons are
attached when ions penetrate solid absorbers) has been explained as

one involving capture and loss into excited states. Whether or not

the discrepancy exists in the material itself or is a transition effect
has been the subject of much discussion. Betz and Grodzins (1970)

have argued that the charge state of the ion is approximately the same
in solids as it is in equivalent gases (within 1 or 2 charges). The
apparent difference between gaseous and solid charge state arises due
to the prompt emission of Auger electrons upon departure of the ion

from the solid. This serves as a de-excitation mechanism of the ion

which does not occur in the solid due to the fact that Auger processes

are not fast enough to allow the iqn to return to its ground state
within the short time between collisions in a solid.

A very desirable consequence of the Betz and Grodzins theory is
thét it explains the difference between the '"'effective charge' and
the rms charge of ions determined with solid absorbers. The effective

charge is defined by:
2 .
Zoee = S(Z,,8)/5(1,8) tv.27

For a summary of experimental work relating to Zeff the reader should
consult Northcliffe (1963). Although Zeff clearly contains in it

higher order Born terms, there is a large range of velocities for which
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these effects should be small compared to the effects of electron cap-
tu}e and loss. Hence Zeff is a reasonable measure of the effective
.charge of the ion for ionization and excitation processes. The most
naiVe initial guess would be that Zeff = Zrms'. This would be the case
provided the bulk of the collisions occurred for impact parameters
" larger than the radius of the electron cloud of the projectile. Bohr
(1941, 19483) argues that this is indeed the case. This conclusion is
supported by fhe following two observations (see Betz, 1972):

i) Zeff does not depend significantly on whether the stopping

material i§ a gas or solid.

ii) Zéf% is very ciose to Zrms as measured with gas ;trippers.

Any discrepancies regarding the density effect are eliminated if
one accepts the Betz, Grodzins theory.

The semi-empirical expression origfnally used Ey Barkus (1963)

and later modified by Pierce and Blann (1968) has been widely used

for evaluation of Zeff' This is given by:

Z e = 2 [1 - exp(-1308/2. 2/%)] V.28

It should be noted that this expression is independent of the atomic
number of the absorbing material. This is certainly not the case in

principle but is a remarkably good approximation in practice. It : -

-

should also be noted that the fractional stripping of an ion is a
function only of the parameter B/(a20213). This corresponds to the v
ratio of the jon velocity to the typical velocity of an electron

carried along by the ion. The scaling power of 2/3 reflects the fact

that the measurements upon which eq. V.28 were based were done at
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low energies where a large number of captured electrons are present

so that a Thomas-Fermi description is valid. It is a remarkable coin-.
cidence that eq. IV.28 appears to work in the relativistic regime for .
which there is no independent experimental justification (Shirk and
Price, 1978 and Fowler et al., 1977). That this is the case is not

so surprising when one uses eq. V.28 to evaluate Zeff at the velocity
for which the Bohr criterionBl+ predicts the ion will pick up its first
electron, namely at 8 = 20/137. These values for Zeff are given in
Table 1V.7. Equation lV.28Ipredicts the '"correct' ‘value, to within

1/2 of a charge, for most values of Zo' Further justification for the
use of eq. IV.28 at high energies is obtained when one compares values
given by it with those calculated from reasonably well known attachment .
and loss cross sections for single electrons. Hence, we will assume,

with some justification, that:

Zz

) = Zeff (P}erce and Blann) V.29

There exist many other semi-empirical formulae (see Betz, 1972) for
Zeff but the differences between them and that of Pierce and Blann are
essentially a measure of experimental acquracy,_whicﬁ is of.ghe order
of a few charge units. For relativistic heavy ions, where only a
small fraction of the ion'nuclear charge is neutralized, these errors
are quite small compared to higher order Born and Bloch corrections.
In order to evaluate fluctuations»in energy loss dqe,to fluctua~
tions in ion charge state it is important to use correct stripping and
loss cross sections, such as those given by Betz (1972), for thin
absorbers. By thin, we mean small in comparison to the charge equili-

bration distance, which is of the order of several ug/cm2 for low
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energy ions. For thick absorbeérs an ion has ample time to sample its
available charge state space and ZAZeff/Zeff is a measure of the
energy loss fluctuation where AZeff is the standard deviation of an
ensemble of charge states as measured with an ion beam. Nikolaev and
Dmitriev (1968) have presented an expression for AZ ce for solid

strippers:

= - : 1.677%
A ce = 0.5[Z cc(1-(Z ¢e/Z )7 %] . 1V.30

Betz (1972) gives oﬁher semi-empirical expressions but eq. 1V.30 has
the advantage that ft goes to zero.as'Zef% > Zo'
For a discussion of electron captdre and loss cfoss.sections in

the high energy regime where the probability for loss exceeds by a

large amount that for capture, see Wilson (1978), Raisbeck et al. (1977),
Reames (1974) and Fowler et al. (1970). This problem is quite impor-
tant with regard to abundance measurements of cosmic ray nuclei which
have a very large branching ratio for nuclear decay via electron

capture.

E. Range—Energy Tabulations

- There exist a number of theoretical and semi-empirical tabulations
of range-enérgy relations for heavy ions. Barkas and Berger (1967)
use empirical préton range data between'l MeV and 8 MeV and calculate,
wi th the‘usé of the Bethe formula, Walske shell corrections, and
Sternhefmer density effect corrections, the range from energies up to
5000 MeV down to the.8 MeV empirical cut. Heavy ion ranges are cal-

culated with the expression:

' M
R(B) = 55 [A(B) + B, (8)] V.31
(o] (o]
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where A(B) is the range of an ideal proton and B, (B) is the ion range
o -
extension due to electron capture. Low energy heavy ion data are

used to estimate B, which necessarily includes higher order correc-

Z,

tions. For B > 220/137 the range extension is assumed to be constant,
and hence, the stopping power above this velocity .is assumed to scale
as Zo2 which, as we know, breaks down for large enough values of 26/6.
Northcliffe and Schilling (1970) concentrate on low energy heavy ions
(<10 MeV/amu) where extensive use is made of experimental data. Benton
and Henke (1969) extend the approach of Barkas and Berger to energies
below 1 MeV/amu. A minor modification of the range extension is
utilized by these authors. Steward and Wallace (1970) divide the z,
Zz’ B space into a number of regions wifh the use of appropriate theo-
retical and experimental results. The range of kinetic energies
extends from 10 to 1000  MeV/amu. Bichsel (1972) calculated ranges
for protons based on the Bethe theory with Walske shell corrections.
All of the above calculations apply to CSDA (continuous slowing down '
approximation) ranges, where rectilinear motion is assumed. Multiple
scattering corrections and inelastic nuclear collisions modify these
results to a small extent for realistic situations.

Fleischer et al. (1975) and Benton and Henke (1969) have used
dielectric track detectors to accurately measure ion ranges for Zo < 26
and T < 10 MeV/amu. .In this regime it is found that good agreement

with the Benton and Henke (1969) calculations (to within ~2%) is

-obtained for T > 0.1 MeV/amu and that for T < 0.1 MeV/amu the Northcliffe

and Schilling (1970) tabulations are most accurate. The calculations

of Steward and Wallace (1970) are systematically greater than those
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of Benton and Henke and of Nofthcliffe and Schilling as well as those
measured values for the low energy region.35
At large energies, all calculated ranges agree, being based as
they are on the Bethe theory. Small differences in range extensions
lead to negligible differences in ranges for largé incident energies.
Consequently, since the Benton and Henke (1969) algorithm is based on
that originally presénted by Barkas and Berger (1967), we adopt the
latter‘calculation as that agéinst which measurement should be compared.
The reader is cautioned to distinguish between data, calculated ranges
ana polynomial fits to calculated ranges. There are scant data above
~10 MeV/amu. Hence most ranges quoted in this regime are theoretical.

Barkas and Berger calculate these theoretical rangés by integrating

the Bethe formula exactly down to 8 MeV. They also fit a polynomial

in log(A) vs log(E) which agrees with the exact integrations to within
an rms error of 0.6% with a maximum error of 2.8%. Since there is good
reason to believe that above 10 MeV the Bethe theory (wi;h‘shell correc-
tions and density effect corrections) yields stopping power results
which are accurate to much better than 1%, any comparison with experi-
ment should be made with Barkas and Berger's tabulated ranges, rather
than with their fitted formulae. It should be emphasized once more
that low energy results obtained by Barkas and Berger (below 10 MeV/amu)
are based on empirical values which contain electron capture effects,
éhell corrections, and higher order effects such as second order Born
terms and Bloch corrections. The ranges given at these energies can

be assumed to be accurate to within a féw percent for Z,a/B < 1.

Schimmerling et al. (1973) have measured the ranges of "N, 2%Ne
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and “°Ar nuclei at energies up to 284 MeV/amu and have found that
within experimental error (~2% in range) the ranges agree with the
Barkas and Berger values. Tarlé and Solarz (1978) have performed more
accurate range measurements of °®Fe nuclei at 600 MeV/amu in a variety
of substances and have found range discrepancies of ~3% with Barkas
and Berger results. This is a three standard deviation effect and is
approximately consistent with what one would expect if the Bethe for-
mula were modified as in Ahlen (1978a). There is still some doubt as
to the validity of the Bloch correction. The results of Tarlé and
Solarz indicate that it may be smaller than as given by the non-relati=
vistic form of this correction. In any case, it seems clear that the
use of high energy heavy ion beams is a very fruitful means of

investigating stopping power phenomena.

F. Multiple Coulomb Scattering

In the preceding we have invariably assumed that the projectile
trajectory is well approximated by a straight line. Strictly speaking,
this is not the case due to multiple Coulomb scattering. We have also
assumed that the particle maintains its identity as it slows dan.
This is indeed the case in the absence of nuclear interactions. For
high incident energies, however, it becomes increasingly probable for
the projectile to undergo an identity changfng interaction before it
comes to rest. In this sub-section we will discuss these effects.

The theory of multiple Coulomb scattering is quite complex and
the interested reader is referred to Scott (1963), Hemmer and Farquhar
(1968) and Gnedin et al. (1968). For our pufposes, it is sufficient

to note that the Moliere theory, which is a small angle approximation
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to the general problem (Moliere, 1948, 1955), is in agreement with
experimental resulfs with the exception of electrons in heaVy elements
and at small eﬁérgies (B < 0.05). Bichsel (1972) gives the square

of the charactéristic angle for transmission of a chargéd particle
tHrough aﬁ absorber of thickness x:

2
z, zz(zz+1) ox

B MeVZcm? V.32
A, - (Myv¥y) 2 eViem™/g 3

2 _
60 = 0.157

As summarized by Bichsel (1972), B is defined in Moliere (1948). For
practical purposes, representatfve values can be found in Table IV.8
(Marion and Zimmerman, 1967). For Z, = 1 the values given there are
accurate to within 5%. For Zo > 1 Bichsef (1972) recommends use of the
effective charge Z instead of ‘the nuclear charge. vFor Z1 > 6 and

Z, 2 50 all values B(B,Z,) are larger than 0.98 B(0,1) but smaller

than B(0,1); for Z, > 6 and Z, > 20 all B(B,Z,) are larger than

0.95 B(0,1) but smaller than B(0,1). The distribution function XF(x)dx

for the relative number of particles entering a cone of reduced half angle
x (x = 6/60) and width dx is tabulated by Bichsel (1972). Of more
immediate experimental interest is the integral of this function. In

Table I1V.9 we reproduce this ﬁultiple-scattering integral distribution
function given by Bichsel (1972) for the fraction of incident particles
found inside a cone of reduced half angle x. Note that ~90% of the

2

projectiles are in the cone with half angle'zeo. For 8 ~ 0.5, px ~ 1 g/cm

and Z,/A, ~ 0.5, 6_ is approximately 9.0 mrad for A, = Lo, Z, = 20.

o
The increased path length due to this multiple scattering should be

considered in evaluation of accurate stopping power experiments.
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Small angle Coulomb scattering is also a consideration in experi-
ments for which the total range for a particle with a given initial
energy is measured. In such cases the actual range or pathlength is
somewhat larger than the penetration depth because of the multiple
scattering. An estimate of the size of this effect can be found in
the review article by Fano (1963). |If the actual pathlength is denoted
by s and the penetration depth by t then one has approximately:

<s-t> o, m
- 2, iy < V.33

where <{> is a suitably averaged quantity which lies between 0.3 and
0.6. For the worst case (say protons on lead), the pathlength is

roughly 2% larger than the penetration depth. For heavier particles,
such as we consider in this review, the effect is usually negligible.

It should be emphasized that the fractional range correction eq. V.33

is independent of the charge of the projectile. This is so because
px scales as A1/212 for a given velocity. This factor cancels le in
eq. IV.32.

The above remarks are concerned with average scattering paramefers.
There is always the possibility that a very massive projectile will
undergo a large angle scattering collision with an absorber nucleus.
Note the famous Rutherford experimeﬁts in which the nuclear atom was
discovered by the observation of these very collisions. However, the
Rutherford cross section is strongly peaked in the forward direction
and such collisions are quite rare. |f one assumes unscreened Coulomb
scattering from the nuclei, the Rutherford cross section yields the

following approximate mean free path for scattering through an angle
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larger than 60‘(measured in degrees):

B"*(6 /deg)"
0 g IV.3h

pZ, cm3

i(eo) = (0.032cm)

It has been assumed that the incident particle and the nucleus both

have A/Z = 2 and it has also been assumed that Ay >> A; so that 60 is e
the lab scattering angle. Ffor 60 = 10 deg, B = 0.5, Z, = 10 and

p =3 g/cm3, L = 0.7 cm. For eo = 20 deg, 2 =11 cm. The large angle
scatterfng events occur about as frequently as do nuclear interactions
té which we now briefly turn our attention.

G. Nuclear Interactions

If the projectile is hadronic (i.e. a nucleon, nucleus, pion, etc.)
it can interact with the matter it is traversing via the strong nuclear
force. Electrons and muons, being leptons, do not interact via this
mechanism. At low energies (<20 MeV/amu) nuclear interaction cross
sections are characterized by a strong energy dependence caused by
compound nucleus effects. At these energies, neutron stripping
reactions are preferred (due to the absence of a.Coulomb penetration
factor for the neutron). At large energies (21.GeV/amu) the cross
sections approach asymptotic values which are determined by geometri-
cal factors. The Bradt Peters (1948) relation is a useful expression
for evaluating the total inelastic nuclear cross section for two -
colliding nuclei. More accurate expressions are available (see Karol,
v 1975) but are not necessary for our purposes here. The Bradt Peters
expression is the geometrical cross section with a provision requiring

an overlap of the nuclei in order for them to interact:
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o =m(R, + R, - 2AR)? V.35

where, '
R, = 1.45 A 1% F V.36
and AR = 0.85 F. In Table 1V.10 we list the mean free path'For inter-
actions given by eq. 1V.35 in units of the range of a | GéV/amu pro-
jectile of the appropriate type in the given material. It is seen that
fewer interactions occur in bringing a nucleus to rest as Z1 and Z,
increase.

Fragments produced in high energy collisions are mostvlike]y to
be stripped of only a few nucleons. See Silberberg and Tsao, 1973
for a summary of theoretical and experimental partial cross sections.
The distributions in fragment transverse and longitudinal momenta
have been measured by Greiner et al. (1975) for *2C and %0 projectiles
up to 2 GeV/amu. They found that for peripheral reactions fragments

of the projectile have the same momentum per nucleon as the incident

particle to within 0.1%. The distributions for transverse and longi-
tudinal momenta of the fragments in the projectile rest frame are
Gaussian with a standard deviation from 90 to 160 MeV/c (fhis is not
momentum per nucleon). The distributions are consistent with isotropy

in the projectile frame.
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V. MAGNETIC MONOPOLE STOPPING POWER

Ever since the prediction of its existence by Dirac (1931) the
magnefic monopole has been the subjéct of numerous papers. Stevens
(1973) has compiled a bibliography of 181 references up to 1973 and .
Carrigan (1977) has supplemented this with a bibliography of 323 refer-
ences_for the period 1973 to 1976. The recent surge of publications
;én be attributed to excitemenf'generated by the monopole éandidate
detected by Price et al. (1975) and to theoretical breakthroughs by
't Hooft (1974) and Polyakov‘(l974). Although it is now generally
accepted that the Price event was probably not caused by a magnetic
monopole (Price et al., 1978) it seems that there is sufficient interest
in magnetic monopoles as hypothetical particles to warrent inclusioﬁ
of their effects on hatter in this Review. It is beyond the scope of
this work to delve too deeply into the particle theory of monopoles
. or into searches for these partic]es.36 We merely summarize some of
the more salient features. Most monopole theories quéntize magnetic
and electric charge: |

2g = ne/a . V.1

where n = +1, £2,... in the Dirac (1931) theory and n = #2, *4,... in

the Schwinger (1975) theory. EQer since the introduction of the mono- .
pole conjecture it has been assumed that the monopole mass must be

very large due to its large self energy. The 't Hooft theory confirmed
this with the result that M(monopole) * 137 M(intermediate vector
boson) which has a plausible range of 5-10 TeV/c? (Carrigan, 1977).

Dirac (1931) recognized that the rate of energy loss by monopoles



should be very ]arée due to its large value of g(£(137/2)e, +137e,...).
He also pbinted out that the rate of ionization would not increase
near the end of range as it does for ordinary nuclei. This is easily
seen to be the case when one recognizes that the electric field of a
moving monopole as seen by an atomic electron is proportional to B.
Stopping power is proportional to the square of the field and this B2
term cancels the B2 denominator term which causes the increase of
electric particle ionization.

Accurate theories of monopole stopping power have lagged behind
their electric particle counterparts for several reasons. - It has

been assumed that experimental searches relying on identification

based on ionization rates would not be subject to a background due to

the large value of g. Hence, very accurate knowledge of stopping
power should not be required. There have also been problems of a
fundamental nature regarding the proper means by which monopoles
should be handled within a quantum mechanical framework. Recent
developments havé alleviated these theoretical problems to a consider-
able degree and it is now well known that the very heavy component of -
the cosmic radiation can, under suitable conditions, mimic the behavior
of a monopole with a charge as large as 137e. Therefore,.it is fitting
to carefully consider the manner in which monopoles lo$ebenergy in
matter.

Bauer (1951) and Cole (1951) were the first to extend electric
particle stopping power theories to magnetic charges. Bauer (1951)
calculated non-relativistic stopping power for monopoles both via a

semi-classical technique (as in Jackson, 1975 for electric charges)
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and via the Bethe (I930).technique-wherein the monopole-electron inter-

action was taken to be given by the non-relativistic classical dipole

interaction. In both cases he obtained, approximately:
' 2.2 2
s = LrNe“g on 2mv | , V.2

m mc 2 |

Cole (1951) followed Bohr (1913) to obtain:

2 2 2
s = LnNe“q 1.6Imv<hc V.3
m mc 2 gel
for the non-relativistic result. Note that with g = 137e, (g = hc/e),

Cole's value is essentially the same as Bauer's.

Tompkins (1965) adopted Fermi's (1940) classical electrodynamical
single oscillator approach to caiculate the distant collision energy
loss for magnetic monopoles. He made no attempt to calculate the
close collision energy loss.

~Martem'yanov and Khakimov (1972) used the technique of Landau and
Lifshitz (1960) to calculate monopole energy loss in conductors and
ferro-magnetic materials. . They assumed three Separéte projectile

velocity intervals and obtained:

2 2 2
b Eve g ’ V<V
mc veZ2 o
* 5 5 2m2v20
S, = hﬂ:cg 9 [gn = o . %J, Vo <V <ec V.4 .
N e“h y

LmNe?g? on 1.213me2y
\ mc2 hw

where v, is a characteristic orbital electron velocity, Ve is the

conduction electron Fermi velocity, % is the zero frequency conductivity
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and N* is an effective electron number density which approaches N as
vV >c.

Ahlen (1976) has used the relativistic classical cross section
of Lapidus and Pietenpol (1960) to show that the monopole delta ray

production cross section is given by:

dn _ 2mNe?g

) .
dwdx = mc2w? (1+2) , V.5

where A ~ 0.08 for the impact:parameter b = h/(mvy) and falls rapidly
to zero as w becomes smaller. For g = 137e the value of w for the
de Broglie impact parameter is smaller than the kinematically limited
energy transfer. This prompted Ahlen (1976) to insert h/(mvy) into
Tompkin's formula for the minimum impact parameter to obtain the

following expression for total energy loss in non-conductors:

2 2 2022( 1\ 2
hﬂzizg {ln(l.123mch5 vZ(e=1) ) - %ﬂ, 8 < %E
s = | P V.6
| LNe 2g? 1.123mc 2By 1-1/B2 1
ch ['Q'n( hwp ) + 2T€-1)]’ B > ﬁ

where £ is the low frequency dielectric constant. Note that as B > 1,
eq. V.6 is equal to eq. V.4 to within less than one percent.

It is difficult to compare any of the above stopping powers with
those of electricaily charged particles beyond saying that.for a given
velocity the monopole stopping power is ~(98/Zl)2 times bigger than
that of an electric particle with charge Z e. More accurate conclu-
sions can be reached only if as caréful a treatment is applied to

monopole-atom interactions as is done for the heavy ionizing electrical
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counterpart. This is certainly nét the case in any of the above
treatments. The most severe problem has been the lack of knowledge

of how to treat the close collisions. We have seen in the previous
section how the correct Mott cross section predicts'a close collision
stopping power which is 40% larger than that given by the Rutherford
cross section for Zo =92, B~ 1. Since‘a monopole with.g = 137e is
even more heavily ionizing than a relativistic uranium nucleus it

might be expected that higher-order quantum electrodynamics would have
an even more profound effect on monopole stopping power. The absence
of a good theory for electron-monopole interactiogs in the relativistic
regime prevented analysis of this problem until Kazama, Yang and
Goldhaber (1977) managed to obtain a solution to the Dirac equation

for an electron moving in the magnetic field of a fixed monopole.

Ahlen (1978b) has used this cross section to obtain the close collision
monopole energy loss for ]gl = 137e/2 and for |g| = 137e. By using

the gemi—classical approach of Landau and Lifshitz (1960) for the
distant collisions, assuming the'validity of the magnetic analog to
Bethe's generalized sum rule, and considering the Bloch correction to
be valid for monopoles with the proviso Z,e - gB, Ahlen has obtained

the following expression for monopole stopping power in non-conductors:

2.2 ’ 2n2.,2
g = AmNe®g® [gn@%ﬁ_x_+ K(|g|)/2 % 6 /2 - B(lg)] v.7
m

m mc 2

where K(|g|) is the Kazama et al. cross section correction:

0.406, |g| = 137e/2
K(|g]) = ' V.8
g
0.346, |g| = 137e
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B(|g|) is the Bloch correction:

0.248, |g| = 137e/2
B(|g]) = V.9
0.672, |g| = 137e

and Im’ Gm are the mean ionization potential and density effect correc-
tions which apply for magnetic monopoles. Ahlen (1978b) has shown

that lm + | and Gm + § for gases. For non-conductors he has shown that
Im is independent of density. This is due to the absence of longitu-
dinal dielectric screening for the monopole-electron interaction.37 For

comparison with their electric counterparts we give Im and Gm in terms

of the parameter p defined earlier:

ﬂi > | wim{e(w)] 2nhwdw V.10
P o©

2 - 2
n =z | ] winle@] an(l + &) du - Fp2(1-8%)/8% V.11

P (o]

Ahlen (l978b)gives arguments that eq. V.7 ié accurate to *3% for

B > 0.2 (for which shell corrections are small) and for y < TOO‘if

the electrical values of | and § are used. He emphasizes that higher
order Born corrections to the distant collisions are independent of the
sfgn of the monopole charge due to symmetry. By comparing the

analogous corrections for electricé]]y charged particles he shows that
this correction should be less than 1% to stopping power for |g] = 137e.
Similar arguments apply to Lindhard's close collision polarization
corrections. Finally, Ahlen shows that it is completely legitimate

to neglect the electron spin in the distant collisions (at the <1%
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level in total stopping powerf for Z, < 82, B8 > 0.04 and vy < 25. As
we have previously mentioned, the radiative corrections for electric
charges apply equally to massive monopoles.

To this list we should add that: 1) for y = 100 bremsstrahlung
contributes ~5% of the total energy loss for Z, = 82, Mc? = SVTeV o
and |g| = 137e; this fraction scales linearly with Z,y so that for‘
most cases bremsstrahlung can Pe completely neglected; 2) the effect
of any monopole spin should be much less than for the corresponding
electric charge case due to the incred}bly small monopole charge to
mass ratio for.'t Hooft. type monopoles; 3) unless the monopole has
complex structure analogous to that of nuclei, any internal structure
effects must be completely negligible for y < 100.

In Fig. V.1 we plot Sm for_lg] = 137e monopoles in water. Shell
cprrections will probably become important for B < 0.1 but interpola-
tion between 8 = 0 and 8 = 0.1 should give reliable results since the
monopole ionization rate is a monotonically increasing function of
velocity. The parameters used for eq. V.7 were taken from Sternheimer
(1956) where we assume'lm = | and Gm = §. For comparison the technique
. from Ahlen (1976) has been used to calculate Sm. The separation of
the two curves at low velocities is due primariiy to the Bloch correc-
tion; The two curves join at large Yy due to the different manner in
.which the density effect correction was calculated.

Ahlen (1978b) points out that theoretical knowleage of monopole »-
stopping power will not be on as firm a foofing as its e]ectric particle
analog:until thé foljowing tasks are accomplished: 1) derivation of
the magnetic analog to Béthe's generalized sum rule and 2) calculation

of the Bloch correction for monopoles.
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Vi. RESPONSE OF THE ABSORBING MEDIUM
TO HEAVILY IONIZING PARTICLES

A. Nature of the Excitation of the Absorbing Medium

In the previous sections the behavior of the projectile was the
principal object of our attention. In this section we briefly consider
the effect which the penetrating projectile has on the material through
which it passes in terms of ionization and excitation phenomena. It
is beyond our means to do full justice to this subject which encompasses
the diverse fields of radiation physics, chemistry and biology. We
will restrict our treatment to those aspects which are relevant to
the relativistic heavily ionizing particles which are of primary con-
cern in this Review. Related topics are covered by Box (1972)
(""Radiation Damage Mechanisms as Revealed Through Electron Spin
Resonance Spectroscopy'), Upton (1968) (''Effects of Radiation on Man'),
Ginoza (1976) (''The Effects of lonizing Radiation on Nucleic Acids of
Bacteriophages and Bacterial Cells'), and Mole (1965) (‘'Dose Response
Relationships, Particularly in Mammalian Radiobiology'). Extensive
references can be found in these review articles.

A proper understanding of the response of any system to radiation
requires knowledge of the spatial distribution of the deposited energy.
To a first approximation, the stopping power is a convenient parameter
which characterizes the behavior of biological systems and particle
detectors in response to excitation by charged particles. |t has
generally been observed that these objects are affected to an extent
which increases with increasing values of S, for a given system linear
dimension. However, it is usually not the case that the effect increases

linearly with S nor is it generally true that the effect is the same
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for two different types of particles with the same value of S. Some
specific examples include the saturation of scintillatorg (Birks, 1964)
and the notion of a critical dose for the degradation of certain poly-
meric substances (Golden and Hazel, 1963). Scintillator saturation

has been satisfactorily explained in'terms of a spatial dependence of 3w
scintillation conversion effigiency (Ahlen et al., 1977 and Becchetti
et al., 1976) and the concept of a critical dose can be explained
qualitatively in terms of a multi-hit Poisson p;ocess (Katz and
Kobetich, 1968). It is apparent that any successful theoretical
approach to an understanding.of these phenomena must include a descrip-
tion of the volume distribution of energy deposition, rather than simply
appeal to the projectile parameter S.

An ideal theoretical description of the effects of charged par-
ticle penetration in matter would include the yolume densities as a
function of position and time for all species: these would include
excited and ionized atoms and molecules, free electrons, free radicals
and other radiation induced chemical reaction by products. Needless
to say this is a formidable task which is nowhere near being solved.

The extreme complexity of the problem has rendered it susceptible to

only the crudest theoretical and experimental analysis. In this sec-

tion we will be content to discuss only the prompt dose. This is

defined to be the energy deposition per unit volume (or mass) due to

excitation and ionization caused by the primary particle and secondary, .
knock-on electrons (i.e. primary and seconaary excitation and ioniza-

tion). The time required for this phase is very short, namely

~107'% s, There are a host of delayed energy transport processes
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which serve to dilute the prompt dose at any given point. Among these
processes are Auger electron emission, x-ray fluorescence, optical
fluorescence, exciton migration, long range. resonance interactions,
radiative emission and reabsorption and chemical and thermodynamic -
equilibration processes. These effects serve to smear the prompt dose
isotropically. Their relative effectiveness depends strongly on the
abgorbing medium and in certain instances the observed response to -
deposited energy is the direct manifestation of one or more of these
processes.

There has been a great deal of work done on the calculation and
measurement of dose in connection with the radiation effects of heavy
nuclei on biological systems and nuclear emulsions. Much of the early
theoretical work (Bizzeti and Della Corte, 1959, Katz and Butts, 1965,
Kobetich and Katz, 1968, Katz and Kobetich, 1969 and Kafz et al., 1972)
has been based on a model in which energy is transferred away from the
particle trajectory by a line source of knock-on electrons. Various
assumptions regarding binding effects, electron range and transmission
formulae and electron emission angle have béen employed. Katz et al.

(1972) summarize these assumptions'and indicate that the result:
D = —— [— = —] : Vi1

is relatively insensitive to the above assumbtions. b is the secondary
dose in units of energy per unit volume, r is the perpendicular dis-
tance from the particle trajectoryband T is the maximum rénge of the
maximum energy delta ray. The above expression has been evaluated to

lowest order in the ion-electron interaction strength. Effects of
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higher order Born terms are discussed by Jensen et al. (1976). Various
groups have tested eq. Vi.1 with nuclear emulsions (Jensen et al.,
1976, Jacobsson and Rosander, 1974 and McNulty and Filz, 1977) and
have found that it is in good agreement with experiment for Z1 < 26
and B8 < 0.8. : ' , G
_ Fowler (1977) uses a slightly modified version of eq. VI.1 for
analysis of ultraheavy cosmic ray data. He shows that x-ray fluores-
cence and Auger.emission contribute ~10% of the dose in emulsions for
Su<r % 100u and obtains the empirical result:
2
D=A ;—;r—z— exp(-10.3r2/12) vi.2
wﬁere A is a constant. This fesult relies on the assumptfoﬁ that dose
is proportional to the number of developed grains per unit volume,
"which is the quantity measured with émulsions. In view of the large
fluctﬁations in dose which are t; be expected at large distances from
the particle trajectory it %s not surprising that eq. VI.1 and 2 differ
nor that omission of Auger emission and x-Fay fluorescence does not
seriously affect the validity of eq. VI.1; Thé use of free parameters
to describe grain sensitivity also serves to shroud thg accuracy of
the above expressions. Hagstrom (1977) describes a Monte Carlo.pro-
gram which should be quite helpful in evaluating these secondary dose -
effects.
The above expressions should not be trusted fof thbse values of h
r Which are excluded from experimental verification by émulsion mea-
surements. Since grain diameters are of the order of 1 micron, this

should be chosen as the minimum value of r. Chatterjee et al. (1973)
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and Paretzke (1977) have emphasized the importance of the distant
collisions in determining track structure fof biological and non-
living organic systems respectively. These &ollisioﬁs were not
included in the above mentioned emulsion dose models since they are
impoftant only for doses well within 1 micron. Chatterjee et al.
(1973) and Chatterjee and Schaefer (1976) describe a technique for
calculating the prompt dose which includes 3 classes of collisions:
1) distant collisions (b > 1A); 2) intermediate collisions with elec-
tron kinetic energies between 100 eV and 1600 eV which subsequently
undergo a random walk in becoming thermalized and 3) close collisions
which result in electron energies greater than 1600 eV; these elec-
trons undergo linear motion with an ejection anglé given by classical
non-relativistic kinematics. The resultant particle track.is con-
sidered as two regions, the core and penumbra. The core is the small
cylinder containing the atoms which suffer distant collisions while
the penumbra is the regionvfami]iar to emulsion workers wherein.
secondary processes determine the radiation effects. Chatterjee and

Schaefer (1976) give the following expressions for water:

LET LET

Do =gz 2 N

c hﬂrc n(Ve FE)

c
Vi.3

LET_
D = F , r > re
P hﬂrzln(/g'?FQ o

c

where e and rp are the core and penumbra radii respectively:
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=
]

(0.768T - 1.925 VT + 1.257) microns
' Vi.h

0.01168 microns

-
]

where T is the ion energy in MeV/amu.‘ LET_ is simply the stopping
power of the ion. It is seen that the penumbra dose is quite similar
to those given by eq. VI.1 and 2. Furthermore, it is seen that the
core dose has been averaged over a cross section of radius Fos the
first term being due to distant collisions and the second being due
to scattered high energy secondéry electrons.

The core contribution to the dose has been generally neglecte&.
Katz et al. (1972) go so far as to discount it due to détector satura-
bility and Chatferjee and Schaefer (1976) have, as we saw above,
simply averaged it over the core radius. In view of the fact that
completely satisfactory descriptions of the response mechanisms for
most systems remain to be given, it seems somewhat premature to disfe-
gard a significant source of energy deposition a priori. As has been
mentioned above, there exist é mul titude of energy migration processes
which are Capable of removing the energy from the region of high
detector saturability, should such a region exist. The high degree of
linear response commonly encountered with gaseous and solid state ioni-
zation detectors is perhaps the best indication that full account must
in general be takeﬁ of all types of energy deposition.

It is quite straightforward to calculate the primary dose. As hat
Fano (1970) has indicated, the classical Bohr expression for energy
transfer to an atom (eq. 111.1) is equivalent to that given by a

quantal calculation. The quantal approach is necessary, however, in
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order to determine the spectrum of excited and ionized states. When this
is done it is found that the most likely prognosis for a hydrogenié atom
at impact parameter b >> s is that nothing at all will happen to it.
This is in fact the criterion for the validity of a perturbation treat-
ment. |If something does happen to the atom, it is most likely for it to
be excited but not ionized. There is a reasonably probability for it to
be ionized, however; in which case the most probable final state kinetic
energy is 1/12th the binding energy. Beyond this the kinetic energy
distribution of ejected electrons drops off more rapidly than 1/w* and
the relative probability that the kinétic energy exceeds the binding
energy is less than 1073, In view of the fact that the close collision
ionization cross section is smaller by no more than an order of magnitude
than that for distant collisions and that the close collision delta ray
spectrum falls off only as 1/w?, it is safe to conclude that of all high
energy knock-on electrons with kinetic energy greater than the binding
energy which are produced by the passage of the charged particle, no more
than one in a hundred are created in a distant collision event. To

quote Merzbacher (1972): "In these collisions the electron likés best

to take on as little energy as possible. It prefers just barely to

~get out of the atom - that's overwhelmingly the most probable situation."

Thus, it is quite reasonable to extend the division of the distant and
close collisions to apply to dose deposition. The close collisions are
almost exclusively responsible for secondary excitation and ionization
while the distant collisions principally produce only primary excita-
tién and ionization. As Fowler (1977)vpoints out, Auger emission and

x-ray fluorescence contribute a significant penumbra, or halo dose in
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emulsion, of the order of 10%. This contribution should not be so
. - 8 .
great in water or organic compounds.3 By extending eq. Ill.1 to a

multi-electron atom, the prompt primary dose is seen to be:

2N212e“

bplr) = e

1 |
z fLE KD + 57 K2 (EIT Vs
k :

where Ek = (ri)/(Yv), E, = hw, is the kth excited energy level (the
ground state has zero energy), Ko and K, are the modified Bessel func-
tions of order 0 and 1 respectively and f, = 2nhw |X, [2/(82Z,) where
|Xk|2 is the sum of ].gz <k|xi]0>|2 over the degenerate substates
which have energy Ek.l—}he sum in-eq. VI.5 is over energy levels, not
states. The Bessel functions drop off exponentially for large argu-
ments which means that excitation of the kth énergy level extends to a

- radius:

‘ - B, 1 | Vi.6
. | W,

beyond which excitation becomes quite inefficient due to the Adiabatic
Theorem.

It is quite easy to ektend the treatment above to magnetic mono-
poles. The pfimafy prompt dose is given by:

2Nezg2
mc2r?2

m
Dp_(r) = E fk_Ekz K2 () V1.7

In Fig. VI.1 we plot the functions F(§) = £%K,%(£) and G(&) = EZKOZ(E).

It is seen that for small values of £(50.5), F(£) + G(§) =~ 1 and for

large arguments, F + G ~ 0. Since G(§) -~ 0 as g +.0 we see that the
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primary monopole dose is_(gB/Zle)2 times that of its electric particle
counterpart. Since this is the same ratio of the classical free elec-
tron scattering cross sections we would expect a similar correspondence
of doses in the penumbra, to a first approximation. |In Fig. VI.2 we
plot prompt dose profiles for a water absorber divided by le (we
neglect higher order corrections). Curves A and B are primary doses
for B = 0.1 and 0.9 respectively from qu Vi.5 with the relevant values
of fk and W, from Sternheimer (1952). Curves C and D are secondary
doses for B = 0.1 and 0.9 respectively as calculated by Kobetich and
Katz (1968). The dose is in units of Mrad where 1 rad = 100 ergs/g.
For comparison we also show the small radius limit 2N212e“/(mv2r2)

and the large radius limit which is 1/2 of this.

If should be emphasized that for the prompt doses of Fig. VI.2
energy trénsfer mechanisms have been neglected. Furthermore, polari-
zation effects have been néglected so that no considerationvof-the
density effect nor Cerenkov emiséion has been included.39 This should
limit the validity to velocities less than ~0.9 for solids. The
velocity should be limited from below by B ~ 0.1 at which point the
separation of distant and close collisions starts being invalid.

The above discussion has been limited to the micro-and sub-micro-
scopic spatial distribution of energy deposition. It is sometimes of
interest to have some idea of macroscopic features of energy deposition
insofar as it affects the fraction of the energy lost by a particle
in a thin absorber which is actually deposited in the absorber. Some
energy is carried out by optical and x-ray fluorescence radiation,

Cerenkov radiation, Auger electrons and delta-rays. Scintillation and
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Cerenkov counters utilize the escaping optical radiation in order to
ascertain various particle properties such as charge and velocity.lio
At all velocities (even as B + 1) the fraction of total loss which
escapes a solid absorber as Cerenkov radiation is quite smail. By
using a realistic atomic model, Sternheimer (1953a) has shown that the
fraction of total energy loss which escapes a silver bromide grain
{diameter ~0.2u) as Cerenkov radiation is 0.1% (this includes radiation
at all frequencies). The most efficient inorganic and organic scintilla-
tors have energy conversion efficiencies of 25% (ZnS(Ag)) and 5%
(anthracene) respectively (Williams, 1972). Specially prepared plastic
scintillators have an efficiency of 3% for minimﬁm fonizing radiation.
However, the large majority of solids have much smaller efficiencies

than for these special materials due to the predominance of non-radiative
de-excitation mechénisms (Birks, 1964). Thus, in general, optical
fluorescence can be ignored as a source of escaping energy. Similarly
x-ray fluorescence and Auger electron emission are inefficient means

of enérgy removal for all but the thinnest absorbers. The mean free

path of a carbon (or oxygen) KL x-ray is of the order of 100 A in plas-
tic (or water) (Morgan and Turner, 1972). The practical range of an
inner shell carbon (or oxygen)'Auger electron is of the order of 300 A

in plastic (or water) (Bichsel, 1972). Hence, an absorber with thick-
ness greéter than ~10 py will have less than 1% of the depbsited energy
removed by fluorescence x-rays and Auger electrons.. The only efficient
means by which energy can be removed from absorbers of non-negligible
thickness is via emission of delta rays. Laulainen and Bichsel (1972)

have analyzed this problem in detail. They present results of numerical
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analysis in which the amount of energy removed by delta rays is given
for various absorbers as a function of absorber thickness. It is
possible, with the aid of several mathematical approximations, to
obtain an analytical expression which agrees with the numerical results
to within 5% for removed ene?gy. We present here for the‘firstvtime
the details of this calculation.

We first note that since the delta ray effect to be discussed
amounts to less than 10% of the energy lost by the particle in the
detector, a crude theory of the electron escape energy will suffice.
If this theory is accurate at the 10% Ievel,‘the error in the eﬁergy
lost to the detector will be good to ~1%. Thus, it is sufficient to
use the‘Rutherford cross section to describe delta ray production.
Consider a particle normally incident on an absorber of thickness t.
Let R(w) be the average penetration of an electron wfth energy w into
the absorbing material. |If we definevR(w) to be the depth for which

the transmission probability is equal to 0.5 then:

R(w) = hAw[1 - ] VI.8

1+Cw

where h, A, B and C are empiricél constants determined by Kobetich and
Katz (1968) and which describe R(w) adequately (i.e. better than 10%)
for 300 eV < w < 10 MeV., A, B and C are relatively insensitive to
material type and are given by A = 0.537 g/cm?/MeV, B = 0.9815 and

C = 3.123/MeV for aluminum. h is given by:
h = 0.63Z,/A, + 0.27 V1.9

To facilitate calculation we make the approximation:
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R(w) = awl V1.10

It is well known that this is a good approximation for a limited range
of energies in any given energy region. A and a must be chosen to
correspond to the appropriate region. Finally, we assume that the
angular distribution of ejected electrons is given by the non-relati-

vistic expression: ~.
cosO(w) = /w/wm v : Vi.11

where wo = 2mc2B2y2. For the projectile at position X within the

absorber we define wl(X)-by:
(t-X) secO(w,) = R(w,) Vi.12

Ifw> wl(X) the delta ray will escape and remove some energy
from the absorber. If w < w,(X) all of the energy is deposited in the
absorber. It should be noted that these statementsvperta[n to the

average behavior. Let W be the amount of energy removed.

w
_ _ L\ A+E 1/
W, = wl (w ) ] VI.13
The total amount of energy removed is:
t “'m K ‘
§=[ dx [ dwomw VI.14 B
o W,
27NZ 2e* a~
where K = 5
mv

A fair amount of manipulation leads to:
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%o 1
§ = K(A+%) R(w_) f 7% gs f %x[l-yk+%]1/% Vi.15
o s

2

‘where s_ =1 if t >R(w) ands = [t/R(wm)]2A+1

1
- yk+%] /A by 1 - %_yx+%.

if t< R(wm). We

approximate [1 For large s,

1
I gx[l - yx+%]1/k = J is small and for small s, J is dominated by the
S .

1/y factor. In each case, negligible error is introduced by the above

approximation. Some more algebra yields:

t 1 1 t t
§ = R(wm) K[R(Wm)] )\()\+%) [}\-1+5[W] - )\,Q,n[-k—(w—-y]] Vi.16

m

where t/R(w )t < R(w)

. .
[EYW_Y] = Vi.17

] t > R(wm)

and the best choice for A corresponds to W since this is the most

efficient energy for escape:

w_BC
m

(1+Cw_) 2-B (1+Cw ) vt.18

=1+

R(wm) should be taken from eq. VI.8. Results obtained from eq. VI.16
are compared with those from Laulainen and Bichsel (1972) for the
case of protons on "thick!" alumingm ([t/R(wm)] = 1) in Table Vi.1.
The agreement is seen to be quite good.

We should emphasize that all of the dose effects discussed in
this section pertain to average behavior. Consideration of the dis-

tribution of these effects requires a greater expenditure of effort.
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Monte Carlo prograhs such as described by Hagstrom (1977) should bé
quite useful in determining the statistics involVed with dose distri-
butions. Further refinement would include the exact Mott or Kazama,
Yang, Goldhaber scattering cross sections rather than the usual appro-
ximate relations. Ultimately, any theory must be tested fully before
, it should be trusted. One potential problem which does not seem to
have been considered is that,. for very heavily ionizing collisions,
Bloch type corrections in differential form wfll be required to
_evaluate the CM electron scattering cross seétions. It must be.
realized that even close cojiisions between bound electrong and heavy
nuclei (or anti-nuclei or ménopoles) are likely to exhibit features
not present in free plane wave electron scattering off of these same
objects.

Having concluded our discu§sion of energy deposition, we next
consider how this relates to response mechanisms for various. charged
particle detectors.

B. Charged Particle Detectors

In this sub-section we will describe various charged particle
detectors which are currently in use. We will be emphasizing the
underiying physical mechanisms whiéh determine the response of a system
to radiation. Such an understanding is required for accurate extra-
polation of response curves to untested domains.

1. Cerenkov Counters : N

Cerenkov radiation was discovered by Vavilov (1934) and Cerenkov
(1934) . Tamm aﬁd Frank (1937) developed a classical theory for this

radiation which has since been explained by Ginsburg (1940) in terms
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of quantum mechanics. Fermi (1940) demonstrated that Cereﬁkov radia-
tion is just that component of the distant collision energy loss
which escapes to infinity. In most simple terms, Cerenkov radiation
is an electromagnetic shock wave which is emitted by a charged par-
ticle which moves through a medium at a velocity greater than the
velocity of light in the medium. As such it propagates at an angle 0

relative to the particle direction which is given by the Mach relation:

_ 1
(w)/vparticle " Bnlw) V1.3

cosf(w) = V9ight

where w is the circular light frequency. The number of photons per
unit wavelength (where wavelength is defined by A = 2mc/w) per unit -
distance traveled by the projectile was obtained by Tamm and Frank
(1937):

dN_ _ 274 _ 1 2
Trax = 2mz,*[1 W]M VI.20

A classical derivation ofvthe above expression is given by Jackson
(1975). A quantum electrodynamical derivation of eq. VI1.20 is quite
simple as well .as being very instructive. We will briefly sketch
such a derivation,

It is straightforward to show that non-absorbing dielectrics
are characterized by a quantized vector potential which is given by
eq. 111.10 with c replaced by c/v/e. This results in a modified
dispersion relation: k% - ew?/c? = 0. It is well known that energy
momentum conservation forbids the emission of photons by particles
moving in vacuum with uniform velocity. However, as will be seen

below, this is not the case for particles moving in matter.
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We consider the rate for production of photons with energy hw
and momentum cﬁ'with the dispersion relation above. It is easy to
show that momentum and energy are thus conserved if the emission angle
is given by eq. VI.19 with n = /€. By using the techniques outlined
in section Il it can be shown that the probabilify per unit time of

_ v N
producing a photon of momentum hk and polarization €* is given by:

hn?Z,%e?c?

g'P— B m——— .A(X 2 -
dt ~  ewv (-2 Spugr g S(ELFE L -E) Vi.21

where ;(3') is the initial (final) momentum of the charged particle.
The K}onecker delta function expresses momentum conservation and the
Dirac delta fungtion expresses energy conservation. The expression
(B+e%) 2 demonstrates that the emitted photons are linearly polarized
in the plane of emission. By summing over 3' and photon emission
solid angle, and by imposing the requirement hk << p, one obtains the
result of eq. VI.20..

In addition to emphasizing the role of energy momentum conserva-
tion in Cerenkov emission, the QEb derivation has the advantage of
indicating the existence 'of higher order corrections which is often
not apparent in classical calcu]ations. In Fig. VI.3 we>depict the
first order Feynman diagram respbnsible for the resqlt of eq. V1.20.
Two higher order diagrams are shown for Eomparison. Since the number
of photon-projeétilé vertices is always an odd number, it is seen
that Cerenkov radiation is a function only of |21], being the same
for both positive and negative charges. It is difficult to calculate
higher order contributions due to the need for an accurate knowledge

of the detailed properties of the absorbing medium. Such a knowledge
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is not required for the first order result beyond imposing the Timi-
tation that light is emitted only for those frequencies for which

e(w) is real. In this connection we might note that Bohr (1948b) first
pointed out that for a medium with no absorption and described by a
single type of dispersion oscillator , the relativistic rise of energy
loss as obtained from Fermi's (1940) theory should escape entirely as
Cerenkov radiation. Sternheimer (1953a) has shown that with more
realistic atomic models, only a very small fraction of Cerenkov radia-
tion escapes for solids, although significant escape is possible for
gases.

By measuring the angle of emission of Cerenkov light it is
possible to determine the projectile velocity as shown by eq. VI.19.
Litt and Mennier (1973) describe this technique in some detail. By
integrating the total light collection, projectile charge and velocity
can be measured as indicated by eq. VI.20. Various experimgnta]
aspects of this approach are elaborated on by Ahlen et al. (1976).

A discussion of background light sources, including Cerenkov emitting-
delta rays and low level scintillation can be found in this work. The
effect§ of slowing are also considered and experimental data are
compared with theory. In Fig. VI.4 we plot.a typical integrated
light curve. In this case the Cerenkov radiation was a piece of

1.27 cm sandblasted Pilot 425. The incident radiation was 20Ne. More
detailed information can be found in Ahlen et al. (1976). Note that
scintillation and Cerenkov emitting delta rays contribute a sizable
fraction of the emitted light. Note also that the index of refrac->

tion as obtained by extrapolating the Cerenkov curve gives a value
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of n = 1.508 which is lower than the fifted value of 1.518. This is
a consequence of the slowing of the ions in the radiator.

Tompkins (1965) has adopted Fermi's (1940) approach to calculate
the Cerenkov radiation for magnetic monopoles. He finds that for
magnetic charges, as for electric charges, there is no Cerenkov
radiation for B%c < 1. For B%ec > 1 the result, analogous to

eq. V.20, is:

dN
(dAdx)m

= 21roc(:—g-)2[1 - n—ls—f]/xz Vi.22

For a given velocity, the monopole Cerenkov radiation is a factor
[(ng)/Zle).]2 stronger than for an electrically charged particle. In
addition to having a different intensity of Cerenkov radiation, the .
radiation is polarized differently foé a monopole than for an electric
charge. Rather than being polarized‘in the plane of the projectile
and photon motion, the electric field is perpendicular to this plane.
Hagstrom (1975) has suggested a means of identifying magnetic mono-
poles by exploiting thfs property.

Finally, we note that fluctuations in the number of Cerenkov
photons‘emitted per unit length are detérmined solely by the Poisson
statistics implied by eg. VI.21. This is due to the fact that the

number of atoms .participating in the Cerenkov process is so large as

to preélude energy loss fluctuations of the type considered by Bohr, »
Landau, Symon and Vavilov.

2. Scintillation Counters

The introduction of the use of ZnS screens by Crookes and

Regener in 1908 for visual scintillation counting and of ionization
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chambers by Rutherford and Geiger (1908) marked the beginning of
modern experimental physics. Birks (1964) provides an interesting
historical account of thé development of scintillation counters which,
along with the development of photomultiplier tubes, has enabled them
to remain useful tools in experimental physics even up to the present
time; The scintillation mechanism is quite simple to understand in
its most elementary form. Some type of radiation (anything_from
ultraviolet light to relativistic uranium nuclei) impinges on a
material, causing excitation and ionization. Some fraction of the
excited constituents radiatively de-excite resulting in the emission’
of light. Everything scintillates to a certain extent. What charac-
terizes those materials used for scintillation counters is an unusually
large efficiency for converting high energy radiation into visible,
or nearly visible light. Aside from gases (most of which are efficient
scintillators with the notable exception of oxygen), which are not
subject to severe collisional de-excitation, the only known efficient
scintillators fall into two classes: 1) various inorganic érystalline
solids and 2) organic solids composed to a large extent of benzene
rings. 1t will not be our purpose here to delve into the chemical
physics or solid state physics aspects of scintillation. This is an
extensive subject and the interested reader would do well to consult
Birks (1964), Birks (1967), Windsor (1967), Birks (1970), Williams
(1972), Birks (1973) or Birks (1975). We will be primarily concerned
wi th ekperimental aspects of séintillation counters. In our brief
discussion that follows we will draw heavily from.the excellent

monograph by Birks (1964).
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Virtually every type of scintillator in practical usage consists
of a bulk material doped with a small concentration of one or more
impurities. This is true of inorganic crystals, liquid organic scin-
tillators and plastic scintillators. This is not to say'that pure
substances cannot scintillate. Examples are anthracene crystals,
diamonds and pure Nal and Csl. The luminescence of anthracene reflects
its molecular structure. Most other pure substances which scintillate,
do so as a result of crystalline properties. In diamond, lattice
defects serve as impurity centers and Nal and Csi need to be cooled
to liquid nifrogen temperatures for efficient operation. The purpose
of impurity centers in inorganic systems or added primary and secon-
dary fluors in organic systems is to provide traps for migrating
energy which éubseqyently emit radiation to which the bdlk material
is transparent. The energy transfer processes can be any one of or
several of the following: 1) exciton migration; 2) long range reso-
nant interactions; 3) radiative emission and reabsorption; etc.

Birks provides numerous references to work concerned with energy transfer.

It has long been recognized that scintillators saturate: dL/dE,
the light output per unit energy deposited in the scintillator,
declines as a function of dE/dx. For anthracene crystals, 1 MeV
electrons result in 4.6 times as much light as 1 MeV protons and 15
times as.much light as 1 MeV alpha particles (Brooks, 1956). Similar
behavior is observed with organic liquid and plastic scintillators.
Inorganic crystals are also subject to saturation, élthoUgh to a more
limited extent. The a/B conversion efficienty ratio (i.e. the ratio

of conversion efficiency for the response to alpha particles and beta
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particies) is roughly 60% for CslI(T1) (Gwin, 1962) as compared to 7%
for organic scintillators.

Becchetti et al. (1976) have recently presented data for the
response of NE102, NE110 and NEI1l plastic scintillators to heavy
ions with Z0 =} to 35 and with energieé from several MeV to just
under 200 MeV. They observe that different types of scintillators
prepared under similar conditions produced relative light outputs
which are equal to within 10% for ions Zo =1 to 16. Ahlen and Salamon
(1978) have observed that relative scintillation efficiencies of
NE]IO,.Pi]ot B, Pilot F and Pilot Y are the same to within L% in
response to atmospheric muons, 600 MeV/amu 2°Ne, “°Ar and °®Fe ions.

It seems safe to conclude that previously reported variations of

scintillator saturation reflected experimental effects or differential
aging or radiation degradation effects.

Early data with o particles (Birkg, 1964) indicated that the
specific luminescence per unit length, dL/dx, approaches a constant
level, independent of dE/dx, for very high rates of energy loss. This
was inferred from the observed proportionality of light output to
a particle range. The low velocity data of Becchetti et al. (1976)

extend this result. They find that:
L«2Z122(R-0.042) Vi.23
(o] (o] :

where R is the ion range in mg/cm?®. Ahlen et al. (1977) have shown
that this strong saturation (i.e. constant dL/dx) does not apply in
the high velocity regime. By using 2°Ne ions from 100-600 MeV/amu

they have shown that simplified ionization quenching models used to

explain low velocity data do not work. They present supporting evi-
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dénce, and supply earlier references, for the conclusion that the
scintillation process in the relativistic, heavily ionizing regime

is characterized by two effects: 1) the production of copious quanti-
ties of high energy delta rays (w > 1.5 keV) which transport their
energy far from the central track ''core'' of ionization and excitation
into the ''halo" regions which are otherwise unaffected by the passage
of the primary ion; and 2) the dominance of ionization quenching in
the core over depletion of luminescence centers as the cause of non-
linear response. Saturation is associated with. the quenching, or
"turning off" of the track core. Models of scintillation mechanisms

by Meyer and Murray (1962) and by Voltz et al. (1966) include these

features. The Voltz expression is particularly simple:

b 8 (1-r )4E dE »
o = MO-F ) exp[-B_(1-F )] + F .} o= V1.2h
where A, BS and To are parameters of the model and FS is the fraction
of delta rays which escape from the core:
2722
gn(g_"l?._er;L),82

F Vi.25

_ 1 o
) 2 2ns 2
s 2 2,n(£n£|-u-),-82

Typical values for Bs and TO are in Table VI.2. They are taken from
Ahlen et al. (1977) and Buffington et al. (1978). The latter group
do not see any difference between their scintillator response for
different scintillators. The difference between their BS parameter
for Pilot Y and that of Ahlen et al. (1977) can be reconciled with
the fact that the scintillator used by Ahlen et al. (1977). was very

old and severely crazed. Also different photomultiplier tubes are

~124-



used by different groups which can confuse inter-group comparisons.
Recent work with cosmic rays has shown that, while the qualitative
features of the Voltz model are correct, its validity is restricted
to a limited domain of charge and velocity (Buffington et al., 1978
and Tarlé et al., 1978). Analysis of the experiment reported by
Ahlen and Salamon (1978) should help to clarify some issues of scin-
tillation mechanisms. Pending this and further developments, it must
be concluded that extreme caution should be used in extrapolating
scintillator responses, although eq. VIi.23 and 24 should serve as
useful guides. Furthermore, until a proper understanding of
scintillation mechanisms is achieved, it will not be possible to
evaluate detector résolution a priori. [If the bulk of the scintilla-
tion light is due to high energy delta rays (due to a quenched core)
the fractional resolution will be larger by a factor of ~3 than if

all types of energy depositiqn were equally effective ‘in causing scin-
tillation. Furthermore, higher order corrections depend to a large
extent on the roles of the distant and close collisions in the response
mechanism.

To close this discussion of scintillators we feel that it is
important to emphasize that, in spite of the numerous problems associated
with them, scintillators still remain competitive with better under-
stood and better behaved AE detectors such as ionization chambers and
solid state detectors which have excellent linearit& properties. It
isAdifficult to match the economy of scintillators, or their ease of
fabrication. In addition, over limited domains of charge and velocity,

resolution achieved with them is comparable to that attained with
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other detectors. The most convincihg evidence for this is the direct
comparison of‘charge resolution for iron group nuclei in the cosmic
rays oBtained by similar techniques with the replacement of plastic
scintillators by ionization chambers. Tueller et al. (1977) use
ifonization chamBerS'plus a Pilot 425 Cerenkov radiator to this end
and Meyer and’Minagawa (1977) use Pilot Y scintillators plus a Pilot
425 Cerenkov radiator. The former group achieves a resolution of
o = 0.2 charge units while the latter attains o = 0.25 charge units.
Thus, there is no significant difference.

3. Particle Track Detectors

There are a variety of particle detectors which, in one way or
another, yield a visible record of the passage of the particfé. The
most notable detectors which fit into this category are the cloud
chamber, bubble chamber, nuclear emulsion, spark chamber and dielectric
track recorder. A number of other such detectors have béen deveioped
an& we will not make any attempt to list them here. Cloud chambers
havé been reviewed by Fretter (1955) and bubble chambers are discussed
by Alvarez (1969) . Charpak (1970) has summarized recent developments
in the use of spark chambers, including a discussion of related devices
such as multiwire proportional chambers. The development of the
nuclear emulsion for the study of elementary particies is described
by Powell et al. (1959) and Barkas (1963, 1973) describes in great
detail Qarious techniques, theories and applications of emulsions.
Nuclear track detectors are described by Fleischer et al. (1975).
Numerous other mohographs and papers are available which deal with

track detectors. The interested reader is directed to virtually any
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issue of Nuclear Instruments and Methods or to any proceedings of the
IEEE.

In this section we will restrict ourselves to detectors parti=-
cularly suited to the study of relativistic heavily ionizing particles.
This essentially restricts us to nuclear emulsions and diélectric
track detectors, the others being more suftable to either high energy
accelerator work (ana Singly charged particles) or fully saturated
applications for which hodoscopic and trajectory information is the
primary goal. Nuclear emulsions have the advantage (or in some
instances the disadvantage) of being sensitive to minimum ionizing

particles. |In this regime the ionization rate is low enough so that
the probability of grain sensitization along the particle trajectory
is less than unity. Linear grain densities serve as a measure of the
ionization rate and the restricted energy loss (REL) is useful in
describing this density (Messel and Ritson, 1950). For heavy ions,
the core of the emulsion track is fully saturated and information

. a ,
related to particle properties is contained in the halo region as
described in the previous section. It has been seen that emulsion
response in this regime has been compared with theoretical models gf
energy deposition by delta rays and that good agreement has been
obtained. This indicates that the response of emulsions caﬁ be most
simply understood in terms of the model of Katz et al. (1972) where-
in the sensitization of an emu]sién grain is a one hit Poisson process
with a minimum energy deposition per grain characterizing one hit.h1

Track structure for arbitrary charged particles should then be cal-

‘culable within the framework of a Monte Carlo program of the type
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promised by Hagstrom (1977). Unfortunately, the understanding of the
track formation process in dielectrics is not on so firm a.footing as
for_its emulsion counterpart. We will devote the remainder of this
sub-section to a discussion of this process.

It was discovered by Silk and Barnes (1959) that fission %ragments .
leave permanent observable tracks in mica. With an electron microscope
they observed diffractioﬁ-contrast images of the damaged regions thch
were 100 A in diameter. Fleischer, Price and Walker (1965, 1975) and
Price and‘Fleischer (1971) describe the various theoretical conjectures
for track formation mechanisms and the numerous applications of par-
ticle tracks in solids. A major contribution of these workers to the
field of particle identification lies in their discovery that the
primary localized track is particularly subject to chemical etching by
caustic solutions. This enables the damaged region to be expanded
sufficiently so as to be observable with vfsible light through optical
microscopes. To date, the most commonly used material for particle
identification with this technique is Lexan polycarbonate. This is a
commercial plastic which is characterized by good large scale uniformity
and considerable resistance to radiation.

To date, a‘igrge number of models have been advanced to account
for thé formation of particle tracks and for the subsequent chemical
etching process. See Fleischer et al. (1975) and Benton (1970). None
of the models advanced so far can be regarded as successful. Since
the detailed shape of the etched particle track must depend on compli=-
cated processes involving diffusion and chemical kinetics and dynamics

it will probably be some time before particle properties can be directly
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related to the final observed track. However, it is not unreasonable

to expect to find some particular property of the particle which

characterizes a given track. This has been the main thrust of work

which utilizes Lexan for particle identification. At present the two
most popular semi-empirical formalisms used for the.analysis of charged
particle data in Lexan are the Z,/B8 characterization and the REL charac-
terization. _

In the restricted energy loss or REL model (Benton, 1970), it is
assumed that knockon electrons with energy greater thaﬁ w are ineffec-
tive in causing the permanent radiation damage which is the primary
track. This hypothesis is supported by the observation that fission
fragment primary track diameters are less than 100 A in plastic
(Fleischer et al., 1975). Since high energy delta rays deposit most
of their energy quite far from the particle track it is reasonable
to suspect that they do not contribute significantly to the primary
track. W, is usually assumed to have a value between 300 and 1000 eV
(Benton and Henke, 1972, have chosen 350 eV).

Shirk and Price (1978) and Fowler et al. (1977) have used fhe
primary ionization model described by Price and Fleischer (1965) with
constant K set to infinity to analyze ultraheavy cosmic ray data.

This approach is equivalent to assuming that a particle track property
is determined solely by the ratio Z,/B. Most experimental data taken
in a controlled environment with known particle parameters have lacked
sufficient dynamical range to distinguish between the above‘two
approaches. Furthermore, it is well known that successful particle

identification over a 1limited dynamic range is insensitive to the
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response function used in the analysis (witness the good charge resolu-
tion obtained with plastic scintillators which was referred to in the
bprevious sub-section). However, the data preéented by 0'Sullivan et
al. (1971) are sufficiently good to rule out the REL model. These
workers used accelerator 2%Ne and 2%Si ions and cosmic ray 5®Fe ions.
We plot the data of 0'Sullivan et al. (1971) in Fig. VI.5 and 6. In -
Fig. VI.5 we plot log [VT/(u/h)] vs log [REL/(GeVcm?/g) ] where Vs
the etch rate of the tracks and Wy was chosen to be 350 eV. In Fig.
V1.6 the parameter iog (z,/8) has been substituted for log (REL).
There is little doubt on the basis of these data that Z,/B is to be
preferred as a universal parameter over REL. This is supported by the

quite reasonable ultraheavy cosmic ray compositions obtained by Shirk

and Price (1978) and Fowler et al. (1977) which, if an REL model were
chosen as a calibration basis, would have to be shifted by ~10 chérge
units, resulting in peculiar abundance distributions. We might note
that higher order corrections to the stopping power come into anélysis
of ultraheavy cosmic ray data to second order due to the predominance
of the distant collisions in influencing‘track structuré. The correc-
tions only mildly affect charge assignments insofér as the rate of
change of velocity is affected.

Katz and Kobetich (1968) have proposed a track formation mechanism
in which the secondary dose at a radial distance of 17 A characterizes
the threshold crfterion for track registration in Lexan.  By using
available data, their model predicts a critical dose of ~10 Mrad at
this critical radius. Considerably larger doses ‘are required to alter

bulk properties of Lexan (Golden and Hazell, 1963) so it seems that
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this mechanism is not viable. However, the primary dose at ~10 A is
adequate to account for sufficient energy deposition to match macro-
scopic observations (see Fig. VI.2). Since the characteristic size
of a Lexan monomer is ~12 A, it is tempting to ascribe the total
prompt dose at a radius of ~10 A as the parameter which determines the
etch rate. This will not account for the 0'Sullivan et al. (1971)
data however. It is found that the effect of the adiabatic roll off
of prompt primary dose is sufficient to cause the doses at 10 A of the
overlapping iron and neon points of Fig. Vil.6 to differ by nearly
100% (the slower 2%Ne jon is less efficient at exciting inner shells
than the faster %%Fe ijon). If, on the other hand, one merely considers
the prompt dose which goes toward exciting bonds with energies <10 eV,
then etch rates are predicted to be a function of (Z;/8) for velocities
greater than 0.1 ¢. At lower velocities, reduced etch rates should
be expected. Since both of these features are observed for Lexan,
this scenario seems‘to be quite valid. It is difficult to see, however,
how the primary track region can be unaffected by the rather violent
inner shell excitation and de-excitation processes. |t may be fhat
x-ray fluorescence and Auger electron emission dilute this part of
the energy deposition so that the efficiency for molecular bond rup-
tures is reduced relative to direct bond breaking interactions.

If it is true that Lexan responds to only the distant collisions,
as the above comments suggest, then its intrinsic resolution may very

43

well exceed that of any other particle detector. By considering
the distant collisions, it can be shown (Fano, 1963) that the variance

of the total energy loss is:
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2 = aeny 2aby(1BY/2 B <K> 22 -
(o) hﬂNZleX[W+3m &n |1] ».

where <K> is the mean kinetic energy of an atomic electron in the - B

ground state of the absorbing atom and

nl, = (zgnfnznsn)/(ZEnfn) Vi.27
n n .
For v >>-Vo one obtains the previously discussed result, eq. 11.47. As

is true of the Bethe stopping power formula, eq. VI.26 is valid only
for rather large velocities so that in this regime, total energy
straggling is characterized by the relativistic Bohr formula to quite

.good accuracy. The second term is useful in determining the distant

collision fluctuations however. The free electron approximation

predicts that the straggling of energy loss due to collisions with

energy transfer between Woin and Woax IS¢
. 2TNZ, 2ex 2 (w__ tw . )
> _ . _ B ""max_"min - Vi.28
ov(wmax’wmin) mv 2 x[1 2 2mc232Y2 ](Wmax Wmln)

If the response of Lexan is insensitive to collisions with energy

transfer greater than W then the relevant fluctuations are"given by

o2 - 02(2mc282Y2,wo) = o2(Lexan): ~
W

: : w
2 _ 2_urh <K> 2mv? o _1 o _y2 Vi.2
o*(Lexan) = lmNZ1 e_x[3 7 n I * o Z(ZmCZBY) ] .29

From the chemical composition of Lexan (C,¢H,,0;) and the approximate
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values for En’ fn from Sternheimer (1956) one finds that <K> = 123 eV
and that I, = 323 eV. These numbers should not be trusted to better
than 50%. |If W, = 350 eV then:

10~"

23 VI.30a

o?(Lexan) = hﬂNzlze“x[l6.h+3.22nB]

The uncertainty in W, <K>, |, and the non-relativistic approximations

1
required for the derivation of the distant collision part of eq. VI1.26
render eq. V1.30a suitable only for a rough estimation of fluctuations.

We can compare eq. V!.30a to resolutions expected for other types

of particle detectors. In the relativistic heavily ionizing regime

we have seen that emulsions and scintillators are predominantly

sensitive to high energy delta rays (21500 eV). Hence:

2 Loy 2 _u 1-B%/2 V1.30b
o®(scint.,emulsion) = 4mNZ, %e X[‘Ttgg—] :

where we have'neglected 1500 eV in comparison to Woax = 2mc2B2y2.
Since solid state detectors and ionization chambers are sensitive to
all classes of collisions eq. Vi.30b applies to them as well.

Suppose that the above detectors respond to a particular class
of energy losses so that the detector response is given by some func-

tion F of AE where:

2NZ, %e*x W ‘
AE = ) Ln ‘ vi.31
mv w_.
min
= = 12 2p2.,2Y.
For Lexan track detectors, Woax = 350 eV, Weoin 12/ (2mc“B*y?); for
scintillators and emulsions, w = 2mc2B?y%, w_, = 1500 eV; for
max _ min
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ionization chambers and solid state detectors Weax = 2mc?82y? and

w . = 12/(2mc2B%y?). Aside from the binomial statistics associated

min.
with tHe production of scintillation photons, sensitized emulsion
grains éﬁd electron-hole or ion pairs, the qﬁélity of a detector of
.penetrating radiation is measured by the size of the‘separation of two
signal§ (for different values of AE) in units of the intrinsic fluc-
tuation in F due to fluctuations in AE. Since this quantity is inde-
_ pendent of the functional form of F, a true measure of detector
»resolutioh is given by the ratio o/AE. |In Table VI.3 we give this
ratio for the detectors named above. It is seen that for By ~ 1, and
for given values of Nx, Z1 and B, track detectors are about ]O,times
as good as the total AE.detectors whicﬁ,in turn are about 3 times as
good as scintillators and emulsions. Of course, there is considerable
variatfon in practicable sizes for the different detectors. This
should always be considered in any applfcation.'

L, lonization Chambers and Solid State Detectors

To conclude this section on charged particle detectors we will
discuss the mo;t reliable.instruments for the measurement of enefgy
loss. These include the gaseéus ionization cﬁamber which detects the
number of électron-ibnvpairs produCed by the passage of a chargedﬁpar—
ticle and the solid sfate or semi-conductor radiation detector which
detects the number of electron hole pairs. The use of ionization
chambérs of one form or another (and thishinc]udes the classical
electroscopes) dates back to the beginning of this century. The solid
state detector is a more recent development. Reviews on their proper-
ties and performance can be found.by Goulding and Stone (1970),

Tavendale (1967) and Miller et al. (1962).
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It has been recognized for a long time (see Bethe, 1930 and Mott

and Massey, 1965) that the ionization cross section has virtually an
identical form to that of the total stopping power. |t is not surprising
therefore that a measure of the number of liberated electrons should
correspond to the amount of energy lost. What is-somewhat surprising,
however, is the broad range of cha}ge and velocity over which the
response of these detectors is accurately represented as a linear func-
tion in the total energy loss. One is reminded of the situation for
scintillators. For large values of Z, and B the response is roughl&
linear to total energy loss but only because the close collision
energy loss is nearly a constant fraction of the total loss. The
insensitivity of the scintillator response to distant collisions is
reflected by saturation characteristics involving a comparison of
data taken over a large span of charge and velocities. The key para-
meter in the application and theory of ifonization counters and solid
state detectors is W, which is equal to the amount of total dissipated
energy réquired to liberate one electron-ion or electron-hole pair.
In Table VI.4 we present results taken from Fano (1963) for values
.of W (in eV per pair) for various gases and semi-conductors and for
different kinds of radiation sources. References are given by Fano.
The remarkable constancy of W over a large range of velocity (B = 0.05
to B ~ 1) indicates that all types of collisions partake equally in
the detection mechanism. For example, the fraction of energy loss
which goes toward producing energetic electrons (>1500 eV) in silicon
ranges from 0.39 at B = 0.95 to 0.32 at B = 0.05. Any preferential
sensitivity fo the high energy delta rays is not indicated by the data

in Table VI.4.
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I't may seem that direct ionization, i.e. close collisions, should
'be“more efféctive in producingf?on pairs than the relatively inefficient
distant cdllisions which; as we have previously mentioned, are as
likely to.be excited as ionized. However, the number of these close
cdllisions is vastly gx;eeded'by the number of distant collisions. Any
déficiency in distanf céllisfon ionization.efficiency can be more than
compensated fér by this humefiCé] advantage.%h Subséquent secondary
ionization and excitation is essentially'the same as the primary pro-
éess, and the ratio of excitation to ionizatio; events is unaltered.
The similarfty of the ?onization cross section to the stopping power
suggests the correséondenée of the energy'lést in a particle-track to the

nqmber of pfimary ibn*pairs via the relation N =VAE/e where AE is
the energy lost b; the projectile. Since roughly half of.fhe enéfgy
is lost ‘to the close collisions, lAE/e“is the number of secondary ion
pairs. Proceedtng with the same argument (-)2 AE/€ is the number of
tertlary ion pairs, (—93 AE/e the number of quaternary pairs, etc.
since %—+ %-+ %-+ :..‘é 1"we see that the close collisions result
in the same number of ion pairs as the distant collisions. Externally
~applied electric fields Separafe the charge éufficiently to prevent
recombiﬁatiqn." It can be seen that W = £/2. Fano (1963)'gives addi-
tiqnal arguments and references regarding the excellent linéarity of
these ionization de.tectors',.q5

In addition to having superior linearity, ionization detectors
have the favorable propértiés of enhanced éouhting statiétics and
excellent temperature stability over scintillation counters. The

statistics governing charge production and collection are not totally
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understood (see Fano, 1947, van Roosbroeck, 1965 for a theoretical
treatment). However, the fractional standard deviation of collected
charge is well represented by /F7§ where F is the Fano factor and N

is the mean number of electron-ion or hole pairs. F is of the order
0.1 for sofid state detectors. In order to produce one photoelectron
in typical scintillation counters, 1000 eV or more of deposited energy
is required. This is about 300 times more than that required to pro-
duce one electron-hole pair in silicon. The enhanced resolution is
therefore ~/§557F ~ 50 times as good in semi-conductors as in scin-
tillators. Bichsel (1972) reports that in going from 300° K to 90° K,
W increases by 4% for silicon. This is a much smaller temperature
coefficient than is possible with any phototube-scintillator combina-
tion. Temporal drifts can be expected to be reduced by the same order
of magnitude. It should be mentioned that the one disadvantage solid
state detectors have in relation to scintillators is e*pense and size
limitation of fabrication. They are also much more prone to radiation
damage. These.factors should always be considered in the design and

‘analysis of experiments.

..]37..



Acknowledgements

The successful completion of this Review article would nof have
been possible withouf the support, entouragement and advice of Prof.
P. Buford Price. Much of the work referencea iﬁ'this paper was brought
to the éttention of the author by the participants of the Informal s
Workshop onACurrent_Stopping Power: Problems (New York University, ..
Jaﬁuary 1978)'and they are gfatefully acknowledged. | would like to
express m; appreciation to M._Inokuti for his interest in.this project
and.for'éeveral valuable discussions. Thanks are due to Prof. Price,
G. Tarlé and e§pecially M. Salamon for a criticalvreading of the manu-

script and to Judy Blair for a fine typing job. This work was supported

by DOE Contract At(04-3)-34.

_138-



l.

Footnotes

In this Review stopping power will be defined to be the energy
loss of the projectile per unit distance traveled by the projec-
tile due exclusively to electronic excitation and ionization.
Exceptions to this are found in some of the work by Bohr (1913,
1915) and Bloch (1933a) where an extra charge dependence is
introduced in the connection of the close and distant collision
results.

At the present time there is one such accelerator in the world.
The Bevalac at the Lawrence Berkeley Laboratory is capable of
accelerating ions up to 3°Fe to approximately 2 GeV/amu. In the
early 1970's the Princeton Particle Accelerator achieved the
capability of accelerating '“N to a total energy of 7.4 GeV
before being forced to shut down due to lack of funding.

By successful we mean an experiment which yields either negative
or positive results at a highly significant level.

It was not realized that it was necessary to separately calibrate
different batches of the same type of plastic, namely Lexan
polycarbonate; within this single category are several types of
plastic with different kinds of additives used to enhance commer-
cially valuable properties, such as clarity, resistance to ultra-
violet radiation damage, etc. |In addition, it was not known very
accurately how this particle detector would respond to a magnetic
monopole. In fact, the answer to this question is still not
known. Similarly, the lack of an accurate predictive track model

for nuclear emulsions hindered interpretation of data from these
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detectors.

By'mass and charge, whether it be electric or magnetic, we will

mean those quantities which are observed, or renormalized. It

may seem unnecessary to explicitly state this but it is advanta-
geous to keep it in mind, particularly when we consider the
radiative corrections. |

The fractional error in stopping power due to this approximation
is -(m/M)/2n(2mv2/1) where M = M M,/ (M;+M,) . This is always
much less than 0.1% as long as v > Voo the characteristic atomic
velocity. This proviso also applies to the above discussion
fegarding elastic and inelastic collisions. If v < Voo ioniza-
tion becomes inefficient and elastic collisions dominate the
energy. loss process.

By atom we mean the smallest aggregate of matter which can Be

treated as an independent unit.

"Equation 111.6 will be referred to as the Bohr formula even though

this relativistic expression did not appear 'in Bohr's early pub-
lications. It has been noted that AE(b) as used for close colli-

sions is strictly valid for small CM angles and it reduces to

" the proper limit for large CM angles. The correct classical

relativistic expression is quite complicated and is undoubtedly
invalid in any case since quantum mechanical effects are important
for these close collisions. However, eq. |11.6 will serve as a

standard classical expression for comparison with other results.

¥(z) is commonly referred to as the digamma function. See

Abramowitz and Stegun, 1970 for a discussion of its properties.
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it.

12.

13.

14.

15.

16.

Bohr and Bloch present some results which are relativistically
valid; however they do not obtain self-consistent expressions

for the stopping power of a relativistic projectile.

This assumption is contained in assumption 13; we have explicitly
stated it here to emphasize that this assumption was not required

by Bloch.

This is also seen to be the case if one examines the First Born

Mott cross section; the.Bzw/wm term in eq. I11.46 is a consequence
of the electron spin and this is quite negligible for distant

collision values of w which are of the order 100 eV.

The gas under consideration has been cold, in the sense that

atoms are assumed to be in their ground state.

This assumption is often made incorrectly for low energy stopping
power measurements. This accounts, at least in part, for the
large spread (much ﬁore than 1%) of these measurements performed
by different groups at energfes.less than 1 MeV/amu (zZiegler,
1978) . | |

The concept of an adiabatically limited impact parameter is
equally valid in a quantal treatment as in Bohr's classical treat-
ment. This is because eq. I1l.1 is identical to that obtained

in a quantal calculation via time dependent perturbation theory
with the understanding that a sum over the excitation energies
hw of the atom must be made, weighted by the oscillator strengths
of the transitions. In a more general sense the lfmiting impact
parameter is a consequence of the Adiabatic Theorem, discussed in

most Quantum Mechanics textbooks, which requires that a system
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17.

18.

-19.

20.

21.

22.

disturbed more slowly than its relaxétion time reverts to its

inifia] state after the perturbatién returns to zero.

Sternheimer Snd Peiérls, 1971 show that the distinction between

conductbrs and non-conductors is of no practical concern. Low

velocity determinations of i are assumed to contain the slowly -

varying Iow.velocity»dgnsity effect correctibn for conductors. -
AE = SAx only in the limit of very tﬁin absorbers and for values
of Z,, B and Ax such thaf'the energy loss distribution is-
symmetric. |f this isvnot.the'casé oné must'be careful about

the experimental and theoreticéi modes of the diétriﬁutfon which
are bgingvcbmpared (;ee Ahlen, 1977):

Sée, for example, Table IIf.3 which is a reproduction of that
appearing in Dalton and Turner tl968) énd’is the set of experi-
ments analyzed by these authors in order to obtain values of 1I.
quch;s (l933§) cdntribﬁtfon to thelthébry of fhe mean ionization
potential i;>often ackﬁowlédgéd by pairing him with Bethe in
reference to:eq. F11.38. lnvview of Bloch's (1933a) correction
to Bethe's formulg (eq. 111.17) this. reference can be misleading.

Hence we will not use the expression "Bethe-Bloch formula" in

this Review.

[

See Dehmef et ai. for references.

This is slightly higher tﬁan 15.6 eV, the ionization potential
of the hydrogen atom in the ground state. Thisvis due to the
contributions of_thevcéntinuum'states. “Although the diﬁole
oscillatér strengthsAfor these states decreaﬁe rapidly with

energy, they are sufficiently_large to account for Bethe's result.
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23.

24,

25.

26.

27.

The near equality of | with the photo-ionization potential accounts
for the success of Sternheimer's (1952) semi-classical calcula-
tion of the density effect correction.

Note that we always interpret | as the logarithmic mean ioniza-
tion potential per electron. In this convention then, I1(H,) = I(H)
in the absence of chemical binding effects.

In actuality, eq. }11.43 should be written as a double sum over
excitation.levels and momentum transfers in such a way that Woin
depends on the level. Fano (1963) discusses this in greater
detail. It is shown that Wmin(En) = Enz/(2mv2) ~ (vo/v)" W

Hence, w . << w except for small velocities, where shell
min max

corrections start being important.

According to the Lindhard, Scharff theory, 0? = OBZ if 52,> 30c2/Z2
and o2 = OBZL/Z for lower. velocities than this where L is defined
“according to eq. [11.19

It might be.noted that this fransition velocity depends on the
qharge of the'farget and of the projectile; for Z, = 92, electron
cabture and loss fluctuations become important for T >> 1 MeV/amu.
Also, lead absorbers are morevsubject to the restriction v >>_vo
than lighter absorbers. These factors should be considered in
any practical application.

Although it is not mathematically rigorous to do so, one usualliy
introduces no significant errors in convolving a Gaussian distri-
bution with an asymmetric one of the nature of the Landéu or
Vavilov distributions by requiring the total (FWHM)2 be given by

the sum of the squares of the contributing FWHM's.
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28.

29.

30.

31.

32.

33.

Ahlen (1977) has pointed out a minor error in eq. L of Sellers
and Hanser (1972). This does not affect any of the subsequent
discussion.

For the second integral in eq. IV.1, w is defined by eq. IV.3

and has no simple physical interpretation.

This is strictly correct only for large momentum transfer; for
low momentum transfer the effect of the anomalous magnetic moment
of the electron depends on Au(a); however, since the radiative
corrections become negligible for shall momentum transfer this
distinction is not important.

Jacksoﬁ and McCarthy, 1972 emphasize that only for an infinitely
massive scattering center can one make separate expansions in the
strength of the external potential and in the coupling of the
electron to tHe electromagnetic field; this is well verified by
the calculations of radiative correctioﬁs to muon-electron scatter-

ing by Eriksson et al., 1963; the close collision energy loss

_ fractional correction due to interference of these two effects

can be shown to be 4a(2 )(—x)/zn(w /w ) if Z, ~A /2.

This dlstance corresponds to the mlnlmum non-zero angular momentum
allowed by quantum mechanics.

Ashley et al., 1972 claim that their expansion in powers of the
electron displacement to separation ratio restricts its validity
to the outside of the atomic volume.. However, one can show that
this ratio has a maximum value of the order ZleZ/(mvzb) where

b is the impact parameter. For Z a/B < 1 and b > h/(mv) this

ratio is less than one. Hence it is not unreasonable to adopt
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3L,

35.

36.
37.

38.

Bohr's classical treatment for impact parameters well within the
atomic volume. | ‘ \

The Bohr criterion is that orbital electrons of the ion are stripped
if their orbital velocity is less than the ion velocity while they
are attached if the opposite case maintains. See Betz, 1972.

In particular, Fig. 3.6 of Fleischer et al. (1975) shows that
Steward and Wallace calculate the range of 56Fe at | MeV/amu in
Lexan to be ~30% larger than the measured valué.

Jones (1977) summarizes experimental regults of monopole searches.
The cylindrical symmétry of the electric field of the monopole
precludes the existence of a net polarizatién of the absorbing

medium.

Garcia et al. (1973) review inner shell ionizétion phenomena and
‘they point out that: ''The emission of an Auger electron subsequent
to K-shell vacancy production is more probable than x-ray emission
for all target Z, values less than about 30 and several orders of
magnitude more probable for Z, < 15. For higher shells, the range

of Z, over which Auger emission predominates becomes even larger.'"

. For carbon, the K-shell fluorescence yield is only 0.24%, and for

oxygen- it is 0.77%. Hence, for CH or H,0, one would expect that

~20% of the distant collision dose involves'inner shells for which
de-excitation leads predominantly to Auger emissfon. A carbon Auger
electron will have a kinetic energy of the order 200 eV and will
execute a random walk with a mean displacement from the origin of the
order ISFA in water or plastic. Hence, the prompt dose profile

should differ from the delayed electronic dose by about 20%, which
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39.

ho.

Ly,

L2.

L3.

Ik,

will be distributed throughout a cylinder of radius ~15 A.
Sternheimer (1953a) has shown that Cerenkov radiation can account
for only a very small fraction of energy transfer for silver
bromide grains. The effect is undoubtedly enhanced on a smaller

scale.

“Transition radiators produce x-rays which are useful in measuring

ultra-relativistic energies. This effect involves the action on

the particle fields by the discontinuous absorber boundaries.

In this Reyiew we are concerned primérily with bulk effects, and
hence we will not discuss transition radiation.

Jensen ef al. (1976) find that the critical enérgy deposition per
grain is roughly 100 eV. This should be compared to the senéi—
tivity to visib}e light. Only several optical quanta are required
to sensitize a grain which qorresponds to ~10 eV.

Until very rgcently it was not known to what extent the isotope
spread could affect the interpretationiof data iike these.
However, Térlé et al. (1978) have shown that the iron isotopes
consist primarily of °®Fe.

THis feature, if true, has thus far been obscuredvby a ~3% etch
rate scatter-due to spatial non-uniformities of the plastic
itself. Current research on an improved plastic, CR-39
(Cartwright et al., 1978) indicates that the intrinsic resolu-
tion is indeed much better-than this.

By examining Bethe's (1930) derivation, it can be seen that the
_distant collision ionization cross section is about 5 times

as large as the close collision ionization cross section.
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45,

Recent calibrations with relativistic °®Fe ions (Greiner, 1978)
have indicated that for incident angles within ~3° of the electric

field lines, charge recombination effects occur which distort

the charge collection spectrum of solid state detectors. This
could be regarded as a form of saturation. It is easily corrected

for however by rotating the detector at an angle greater than 3°.
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Table II.1

Notation Used in this Review

mass of projectile in atomic mass units (1 amu = 1.6605 x 10'2“g).
mass of absorbing atom in atomic mass units.

h?/(me?) = Bohr radius = 0.5292 A.

e?/(hc) = fine structure constant = 1/137.036.

velocity of the projectile relative to the absorbing medium

in units of speed of light in vacuum c = 2.998 x 10"° cm/s.
Mlcz(y-l) = kinetic energy of projectile.

renormalized magnetic charge of the projectile if it is a
magnetic monopole.

Lorentz factor of the pfojectile = 1/(1—82)%.

logarithmic mean excitation energy.

da = Compton wavelength of the electron * 2m = 3.862 x 10~'! cm.
mass of projectile.

rest mass of the electron = 9.110 x 10~28 g.

rest mass of the proton = 1.672 x 10-2% g = 1.0073 amu.

volume density of electrons in the absorber.

azao = classical electron radius = 2.818 F(1 F = 1 Fermi
= 10-!3% cm).

typical radius of electron orbit in a heavy element.

~-dE/dx = stopping power of projectile.

E/A; = 931.5 MeV(y-1) = energy of projectile per atomic mass
unit (often expressed in the unit MeV/amu).

characteristic electron velocity in a heavy element.
Bc = projectile velocity.

kinetic energy of knockon electron in the laboratory frame.
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Table II.1 (cont.)

pathlength.

number of protons in the projectile if it is an ordinary
nucleus. '

renormalized electric charge of the projectile if it is a
nucleus or anti-nucleus; -e is the renormalized electric

charge of the electron: e = 4.803 x 1070 esu.

atomic number of the absorbing medium.
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Table III.1 Parameters to be used in the general expression for the
density effect correction (Sternheimer and Peierls, 1971).

C = -22n(1/ﬁwp) -1
m= 3.0
a=-(C+ 4.606X0)/ (X1 - Xo)™

Solids and Liquids

Ey,

LS

1 lel Xo X1
I < 100 eV lc] < 3.681 0.2 2.0
I < 100 eV |c| > 3.681 0.326]c| - 1.0 2.0
I > 100 eV lc] < 5.215 0.2 3.0
I > 100 eV |c] 2 5.215 0.326|C|] - 1.5 3.0
Gases at STP (T = 0° C and P = 1 atm)
- led X X
lc] < 10.0 1.6 4.0
10.0 < || < 10.5 1.7 4.0
10.5 < |c| < 11.0 1.8 4.0
11.0 < |c| < 11.5 1.9 4.0
11.5 < |c| < 12.25 2.0 4.0
12.25 < |c| < 13.804 2.0 5.0
|c] 2 13.804 0.326]¢c| - 2.5 5.0
Gases at density equal to n.x density at STP
Xo(n) = Xo - %Rog1o(n) 5 a(n) = a
Xi(m) = X1 - HRog10(n) 5 C(n) = C + 2.303%0g10(N)
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Table III.2 Density and plasma energy for various substances.

Substance Chemical Formula
Beryllium Be
Polyethylene (CH2)n
Lucite, Perspex, (CSHSOZ)n

Plexiglas (poly-
methyl methacrylate)

Lexan, Makrofol (poly- (C16H1h03)n
carbonate of Bisphenol A)

. Polyvinyltoluene (C9H10)n
Anthracene CIHHIO
Water H,0
Aluminum Al
Silicon Si
Copper Cu
Germanium Ge
Nuclear Emulsion 0.128Ag+0.128Br+
(G5) 0.001I+0.406H+0.176C
+0.040N+0.1190xygent
0.002s
Silver Ag
Sodium Iodide Nal
Cesium Iodide CsI
Gold Au
Lead Pb
Hydrogen Gas (STP) H,
Nitrogen Gas (STP) No
Oxygen Gas (STP) 0,
Air (STP) 0.78N,+0.210,+0.01Ar
"Helium Gas (STP) ‘He
Neon Gas (STP) Ne
Argon Gas (STP) Ar
Krypton Gas (STP) Kr
Xenon Gas (STP) Xe
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p (g/cmd)

1.848 (200C)
0.93 + 0.01
1.19 + 0.01

1.204

1.032
1.25

1.000 (40C)

2.699 (200C)
2.33 (250¢0)

8.96 (200¢)

5.323 (259%)
3.8 £ 0.2

10.50 (20°%c)
3.67

4.51 |
19.32 (20°C)
11.35 (20%)
8.96 x 10-°
1.246 x 10-3
1.422 x 10-3
1.29 x 10-3
1.779 x 10-*
8.97 x 10-"

1.774 x 1073 -

3.725 x 10~3
5.837 x 103

K

26
21

23.

22

21
23

21,

32
31

58.
44,
37.

= = O O O O O O O o

(eV)

.10
.01
10

.92

.56
.40
46
.86
.05
27
14
87

.63
.07
.46
.25
.13

.272
.719
.768
.731
.272
.608
.815
.153
412
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Table III.3 Key experiments for determination of I from Dalton and Turner (1968)

Reference

’Bakker and Segré (1951)

Sachs and Richardson (1951,

1953)
Thompson (1952)

Brolley and Ribe (1955)
Brolley and Ribe (1955)

Bichsel, Mozley and
Aron (1957)

Burkig and MacKenzie (1957)

Zrelov and Stoletov (1959)
Zrelov and Stoletov (1959)

Nielsen (1961)

Barkas and von Friesen (1961)

Nakano, MacKenzie and
Bichsel (1963)

Andersen et al. (1966)
Andersen et al. (1967)

Type of Experiment

Stopping-power relative
to aluminum

Absolute stopping power

Relative stopping-power

Absolute stopping-power

Stopping-power relative
to air

Range measurement

Stopping-power relative
to aluminum

Range measurement

Stopping-power relative
to copper

Absolute stopping-power
Range measurement

Stopping-power relative
to aluminum

Absolute stopping-power

Absolute stopping-power

Energy (MeV)

P = proton
d = deuteron

340 p
18 p
270 p

4.43 p
8.86 d

6 - 18 p
19.8 p
658 p
635 p

1 -5 p,d
752.2 p
28.7 p

5 ~-12 p,d
5-12 p,d

Materials Studied

CH;,Li,Be,C,Al,Fe,Cu,Ag,Sn,
W,Pb,U

Al,Ni,Cu,Rh,Ag,Cd,Sn,Ta,Au

Liquid H,N,0;Solid C; H,C,N,
0 and Cl in condensed compounds

H,He,C,N,air,0,Ne,Ar ,Kr,Xe(gases)
H,He,C,N,air,0,Ne,Ar ,Kr ,Xe(gases)

Be,Al,Cu,Ag,Au

Be,Al,Ca,Ti,V,Fe,Ni,Cu,Zn,Nb,
Mo,Rh,Pd,Ag,Cd,In,Sn,Ta,W,Ir,
Pt,Au,Pb,Th

Cu
CH, ,Be,C,Fe,Cd,W

Be,Al,Ni,Cu,Ag,Au
Al ,Cu,Pb,U,emulsion

Be,Al1,Ti,V,Co,Ni,Cu,Ag,Ta,
W,Ir,Au :

Al
Cu,Be,Ag,Pt,Au
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Table III.4 Values of mean ionization potential from various sources. Values are

Material
H, (Gas)
H (Liquid)
H (Saturated compounds)
H (Unsaturated compounds)
He (Gas)
Li (Solid)
Be (Solid)
B (Solid)
C (Graphite)
C (Saturated compounds)
C (Unsaturated compounds)
C (Highly chlorinated)
N, (Gas)
N (Liquid)
N (Amines, nitrates)
N (Ring)
N (Unspecified)
02 (Gas)
0° (Liquid)
0 (-0-)
0 (0=)
0 (Unspecified)
F (Unspecified)
Ne (Gas)
Na (Unspecified)
Mg (Unspecified)
Al (Solid)
Si (Solid)
P (Unspecified)
S (Solid)
€1 (Liquid)
Cl (Unspecified)

¢ v

NCRP

1961

20.
17.
14.

38
67
78.
77.
75.
64.

7
6
8

00 k= (W B

85.1

99.
76.

98.
98.
88.

o

v w

Fano
1963
18.3 +* 2.6
15 - 18
15 - 18
42 + 3
40, 38
64
81.
77 - 80
77 - 80
88
79 - 102
79 - 102
101
91 - 101
91 -.101
163

Bichsel Turner et al.
1968 1970
18 18.2
42 44.3
- 37.4
64 61.7
78 81.2
78 89.6
100 -

- 101
- 132
164 163
170 -

- 176

expressed in eV.

Bichsel
1972

19.2

41.3
39
64

78

Andersen and

Ziegler
1977

18.8

41.
47.
62.7
76

77.3

N~

86.7
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46
47
48
48
49
50
51
52

Table III.4 continued

Ar

(Gas)

K (Unspecified)

Ca
Sc
Ti

(Solid)
(Solid)
(Solid)

V (Solid)

Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr

(Solid)
(Solid)
(S0l1id)
(Solid)
(Solid)
(Solid)
(Solid)
(Unspecified)
(Solid)
(Unspecified)
(Solid)

(Unspecified)

(Gas)
(Unspecified)
(Unspecified)

Y (Unspecified)

Zr
Nb
Mo
Te
Ru
Rh
Pd
Ag
cd

Cd
In

Sn
Sb
Te

(Solid)
(Solid)
(Solid)
(Unspecified)
(Unspecified)
(Solid)
(Solid)
(Sol1id)
(Solid)
(Unspecified)
(Solid)
(Solid)
(Solid)
(Unspecified)

53 I (Unspecified)

"y

194
193
196
218
230
239
259
270
280
296
310
322
320
324
330
338
340
349
358
358
363
370
378
390
406
410
423
443
458
466

471
480
487
494
495
498
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54
55
56
57
58
59

60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
77
78
79
80
81
82
83
84
85
86
87
88
89

Table III.4 continued

Xe
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta

(Gas)
(Unspecified)
(Unspecified)
(Unspecified)
(Solid)
(Unspecified)
(Unspecified)
(Unspecified)
(Unspecified)
(Unspecified)
(Solid)
(Unspecified)
(Unspecified)
(Unspecified)
(Solid)
(Unspecified)
(Solid)
(Unspecified)
(Unspecified)
(Solid)

W (Solid)

Re
Os
Ir
Ir
Pt
Au
Hg
T1
Pb
Bi
Po
At
Rn
Fr
Ra
Ac

(Unspecified)
(Unspecified)
(Solid)
(Unspecified)
(Solid)
(Solid)
(Unspecified)
(Unspecified)
(Solid)
(Solid)
(Unspecified)
(Unspecified)
(Unspecified)
(Unspecified)
(Unspecified)
(Unspecified)

497
490
483
480
493
507
521
537
548
562
564
585
600
623
640
652
662
672
682
684
693
698
707

735
759
755
756
748
759
765

‘775

785
793
796
799
808



90
90
91
92
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Table III.4 continued

Th (Solid) . ) -
Th (Unspecified) -
Pa (Unspecified) -
U (Solid) 945
Air (Gas) 85
Emulsion (Solid) -
Methane {(Gas) -

872
85
323
45

825
837
847



Table III.5 Ratio of mean ionization potential in gas phase to that in
condensed phase as given by theoretical models of Sternheimer (1953b) .and
Brandt (1956) and by comparison of exact calculations of Dehmer et al. (1975)
to data. :

I(gas) /I(condensed)

Material Sternheimer Brandt ' Dehmer et al. "t
Li ' 0.84 : 0.88 0.88 .
Be : | | 0.70 0.75 % 0.16
C 0.90 0.84 » 0.84
Al 0.97 0.73 .. 0.76
Cl 0.84 0.95

o
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Table III.6.

|

Ao\ EFW N -

O OO —3-3-3

eq. III.L40 and eq. III.L2 respectively.

Recommended values of I and values for Igg
1l values are expressed

and T as given by

in eV.
Material Recommended Iadj I
H, (Gas) 18.5 * 0.2 19 23
H® (Liquid) 20.7 19 23
H (Saturated condensed compounds) 17.6 19 23
H (Unsaturated condensed compounds) 1k4.8 19 23
He (Gas) 42.3 + 0.5 31 35
Li (Solid) L0.0 £ 1.6 43 L6
Be (Solid) 63.9 = 0.7 55 58
B (Solid) 76 67 70
¢ (Graphite) 79.0 + 0.7 79 81
C (Saturated condensed compounds) 77.3 79 81
C (Unsaturated condensed compounds) 75.1 19 23
C (Highly chlorinated condensed 64.8 79 81

compound )
N2 (Gas) 82 + L 91 93
N° (Liquid) 85.1 91 93
N (Amines, nitrates in condensed 99.5 91 93

compounds )
(Rings in condensed compounds) 76.8 91 93
5 (Gas) : 98.5 + 1.5 103 105
(Liquid) 98.3 103 105
(-0- in condensed compounds) 98.5 103 105
(0= in condensed compounds) 88.9 103 105
5 (Gas) : 120 115 117
Né (Gas) 133 + 3 127 128
Na (Solid) 148 139 1ko
Mg (Solid) 156 151 152
Al (Solid) 164 =1 163 163
Si (Solid) 169 + 2 172 175
P (So01id) 172 182 183
S (Solid) 180 191 192
€1 (Liquid) 173 £ 3 200 201
Ar (Gas) 188 = 2 210 210
K (Solid) 193 219 218
Ca (Solid 191 + 3 228 227
Sc (8olid) 216 + 2 238 236
Ti (Solid) 228 + 2 247 2Lh
Vv (Solid) 2L2 + L 257 253
Cr (Solid) 260 + 1 266 262
Mn (Solid) 273 = 3 276 271
Fe (Solid) 275 + 3 285 279
Co (Solid) 296 + L 295 288
Ni (Solid) 310 + 2 304 297
Cu (Solid) 317 £ 2 314 305
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Zn (Solid)
Ga (Solid)
Ge (Solid)
As (Solid)
Se (Solid)
Br2(Liquid)
Kr~(Gas)
Rb (Solid)
Sr (Solid)
Y (Solid)
Zr (Solid)
Nb (Solid)
Mo (Solid)
Te (Solid)
Ru (Solid)
Rh (Solid)
P4 (Solid)
Ag (Solid)
cd (Solid)
In (Solid)
Sn (So1id)
Sb (Solid)
Te (Solid)

I (Solid) .

Xe (Gas)

Cs (Solid)
Ba (Solid)
La (Solid)
Ce (So1id)
Pr (Solid)
N4 (So1id)
Pm (Solid)
Sm (Solid)
Eu (Solid)
Gd (Solid)
Tb (Solid)
Dy (Solid)
Ho (Solid)
Er (Solid)
Tm (Solid)
Yb (So1id)
Lu (So1id)
Hf (Solid)
Ta (Solid)
W (Solid)
Re (Solid)

.0s (Solid)
- Ir (Solid)

Pt (Solid)
Au (Solid)
Hg (Liquid)
T1 (Solid)

322 -

640

662
672
682
703
722
698
707
733
758
770
756
48

4+ I+ I+

I+

1+

I+ 1+ 1+

T O\O &

I+

+ I+

+ 1+ I+

10

AWV POHN

10
1L

324

333

343
352

362
372 -

381
391
Loo

" L10

420
k29
439

L8

L58
L68
b7

- L8T
LoT

506
516
526
535
545
555
564
5Th
584
593
603
613

622 -

632
6h2
651
661
671
680
690
700
709
719
729
739
748
758
768
TTT

- 787

797

806

816

314
323
332
340
349
358
366
375
384
392
Lol
410
419
Lot
436
hhs
k53
Lé2
L71
480
4,88
kot
506
51k
523
532
541
549
558
567
575
584
593
602
610

" 619

628
636
645
654
663
671
680
689
697
T06
715
723
732
Thl
750
758



82
83
8l
85
86
871
88
89
90
91
92

Pb (Solid)
Bi (Solid)
Po (Solid)
At (Solid)
Rn (Gas)

Fr (Solid)

Ra (Solid) .

Ac (Solid)
Th (Solid)
Pa (Solid)
U (Solid)
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793
765
775
785
793
796
799
808
762
837
88l

I+

1+

11

6L
18

826
835
845
855
865
8Th
884
89L
903
913
923

T67
T76
T84
793
802
811
819
828
837
845
85k



'Téble IV.l. Fractional RadiatiVe correétion to the Bethe formula
' for heavy charged particles in argon gas. Wb = I.= 186.eV.

100 x (F+G)/2 ] - . .
Y  Jankus (1953), Q=m Jankus, Q=2my  Eg. IV.10
10 oot o019 - 0.32 -
20 0.5 B 0.43
50 0.75 | 0.66 0.60
100 s 0.88 0.73

Table 1IV.2 Fractional kinematical correction to the Bethe formula for
protons in argon gas.

X ' A ()

lo -0.045

20 ~0.079

30 -0.17

100 | ~0.31 .
200 | | -0.54 |
500 -1.08 .
1000 , ~1.72
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Table IV.3 Fractional form—-factor correction to the Bethe formula for
nuclei and anti-nuclei in argon gas.

A (%)
y Ay = 1 | Ay = 10 Ay = 100 A; = 250
10 -0.0026 ~0.013 ~ -0.058 -0.11
20 -0.0089 ~0.041 -0.19 -0.35
50 ~0.047 -0.21 -0.93 -1.60
100 -0.16 ~0.73 -2.68 ~4.02

Table IV.4 Fractional form-factor (complete) plus recoil corrections
to the Bethe formula for protons and deuterons in aluminum.

Y Protons (Turner et al., 1969) ’ (A%euterons (Vora and Turner, 1970)
10 -0.044 (-0.048) ~0.08
50 -0.088 (-0.22) : -0.32
100 -0.30 (-0.47) -0.71
250 -0.69 -2.57
500 -1.5 ‘ : -5.05
750 -2.3 : ‘ -6.77
1000 -3.1 -7.47
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Table IV.5 Ratio of bremsstrahlung to collisional energy loss for heavy

nuclei in an argon gas.

X

10
20
50
100
200
500
1000

Table IV.6 Values for cosy to be used in eq; IV.23.

|zya/8]
0

0.05
0.10
0.15
0.20
0.30
0.40
0.50
0.60
0.80
1.00
1.20
1.50
2.00

A=1, Z2;=1
.029

0.053
0.116
0.
0
0
1

0

213

.394
). 895
674

Ratio (%)

Ay=10, Z;=5 A;=100, Z;=50 A= 250, Z;=100

0.088 1.02 1.72

0.158 1.83 3.10 '

0.347 4.04 6.82

0.637 7.41 12.5 -
1.177 13.7 23.1

2.67 31.1 52.6 “-
5.00 58.2  98.3

COSK
1.000

0.9905
0.9631
0.9208

©0.8680
0.7478
0.6303
0.5290

0.4471
0.3323
0.2610
0.2145
0.1696
0.1261
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Table IV.7 Value for Z as given by eq. IV.28 at the Bohr velocity

of Zyc/137. eff

Zy Zeff(Bohr velocity)
10 8.7
20 | 18.5
30 28.4
40 38.4
50 48.5
60 58.5
70 . 68.6
80 78.7
90 88.7
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of B from Moliere theory from Bichsel (1972).

~180-

Table IV.8. Values
z, |ox, &5 . Z, =1 2y =2 Z, =6
2 cm? »
B“=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 0.1 1.0 0.1 1.0
3 103 10.5 8.8 8.3 7.6 6.6 5.7 4.9 3.8 2.8 7.4 4.6
10-2 13.0 11.5 16.8 10.2 9.2 8.5 7.7 6.6 5.7 116.0 7.4
10! 15.4 14.0 13.3 12.8 11.7 11.0 10.3 9.2 8.5 112.5 10.0
1 17.9 16.4 15.8 15.2 14.2 13.5 12.8 11.8 '11.0 {14.9 12.6
10 10”3 . 8.2 8.0 7.7 7.4 6.7 6.0 5.2 4.2 3.2 7.2 4.91 8.1 7.2
10~2 10.7 10.5 10.3 9.9 9.3 8.7 8.0 7.0 6.2 9.8 7.7 110.6 9.7
10~! 13.3 13.0 12.8 '12.4 11.8 11.2 10.5 9.6 8.8 (12.3 10.3}{13.1 12.3
1 15.7 15.4 15.2 14.8 14.3 13.7 13.1 12.1 11.4 |14.8 12.8 15.5 14.7
20 103 6.8 6.7 6.6 6.5 6.2 5.8 5.2 4.2 3.5 6.5 5.0 6.8 6.4
102 9.4 9.3 9.3 9.2 8.9 8.5 7.9 7.1 6.4 9.2 .8 9.4 9.1
10-1 12.0 11.9 11.8 11.7 1i.4 1i.0 10.5 9.7 9.0 }11.7 10.3}11.9 11.6
1 14.4 14.4 14.3 14.2 13.9 13.5 13.1 12.2 .11.5 |14.2 12.8 |14.4 14.2
50 10-3 4.7 4.7 4.7 4.6 4.6 4.5 4.3 3.7 3.2 4.6 4.1 4.7 4.6
10-2 7.5 7.5 7.5 7.4 7.4 7.3 7.2 6.6 6.0 7.5 .0 7.5 7.4
107! 10.0 10.0 10.0  10.0 10.0 9.9 9.7. 9.2 8.8110.0 9.61]10.1 10.0
1 12.5 12.5 12.5 12.5 12.5 12.4 12.2 11.8 11.3)12.6 12.1}|12.5 12.5
100 | 1073 3.1 3.1 3.1 3.1 3.0 3.0 3.0 2.8 2.5 3.1 2.9 3.1 3.1
1072 6.0 6.0 6.0 6.0 6.0 5.9 5.9 5.7 5.4 6.0 .8 6.0 6.0
107! 8.7 8.7 8.7 8.7 8.7 8.6 8.6 8.4 8.2 8.7 .5 8.7 8.7
1 11.2 11.2 11.2 11.2 11.2 11.1 11i.1 10.9 10.7(11.2 11.0111.2 11.2



Table IV.9. Multiple scattering integral distribution function
from Bichsel (1972).

x B =4 6 8 10 12
0.2 0.04617  0.04320  0.04195  0.04123  0.04078
0.4 0.16893  0.15993  0.15616  0.15393  0.15253
0.6 0.33004  0.31815  0.31316  0.31008  0.30814
0.8 0.48890  0.48156  0.47856  0.47637  0.47496
1.0 0.61973  0.62359  0.62554  0.62592  0.62614
1.2 0.71612  0.73300  0.74088  0.74449  0.74676
1.4 0.78446  0.81102  0.82357  0.82981  0.83380
1.6 0.83429  0.86473  0.87948  0.88704  0.89194
1.8 0.87231  0.90159  0.91620  0.92378  0.92875
2.0 0.90166  0.92709  0.94016  0.94690  0.95136
3.0  0.96607  0.97697  0.98244  0.98447  0.98575
4.0 0.98398  0.98934  0.99189  0.99212  0.99224
5.0 0.99152  0.99429  0.99557  0.99504  0.99503
6.0 0.99530  0.99676  0.99741  0.99651  0.99655
7.0 0.99655  0.99762  0.99810  0.99744  0.99747
8.0 0.99736  0.99818  0.99854  0.99804  0.99806
9.0 0.99791  0.99856  0.99885  0.99845  0.99847

10.0 0.99831  0.99883  0.9907 0.99874  0.99876
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Table IV.10. Mean free paths for 1nelastic nuclear reactions in

units of Range at 1 GeV/amu.

Projectile/Target Air _'Aluminqm Copper . Lead
5 0.192  0.206 0.229  0.254
12¢ 0.234  -0.290 0.386°  0.507
20ye 0.314  0.401  0.548  0.756

4O Ay 0.363 ~ 0.482  0.698 . 1.02

S¢Fe 0.456 0.620  0.920  1.37

195p¢ 0.606 0.874 - 1.39. "2.30
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Table VI.1. Energy removed from "thick" aluminum absorber by delta

rays produced by passing proton.

T(MeV) §(eq.VI.16) (keV) §(Laulainen & Bichsel)
10 0.62 0.59
20 1.05 1.05
30 1.47 1.41
40 1.87 1.79
50 2.27 2.18
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Table VI.2. Parameters of Voltz modei obtained by several groups.

Source

‘Scintillator Type - Bs(g/cmz/MeV) T, (keV)

Ahlen et al. (1977)
Ahlen et al. (1977)
Buffington et al. (1978)
Buffington et al. (1978)

Pilot F
Pilot Y
NE 110
Pilot Y -
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6.29 x 10~3
1.02 x 10~2
4.5 x 10~3

4,5 x 10~3

1.37
1.78
1.5
1.5

o



Table VI.3. Detector resolution G/AE in units of

2 4 2n2.,2
(ZTI'NZ1 e x)_1/2 (%n 2mcIB Y -1,

mv

Detector f  O/AE

Lexan track detector | 10'2/5527(16.4+3.22n8)%-%i%%%%%g%;)
Scintilla;or and Emulsion Byv2mc 2 (1 52)%(2:EI§§§2¥)
e e perector SR
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Table VI.4. Values of W(eV/ion pair) for various substances.

340 MeV
Substance o, particles protons B particles
Gases He 42.7,46.0 42.3
Ne 36.8 . 36.6 ..
Ar 26.4,26.25 26.4
Kr 24.1 24.2
Xe 21.9 : 22.0
H, 36.3,37.0,36.0 36.5 36.3
N, 36.4,36.5 34.7 34.9
0, 32.2,32.5 32.6 30.9
Air 35.0 34.4 30.9
co, 34.0,34.3 32.9
CH, 29.0,29.2,29.4 27.3
Solids Si 3.55 v 3.55
Ge 2.9
Se 3.9
InSb 0.6
AgCl 7.6

G?
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Figure I11.1.

Figure Il1.2a.

Figure 111.2b.

Figure I}1.2c.
Figure 111.2d.
Figure 111.2e.
Figure 111.2f,
Figure 111.3a.
Figure 111.3b.

Figure Captions

Non-relativistic forms of eqs. I11.20a,b and c. Note

L

that L BOHR ~ “BLOCH

BETHE 'S independent of Z, and that L

for Z, =92, L for Z, = 1 and that L

>
BLOCH

sLocH ~ LpeTue 2t large

BETHE ~ “BLOCH

LBOHR at small velocities and L
velocities for Z, = 10.

Shell corrections for protons as given by Bichsel (1972):
Shell corrections for protons as given by Fano (1963).
Theoretical and'experimental_shell corrections for
aluminum for Andersen et al. (1977). (C/Zz)th is cal-
culated by Bonderup (1967); (C/Z,)' is the semi-empirical
proton shell correction such as‘that given by Fano (1963)
and Bichsel (1972) which includes higher order Born

terms; (C/Z,) is the pure. shell correction (which is

only a function of velocity and not of Z,) as obtained

by subtracting the Bloch and Lindhard corrections.

Theoretical and experimental shell corrections for
copper from Andersen et al. (1977).

Theoretical and experimental shell corrections for
silver from Andersen et al. (1977).

Theoretical and experimental shell corrections for
gold from Andersen et al. (1977).

Density éffect corrections for various solids obtained
with parameters of Table IIi.1.

Density effect corrections for various gases.
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Figure I11.4.

Figure 111.5.

Figure 111.6.

Figure 111.7.

Figure 111.8.

Figure 1V.1.

Figure 1V.2.

Figure 1V.3.

Comparison of theoretical‘énd experimental values for the
ﬁean ioﬁization poténtial. See téxt for é discussion.
Plot of 1/Z, as given by experiments. The expressions
for I/Zziés given by Dalton éndvTaner (1968) and for
Iadj/z2 as given by Sternheimer (1963) are also displayed.
The scattér at iow atomic number is due to variations of

chemical and solid state structure. The scatter at

large atomic number is due to experimental errors.

Sensitivity of the stopping-powek to the yalue used

for | for several values of | and B.

(Z - Amp)/n as a function of 1/a as given by Sellers and
Hanser (1972); See text for a definition of these
variables. | .

Range straggling for protons in'variéus substances
6btained.from Bichsel (]972’.

Distant collision polarization correction of Jackson

‘and McCarthy (1972), C, being the fractional correction

to total energy loss.

Theoretical and experimental Z,® and Zlu-correctfons

to stopping-power from Andersen et al. (1977). The
data are consistent with the validity of the Bloch
correction while the polarization correction of Jacksén
and McCarthy (1972) is about a factor of two too small. . e
Scaled polarization corrections of Andérsen et al.

(1977) compared with those of Heckman and Lindstrom

- (1969). The former were obtained with heavy ions and
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the latter were obtained with positive and negative
pions.

Figure IV.hk. Corrections to the Bethe formula for an aluminum absorber
as a'function of atomic number Z, (from which Z1 was
derived) and velocity. - See text for a discussion of
these corrections.

Figure V.1. Stopping-power of |g| = ]137e magnetic monopole in water
as calculated by Ahlen (1976) and Ahlen (l9f8b). The
separation of the curves at low velocities is due
primarily to the Bloch correction which was not con-
sidered in the earlier calculation. The curves join
at large energies due to the different manner in which
the density effect was calculated.

Figure VI.1. Parameters used in the calculation of prompt dose.

F(E) = £2K12(£) and G(&) = EZKOZ(E) where K, and K_
are modified Bessel functions.

Figure VI.2. Prompt dose profiles for a water absorber divided by
Ziz (higher order contributions are neglected). Curves
A and B are primary doses from eq. VI.5 for B = 0.1 and
0.9 respectively. Curves C and D are secondary doses
from Kobetich and Katz (1968) for B = 0.1 and 0.9
respectively. The dashed lines are the small and large
radius limits. 1 Mrad = 10° ergs/g.

Figure VI.3. First and next higher order Feynman diagrams representing
Cerenkov radiation.

Figure VI.4.  Typical Cerenkov counter integrated response with the
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‘Figure‘V|-5-‘

Figure VI.6.

delta ray Cerenkov tail and the scintillation';omponent

indicated. Taken from Ahlen et al. (1976). The Cerenkov

radiaior was Pilof 425,

Etch ratevdependenCe for Lexan on restricted energy

loss (REL) as a function of particle type. Data from ' -«
0'Sullivan et al. (1971).

Etch rate'depéﬁdence on Z,/B as a function of particle

type. Noté that all particle species'fa]l on the same

line. The data are the same for Fig. VI.5.
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