
321

Progress of Theoretical Physics, Vol. 103, No. 2, February 2000

Theoretical and Experimental K++ Nucleus Total
and Reaction Cross Sections from the KDP-RIA Model

L. Kurth Kerr, B. C. Clark, S. Hama,∗ L. Ray∗∗ and G. W. Hoffmann∗∗

Department of Physics, The Ohio State University, Columbus, Ohio 43210-1106
USA

∗Hiroshima University of Economics, Hiroshima 731-0192, Japan
∗∗Department of Physics, The University of Texas at Austin, Austin, Texas 78712

USA

(Received August 12, 1999)

The 5-dimensional spin-0 form of the Kemmer-Duffin-Petiau (KDP) equation is used to
calculate scattering observables [elastic differential cross sections (dσ/dΩ), total cross sec-
tions (σTot), and total reaction cross sections (σReac)] and to deduce σTot and σReac from
transmission data for K++ 6Li, 12C, 28Si and 40Ca at several momenta in the range 488–
714 MeV/c. Realistic uncertainties are generated for the theoretical predictions. These er-
rors, mainly due to uncertainties associated with the elementary K++ nucleon amplitudes,
are large, which may account for some of the disagreement between experimental and the-
oretical σTot and σReac. The results suggest that the K++ nucleon amplitudes need to be
much better determined before further improvement in the understanding of these data can
occur.

§1. Introduction

For K+ mesons of momenta 500 – 1000 MeV/c (laboratory), a simple first-order
impulse approximation model should account for the main features of K++ nucleus
(A) scattering observables. Such expectation arises from the fact that the K++
nucleon (K+N) effective interaction is relatively weak, hence multiple scattering
corrections to the first-order impulse approximation predictions should be relatively
small. 1) Thus it was surprising that the first 800 MeV/c elastic scattering differ-
ential cross section data 2) for 12C(K+,K+) and 40Ca(K+,K+) were consistently
underestimated by a number of different first-order impulse approximation calcula-
tions. 3) - 5) In addition, calculated total cross sections for K+ +A were found to be
much smaller 5), 6) than experimental values. 7), 8) These findings prompted sugges-
tions that unconventional medium effects might explain the discrepancies. 4), 9) - 11)

The disagreement between the calculated elastic differential cross sections and
the data of Ref. 2) does not provide firm evidence for medium effects because of
the 17% absolute normalization uncertainty for the data; this alone can account
for much of the discrepancy. Indeed, more recently, it was shown that 715 MeV/c
elastic differential cross section data for 12C(K+,K+) are well-described by first-
order impulse approximation calculations. 12) Yet these calculations 6) did not fit the
total cross section data for K++12C at similar energies. Friedman et al. 13) noted,
however, that the experimental total cross sections 7), 8) are, in fact, model-dependent
quantities, and that it is essential to use the same K+ + A scattering model for
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obtaining the “experimental” total cross sections from measured transmission data
as is used for calculating theoretical total cross sections. They reanalyzed data from
a transmission experiment and explored the model-dependence of the deduced total
(σTot) and reaction (σReac) cross sections. In spite of the fact that care was taken
to conduct a self-consistent analysis of the data, the authors of Ref. 13) concluded
that “there seems to remain a significant and puzzling discrepancy between theory
and experiment for K+ nuclear interactions at intermediate energies (pL ≈ 500 –
800 MeV/c)”. One thing that has been lacking so far in these studies is an evaluation
of the uncertainties in the theoretical predictions.

In this work we examine the discrepancies between theK++A total and reaction
cross section predictions and data using the 5-dimensional spin-0 form of the rela-
tivistic Kemmer-Duffin-Petiau (KDP) equation 3) which we use to calculate K+ +A
elastic scattering observables and to deduce total and reaction cross sections from
transmission data. Our emphasis is on determining whether the relativistic KDP
scattering model yields predictions which are in better agreement with experiment,
whether the discrepancies can in any way be due to model dependence in the exper-
imental total and reaction cross sections, and whether some or all of the discrepancy
could be due to inaccuracies in the K+N amplitude input to the theoretical predic-
tions.

The KDP equation, unlike the Klein-Gordon (KG) equation, is a linear equation
of motion resembling the Dirac equation in form which, because of its linearity, facil-
itates the construction of a meson-nucleus optical potential by way of a relativistic
multiple scattering approach analogous to that used to generate the nucleon-nucleus
relativistic impulse approximation (RIA) 14) optical potential. The meson-nucleus
optical potential in the KDP-RIA approach consists of large and nearly cancelling
scalar and vector (time-like) components which are determined by folding the el-
ementary K+N amplitudes 15) with the relativistic mean-field Hartree densities of
Furnstahl et al. 16) The calculated scattering observables are thus subject to the
uncertainties in the elementary amplitudes 17) and in the nuclear densities.

The KDP-RIA model was used to calculate the K+ +A total (σTot) and reaction
(σReac) cross sections for K++ 6Li, 12C, 28Si and 40Ca at several momenta in the
range 488 – 714 MeV/c; the same model was used to extract experimental σTot and
σReac from transmission data. We also calculated the 715 MeV/c K++12C elastic
differential cross section (dσ/dΩ) for comparison with data.

The goals of this paper are: (1) to test the KDP-RIA theoretical model by
comparing the predictions with recent K+ + A scattering data, (2) to study the
model dependence in the “experimental” total and reaction cross sections obtained
from the transmission data, and (3) to estimate the uncertainties in the first-order
impulse approximation predictions for K+ +A σTot, σReac and the differential cross
section.

The KDP-RIA model for meson-nucleus scattering is reviewed and summarized
in §2. The method for obtaining total cross sections from the transmission measure-
ments is described in §3. The numerical results and discussion are presented in §4
followed in §5 by our conclusions.
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§2. The relativistic impulse approximation in the KDP formalism

In this section we discuss a treatment of meson-nucleus elastic scattering using
the nucleon-nucleus Dirac RIA as a guide in developing the parameter-free opti-
cal potentials. Standard optical model treatments of meson-nucleus scattering have
generally used the Klein-Gordon or Schrödinger equations as the relevant one-body
wave equation. Here we review and summarize an alternative approach introduced
in Ref. 3) using the first-order KDP wave equation which is similar in form to the
Dirac equation. This approach is motivated by three general considerations. First,
the equation is linear in energy which facilitates the development of impulse ap-
proximation optical potentials in a manner analogous to the nucleon-nucleus RIA.
Second, the richness of the KDP formalism regarding the introduction of interactions
is intriguing. For example, if the interaction has a conserved vector current then the
KDP formalism gives identical results to the KG equation for spin zero projectiles.
If the interactions do not have a conserved current or if scalar interactions are con-
sidered this is not necessarily the case. 18) Third, the KDP equation is appropriate
for both spin zero and spin one projectiles.

The free particle KDP equation is (h̄ = c = 1)

(iβµ∂µ −m)φ = 0, (1)

where m is the mass parameter, µ = 0, 1, 2, 3, and the βµ obey

βµβνβλ + βλβνβµ = gµνβλ + gλνβµ. (2)

The algebra generated by the four βµ’s has three irreducible representations of di-
mension one, five and ten. The five dimensional representation yields a spin operator
whose eigenvalues are zero, the ten dimensional case corresponds to spin one and the
one dimensional case is trivial. The first component of the five dimensional Kemmer
wave function for the spin zero case satisfies the Klein-Gordon equation for massive
particles.

In order to apply the KDP formalism to meson-nucleus scattering we must in-
troduce interactions in Eq. (1). If one writes

(iβµ∂µ −m− U)φ = 0 (3)

the most general form for U contains two scalar, two vector and two tensor terms. 19)

We omit the tensors to avoid noncausal effects. 19) For the spin zero case the scalar
operators are the unit operator I and the 5 × 5 operator P whose elements are all
zeros except the (1,1) element; thus P acts as a projection operator onto the first
component of φ. The vector operators are βµ and β̃µ = Pβµ − βµP . The form for
U is

U = UsI + U1
sP + βµUv + βµPU1

v . (4)

The last two terms may also be written as βµUv + PβµU1
v .

In order to construct impulse approximation optical potentials consistent with
Eq. (4) we need an invariant form for the meson-nucleon t-matrix. The choice for

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/2/321/1838788 by guest on 21 August 2022



324 L. K. Kerr, B. C. Clark, S. Hama, L. Ray and G. W. Hoffmann

the invariant form used here is

t = INIts + INPt1s + γµβµtv + γµβµPt1v, (5)

where IN and γµ are the unit and Dirac γ-matrices for the nucleon. As in the
nucleon-nucleus RIA we equate the matrix elements of the empirical c.m. scattering
amplitude,

F (q) = f̂(q) + �σ · �nĝ(q), (6)

taken between Pauli spinors for the nucleon with the matrix elements of the invariant
t-matrix between Dirac and Kemmer free particle spinors. The scattering amplitude
and the invariant t-matrix are related by a (2 × 4) matrix. In this work we limit
the t-matrix to only two of the four possible terms in Eq. (5). Thus, we consider
models with two scalars, two vectors or a vector-scalar mixture. For each choice a
transformation matrix K relates t and F . For example, for a scalar-vector mixture(

ts
tv

)
= −2π

√
s K−1

Mm

(
f̂
ĝ

)
, (7)

where
√
s is the total meson-nucleon energy and m(M) is the meson (nucleon) mass.

The combination of two scalars or two vectors produces a matrix K with zero
determinant, thus, we consider t to consist of a scalar and a vector amplitude. There
are, however, several choices for the form of t depending on whether the operator P
is in both terms (case 1), in the scalar only (case 2), in the vector only (case 3) or
in neither (case 4). The forms γµPβµt1v and γµβµPt1v produce identical results. The
elements of K for case 1 are given by

K1
11 =

1
4M(E +M)

[
(E +M)2 − k2 +

1
4
q2
]
, (8)

K1
12 =

1
4M(E +M)

(
Em

m

)[
(E +M)2 + k2 − 1

4
q2
]

+
k2

2mM
, (9)

K1
21 =

ikq

4M(E +M)
, (10)

and

K1
22 =

−ikq
4M(E +M)

(
Em

m

)
− ikq

4mM
, (11)

where E(Em) is the c.m. energy of the nucleon (meson), q = 2K sin θ/2 and k =
K cos θ/2, where θ is the c.m. scattering angle and K is the c.m. momentum. For
case 2: K2

11 = K1
11, K

2
12 = 2K1

12, K
2
21 = K1

21 and K2
22 = 2K1

22. For case 3: K3
11 =

2cK1
11, K

3
12 = K1

12, K
3
21 = 2cK1

21 and K3
22 = K1

22 where c =
(
1 + q2

4m2

)
. For case 4:

K4
11 = K3

11, K
4
12 = 2K1

12, K
4
21 = K3

21 and K4
22 = 2K1

22. Note that ts and tv depend
on both f̂ and ĝ, thus, even in the impulse approximation, the scalar and vector
potentials contain contributions from f̂ and ĝ. The usual first-order nonrelativistic
calculation only contains contributions from f̂ , see Ref. 20).
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The invariant amplitudes for each of the four cases are used to construct optical
potentials for use in Eq. (3). The optical potentials for spin zero targets are given
by

Us,v =
∑

i=p,n

∫
dq3

(2π)3
ei�q·�rtis,v(q)ρis,v(q), (12)

where ρs,v(q) are the Fourier transforms of the relativistic Hartree densities of Furn-
stahl et al. 16) The KDP equation for meson-nucleus scattering may now be written
as

[iβµ∂µ −Aµβ
µ − Uj −m]φ = 0, (13)

where j = 1, 2, 3, 4 for the four cases used and the electromagnetic potential Aµ

has been added by minimal substitution. We take Aµ as the static Coulomb po-
tential obtained from the empirical charge distribution. In addition, the space-like
components of Uv do not contribute for spin zero targets. 21)

The KDP elastic cross sections are obtained by solving the second-order equation
obtained for the first component of the KDP wave function. For conserved vector
current interactions, such as the EM interaction, this second-order equation is identi-
cal to the KG equation for EM interactions. Here, however, a different second-order
equation results for each case. They are:

Case 1: [(E − Uc − Uv)(E − Uc) −m(m+ Us) + ∇2]φ1 = 0; (14)
Case 2: [(E − Uc − Uv)2 −m(m+ Us) + ∇2]φ1 = 0; (15)
Case 3: [(E − Uc − Uv)(E − Uc) − (m+ Us)2 + ∇2 − �UD · �∇]φ1 = 0; (16)
Case 4: [(E − Uc − Uv)2 − (m+ Us)2 + ∇2 − �UD · �∇]φ1 = 0; (17)

where
�UD =

1
m+ Us

�∇Us (18)

and Uc is the static Coulomb potential. The non-local Darwin term may be replaced
by an equivalent local term using a wave function transformation, just as in the
second-order Dirac equation. 21)

It is possible to write Eqs. (14)–(17) as{
1

2E

[
∇2 + U2

c − 2EUc +E2 −m2
]
− U

}
φ1 = 0, (19)

which allows us to define an effective central potential U . These complex optical
potentials arise from cancellation between large scalar and vector terms, just as in
the nucleon-nucleus RIA. We find that the kaon effective potentials resemble the
nuclear densities.

In Ref. 3) it was shown that all four choices for the K+ + A optical potentials
produced essentially identical differential cross section predictions for 800 MeV/c
K+ + 40Ca elastic scattering. The Case 1 potential, which yields the best results
for π± +A elastic scattering, 3) was used in the calculations presented here.
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Fig. 1. The real and imaginary elementary amplitudes at 715 MeV/c as a function of center of

mass angle.

The imaginary part of the K+N spin-dependent amplitude ĝ is essentially zero
for all angles at the energies considered in this work and the real part of ĝ is small
at the forward angles. Because of this one would expect KDP and the simplest
nonrelativistic impulse approximation calculation, which only includes f̂ , to be quite
similar. This is the case as shown in Refs. 3) and 21). In Fig. 1 we show the real
and imaginary f̂ and ĝ K+N amplitudes at 715 MeV/c as a function of the center
of mass angle.

§3. Deducing total and reaction cross sections from transmission data

Total cross section experiments such as those of Refs. 7), 8) and 13) use trans-
mission arrays which consist of a series of thin cylindrical counters of increasing radii
whose axes coincide with the beam axis. Thus, measurements summing the ≥ ith
counters determine a transmission cross section σTrans(Ωi) for scattering out of a
solid angle Ωi. For uncharged particles σTrans(Ωi) is a well-behaved function near
Ωi = 0, and the total cross section is found by measuring σTrans(Ωi) for several values
of Ωi near zero and then extrapolating σTrans(Ωi) to Ωi = 0.

For K+ or other charged particles, σTrans(Ωi) is not well-behaved near Ωi = 0
since the Coulomb interaction leads to an infinite total cross section. However, a
finite total nuclear cross section (σTot) can be determined if Coulomb effects are
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removed. Thus, for each measured transmission cross section, appropriate Coulomb
correction terms are subtracted. The corrected partial cross sections are then fit to
a polynomial in Ωi and, by extrapolating the fit to Ωi = 0, the finite quantity σExt

is determined:

σExt = lim
Ωi→0

[σTrans(Ωi) − calculated corrections] . (20)

The final value of the total cross section, σTot, is given by

σTot = σExt − σK − σπ-µ − σAt , (21)

where σK and σπ-µ correct for kaons which decay between the target and detector and
for the pion and muon contamination from these decays, and the σAt term corrects
for target impurities. 7), 8) While Eq. (21) concerns experimental corrections, some
model of the K+ + A interaction must be used to calculate the correction terms in
Eq. (20). Thus, σExt and σTot are model-dependent quantities. We emphasize that
at a minimum, when comparing experimental and theoretical total cross sections,
the same model should be used to calculate the theoretical total cross sections as is
used to calculate the correction terms used to remove Coulomb effects. If different
optical models are used for the extraction of the experimental total cross sections
and the theoretical total cross sections the comparison is flawed. This point has
been made in the work of Friedman et al., 13) see for example their figure 1 which
clearly shows the importance of using the same optical potential in obtaining the
extrapolated cross section and the comparison with theory.

The necessary correction terms are found using the method of Ref. 22). The
K+ +A scattering amplitude f , found using an optical model for the interaction as
described in the preceding section, is split into a Coulomb distorted nuclear part,
fN , and a Coulomb part, fC , by adding and subtracting the Coulomb amplitude,

f = (f − fC) + fC
= fN + fC , (22)

where the Coulomb distorted nuclear amplitude (fN ) is defined in the last equation.
The elastic differential cross section is written as the sum of three terms:

dσ

dΩ
= |f |2 = |fN |2 + |fC |2 + 2Re fNf∗C . (23)

The following quantities are defined for a given solid angle Ωi:

σC(> Ωi) =
∫ 4π

Ωi

dΩ|fC |2, (24a)

σCN (> Ωi) = 2Re
∫ 4π

Ωi

dΩfNf
∗
C , (24b)

σe(< Ωi) =
∫ Ωi

0
dΩ|fN |2. (24c)
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Using these definitions, Eq. (20) becomes

σExt = lim
Ωi→0

[σTrans(Ωi) − σC(> Ωi) − σCN (> Ωi) + σe(< Ωi) + σI(< Ωi)] , (25)

where the inelastic term σI(< Ωi), assumed to be small, is neglected in obtaining the
limit. For this model, the theoretical total cross section is found by using a partial
wave expansion of the scattering amplitude. The expression is given in Eq. (20) of
Ref. 22).

Determination of the reaction cross section follows a similar procedure. As
outlined in Ref. 13), the reaction cross section is defined to be the integral cross
section for removal of particles from the elastic channel. In terms of the measured
transmission cross sections for scattering out of a solid angle Ω,

σTrans(Ω) = σReac +
∫ 4π

Ω
dΩ

(
dσ

dΩ

)
elastic

−
∫ Ω

0
dΩ

(
dσ

dΩ

)
inelastic

. (26)

Since the small, inelastic term vanishes as Ω → 0, the experimental total reaction
cross section is found by extrapolating the quantity

σReac(Ω) ≡ σTrans(Ω) −
∫ 4π

Ω
dΩ

(
dσ

dΩ

)
elastic

(27)

to Ω = 0 and subtracting the σK , σπ-µ and σAt experimental corrections.

§4. Results and discussion

The KDP-RIA model was used to calculate scattering observables for 450 –
750 MeV/c K+ + 6Li, 12C, 28Si and 40Ca. The same model was then used to ex-
tract experimental σTot and σReac from transmission data 7), 8), 13) spanning 488 –
714 MeV/c. Figures 2–5 show (solid circles) the experimental σTot and σReac cross
sections obtained here. Also shown in Figs. 2–5 (solid squares) are experimental val-
ues which we obtained from the transmission data 7), 8), 13) using model-dependent
corrections derived from solution of the Schrödinger equation with relativistic kine-
matics and the “tρ” optical potential from Ref. 13). The error bars are statistical
only. Our “tρ” cross sections are consistent with those in Table II of Ref. 13). As
seen from Figs. 2–5, the model-dependences in the experimental cross sections are, in
general, larger than the statistical errors and are greater for σTot than for σReac. We
consider this to be significant because the model dependence is larger in magnitude
than the statistical errors in the extracted experimental total cross sections.

In Table I we compare the results of the present work (last row) for experimental
σReac and σTot with those (first and second rows) taken from Table IV of Ref. 13).
The tρ potential of Ref. 13) is proportional to the product of the forward K+N spin-
independent scattering amplitude [f̂K+N (0)] and the nuclear density ρ(r), while the
DD potential of Ref. 13) is an ad hoc phenomenological density-dependent modifi-
cation of the interaction to constrain the analysis to fit elastic scattering data. The
DD-tρ comparison shows that the experimental σReac is not sensitive to the choice of
potential, while the same cannot be said for σTot, where the differences span 5 – 11%.
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Fig. 2. The experimental and theoretical total cross sections and reaction cross sections for K++6Li

as a function of incident laboratory momentum. The experimental values obtained using the

KDP-RIA relativistic optical model calculated corrections are shown as solid circles and those

obtained using the “tρ” optical model of Ref. 13) are shown as solid squares. The theoretical

total and reaction cross section results are plotted as a band of values which take into account

the uncertainties in the elementary K+N amplitudes used in the calculation.

Table I. K+ +A total and reaction cross sections extracted from 714 MeV/c

transmission data using three different models for the extrapolations.

Reaction (mb) Total (mb)

Potential 6Li 12C 28Si 40Ca 6Li 12C 28Si 40Ca

DD a) 80.0 149.2 317.7 413.4 91.2 192.1 433.9 589.6

tρ a) 79.3 149.3 317.5 412.9 87.0 175.6 396.5 528.4

teffρ b) 82.2 152.8 320.2 417.1 88.5 183.8 411.3 550.4

KDP-RIA c) 81.2 151.9 316.9 413.9 88.9 180.4 405.7 547.1

a) From Ref. 13).

b) From Refs. 23) and 24).

c) Using the same extrapolation method as Ref. 13).

In addition, in row three of Table I we include the more recent results of Refs. 23)
and 24) which employ an effective t-matrix, teff(ρ), which is density dependent.

The predicted total and reaction cross sections from the KDP-RIA theoretical
model are shown as shaded bands in Figs. 2–5. The bands result from the uncertain-
ties in the elementary K+N amplitudes. 17) Contributions to the error bands due to
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Fig. 3. Same as Fig. 2 except for K++12C.

uncertainties in the nuclear densities were studied in Ref. 13) and shown to be small
and were not included here. Some of the conventional K+ + A medium corrections
have been shown to contribute only a few percent to the first-order impulse approx-
imation predictions (Ref. 13) and references therein) and were not included here.
Additional medium corrections (e.g. Pauli blocking and nuclear binding potentials
in intermediate K+N scattering states) and second-order optical potential (correla-
tion) terms also remain to be included. Recent discussions of the status of medium
effects in K-A interactions are given in Refs. 13), 23)–25).

For first-order impulse approximation predictions of K+ +A total and reaction
cross sections, the critical components of the input K+N amplitudes are the forward
angle spin-independent terms, f̂K+N (0). These are determined experimentally by the
K+N total cross sections and the real-to-imaginary forward amplitude ratios. For
K+p the scatter in the measured σTot(K+p) 26) in the momentum range from 450
to 750 MeV/c is about ±1 mb corresponding to an ∼8% uncertainty in Imf̂K+p(0).
The uncertainty in Ref̂K+p(0) is about 20%. 17) However, for K+n there are no
direct measurements for either of these quantities. The K+n total cross section is
estimated from the difference between the total cross sections for K+d and K+p
plus some theoretical rescattering and deuteron structure corrections. 15), 27) The
uncertainty in Imf̂K+n(0) is therefore larger than that for K+p. The Ref̂K+n(0) is
estimated from dispersion relation calculations 15), 28), 29) and is about 50% uncertain.
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Fig. 4. Same as Fig. 2 except for K++28Si.

The uncertainties vary with amplitude and angle; an overall estimate of the global
error, relevant for these calculations, is ±15%. 17) This is what we use to calculate
the error due to the uncertainty in the amplitudes (see Fig. 1). We note that in
contrast to Refs. 13), 23)–25) we use angle dependent K+N amplitudes in obtaining
the KDP-RIA optical potentials.

Previous authors have studied total cross section ratios for K+A/K+d in order
to minimize the errors due to the uncertainties in the K+N amplitudes. However,
the theoretical model appropriate for K+A scattering (e.g. optical potential) is very
different from that which is best suited for K+d scattering (e.g. multiple scattering
expansion 30)). The cancellation of theoretical uncertainties for the K+A and K+d
predictions is therefore problematic. Since the theoretical predictions for σTot(K+d)
cannot be tested or “calibrated” to any greater accuracy than that allowed by the
uncertainties in the K+N amplitudes, the latter source of uncertainty continues to
contribute, in effect, to the predicted cross section ratios. In this work we choose
to compare our K+ + A scattering predictions directly with the K+ + A scattering
data.

In Fig. 1 of Ref. 13) the optical model contributions to σReac are shown to be less
than that for σTot and to vanish as Ω increases. This suggests that σReac is the more
reliable quantity (i.e., less model-dependent) that may be derived from transmission
measurements. In viewing the uncertainty bands in Figs. 2–5, it is seen that the
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Fig. 5. Same as Fig. 2 except for K++40Ca.

predicted reaction cross sections are also less sensitive to uncertainties in the input.
Given the uncertainties in the theoretical predictions, the agreement with the 6Li
data is reasonable, whereas the predictions for the heavier targets are systematically
smaller than the data, and may suggest that some additional dynamics in the K+-
nucleus interaction remains to be taken into account. However, the mass-dependence
may also indicate a still unrealized experimental problem associated with Coulomb
scattering corrections owing to the strong Z2-dependence of Coulomb scattering.

In Fig. 6 the KDP-RIA prediction for the 715 MeV/c K++12C elastic differen-
tial cross section is compared with the data of Ref. 12). The shaded band indicates
the uncertainty due to that in the K+N amplitudes. The agreement with the data
is good, but the shaded error band in this figure, as well as those in Figs. 2–5, sug-
gests that the elementary K+N amplitudes need to be better determined if progress
and further theoretical understanding of these data are going to be made. The
present situation is similar to that encountered during the early days of medium
energy p+A studies 31) when the elementary p+N amplitudes were not sufficiently
well-determined at the momentum transfers important for generating p+ A optical
potentials.
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Fig. 6. The experimental and theoretical elastic differential cross sections for 715 MeV/c K++12C

as a function of center of mass angle. The results obtained using the KDP-RIA relativistic

optical model are plotted as a band of values which take into account the uncertainties in the

elementary K+N amplitudes.

§5. Conclusions

The relativistic KDP-RIA meson-nucleus scattering model was applied to medium
energy K+ + A elastic scattering and predictions for the total cross section, total
reaction cross section, and differential cross section were compared with experiment.
The KDP-RIA total and reaction cross section predictions are consistent with the
K+ + 6Li data but systematically underpredict the K+ + 12C, 28Si and 40Ca data.
The 715 MeV/c K+ + 12C differential cross section predictions are in quantitative
agreement with experiment. Overall, the KDP-RIA framework provides a reliable
model for relating the K+N amplitude phenomenology and nuclear densities to the
K+ + A elastic scattering observables. However, this alternate reaction model does
not resolve the kaon-nucleus total cross section issues described in the introduction.

The model dependence in the total and reaction cross sections deduced from the
transmission measurements was studied and found to be larger than the statistical
errors for σTot. The model dependence in the extracted values for σTot was found
to be of order 5 – 11%, which is significant but does not explain the discrepancy
between the predictions and the data. The model dependence for σReac is much less,
being only 1 – 3%. Consistent comparisons between theoretical and “experimental”
total and reaction cross sections require that the same K+ +A scattering model be
used in both analyses. To enable consistent analyses by others in the community,
the transmission cross section data should be included in publications which present
total and reaction cross sections extracted from such data.

Uncertainties in the K+ + A theoretical predictions arising from the uncertain-
ties in the K+N amplitudes were estimated for the total and reaction cross sections
and the 715 MeV/c K+ + 12C elastic differential cross section. Uncertainties of
order ±13% (±10%) were obtained for the K+ +A σTot (σReac) predictions. Part of
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the longstanding discrepancy between theoretical K+ + A total and reaction cross
section predictions and experiment might therefore be due to inaccuracies in the
input K+N amplitudes. In our opinion, improved knowledge of the K+N ampli-
tudes is required before studies of additional K+- nucleus dynamical effects can be
meaningfully pursued.

Acknowledgements

The authors thank E. D. Cooper, for his many contributions to this work. The
authors also thank J. Alster, R. Chrien, E. Friedman, K. H. Hicks, E. V. Hunger-
ford, E. Piasetzky, R. Sawfta and R. Wiess for helpful discussions and information
regarding the experimental aspects of K+ + A total cross section analysis and for
providing information needed to calculate the optical model dependent corrections
to σExt. B. C. Clark, L. Kurth Kerr and S. Hama acknowledge the hospitality of
the National Institute for Nuclear Theory, University of Washington where part of
this work was done. This work was supported in part by NSF PHY-9511923, NSF
PHY-9800964, the U. S. Department of Energy Grant DE-FG03-94ER40845, and
the Robert A. Welch Foundation Grant F-604.

References

1) W. R. Coker, G. W. Hoffmann and L. Ray, Phys. Lett. 135B (1985), 363.
2) D. Marlow, P. D. Barnes, N. J. Colella, S. A. Dytman, R. A. Eisenstein, R. Grace, F.

Takeutchi, W. R. Wharton, S. Bart, D. Hancock, R. Hackenberg, E. Hungerford, W.
Mayes, L. Pinsky, T. Williams, R. Chrien, H. Palevsky and R. Sutter, Phys. Rev. C25
(1982), 2619.

3) B. C. Clark, S. Hama, G. R. Kälbermann, R. L. Mercer and L. Ray, Phys. Rev. Lett. 55
(1985), 592 and references therein.

4) P. B. Siegel, W. B. Kaufmann and W. R. Gibbs, Phys. Rev. C31 (1985), 2184.
5) C. M. Chen and D. J. Ernst, Phys. Rev. C45 (1992), 2019.
6) M. F. Jiang, D. J. Ernst and C. M. Chen, Phys. Rev. C51 (1995), 857.
7) R. Weiss, J. Aclander, J. Alster, M. Barakat, S. Bart, R. E. Chrien, R. A. Krauss, K.

Johnston, I. Mardor, Y. Mardor, S. May Tal-beck, E. Piasetzky, P. H. Pile, R. Sawafta,
H. Seyfarth, R. L. Stearns, R. J. Sutter and A. I. Yavin, Phys. Rev. C49 (1994), 2569.

8) R. A. Krauss, J. Alster, D. Ashery, S. Bart, R. E. Chrien, J. C. Hiebert, R. R. Johnson,
T. Kishimoto, I. Mardor, Y. Mardor, M. A. Moinester, R. Olshevsky, E. Piasetzky, P. H.
Pile, R. Sawafta, R. L. Stearns, R. J. Sutter, R. Weiss and A. I. Yavin, Phys. Rev. C46
(1992), 655.

9) P. B. Siegel, W. B. Kaufmann and W. R. Gibbs, Phys. Rev. C30 (1984), 1256.
10) G. E. Brown, C. B. Dover, P. B. Siegel and W. Weise, Phys. Rev. Lett. 60 (1988), 2723.
11) J. C. Caillon and J. Labarsouque, Phys. Rev. C45 (1992), 2503.
12) R. Michael, M. B. Barakat, S. Bart, R. E. Chrien, B. C. Clark, D. J. Ernst, S. Hama, K. H.

Hicks, E. V. Hungerford, M. F. Jiang, T. Kishimoto, C. M. Kormanyos, L. J. Kurth, L.
Lee, B. Mayes, R. J. Peterson, L. Pinsky, R. Sawafta, R. Sutter, L. Tang and J. E. Wise,
Phys. Lett. B382 (1996), 29.

13) E. Friedman, A. Gal, R. Weiss, J. Aclander, J. Alster, I. Mardor, Y. Mardor, S. May-Tal
Beck, E. Piasetzky, A. I. Yavin, S. Bart, R. E. Chrien, P. H. Pile, R. Sawafta, R. J. Sutter,
M. Barakat, K. Johnston, R. A. Krauss, H. Seyfarth and R. L. Stearns, Phys. Rev. C55
(1997), 1304.

14) B. C. Clark, S. Hama, R. L. Mercer, L. Ray and B. D. Serot, Phys. Rev. Lett. 50 (1983),
1644.

15) R. A. Arndt and L. D. Roper, Phys. Rev. D31 (1985), 2230.
J. S. Hyslop, R. A. Arndt, L. D. Roper and R. L. Workman, Phys. Rev. D46 (1992), 961.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/2/321/1838788 by guest on 21 August 2022



Theoretical and Experimental K++ Nucleus Total 335

16) R. J. Furnstahl, C. E. Price and G. W. Walker, Phys. Rev. C36 (1987), 2590.
17) R. A. Arndt, interactive computer code and data base SAID and private communica-

tion. Percentage errors are given for Single-Energy solutions only, and vary strongly with
amplitude and angle. 15% is an overall estimate for the global error.

18) E. Fishbach, M. M. Nieto and C. E. Scott, J. Math. Phys. 14 (1973), 1760; Phys. Rev.
D7 (1973), 207.

19) R. F. Guertin and T. L. Wilson Phys. Rev. D15 (1977), 1518.
20) W. R. Coker, J. D. Lumpe and L. Ray, Phys. Rev. C31 (1985), 1412.
21) B. C. Clark, in Relativistic Dynamics and Quark-Nuclear Physics, ed. Mikkel B. Johnson

and Alan Picklesimer (Wiley-Interscience Publication, 1986), p. 302.
22) W. B. Kaufmann and W. R. Gibbs, Phys. Rev. C40 (1989), 1729.
23) E. Friedman, A. Gal and J. Mareš, Phys. Lett. B396 (1997), 21.
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