

University of South Florida Scholar Commons

Graduate Theses and Dissertations

Graduate School

3-23-2010

Theoretical and Experimental Simulation of Passive Vacuum Solar Flash Desalination

Mohammad Abutayeh University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd

Part of the American Studies Commons

Scholar Commons Citation

Abutayeh, Mohammad, "Theoretical and Experimental Simulation of Passive Vacuum Solar Flash Desalination" (2010). *Graduate Theses and Dissertations.* https://scholarcommons.usf.edu/etd/1555

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Theoretical and Experimental Simulation of Passive Vacuum Solar Flash Desalination

by

Mohammad Abutayeh

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemical & Biomedical Engineering College of Engineering University of South Florida

Major Professor: D. Yogi Goswami, Ph.D. Elias K. Stefanakos, Ph.D. Scott W. Campbell, Ph.D. John T. Wolan, Ph.D. Thomas L. Crisman, Ph.D.

> Date of Approval: March 23, 2010

Keywords: Solar Energy, Seawater Separation, Desalting, Distillation, Evaporation

© Copyright 2010, Mohammad Abutayeh

DEDICATION

To the loving memory of my brother, Hussein

ACKNOWLEDGEMENTS

I would like to first thank Dr. D. Yogi Goswami for his ideas and research assistance that made this exploration possible. I would also like to express my gratitude to Dr. Elias K. Stefanakos for his professional leadership and generous support.

Then, I would like to express my sincere appreciation to Dr. Scott W. Campbell for his tremendous knowledge that guided me throughout my career. I would also like to thank Dr. John T. Wolan for his valued suggestions and support all through my studies.

My thanks must also go to Dr. Thomas L. Crisman for his appreciated input and his well regarded encouragement. Finally, I would like to extend my deepest appreciation to my family and friends for their support and inspiration.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS
ABSTRACTxvii
CHAPTER 1. INTRODUCTION
1.1 Overview
1.2 Objective
CHAPTER 2. DESALINATION
2.1 Conventional Desalination ϵ
2.1.1 Multiple Effect Evaporation
2.1.2 Multi–Stage Flash
2.1.3 Vapor Compression11
2.1.4 Indirect Contact Freezing
2.1.5 Reverse Osmosis
2.1.6 Electro–Dialysis
2.2 Solar Desalination
2.2.1 Solar Distillation
2.2.2 Solar Collectors
2.2.3 Thermal Energy Storage
2.2.4 Solar Ponds
2.2.5 Photovoltaics
CHAPTER 3. RESEARCH BACKGROUND
3.1 Renewable Energy Desalination Systems
3.2 Passive Vacuum Solar Desalination
3.3 Passive Vacuum Solar Flash Desalination
3.4 Proposed Desalination System
i

CHAPTER 4. THEORETICAL ANALYSIS	
4.1 Process Description	
4.2 Model Development	
4.2.1 Mass and Energy Balance	
4.2.2 Equilibrium Distribution Coefficients	
4.2.3 Adiabatic Flash	
4.2.4 Heat Transfer	
4.2.5 Vacuum Volume	
4.2.6 Vacuum Pressure	
4.2.7 System Performance	
4.2.8 Physical Properties	
4.3 Solution Algorithm	
CHAPTER 5. EXPERIMENTAL ANALYSIS	61
5.1 Process Description	61
5.2 Experimental Apparatus	
5.3 Control Scheme	
5.4 Data Acquisition	
5.5 Operating Procedure	
5.6 Experimental Design	
CHAPTER 6. PARAMETRIC ANALYSIS	75
6.1 Analyses Synchronization	
6.2 Parameter Expressions	
6.3 Parameter Inputs	
6.4 Equipment Specifications	
6.5 Simulation Specifications	
CHAPTER 7. DISCUSSION OF RESULTS	88
7.1 Discussion Guide	
7.2 Vacuum Erosion	
7.3 Equilibrium Attainment	
7.4 Equilibrium Departure	
7.5 Heat Reclamation	

7.6 Heater Size	118
7.7 Collector Size	125
7.8 System Throughput	
7.9 System Capacity	139
7.10 Process Feasibility	
7.11 Condensing Efficiency	153
7.12 Recovery Efficiency	
7.13 Thermal Efficiency	
7.14 Disambiguation	
CHAPTER 8. CONCLUSION	175
8.1 Summary	
8.2 Outcome	
8.3 Prospects	
REFERENCES	185
APPENDICES	189
Appendix A. The operating procedure	190
Appendix B. SUPERTRAPP [™] code to generate K–values	195
Appendix C. Matlab code for F_{CT} data regression	
Appendix D. Matlab code for NEA data regression	203
Appendix E. Matlab code for γ_{H2O} data regression	
Appendix F. Matlab code for ψ data regression	205
Appendix G. Matlab code for HC_{N2} data regression	206
Appendix H. Matlab code for HC_{O2} data regression	207
Appendix I. Matlab code for HC_{Ar} data regression	
Appendix J. Matlab code for HC_{CO2} data regression	209
Appendix K. Matlab code for P_{H2O}^{sat} data regression	
Appendix L. Sample TK Solver code for data mining	
Appendix M. Sample TK Solver code for model simulation	
Appendix N. Experimental record	
Appendix O. Experimental equipment specifications	
Appendix P. Error analysis	

ABOUT THE AUTHOR End	Page
----------------------	------

LIST OF TABLES

Table 1. Energy consumption of desalination systems [7]	15
Table 2. Solar collectors [7]	17
Table 3. Sensible heat storage material [8]	
Table 4. Latent heat storage material [8]	
Table 5. Spectral absorption of solar radiation in water [8]	19
Table 6. Experimental matrix	73
Table 7. Sea salt parameters [16] [31]	
Table 8. Seawater parameters [16] [31]	
Table 9. Equipment dimensions	85
Table 10. Heat transfer equipment parameters	85
Table 11. Simulation settings	87
Table 12. Device and correlation errors	
Table 13. Propagation of error rules	

LIST OF FIGURES

Figure 1. Estimated water consumption of US counties for 2000 [1]	3
Figure 2. Estimated energy consumption per capita of US states for 2001 [1]	3
Figure 3. Estimated energy consumption per capita of Florida and the US [1]	4
Figure 4. Monthly average daily solar insolation in the US [3]	4
Figure 5. Global distribution of installed desalination capacity by technology [5]	8
Figure 6. Global distribution of installed desalination capacity by region [5]	8
Figure 7. Multiple effect evaporation	9
Figure 8. Multi-stage flash	10
Figure 9. Mechanical vapor compression	11
Figure 10. Indirect contact freezing	12
Figure 11. Reverse osmosis	13
Figure 12. Electro-dialysis	14
Figure 13. Solar distillation	16
Figure 14. Vertical cross section of a solar pond	19
Figure 15. Photovoltaic cell schematics	20
Figure 16. Photovoltaic system schematics	20
Figure 17. Passive vacuum solar desalination	22
Figure 18. Passive vacuum solar flash desalination	23
Figure 19. Single-stage solar flash desalination system	25
Figure 20. Multi-stage solar flash desalination system	25
Figure 21. Process schematics	28
Figure 22. Mass transfer operations	30
Figure 23. Molecular transfer operations	33
Figure 24. Flow regimes	54
Figure 25. Developed model solution algorithm	59
Figure 26. Process and instrumentation diagram of the experimental unit	62
•	

Figure 27. 3-tier mobile skids layout	65
Figure 28. Feedback control loops of the experimental unit	66
Figure 29. Block diagram of the flash temperature feedback control loop	68
Figure 30. Data acquisition structure	
Figure 31. Data acquisition software	
Figure 32. Overall view of the experimental unit	74
Figure 33. Counter-current departure correction factor of condenser tube	79
Figure 34. Non-equilibrium allowance representation	79
Figure 35. Activity coefficient of water	80
Figure 36. Gas phase molecular content correction factor	80
Figure 37. Henry's constant of nitrogen	82
Figure 38. Henry's constant of oxygen	83
Figure 39. Henry's constant of argon	83
Figure 40. Henry's constant of carbon dioxide	
Figure 41. Vapor pressure of water	84
Figure 42. Modeled vacuum pressure profiles at lower flow	
Figure 43. Experimental vacuum pressure profiles at lower flow	
Figure 44. Modeled vacuum pressure profiles at higher flow	
Figure 45. Experimental vacuum pressure profiles at higher flow	
Figure 46. Vacuum pressure at 50°C flash and lower flow	
Figure 47. Vacuum pressure at 50°C flash and higher flow	
Figure 48. Vacuum pressure at 60°C flash and lower flow	
Figure 49. Vacuum pressure at 60°C flash and higher flow	
Figure 50. Vacuum pressure at 70°C flash and lower flow	
Figure 51. Vacuum pressure at 70°C flash and higher flow	
Figure 52. Vacuum pressure at 80°C flash and lower flow	
Figure 53. Vacuum pressure at 80°C flash and higher flow	
Figure 54. Modeled equilibrium temperature profiles at lower flow	
Figure 55. Experimental equilibrium temperature profiles at lower flow	
Figure 56. Modeled equilibrium temperature profiles at higher flow	99
Figure 57. Experimental equilibrium temperature profiles at higher flow	

Figure 58.	Equilibrium temperature at 50°C flash and lower flow	100
Figure 59.	Equilibrium temperature at 50°C flash and higher flow	100
Figure 60.	Equilibrium temperature at 60°C flash and lower flow	101
Figure 61.	Equilibrium temperature at 60°C flash and higher flow	101
Figure 62.	Equilibrium temperature at 70°C flash and lower flow	102
Figure 63.	Equilibrium temperature at 70°C flash and higher flow	102
Figure 64.	Equilibrium temperature at 80°C flash and lower flow	103
Figure 65.	Equilibrium temperature at 80°C flash and higher flow	103
Figure 66.	Modeled concentrated brine temperature profiles at lower flow	105
Figure 67.	Experimental concentrated brine temperature profiles at lower flow	105
Figure 68.	Modeled concentrated brine temperature profiles at higher flow	106
Figure 69.	Experimental concentrated brine temperature profiles at higher flow	106
Figure 70.	Concentrated brine temperature at 50°C flash and lower flow	107
Figure 71.	Concentrated brine temperature at 50°C flash and higher flow	107
Figure 72.	Concentrated brine temperature at 60°C flash and lower flow	108
Figure 73.	Concentrated brine temperature at 60°C flash and higher flow	108
Figure 74.	Concentrated brine temperature at 70°C flash and lower flow	109
Figure 75.	Concentrated brine temperature at 70°C flash and higher flow	109
Figure 76.	Concentrated brine temperature at 80°C flash and lower flow	110
Figure 77.	Concentrated brine temperature at 80°C flash and higher flow	110
Figure 78.	Modeled preheat temperature profiles at lower flow	112
Figure 79.	Experimental preheat temperature profiles at lower flow	112
Figure 80.	Modeled preheat temperature profiles at higher flow	113
Figure 81.	Experimental preheat temperature profiles at higher flow	113
Figure 82.	Preheat temperature at 50°C flash and lower flow	114
Figure 83.	Preheat temperature at 50°C flash and higher flow	114
Figure 84.	Preheat temperature at 60°C flash and lower flow	115
Figure 85.	Preheat temperature at 60°C flash and higher flow	115
Figure 86.	Preheat temperature at 70°C flash and lower flow	116
Figure 87.	Preheat temperature at 70°C flash and higher flow	116
Figure 88.	Preheat temperature at 80°C flash and lower flow	117

Figure 89. Preheat temperature at 80°C flash and higher flow	117
Figure 90. Modeled heat load profiles at lower flow	119
Figure 91. Mined heat load profiles at lower flow	119
Figure 92. Modeled heat load profiles at higher flow	120
Figure 93. Mined heat load profiles at higher flow	120
Figure 94. Heat load at 50°C flash and lower flow	121
Figure 95. Heat load at 50°C flash and higher flow	121
Figure 96. Heat load at 60°C flash and lower flow	122
Figure 97. Heat load at 60°C flash and higher flow	122
Figure 98. Heat load at 70°C flash and lower flow	123
Figure 99. Heat load at 70°C flash and higher flow	123
Figure 100. Heat load at 80°C flash and lower flow	124
Figure 101. Heat load at 80°C flash and higher flow	124
Figure 102. Modeled required solar collection area profiles at lower flow	126
Figure 103. Mined required solar collection area profiles at lower flow	126
Figure 104. Modeled required solar collection area profiles at higher flow	127
Figure 105. Mined required solar collection area profiles at higher flow	127
Figure 106. Required solar collection area at 50°C flash and lower flow	128
Figure 107. Required solar collection area at 50°C flash and higher flow	128
Figure 108. Required solar collection area at 60°C flash and lower flow	129
Figure 109. Required solar collection area at 60°C flash and higher flow	129
Figure 110. Required solar collection area at 70°C flash and lower flow	130
Figure 111. Required solar collection area at 70°C flash and higher flow	130
Figure 112. Required solar collection area at 80°C flash and lower flow	131
Figure 113. Required solar collection area at 80°C flash and higher flow	131
Figure 114. Modeled fresh water production rate profiles at lower flow	133
Figure 115. Mined fresh water production rate profiles at lower flow	133
Figure 116. Modeled fresh water production rate profiles at higher flow	134
Figure 117. Mined fresh water production rate profiles at higher flow	134
Figure 118. Fresh water production rate at 50°C flash and lower flow	135
Figure 119. Fresh water production rate at 50°C flash and higher flow	135

Figure 129. Mined fresh water production amount profiles at higher flow...... 141 Figure 131. Fresh water production amount at 50°C flash and higher flow...... 142 Figure 134. Fresh water production amount at 70°C flash and lower flow...... 144 Figure 135. Fresh water production amount at 70°C flash and higher flow...... 144 Figure 136. Fresh water production amount at 80°C flash and lower flow...... 145 Figure 143. Prime energy consumption at 50°C flash and higher flow...... 149 Figure 146. Prime energy consumption at 70°C flash and lower flow...... 151 Figure 147. Prime energy consumption at 70°C flash and higher flow......151 Figure 148. Prime energy consumption at 80°C flash and lower flow...... 152

Figure 151. Experimental condenser efficiency profiles at lower flow	154
Figure 152. Modeled condenser efficiency profiles at higher flow	155
Figure 153. Experimental condenser efficiency profiles at higher flow	155
Figure 154. Condenser efficiency at 50°C flash and lower flow	156
Figure 155. Condenser efficiency at 50°C flash and higher flow	156
Figure 156. Condenser efficiency at 60°C flash and lower flow	157
Figure 157. Condenser efficiency at 60°C flash and higher flow	157
Figure 158. Condenser efficiency at 70°C flash and lower flow	158
Figure 159. Condenser efficiency at 70°C flash and higher flow	158
Figure 160. Condenser efficiency at 80°C flash and lower flow	159
Figure 161. Condenser efficiency at 80°C flash and higher flow	159
Figure 162. Modeled recovery efficiency profiles at lower flow	161
Figure 163. Experimental recovery efficiency profiles at lower flow	161
Figure 164. Modeled recovery efficiency profiles at higher flow	162
Figure 165. Experimental recovery efficiency profiles at higher flow	162
Figure 166. Recovery efficiency at 50°C flash and lower flow	
Figure 167. Recovery efficiency at 50°C flash and higher flow	
Figure 168. Recovery efficiency at 60°C flash and lower flow	
Figure 169. Recovery efficiency at 60°C flash and higher flow	
Figure 170. Recovery efficiency at 70°C flash and lower flow	165
Figure 171. Recovery efficiency at 70°C flash and higher flow	165
Figure 172. Recovery efficiency at 80°C flash and lower flow	
Figure 173. Recovery efficiency at 80°C flash and higher flow	
Figure 174. Modeled thermal efficiency profiles at lower flow	168
Figure 175. Mined thermal efficiency profiles at lower flow	
Figure 176. Modeled thermal efficiency profiles at higher flow	169
Figure 177. Mined thermal efficiency profiles at higher flow	169
Figure 178. Thermal efficiency at 50°C flash and lower flow	
Figure 179. Thermal efficiency at 50°C flash and higher flow	170
Figure 180. Thermal efficiency at 60°C flash and lower flow	
Figure 181. Thermal efficiency at 60°C flash and higher flow	

Figure 182. Thermal efficiency at 70°C flash and lower flow	
Figure 183. Thermal efficiency at 70°C flash and higher flow	172
Figure 184. Thermal efficiency at 80°C flash and lower flow	173
Figure 185. Thermal efficiency at 80°C flash and higher flow	173
Figure 186. Experimental and pseudo-experimental data acquisition	174
Figure 187. Seawater conversion dependence on flash temperature	179
Figure 188. Prime energy consumption dependence on flash temperature	179
Figure 189. Preparing to fill up the condenser	190
Figure 190. Condenser full of fresh water	190
Figure 191. Preparing to fill up the evaporator	191
Figure 192. Evaporator full of seawater	191
Figure 193. Switching the valve positions of the flash chamber	192
Figure 194. Flash chamber passively vacuumed	192
Figure 195. Preparing to start the desalination process	193
Figure 196. Desalination process taking place	193
Figure 197. Flash chamber vented to terminate vacuum	194
Figure 198. Flash chamber drained	194

LIST OF SYMBOLS

Nomenclature

A	area (cm ²) / enthalpy parameter
В	enthalpy parameter
BPE	boiling point elevation (°C)
С	enthalpy parameter
CV	flow coefficient
D	diameter (cm) / enthalpy parameter
DL	disturbance loop transfer function
Ε	energy flow (J/min) / enthalpy parameter
f	fanning friction factor
F	heat removal factor / counter-current departure correction factor
g	gravity acceleration (cm/s ²)
h	heat transfer coefficient (W/cm ² -°C)
<u>H</u>	molar specific enthalpy (J/mol)
Н	specific enthalpy (J/g)
НС	Henry's constant (bar)
HF	Henry's coefficient (°C)
Ι	solar insolation (W/cm ²)
k	thermal conductivity (W/cm-°C)
Κ	vapor-liquid equilibrium distribution coefficient / gain
L	length (cm)
M	flow rate (g/min)
MW	molecular weight (g/mol)
n	molar amount (mol)
N	molar flow rate (mol/min) / number of vertical rows
NEA	non-equilibrium allowance (°C)

Р	pressure (bar)
PA	saturated pressure coefficient
PB	saturated pressure coefficient
PC	saturated pressure coefficient
PD	nominal pipe diameter (cm)
PEC	prime energy consumption
PL	equivalent pipe length (cm) / process loop transfer function
Q	heat input rate (J/min)
r	correlation coefficient
R	universal gas constant (bar-cm ³ /mol-°C)
Re	Reynolds number
S	counter-current departure parameter
S	Laplace domain frequency (1/sec)
SG	specific gravity
Т	temperature (°C)
t	time (min)
TIC	temperature controller transfer function
U	overall heat transfer coefficient (W/cm ² -°C)
V	volume (cm ³)
W	work output rate (J/min)
x	mole fraction in concentrated brine
XA	cross sectional area (cm ²)
У	mole fraction in flashed vapor
Ζ	level or elevation (cm)
Ζ	mole fraction before flash
α	relativity factor / absorptance
γ	activity coefficient
δ	thickness (cm)
ΔP	pressure drop (bar)
Δt	time increment (min)
∆Tm	logarithmic mean temperature difference (°C)

З	Error
ζ	non-equilibrium allowance correlation parameter
η	efficiency (%)
μ	viscosity (Poise)
μA	viscosity coefficient
μB	viscosity coefficient
μC	viscosity coefficient
μD	viscosity coefficient
ζ	non-equilibrium allowance correlation parameter
ρ	density (g/cm ³)
ρA	density coefficient
ho B	density coefficient
ho C	density coefficient
σ	diffusion conductance parameter (g-°C ^{1/2} /bar-min-cm ²)
τ	transmittance / time constant (sec)
φ	mass fraction in streams
Ψ	gas phase molecular content correction factor
Ω	diffusion resistance parameter (bar)
ω	mass fraction in sea salt

Subscripts

0	dead time
Ar	argon
В	brine water tank
BO_3	borate
BP	bubble point
Br	bromide
С	condenser / controller
Ca	calcium
Cl	chlorine
CO_2	carbon dioxide

CT	condenser tube
CV	condenser vacuum
D	derivative
DL	disturbance loop
DP	dew point
Ε	flashed vapor
EV	evaporator vacuum
F	fluoride / fresh water tank
Н	heater
H_2O	water
HCO ₃	bicarbonate
HT	heater tube
Ι	integral
j	representative stream
Κ	potsium
Mg	magnesium
N_2	nitrogen
Na	sodium
NCG	representative non-condensable gas
0	orifice
O_2	oxygen
Р	pump
PL	process loop
R	recovery
S	seawater tank
Salt	sea salt
SC	solar collector
SO_4	sulfate
Sr	strontium
Т	thermal
V	vacuum

W	evaporator
X	seawater preheat

Superscripts

a	accumulating
С	condensed vapor
d	diffusing
i	initial / inside
id	inside dirt
in	entering
L	latent
0	reference state / outside
od	outside dirt
out	existing
sat	saturated
W	concentrated brine
W	wall

THEORETICAL AND EXPERIMENTAL SIMULATION OF PASSIVE VACUUM SOLAR FLASH DESALINATION

Mohammad Abutayeh

ABSTRACT

Experimental and theoretical simulations of a novel sustainable desalination process have been carried out. The simulated process consists of pumping seawater through a solar heater before flashing it under vacuum in an elevated chamber. The vacuum is passively created and then maintained by the hydrostatic balance between pressure inside the elevated flash chamber and outdoor atmospheric pressure.

The experimental simulations were carried out using a pilot unit built to depict the proposed desalination system. Theoretical simulations were performed using a detailed computer code employing fundamental physical and thermodynamic laws to describe the separation process, complimented by experimentally based correlations to estimate physical properties of the involved species and operational parameters of the proposed system setting it apart from previous empirical desalination models.

Experimental and theoretical simulation results matched well with one another, validating the developed model. Feasibility of the proposed system rapidly increased with flash temperature due to increased fresh water production and improved heat recovery. In addition, the proposed desalination system is naturally sustainable by solar radiation and gravity, making it very energy efficient.

CHAPTER 1. INTRODUCTION

1.1 Overview

Fresh water demand is persistently increasing both as populations around the world keep growing and as existing fresh water reserves keep declining due to consumption and pollution. Figure 1 shows the estimated water consumption of US counties for 2000 [1]. Marine waters represent an infinite water source since 98 % of all global water is present in oceans; therefore, seawater desalination is the logical approach to meet rising fresh water demand.

Energy demand is also continually increasing due to relentless global industrialization. Oil and gas remain the primary sources of energy for most of the world; however, their reserves are dwindling, production is peaking, and consumption is harming the environment. Figure 2 illustrates the estimated energy consumption per capita of US states for 2001, while Figure 3 compares energy consumption per capita of Florida to the rest of the country for the past forty years [1]. Renewable energy sources are continually replenished by cosmic forces and can be used to produce sustainable and useful forms of energy with minimum environmental impact.

Serious economic and social disruptions are unfolding over the finite water and energy resources; hence, securing fresh water supply and employing renewable energy sources will help avoid catastrophic conflicts, continue modern lifestyles, and circumvent global warming and environmental pollution [2]. Desalination can be accomplished by separation techniques developed over the years to produce potable water. The most widespread desalination methods are given in CHAPTER 2. Momentous amounts of energy are required in all desalination processes; therefore, reducing energy demand, as well as employing renewable energy, is imperative to developing viable desalination processes. Various desalination systems driven by renewable energy have been developed over the last few years; nonetheless, most have not yet been commercially implemented due to high capital cost associated with utilizing renewable energy.

Solar radiation is a very appealing source of energy because it is available at no cost; furthermore, exploiting it has no notable adverse effect on the environment. Plenty of research and development have been undertaken to utilize this free form of energy to develop more efficient sustainable processes such as water desalination and power generation. Figure 4 illustrates the US share of solar radiation [3]. Solar energy is intermittent and requires storage; however, maximizing its use alongside developing energy efficient processes can greatly diversify energy resources, save the environment, and reduce imposed social cost [4].

Solar desalination is essentially a small–scale duplicate of the natural hydrologic cycle that produces rain, which is the primary source of fresh water worldwide. Solar insolation is preferred over other renewable energy sources to drive desalination systems because its thermal energy can be directly applied to thermal desalination schemes without adverse energy conversion requirements that usually entail certain energy losses. In addition, thermal desalination schemes are more suitable than mechanical desalination schemes for large–scale applications as will seen later.

Figure 1. Estimated water consumption of US counties for 2000 [1]

Figure 2. Estimated energy consumption per capita of US states for 2001 [1]

Figure 3. Estimated energy consumption per capita of Florida and the US [1]

Figure 4. Monthly average daily solar insolation in the US [3]

1.2 Objective

Developing an economically-viable and environmentally-friendly desalination system involves lowering its energy demand and employing renewable energy to drive its operation. In this study, the most common desalination technique, multi-stage flash, will be modified to have its system vacuum created passively and to have its thermal energy requirements drawn from solar insolation. The proposed modifications are expected to further the feasibility and broaden the applicability of the desalination process.

Creating vacuum conditions above liquids will increase their evaporation rates. This phenomenon can be integrated into a practical continuous desalination process by repeatedly flashing seawater in vacuumed chambers to produce water vapor that will be condensed to produce fresh water. Gravity can be used to balance hydrostatic pressure inside the flash chambers with the outdoor atmospheric pressure to maintain that vacuum, while low grade heat or solar radiation can be used to heat seawater before flashing it.

The objective of this study is to simulate theoretically and experimentally a solar flash desalination process under a hydrostatically sustained vacuum and analyze its controlling variables. Theoretical simulation is accomplished by a rigorous computer code employing fundamental physical and thermodynamic relationships to describe the process complimented by reliable empirical correlations to estimate physical properties of the involved species and operational parameters of the proposed system. Experimental simulation is realized by constructing a pilot unit depicting the proposed desalination system. Theoretical and experimental simulations will be run under various analogous conditions, and their results will be compared and analyzed both to validate the developed model and to examine the feasibility of the proposed system.

CHAPTER 2. DESALINATION

2.1 Conventional Desalination

Desalination is very energy intensive and requires costly infrastructure; therefore; several desalination processes have been developed over the years to produce fresh water from seawater economically. These can be classified according to the applied separation scheme into thermal, physical, and chemical processes.

Thermal desalination processes produce a fractional phase change of liquid seawater to either vapor or solid. The new phase is then separated from the bulk brine water producing fresh water, while the latent heat of phase change is reclaimed. Multiple effect evaporation, multi–stage flash, vapor compression, and indirect contact freezing are examples of thermal desalination processes.

Physical desalination processes extract fresh water from seawater by applying pressure or electric potential across a membrane. Either fresh water or solute ions travel through the semi-permeable membrane due to the mechanically induced gradient yielding the desired separation. Reverse osmosis, electro-dialysis, and nano-filtration are examples of physical desalination processes.

Chemical desalination processes extract fresh water from seawater by precipitating its salts due to chemical reactions. These processes are less common because they are usually too expensive to produce fresh water. Ion exchange, gas hydrate, and liquid–liquid extraction are examples of chemical desalination processes.

Selecting a suitable desalination process requires several design considerations such as: start–up time, seawater quality, seawater supply, maintenance requirements, energy efficiency, capital cost, operating cost, and other site specific factors [2]. Global distribution of these processes is illustrated categorically in Figure 5 and geographically in Figure 6 as percentages of total installed capacity [5].

Selecting a particular desalination process also requires knowledge of its specific design limitations. Discussing the design limitations of different desalination processes is beyond the scope of this study, but such discussions are widely available in academic and business literature [6]. A brief summary of these limitations is provided here.

The energy needed to recover fresh water from seawater increases with increased salinity; therefore, limiting recovery rates is one way to optimize the desalination process. Also, increasing process efficiency usually involves increasing equipment size, which entails capital cost increase. Optimum design of desalination plants generally includes analyzing the tradeoff between energy and capital costs to minimize production costs. In addition, scaling is a major issue in desalination because it fouls mass and heat transfer surface areas, reducing both capacity and efficiency. Scaling can be minimized by reducing the saturation limit of saline water via dropping the operating temperature and limiting the recovery rates in addition to chemical pretreatment and lime soda softening. Finally, desired water quality directly influences which desalination path to take [6].

Desalination is a continually evolving field with many of its processes under research and development. In addition, a wide variety of cost effective hybrid processes are proposed as alternatives to the rather expensive common commercial processes. A brief discussion of the major desalination processes is provided next.

Figure 5. Global distribution of installed desalination capacity by technology [5]

Figure 6. Global distribution of installed desalination capacity by region [5]

2.1.1 Multiple Effect Evaporation

Originally developed in the 1820s for concentrating sugar in sugar cane juice, multiple effect evaporation was used for desalination in the 1950s, making it the oldest desalination process still in operation. Multiple effect evaporation has been combined with other desalination methods, such as vapor compression, to increase its efficiency.

Seawater is distributed to a sequence of vacuumed vessels, known as effects, held at successively lower pressures. External heat is supplied to the first effect, and the generated vapor of each effect supplies its latent heat of condensation to the next. Condensed vapor of each effect is then collected as the fresh water product.

Multiple effect evaporation has a relatively good thermal performance since external heating is only required for the first effect, but its heat transfer tubes are very susceptible to scaling, making it a less attractive desalination option. Figure 7 provides a simple process flow diagram of the multiple effect evaporation desalination process [6].

Figure 7. Multiple effect evaporation

2.1.2 Multi-Stage Flash

Multi–stage flash is the most common desalination technique, accounting for over 40 % of the global capacity [5]. It has been coupled with other processes, such as solar heating and steam turbine power generation, to increase its efficiency.

Seawater is moved through a sequence of vacuumed vessels, known as stages, held at successively lower pressures, where it is preheated. External heat is then supplied, heating the seawater to above its saturation point. Seawater is then successively passed from one stage to the next, where a small amount of water flashes to steam in each stage, and the remaining brine is forwarded to next stage for further flashing. The flashed steam of each stage condenses by losing its latent heat of condensation to the entering seawater. The condensed vapor of each stage is then collected as the fresh water product.

Multi-stage flash has a relatively low thermal performance due to bulk heating of seawater, but its heat transfer tubes are less susceptible to scaling because of that bulk heating, making it a more attractive desalination option. Figure 8 provides a simple process flow diagram of the multi-stage flash desalination process [6].

Figure 8. Multi-stage flash

2.1.3 Vapor Compression

Seawater is preheated before entering a vacuumed vessel to be partially vaporized by the latent heat of a condensing steam obtained via compressing vaporized water. The process is dubbed mechanical vapor compression if steam compression is done by a compressor or thermal vapor compression if steam compression is done by an ejector.

Vapor compression has a relatively high thermal performance and can be applied in the desalination of extremely concentrated brines. Vapor compression is generally employed in small and medium capacity applications. Figure 9 provides a simple process flow diagram of the mechanical vapor compression desalination process [6].

Figure 9. Mechanical vapor compression

2.1.4 Indirect Contact Freezing

Seawater is cooled by cold outgoing fresh water and brine before it enters the evaporator of a separate refrigeration cycle, known as the freezer, where it is partially frozen by evaporating refrigerant. Crystallized ice is separated from the brine before it enters the condenser of the refrigeration cycle, known as the melter, where it melts by extracting its latent heat of fusion from condensing refrigerant. Cold outgoing fresh water and brine streams are used to cool the entering seawater in a heat exchanger.

Indirect contact freezing has a relatively high thermal performance and is less susceptible to scaling and corrosion due to its low temperature operation, but problems arise both from controlling solids handling operations and from the uncertain reliability of refrigerant compressors due to increased risk of oil slugging at low pressures. Figure 10 provides a simple schematic of the indirect contact freezing desalination process [6].

Figure 10. Indirect contact freezing

2.1.5 Reverse Osmosis

Reverse osmosis is the most common desalination process nationally and the second most common internationally in terms of capacity. It is best used for brackish water and is usually combined with other filtration methods to increase its efficiency.

Seawater is initially treated to adjust its pH and to free it from particulates that negatively impact the membrane structure. Seawater is then pumped to a network of semi-permeable membranes, separating fresh water from concentrated brine. Seawater pressure is raised above its natural osmotic pressure, typically 25 bars, but is kept below the membrane tolerance pressure, typically between 60 and 80 bars, forcing pure water molecules through the membrane pores to the fresh water side. Separated water is then treated and collected as the fresh water product, while the concentrated brine is rejected.

Reverse osmosis is very efficient because the mechanical compression energy can be reclaimed from the rejected concentrated brine with a suitable turbine. Figure 11 provides a simple process flow diagram of the reverse osmosis desalination process [6].

Figure 11. Reverse osmosis

2.1.6 Electro–Dialysis

Seawater is passed through an electro-dialysis stack consisting of alternating layers of cationic and anionic ion exchange membranes in an electrical field. Cations and anions then migrate in opposite directions through ion selective membranes and away from the saline feed in response to applied voltage across the electro-dialysis stack, producing fresh water in the intermediary channels.

The electro-dialysis stack can be arranged in series to increase purification and in parallel to increase output. Electro-dialysis is best used in brackish water applications and is usually combined with other filtration methods to increase its efficiency. Figure 12 provides a simple process flow diagram of the electro-dialysis desalination process [6].

Figure 12. Electro–dialysis
2.2 Solar Desalination

Extracting fresh water from seawater requires a great deal of energy, both thermal and mechanical, as detailed in Table 1 [7]. Renewable energy driven desalination is becoming more viable despite its expensive infrastructure because it employs free natural energy sources and releases no harmful effluents to the environment. Solar insolation is usually chosen over other renewable energy sources because its thermal energy can be directly applied to drive desalination systems without irreversible energy conversion that involves inevitable energy loss according to the second law of thermodynamics.

Solar desalination systems are classified into direct and indirect processes depending on the energy path to fresh water. Direct solar desalination systems combine solar energy collection and desalination in one process producing fresh water distillate by directly applying collected solar energy to seawater. Solar distillation using a solar still is an example of direct solar desalination. Indirect solar desalination systems comprise two sub–systems: a solar collection system and a desalination system. The solar collection sub–system is used either to collect heat using solar collectors and supply it via a heat exchanger to a thermal desalination process or convert heat to electricity using photovoltaic cells to power a physical desalination process. The desalination sub–system can be any of the previously mentioned conventional desalination systems.

Process	Heat Input	Power Input	Prime Energy Consumption
	(kJ/kg of product)	(kJ/kg of product)	(kJ/kg of product)
MEE	123	8	149
MSF	294	9–14	338
VC		29–58	192
RO		18–47	120
ED		43	144
		15	

 Table 1. Energy consumption of desalination systems [7]

2.2.1 Solar Distillation

Seawater is placed in a blackened basin inside an air tight transparent structure where it evaporates due to absorption of solar radiation then condenses on the sloping structure by losing its latent heat of condensation to the surroundings. Condensed droplets run down the cover to accumulating troughs to be collected as fresh water.

Solar distillation is a small scale hydrological cycle, and its efficiency is significantly dependent on meteorological limitations such as solar radiation, sky clearness, wind velocity, ambient temperature, and many others. Solar distillation requires large collection areas to maximize insolation and is usually combined with other desalination methods to increase its efficiency. Figure 13 provides a simple process flow diagram of the solar distillation desalination process [6].

Figure 13. Solar distillation

2.2.2 Solar Collectors

The solar collection sub–system of an indirect solar desalination system is essentially a solar collector that absorbs incident solar radiation and transfers heat to a fluid flowing through it. The working fluid of the collector can either be a medium to transfer heat to the process or to a thermal energy storage reservoir, or it can be the seawater itself before going through a thermal desalination system. Solar collectors can be either stationary or tracking. Tracking solar collectors can be designed to go after the rays of sunlight by moving around either a single axis or double axes.

Solar collectors can also be classified as concentrating and non-concentrating types. The concentration ratio of a solar collector is the relative amount of the solar flux on the receiver to flux on the aperture. Concentrating collectors have a highly reflective surface to reflect and concentrate solar radiation onto a receiver or an absorber, while non-concentrating collectors have a highly absorptive surface with low emittance to maximize heat transfer to the working fluid. Solar collectors are chosen according to the desired process temperature. Table 2 includes an extensive list of solar collectors and their operational temperature ranges [7].

Tracking	Collector Type	Absorber	Concentration Ratio	Operational Range
	Flat plate	Flat	1	30–80 °C
Stationary	Evacuated tube	Flat	1	50–200 °C
	Compound parabolic	Tubular	1–5	60–240 °C
Single–axis	Compound parabolic	Tubular	5–15	60–300 °C
	Linear Fresnel	Tubular	10–40	60–250 °C
	Parabolic trough	Tubular	15–45	60–300 °C
	Cylindrical trough	Tubular	10–50	60–300 °C
Double aria	Parabolic dish	Point	100–1000	100–500 °C
Double-axis	Heliostat field	Point	100–1500	150–2000 °C

Table 2. Solar collectors [7]

2.2.3 Thermal Energy Storage

Thermal energy storage in various solid and liquid media is used to synchronize energy supply and demand due to the intermittent nature of solar energy. Energy can be stored as sensible heat, as shown in Table 3, or as latent heat, as shown in Table 4 [8]. Thermal storage design depends on the temperature range of the solar collection and desalination systems, charge and discharge rates, space, corrosivity, and many others.

Medium	Range ($^{\circ}C$)	$\rho (kg/m^3)$	Cp(J/kg-°C)	$K(W/m-^{\circ}C)$
Water	0-100	1000	4190	0.63
Water – 10 bar	0-180	881	4190	
50 % ethylene glycol	0-100	1075	3480	
Dowtherm A [®]	12-260	867	2200	0.12
Therminol 66 [®]	-9–343	750	2100	0.11
Draw salt	220-540	1733	1550	0.57
Molten salt	142-540	1680	1560	0.61
Liquid sodium	100-760	750	1260	67.50
Cast iron	Up to 1150	7200	540	42
Taconite	_	3200	800	
Aluminum	Up to 660	2700	920	200
Fireclay		2100-2600	1000	1.0-1.5
Rock	—	1600	880	

Table 3. Sensible heat storage material [8]

Table 4. Latent heat storage material [8]

Medium	MP	ΔH^{L}	ρ(kg	(m^3)	Cp (kJ	/kg-°C)	k
	(°C)	(kJ/kg)	Solid	Liquid	Solid	Liquid	$(W/m-^{\circ}C)$
$LiClO_3 \cdot 3H_2O$	8.1	253	1720	1530			
$Na_2SO_4 \cdot 10H_2O$	32.4	251	1460	1330	1.76	3.32	2.25
$Na_2S_2O_3 \cdot 5H_2O$	48	200	1730	1665	1.47	2.39	0.57
NaCH ₃ COO · 3H ₂ O	58	180	1450	1280	1.90	2.50	0.50
$Ba(OH)_2 \cdot 8H_2O$	78	301	2070	1937	0.67	1.26	0.65 (1)
$MgNO_3 \cdot 6H_2O$	90	163	1636	1550	1.56	3.68	0.61
LiNO ₃	252	530	2310	1776	2.02	2.04	1.35
$LiCO_3 / K_2CO_3$	505	345	2265	1960	1.34	1.76	
$LiCO_3 / K_2CO_3 / Na_2CO_3$	397	277	2300	2140	1.68	1.63	
n–Tetradecane	5.5	228	825	771			0.15
n–Octadecane	28	244	814	774	2.16		0.15
HDPE	126	180	960	900	2.88	2.51	0.36
Steric Acid	70	203	941	347		2.35	0.17 (1)

2.2.4 Solar Ponds

Water absorbs solar radiation going through it causing its temperature to rise. The shorter the wave length of sunlight, the deeper it can penetrate the water column as shown in Table 5 [8]. Solar ponds are pools of water with a darkened bottom to maximize light absorption. They are designed to have increasing salinity with depth creating a density gradient that inhibits natural convection currents. The final outcome is a stratified pond with increasing temperature and salinity with depth, as shown in Figure 14 [7]. Solar ponds function as both solar collectors and thermal energy storage media.

			Layer Depth		
wavelength (µm) -	0	1 cm	10 cm	1 m	10 m
0.2–0.6	23.7	23.7	23.6	22.9	17.2
0.6–0.9	36.0	35.3	36.0	12.9	0.9
0.9–1.2	17.9	12.3	0.8	0.0	0.0
> 1.2	22.4	1.7	0.0	0.0	0.0
Total	100.0	73.0	54.9	35.8	18.1

 Table 5. Spectral absorption of solar radiation in water [8]

UCZ = Upper Convecting Zone NCZ = Non-Convecting Zone LCZ = Lower Convecting Zone

Figure 14. Vertical cross section of a solar pond

2.2.5 Photovoltaics

Photovoltaic cells are made from common semiconductor compounds and can directly convert solar radiation into useful electricity, as shown in Figure 15 [8]. Cells are arranged to form modules that are combined to form panels. Photovoltaic systems include an array of joined panels to produce the required electrical output, as shown in Figure 16 [8]. Photovoltaics can be employed independently or jointly with other sources to generate electricity needed to power physical desalination systems.

Figure 15. Photovoltaic cell schematics

Figure 16. Photovoltaic system schematics

CHAPTER 3. RESEARCH BACKGROUND

3.1 Renewable Energy Desalination Systems

Water and energy are the most essential ingredients of a flourishing civilization. Fresh water and energy reserves are increasingly exhausted as was mentioned earlier in CHAPTER 1; hence, seawater desalination using renewable energy sources is a very appealing research area. In addition, desalination is an enormously energy exhaustive process making fossil fuel based conventional desalination methods extremely unpopular especially in light of the growing impact of environmental pollution and global warming.

The worldwide capacity of desalination using renewable energy amounts to less than 1 % of that of conventional desalination due to high capital and maintenance costs associated with using renewable energy sources [9]. Several renewable energy driven desalination plants were designed and constructed; however, most of them were geographically customized and built on pilot scale. A detailed record of renewable energy driven desalination plants was put together by Tzen and Morris [10].

Wind energy can be utilized to generate electricity via turbines to run physical and chemical desalination plants, while geothermal energy can be utilized to generate heat via underground heat exchangers to run thermal desalination plants. Solar energy is the most promising renewable energy source due to its ability to drive the more popular thermal desalination systems directly through solar collectors and to drive physical and chemical desalination systems indirectly through photovoltaic cells.

3.2 Passive Vacuum Solar Desalination

The passive vacuum desalination concept was initially developed and examined by Goswami and Kharabsheh [11]. Atmospheric pressure forces seawater from a ground level tank into an elevated vacuumed chamber through an injection pipe where water starts to evaporate due to solar energy supplied to the chamber via a closed loop heat exchanger. The concentrated brine is then withdrawn through a withdrawal pipe annulus to the injection pipe to recover heat, while vapor moves towards a condenser due to a vapor pressure gradient through a finned pipe. Vapor then condenses by losing its latent heat of condensation to the ambient and flows down to a fresh water tank due to gravity. The vacuum is maintained by the hydrostatic balance amongst all of the joined vessels. Figure 17 provides a simple illustration of the passive vacuum solar desalination process.

Figure 17. Passive vacuum solar desalination

22

3.3 Passive Vacuum Solar Flash Desalination

The prior passive vacuum solar process was modified to overcome the big size of the evaporator and its large level fluctuations. Seawater is pumped through a condenser to preheat it before it enters a solar heater where it flashes into the vacuumed evaporator through an expansion orifice to produce water vapor and concentrated brine. The flashed vapor then condenses by losing its latent heat of condensation to the entering seawater in the condenser. The condensate and the concentrated brine flow down to ground tanks due to gravity, while the vacuum is naturally maintained by the hydrostatic balance between the ground and the elevated vessels. Figure 18 provides a simple process flow diagram of the passive vacuum solar flash desalination process that was developed and examined theoretically by Goswami and Maroo [12].

Figure 18. Passive vacuum solar flash desalination

3.4 Proposed Desalination System

The proposed desalination system consists of a saline water tank, a concentrated brine tank, and a fresh water tank placed on ground level plus an evaporator and a condenser located at least ten meters above ground, as shown in Figure 19. The evaporator–condenser assembly, or flash chamber, is initially filled with saline water that later drops into the ground tanks by gravity, creating a vacuum above the water surface in the unit without a vacuum pump. The vacuum is maintained by the hydrostatic pressure balance among all of the connected vessels. The ground tanks are open to the atmosphere, while the flash chamber is insulated and sealed to retain both heat and vacuum.

In a continuous process, cool saline water is pumped through the condenser to preheat it before it enters a solar heater and flashes into a vacuumed evaporator through an expansion orifice or a pressure–reducing valve producing water vapor and concentrated brine. The water vapor then condenses by losing its heat of condensation to the entering saline water in the condenser. The fresh water condensate and concentrated brine flow down to the fresh water and brine water tanks, respectively, due to gravity through linking pipes. Each of the fresh water and the brine water tanks has a discharge pipe located a few centimeters above the level of the inlet water pipes, keeping their levels constant to maintain the vacuum in the flash chamber hydrostatically as well as to retrieve the fresh water product and reject the concentrating brine.

Multi–stage flash desalination scheme of the proposed system can be achieved by flashing seawater in sequentially lower pressure flash chambers, as shown in Figure 20. Employing the multi–stage flash desalination scheme will result in more evaporation and better recovery of heat of condensation, resulting in more fresh water output.

Figure 19. Single-stage solar flash desalination system

Figure 20. Multi-stage solar flash desalination system

CHAPTER 4. THEORETICAL ANALYSIS

4.1 Process Description

The proposed desalination system with its designated stream labels is outlined in Figure 21. The desalination process includes two consecutive steps: a start–up procedure and a continuous operation. The start–up procedure is a simple process invoked prior to running the continuous operation and will not be included in the model. The continuous operation is the essential part of the desalination process, and a model will be built to simulate it. The valve positions shown depict the system in continuous operation mode.

The start-up procedure begins by separately pumping the condenser with fresh water and the evaporator with seawater, while their top valves are open and their bottom ones are closed until they are completely filled with water and free of air. Valve positions of both vessels of the flash chamber are then switched to let water drop under gravity, leaving behind a vacuum that is created without a vacuum pump.

The continuous operation begins right after the initial start–up procedure and it consists of pumping seawater through the condenser, preheating it before flowing it through the channels of a solar heater to reach a desired flash temperature. The desired flash temperature is controlled by manipulating the residence time of seawater in the solar heater by varying its flow rate in relation to available solar insolation. Hot seawater then flashes into an insulated vacuumed evaporator through an expansion orifice or a pressure–reducing valve, producing water vapor and concentrated brine.

The produced water vapor flows to the condenser due to a vapor pressure gradient and condenses by losing its heat of condensation to seawater passing through the condenser while concentrated brine remains in the evaporator. The fresh water condensate and concentrated brine flow down to the fresh water and brine water ground tanks, respectively, due to gravity through linking pipes that stretch down till just above the bottom of the tanks. The fresh water and the brine water ground tanks have discharge pipes positioned a few centimeters higher than the lip of the linking pipes, keeping their levels constant to maintain the vacuum in the flash chamber by the hydrostatic balance with the levels in the flash chamber.

A comprehensive model will be developed to examine the dynamics of proposed continuous desalination operation. The model will employ fundamental laws to describe the process in addition to reliable empirical correlations to estimate physical properties of the involved species and operational parameters of the proposed system. The model will assume total steam condensation as well as quasi steady state operation, accounting for the build up of non–condensable gases in the flash chamber. The model will also account for the natural diffusion process of water vapor occurring because of a vapor pressure gradient present between the hot and cold sides of the flash chamber.

The model will include mass and energy balances around process equipment and geometrical formulas describing equipment layout and size. The Rachford–Rice method [13] will be employed to perform flash calculations, while Bernoulli's fluid equation will be used to perform hydrostatic balance relations. Thermodynamic equilibria and several physical property correlations will also be included in the model. In addition, an integrative equation of state will be used to express rising vacuum pressure.

Figure 21. Process schematics

4.2 Model Development

Trace components in seawater may affect its kinetics but not its thermodynamic equilibrium; therefore, only major components will be considered in this theoretical analysis. The following sub–sections present all equations used in modeling the proposed system, while the next section sketches the solution algorithm.

The nomenclature and engineering units of all variables used in the model are detailed at the beginning of this dissertation in the LIST OF SYMBOLS section. In addition, stream symbols that appear on the process flow diagram of Figure 21 are used as subscripts for different stream property variables. Process equipment referred to in the model denote the pump, the condenser, the heater, and the evaporator. The complete code with its input and output values can be found in the APPENDICES section.

4.2.1 Mass and Energy Balance

Salt balances around process equipment are given by

$$\varphi_S \cdot M_S = \varphi_P \cdot M_P \tag{1}$$

$$\varphi_P \cdot M_P = \varphi_X \cdot M_X \tag{2}$$

$$\varphi_X \cdot M_X = \varphi_H \cdot M_H \tag{3}$$

$$\varphi_H \cdot M_H = \varphi_W \cdot M_W \tag{4}$$

Overall energy balances around process equipment are given by

$$Q_{P} - W_{P} + E_{P}^{in} - E_{P}^{out} = 0 (5)$$

$$Q_C - W_C + E_C^{in} - E_C^{out} = E_C^a \tag{6}$$

$$Q_{H} - W_{H} + E_{H}^{in} - E_{H}^{out} = 0 (7)$$

$$Q_E - W_E + E_E^{in} - E_E^{out} = E_E^d \tag{8}$$

Energy flow inputs to process equipment are given by

$$E_P^{in} = M_S \cdot H_S \tag{9}$$

$$E_C^{in} = M_P \cdot H_P + M_E \cdot \left(H_E + H_E^L\right) \tag{10}$$

$$E_H^{in} = M_X \cdot H_X \tag{11}$$

$$E_E^{in} = M_H \cdot H_H \tag{12}$$

Energy flow outputs from process equipment are given by

$$E_P^{out} = M_P \cdot H_P \tag{13}$$

$$E_C^{out} = M_X \cdot H_X + M_C \cdot H_C \tag{14}$$

$$E_H^{out} = M_H \cdot H_H \tag{15}$$

$$E_E^{out} = M_W \cdot H_W + M_E \cdot \left(H_E + H_E^L\right) \tag{16}$$

Energy accumulation in the condenser due to non-condensable gases is given by

$$E_C^a = M_C^a \cdot H_C^a \tag{17}$$

Energy transmitted by the diffusing water molecules from the concentrated brine phase to the fresh water vapor phase is accounted for in the above energy input and output expressions; therefore, an offset term is included in the energy balance of the evaporator to neutralize the effect of that transmitted energy on the flashing process. In other words, offsetting transmitted energy of diffusing water molecules effectively altered the boundary of the above energy balance from the evaporator to expansion orifice. Figure 22 illustrates the mass transfer operations of the proposed system, where flash and diffusion operations occur in the evaporator. The transmitted energy of the diffusing water molecules offset term in the evaporator is given by

$$E_E^d = M_E^d \cdot \left(H_W - H_E - H_E^L\right) \tag{18}$$

Figure 22. Mass transfer operations

Demisting is a standard unit operation in industry accomplished by devices called demisters that are fitted to process vessels to ensure a full removal of liquid droplets from vapor streams. No demister was attached to the experimental unit and no demisting is considered in the model; however, flashed vapor can be safely assumed free from entrained brine droplets yielding zero salinity expressed by

$$\varphi_E = \varphi_C = 0 \tag{19}$$

The experimental simulation will be thoroughly discussed in CHAPTER 5 and its output will be comprehensively disclosed in CHAPTER 7; nonetheless, a significant observation regarding the produced amount of fresh water vapor was made and needs to be mentioned here since it will be included in the model.

The maximum amount of fresh water that can be produced by flashing seawater can be approximated by the expression $\int [M_H \cdot (H_H - H_W) / (H_E + H_E^L - H_W)] dt$, which is obtained by conducting an energy balance around the expansion orifice assuming seawater to be a single component fluid and ignoring heat losses. Maximum amounts that can be produced were computed using experimental flow and temperature values, then they were compared to actual collected amounts.

Actual amounts of fresh water produced at lower flash temperatures were considerably less than predicted amounts by the single component flash calculation, indicating that a sizeable quantity of the flashed vapor condenses prematurely in the evaporator before making it to the condenser. In contrast, the actual amounts of fresh water produced at higher flash temperatures were much more than predicted amounts by the single component flash calculation, suggesting the presence of a diffusion process of vaporized water molecules from the evaporator to the condenser. Bemporad [14] developed a correlation that estimates the diffusion rate of water vapor between two joined chambers under vacuum, where one chamber contains saline water and the other contains fresh water. The correlation was experimentally based with one empirical coefficient, and it identified the gradient $\Delta P_{H2O} / \sqrt{T}$ as the driving force for diffusion. The correlation was slightly modified to properly correspond to the current experimental results yielding the following expression

$$M_{E}^{d} = \sigma \cdot XA_{E} \cdot \left[\frac{\left(1 - 0.54 \cdot \varphi_{W}\right) \cdot P_{H_{2}O}^{W}}{\sqrt{T_{W} + 273.15}} - \frac{P_{H_{2}O}^{C} + \Omega}{\sqrt{T_{C} + 273.15}} \right]$$
(20)

Parameter σ serves as a diffusion coefficient, while parameter Ω serves as a diffusion barrier and both can be adjusted using experimental results. The two parameters can be thought of as conductance and resistance terms, and it is imperative to reiterate that their obtained values pertain to the geometry of the experimental set–up and should be readjusted whenever applied to different geometries using experimental records.

The vapor pressures corresponding to the brine and fresh water temperatures are needed to evaluate the above expression and can be calculated by [15]

$$P_{H_2O}^{W} = exp\left[PA - \left(\frac{PB}{T_W + PC}\right)\right]$$

$$P_{H_2O}^{C} = exp\left[PA - \left(\frac{PB}{T_C + PC}\right)\right]$$
(21)
(22)

Flash and accumulation computations will be carried out on molar basis; therefore, a mole balance is included in the model to represent both operations by

$$N_H = N_W + N_E \tag{23}$$

$$N_E = N_C + N_C^a \tag{24}$$

The flash operation is the heart of the desalination process and will be thoroughly discussed later. The condensation operation is considered a quasi-steady state operation where the formed non-condensable gases accumulate in the flash chamber, and all of the flashed water vapor condenses forming the fresh water product. This quasi-steady state operation is expressed by

$$N_C^a = \left(1 - y_{H_2O}\right) \cdot N_E \tag{25}$$

Note that the last equation can be replaced by $N_C = y_{H2O} \cdot N_E$ because total accumulation of non-condensable gases and total condensation of water vapor are interchangeable statements. Figure 23 represents a transformation of Figure 22 from mass to a molecular basis to correspond to the above mole balance and is accomplished by dividing the mass flow rates by the stream molecular weights presented next.

Figure 23. Molecular transfer operations

Mass flow rate and composition of process streams prior to flashing are considered constant, and their values will be input to the model

$$M_S = M_P = M_X = M_H \tag{26}$$

Both molar and mass flow rates are interchangeably used in this model to allow for flash and accumulation computations on a molar basis and for diffusion and production computations on a mass basis. They can be related using the average molecular weight of process streams that will be introduced later as follows

$$M_H = N_H \cdot M W_H \tag{27}$$

$$M_W = N_W \cdot M W_W - M_E^d \tag{28}$$

$$M_E = N_E \cdot M W_E + M_E^d \tag{29}$$

$$M_C = N_C \cdot M W_C + M_E^d \tag{30}$$

$$M_C^a = N_C^a \cdot M W_C^a \tag{31}$$

Seawater is a solution of many salts and contains a small amount of dissolved gases. To simplify calculations, seawater salt will be treated as one substance with nitrogen, oxygen, argon, and carbon dioxide making up the dissolved gases. The average molecular weights of seawater salt and process streams are used in relating molar and mass flow rates and can be estimated by considering their major components as [16]

$$\frac{1}{MW_{Salt}} = \begin{pmatrix} \frac{\omega_{Cl}}{MW_{Cl}} + \frac{\omega_{Na}}{MW_{Na}} + \frac{\omega_{SO_4}}{MW_{SO_4}} + \frac{\omega_{Mg}}{MW_{Mg}} + \frac{\omega_{Ca}}{MW_{Ca}} + \frac{\omega_{K}}{MW_{K}} \\ + \frac{\omega_{HCO_3}}{MW_{HCO_3}} + \frac{\omega_{Br}}{MW_{Br}} + \frac{\omega_{BO_3}}{MW_{BO_3}} + \frac{\omega_{Sr}}{MW_{Sr}} + \frac{\omega_{F}}{MW_{F}} \end{pmatrix}$$
(32)

$$MW_{H} = \begin{pmatrix} z_{N_{2}} \cdot MW_{N_{2}} + z_{O_{2}} \cdot MW_{O_{2}} + z_{Ar} \cdot MW_{Ar} \\ + z_{CO_{2}} \cdot MW_{CO_{2}} + z_{Salt} \cdot MW_{Salt} + z_{H_{2}O} \cdot MW_{H_{2}O} \end{pmatrix}$$
(33)

$$MW_{W} = \begin{pmatrix} x_{N_{2}} \cdot MW_{N_{2}} + x_{O_{2}} \cdot MW_{O_{2}} + x_{Ar} \cdot MW_{Ar} \\ + x_{CO_{2}} \cdot MW_{CO_{2}} + x_{Salt} \cdot MW_{Salt} + x_{H_{2}O} \cdot MW_{H_{2}O} \end{pmatrix}$$
(34)

$$MW_{E} = \begin{pmatrix} y_{N_{2}} \cdot MW_{N_{2}} + y_{O_{2}} \cdot MW_{O_{2}} + y_{Ar} \cdot MW_{Ar} \\ + y_{CO_{2}} \cdot MW_{CO_{2}} + y_{H_{2}O} \cdot MW_{H_{2}O} \end{pmatrix}$$
(35)

$$MW_C = MW_{H_2O} \tag{36}$$

$$MW_{C}^{a} = \frac{\left(y_{N_{2}} \cdot MW_{N_{2}} + y_{O_{2}} \cdot MW_{O_{2}} + y_{Ar} \cdot MW_{Ar} + y_{CO_{2}} \cdot MW_{CO_{2}}\right)}{\left(1 - y_{H_{2}O}\right)}$$
(37)

4.2.2 Equilibrium Distribution Coefficients

The distribution of non-condensable gases between the flashed vapor and concentrated brine in the flash chamber can be estimated by assuming equilibrium between the two phases. Salt is considered non-volatile and therefore is not present in the flashed vapor. Henry's constants for non-condensable gases and saturation pressure of water are needed to describe this assumed equilibrium.

Henry's constants for the non-condensable gases are given by [17]

$$HC_{N_2} = HC_{N_2}^o \cdot exp\left[-HF_{N_2} \cdot \left(\frac{1}{T_E + 273.15} - \frac{1}{298.15}\right)\right]$$
(38)

$$HC_{O_2} = HC_{O_2}^{\circ} \cdot exp\left[-HF_{O_2} \cdot \left(\frac{1}{T_E + 273.15} - \frac{1}{298.15}\right)\right]$$
(39)

$$HC_{Ar} = HC_{Ar}^{o} \cdot exp\left[-HF_{Ar} \cdot \left(\frac{1}{T_{E} + 273.15} - \frac{1}{298.15}\right)\right]$$
(40)

$$HC_{CO_2} = HC_{CO_2}^{o} \cdot exp\left[-HF_{CO_2} \cdot \left(\frac{1}{T_E + 273.15} - \frac{1}{298.15}\right)\right]$$
(41)

The saturated pressure of water is given by [15]

$$P_{H_2O} = exp\left[PA - \left(\frac{PB}{T_E + PC}\right)\right]$$
(42)

The equilibrium distribution coefficients are used in mass transfer computations to determine the distribution of chemicals between phases in equilibrium [18]. These are also known as the partition coefficients in the literature or more commonly as K-values. The mentioned vapor-liquid equilibrium distribution coefficient of species *i* is defined as $K_i = y_i / x_i = \gamma_i \cdot P_i^{sat} / P.$

The K-value of seawater salt is zero due to its non-volatility, while those of the non-condensable gases as well as water can be approximated using the above temperature-based correlations as follows

$$K_{N_2} = \frac{y_{N_2}}{x_{N_2}} = \frac{\frac{P_{N_2}}{P_V}}{x_{N_2}} = \frac{\frac{HC_{N_2} \cdot x_{N_2}}{P_V}}{x_{N_2}} = \frac{HC_{N_2}}{P_V}$$
(43)

$$K_{O_2} = \frac{y_{O_2}}{x_{O_2}} = \frac{\frac{P_{O_2}}{P_V}}{x_{O_2}} = \frac{\frac{HC_{O_2} \cdot x_{O_2}}{P_V}}{x_{O_2}} = \frac{HC_{O_2}}{P_V}$$
(44)

$$K_{Ar} = \frac{y_{Ar}}{x_{Ar}} = \frac{\frac{P_{Ar}}{P_V}}{x_{Ar}} = \frac{\frac{HC_{Ar} \cdot x_{Ar}}{P_V}}{x_{Ar}} = \frac{HC_{Ar}}{P_V}$$
(45)

$$K_{CO_2} = \frac{y_{CO_2}}{x_{CO_2}} = \frac{\frac{P_{CO_2}}{P_V}}{x_{CO_2}} = \frac{\frac{HC_{CO_2} \cdot x_{CO_2}}{P_V}}{x_{CO_2}} = \frac{HC_{CO_2}}{P_V}$$
(46)

$$K_{H_2O} = \frac{\gamma_{H_2O} \cdot P_{H_2O}}{P_V}$$
(47)

Vapor–liquid equilibrium distribution coefficients were obtained using the SUPERTRAPPTM program, an interactive computer code distributed by the National Institute of Standards and Technology that calculates thermodynamic properties of mixtures based on the Peng–Robinson equation of state. SUPERTRAPPTM was employed to perform isobaric phase equilibria flash calculations for water with an average content of non–condensable gas as reported in literature [16] at various temperatures to produce a dataset of K–values. Least squares regression was then used to fit the data to the above equilibrium equations by adjusting values of HC°_{i} , HF_{i} , PA, PB, and PC producing correlation coefficients very close to unity as will be seen later in CHAPTER 6.

The SUPERTRAPP[™] code used in generating the vapor–liquid equilibrium distribution coefficient data and the Matlab[™] codes used in regressing that data to adjust the vapor–liquid equilibrium parameters are in the APPENDICES section.

SUPERTRAPPTM simulations are fresh water based, and no salts were included in their flash calculations. To adjust phase equilibria computations of the current model for saline water, K–values are multiplied by a relativity parameter that can be defined as $\alpha_i =$ *solubility in fresh water / solubility in seawater* for solutes and $\alpha_{H2O} =$ *seawater saturated pressure / fresh water saturated pressure* for water. The relativity factor is a single constant obtained by averaging literature data given over the operating temperature range to simplify calculations [19].

Activity is a way for expressing the effective concentrations of species to account for their deviation from ideal behavior. Activity can be applied to any concentration scales such as molality, molarity, or fractional scales; however, molar fraction is the most common concentration scale used in flash calculation. Activity accounts for deviations from ideal behavior by multiplying the concentration by an activity coefficient that can be experimentally determined or empirically computed using several available models. The value of an activity coefficient approaches unity as molecular interactions behave more ideally.

The activity coefficient of water is needed to calculate its K–value. Experimental data can be used to perform adiabatic flash calculations, generating activity coefficient data that are then used to find an activity coefficient correlation resembling

$$\gamma_{H_2O} = f\left(\frac{P_V}{P_{H_2O}}\right) \tag{48}$$

4.2.3 Adiabatic Flash

The flash operation of the proposed desalination process is an adiabatic expansion operation where the temperature of seawater drops upon entering the flash chamber due to the drawn enthalpy of vaporization by the flashing water vapor, attaining a saturation temperature used in the above equilibrium calculations. Flash computations are carried out on a molar basis, and the molar composition of the stream entering the flash chamber can be calculated from the average composition of seawater reported on mass basis [16]

$$z_{N_{2}} = \frac{\frac{\varphi_{N_{2}}}{MW_{N_{2}}}}{\frac{\varphi_{N_{2}}}{MW_{N_{2}}} + \frac{\varphi_{O_{2}}}{MW_{O_{2}}} + \frac{\varphi_{Ar}}{MW_{Ar}} + \frac{\varphi_{CO_{2}}}{MW_{CO_{2}}} + \frac{\varphi_{H}}{MW_{Salt}} + \frac{\varphi_{H_{2}O}}{MW_{H_{2}O}}}$$

$$z_{O_{2}} = \frac{\frac{\varphi_{O_{2}}}{MW_{O_{2}}}}{\frac{\varphi_{N_{2}}}{MW_{O_{2}}} + \frac{\varphi_{O_{2}}}{MW_{O_{2}}} + \frac{\varphi_{Ar}}{MW_{Ar}} + \frac{\varphi_{CO_{2}}}{MW_{CO_{2}}} + \frac{\varphi_{H}}{MW_{Salt}} + \frac{\varphi_{H_{2}O}}{MW_{H_{2}O}}}$$
(50)

$$z_{Ar} = \frac{\frac{\varphi_{Ar}}{MW_{Ar}}}{\frac{\varphi_{N_2}}{MW_{N_2}} + \frac{\varphi_{O_2}}{MW_{O_2}} + \frac{\varphi_{Ar}}{MW_{Ar}} + \frac{\varphi_{CO_2}}{MW_{CO_2}} + \frac{\varphi_H}{MW_{Salt}} + \frac{\varphi_{H_2O}}{MW_{H_2O}}}$$
(51)

$$z_{CO_{2}} = \frac{\frac{\varphi_{CO_{2}}}{MW_{CO_{2}}}}{\frac{\varphi_{N_{2}}}{MW_{N_{2}}} + \frac{\varphi_{O_{2}}}{MW_{O_{2}}} + \frac{\varphi_{Ar}}{MW_{Ar}} + \frac{\varphi_{CO_{2}}}{MW_{CO_{2}}} + \frac{\varphi_{H}}{MW_{Salt}} + \frac{\varphi_{H_{2}O}}{MW_{H_{2}O}}}$$
(52)

$$z_{Salt} = \frac{\frac{\varphi_{H}}{MW_{Salt}}}{\frac{\varphi_{N_{2}}}{MW_{N_{2}}} + \frac{\varphi_{O_{2}}}{MW_{O_{2}}} + \frac{\varphi_{Ar}}{MW_{Ar}} + \frac{\varphi_{CO_{2}}}{MW_{CO_{2}}} + \frac{\varphi_{H}}{MW_{Salt}} + \frac{\varphi_{H_{2}O}}{MW_{H_{2}O}}}$$
(53)

The molar composition of the concentrated brine is given by

$$x_{N_{2}} = \frac{z_{N_{2}} \cdot N_{H}}{N_{W} + N_{E} \cdot \alpha_{N_{2}} \cdot K_{N_{2}}}$$
(54)

$$x_{O_2} = \frac{z_{O_2} \cdot N_H}{N_W + N_E \cdot \alpha_{O_2} \cdot K_{O_2}}$$
(55)

$$x_{Ar} = \frac{z_{Ar} \cdot N_H}{N_W + N_E \cdot \alpha_{Ar} \cdot K_{Ar}}$$
(56)

$$x_{CO_2} = \frac{z_{CO_2} \cdot N_H}{N_W + N_E \cdot \alpha_{CO_2} \cdot K_{CO_2}}$$
(57)

$$x_{Salt} = \frac{z_{Salt} \cdot N_H}{N_W}$$
(58)

$$x_{H_2O} = \frac{z_{H_2O} \cdot N_H}{N_W + N_E \cdot \alpha_{H_2O} \cdot K_{H_2O}}$$
(59)

Similarly, the molar composition of the flashed vapor is given by

$$y_{N_2} = x_{N_2} \cdot \alpha_{N_2} \cdot K_{N_2} \tag{60}$$

$$y_{O_2} = x_{O_2} \cdot \alpha_{O_2} \cdot K_{O_2}$$
(61)

$$y_{Ar} = x_{Ar} \cdot \alpha_{Ar} \cdot K_{Ar} \tag{62}$$

$$y_{CO_{2}} = x_{CO_{2}} \cdot \alpha_{CO_{2}} \cdot K_{CO_{2}}$$
(63)

$$y_{H,0} = x_{H,0} \cdot \alpha_{H,0} \cdot K_{H,0}$$
(64)

Fraction summations are given by

$$\varphi_{N_2} + \varphi_{O_2} + \varphi_{Ar} + \varphi_{CO_2} + \varphi_H + \varphi_{H_2O} = 1$$
(65)

$$z_{N_2} + z_{O_2} + z_{Ar} + z_{CO_2} + z_{Salt} + z_{H_2O} = 1$$
(66)

$$x_{N_2} + x_{O_2} + x_{Ar} + x_{CO_2} + x_{Salt} + x_{H_2O} = 1$$
(67)

$$y_{N_2} + y_{O_2} + y_{Ar} + y_{CO_2} + y_{H_2O} = 1$$
(68)

4.2.4 Heat Transfer

Computing temperatures of streams exiting the flash chamber properly is essential in accurately evaluating performance of the proposed desalination system; therefore, heat transfer calculations are included in the model, complimenting the above energy balance to solve for those temperatures. Heat transfer calculations are included to estimate the amount of heat transferred from the condensing vapor to the entering seawater feed through the condenser tube as well as the heat loss from both compartments of the flash chamber through the walls of the condenser and evaporator.

The condenser is exposed to maximize heat loss, while the evaporator is insulated to minimize heat loss, and the entire flash chamber is vacuum sealed. The vapor pressure gradient between the two compartments of the flash chamber is the driving force of vapor transfer from the hot evaporator to the cold condenser to produce fresh water. The condenser will be modeled as a shell and tube heat exchanger, both where the cold seawater is flowing inside a coiled tube placed in an exposed shell and where the flashed vapor is condensing on the outer surface of that coiled tube by losing its latent heat of condensation to the entering cold seawater. The evaporator will be modeled as an insulated vessel, where heated seawater is flashing producing fresh water vapor that moves to the condenser due to lower vapor pressure through a connecting duct.

Heat transfer is a complex process, particularly when phase change is involved. Heat transfer can come about in different modes; however, the current model will use the overall heat transfer approach to simplify computations.

The inside and outside fluid film coefficients can be estimated by the following correlations that were developed specifically for water and stagnant air [20] as well as evaporating and condensing steam [15]

$$h_{CT}^{i} = 3.0525 \cdot 10^{-4} \cdot \left(\frac{M_{X}}{D_{CT} \cdot \rho_{X}}\right)^{0.8} \cdot \left(\frac{1.35 + 0.02 \cdot T_{X}}{D_{CT}}\right)$$
(69)

$$h_{CT}^{o} = 0.725 \cdot \left(\frac{g \cdot H_{E}^{L} \cdot \rho_{X}^{2} \cdot k_{X}^{3}}{N_{CT} \cdot \mu_{X} \cdot (D_{CT} + \delta_{CT}) \cdot (T_{E} - T_{X})} \right)^{0.25}$$
(70)

$$h_{C}^{i} = 1.13 \cdot \left(\frac{g \cdot H_{E}^{L} \cdot \rho_{C}^{2} \cdot k_{C}^{3}}{\mu_{C} \cdot L_{C} \cdot (T_{E} - T)}\right)^{0.25}$$
(71)

$$h_{C}^{o} = 0.0448 \cdot \left(\frac{T_{E} - T}{L_{C}}\right)^{0.25}$$
(72)

$$h_{E}^{i} = 1.13 \cdot \left(\frac{g \cdot H_{E}^{L} \cdot \rho_{W}^{2} \cdot k_{W}^{3}}{\mu_{W} \cdot L_{E} \cdot (T_{E} - T)}\right)^{0.25}$$
(73)

$$h_{E}^{o} = 0.0448 \cdot \left(\frac{T_{E} - T}{L_{E}}\right)^{0.25}$$
(74)

The overall heat transfer coefficient is a simplified parameter used in gauging overall convective and conductive resistance to heat transfer. Overall heat transfer coefficients are computed by the following correlations [20]

$$\frac{1}{U_{CT}} = \frac{1}{h_{CT}^{o}} + \frac{1}{h_{CT}^{od}} + \frac{D_{CT} + \delta_{CT}}{D_{CT} \cdot h_{CT}^{i}} + \frac{D_{CT} + \delta_{CT}}{D_{CT} \cdot h_{CT}^{id}} + \frac{D_{CT} + \delta_{CT}}{2 \cdot k_{CT}^{w}} \cdot Ln \left[\frac{D_{CT} + \delta_{CT}}{D_{CT}}\right]$$
(75)

$$\frac{1}{U_C} = \frac{1}{h_C^o} + \frac{1}{h_C^{od}} + \frac{D_C + \delta_C}{D_C \cdot h_C^i} + \frac{D_C + \delta_C}{D_C \cdot h_C^{id}} + \frac{D_C + \delta_C}{2 \cdot k_C^w} \cdot Ln \left[\frac{D_C + \delta_C}{D_C} \right]$$
(76)

$$\frac{1}{U_E} = \frac{1}{h_E^o} + \frac{1}{h_E^{od}} + \frac{D_E + \delta_E}{D_E \cdot h_E^i} + \frac{D_E + \delta_E}{D_E \cdot h_E^{id}} + \frac{D_E + \delta_E}{2 \cdot k_E^w} \cdot Ln\left[\frac{D_E + \delta_E}{D_E}\right]$$
(77)

Heat transfer area is assumed to be equal to that of the inner surface of the heat transfer medium, with the end sections ignored; therefore, heat exchange surface areas are given by the following geometrical relationships

$$A_{CT} = \pi \cdot D_{CT} \cdot L_{CT} \tag{78}$$

$$A_C = \pi \cdot D_C \cdot L_C \tag{79}$$

$$A_E = \pi \cdot D_E \cdot L_E \tag{80}$$

The log mean temperature difference is a logarithmic average of the temperature difference between the hot and cold streams of a heat exchanger. It represents the driving force for heat transfer in heat exchangers, since that heat transfer is directly proportional to its value. The log mean temperature difference expressions are given by

$$\Delta Tm_{CT} = \frac{T_X - T_P}{Ln \left[\frac{T_E - T_P}{T_E - T_X} \right]}$$

$$\Delta Tm_C = \frac{T_C - T}{Ln \left[\frac{T_E - T}{T_E - T_C} \right]}$$
(81)
(82)

$$\Delta Tm_E = \frac{T_W - T}{Ln \left[\frac{T_E - T}{T_E - T_W} \right]}$$
(83)

The counter-current departure parameters are dimensionless ratios used in correcting the log mean temperature difference expressions and are given by

$$S_{CT} = \frac{T_X - T_P}{T_E - T_P} \tag{84}$$

$$S_C = \frac{T_C - T}{T_E - T} \tag{85}$$

$$S_E = \frac{T_W - T}{T_E - T} \tag{86}$$

The heat transferred from the condensing vapor to the entering seawater, as well as the heat loss from the condenser and from the evaporator, are given by

$$M_X \cdot H_X - M_P \cdot H_P = 60 \cdot U_{CT} \cdot A_{CT} \cdot F_{CT} \cdot \Delta Tm_{CT}$$
(87)

$$-Q_C = 60 \cdot U_C \cdot A_C \cdot F_C \cdot \Delta Tm_C \tag{88}$$

$$-Q_E = 60 \cdot U_E \cdot A_E \cdot F_E \cdot \Delta T m_E \tag{89}$$

The counter-current departure correction factors are dimensionless variables used in correcting log mean temperature difference expressions. The counter-current departure correction factors are widely available in literature as look-up charts for many types of heat exchangers and can be computed empirically as functions of counter-current departure parameters

$$F_{CT} = f(S_{CT}) \tag{90}$$

$$F_c = f(S_c) \tag{91}$$

$$F_E = f(S_E) \tag{92}$$

The vapor pressure of seawater is 1.84 % lower than that of pure water at the same temperature due to non–volatile salts, and therefore, the boiling point of seawater is slightly higher than that of fresh water. This phenomenon is known as the boiling point elevation or vapor pressure depression. Boiling point elevation is a function of salinity and does not depend on properties of solute or solvent [14].

The temperature of seawater drops upon entering the flash chamber to attain equilibrium; however, equilibrium is not always fully achieved. This phenomenon is known as the non–equilibrium allowance, and it depends on several factors such as flash temperature, flow rates, concentrated brine depth, and chamber geometry.

Correlations for boiling point elevation [21] and non–equilibrium allowance [22] can be incorporated into the model to account for flash efficiency as follows

$$T_W = T_E + BPE + NEA \tag{93}$$

4.2.5 Vacuum Volume

All vessels will be modeled as right circular cylinders with specified dimensions. The fresh water and the brine water tanks are equipped with discharge pipes located slightly above the level of the inlet water pipes, keeping their levels constant. Conversely, levels of the seawater tank, as well as condenser and evaporator, are constantly changing during operation; therefore, they need to be computed and included in the model. The level of the feed seawater tank is used in calculating the vertical discharge pressure head that will be used in determining the pumping requirements, while levels of the condenser and evaporator are used in calculating the vacuum volume that will be used in calculating the vacuum pressure. The circular cross sectional areas of these vessels are needed to calculate their levels and are determined by

$$XA_s = \frac{\pi}{4}D_s^2 \tag{94}$$

$$XA_E = \frac{\pi}{4}D_E^2 \tag{95}$$

$$XA_C = \frac{\pi}{4}D_C^2 \tag{96}$$

The level of the seawater tank decreases with time because of the continuous pumping of seawater to the process, and it can be geometrically computed by

$$Z_{s} = Z_{s}^{i} - \frac{\int M_{s} dt}{\rho_{s} \cdot X A_{s}}$$

$$\tag{97}$$

If the seawater flow rate remains constant during operation, the numerator of the second term of the above equation simplifies to $\int M_S dt = M_S \cdot t$.

The level in the condenser is hydrostatically balanced with the level in the fresh water tank. Since the level in the fresh water tank is kept constant, the vacuum pressure inside the flash chamber is the only variable controlling the level in the condenser. The level in the condenser decreases as vacuum pressure increases due to non–condensable gases building up in the flash chamber.

The initial and the dynamic levels in the condenser can be estimated using Bernoulli's fluid equation given by

$$Z_C^i = -\left(\frac{P - P_V^i - \Delta P_C}{\rho_C \cdot g}\right) \cdot 10^6 - PL_C + Z_F$$
(98)

$$Z_{C} = -\left(\frac{P - P_{V} - \Delta P_{C}}{\rho_{C} \cdot g}\right) \cdot 10^{6} - PL_{C} + Z_{F}$$
(99)

Similarly, the level in the evaporator is hydrostatically balanced with the level in the brine water tank. Since the level in the brine water tank is kept constant, the vacuum pressure inside the flash chamber is the only variable controlling the level in the evaporator. The level in the evaporator decreases as vacuum pressure increases due to non–condensable gases building up in the flash chamber.

The initial and the dynamic levels in the evaporator can be estimated using Bernoulli's fluid equation given by

$$Z_E^i = -\left(\frac{P - P_V^i - \Delta P_W}{\rho_W \cdot g}\right) \cdot 10^6 - PL_W + Z_B$$
(100)

$$Z_E = -\left(\frac{P - P_V - \Delta P_W}{\rho_W \cdot g}\right) \cdot 10^6 - PL_W + Z_B$$
(101)

The initial and the dynamic volumes of the vacuum in the condenser depend on corresponding initial and dynamic levels of the condenser. They are geometrically computed by subtracting corresponding fresh water volume from total volume of the right circular horizontal cylinder condenser as follows

$$V_{CV}^{i} = L_{C} \cdot \left(\frac{\pi \cdot D_{C}^{2}}{8} + \frac{D_{C}^{2}}{4} \cdot Arc \sin\left(1 - \frac{2 \cdot Z_{C}^{i}}{D_{C}}\right) + \left(\frac{D_{C}}{2} - Z_{C}^{i}\right) \cdot \left(Z_{C}^{i} \cdot \left(D_{C} - Z_{C}^{i}\right)\right)^{\frac{1}{2}}\right)$$
(102)
$$V_{CV} = L_{C} \cdot \left(\frac{\pi \cdot D_{C}^{2}}{8} + \frac{D_{C}^{2}}{4} \cdot Arc \sin\left(1 - \frac{2 \cdot Z_{C}}{D_{C}}\right) + \left(\frac{D_{C}}{2} - Z_{C}\right) \cdot \left(Z_{C} \cdot \left(D_{C} - Z_{C}\right)\right)^{\frac{1}{2}}\right)$$
(103)

Initial and the dynamic volumes of the vacuum in the evaporator depend on corresponding initial and dynamic levels of the evaporator. They are geometrically computed by subtracting the corresponding brine water volume from total volume of the right circular horizontal cylinder evaporator as follows

$$V_{EV}^{i} = L_{E} \cdot \left(\frac{\pi \cdot D_{E}^{2}}{8} + \frac{D_{E}^{2}}{4} \cdot Arc \sin\left(1 - \frac{2 \cdot Z_{E}^{i}}{D_{E}}\right) + \left(\frac{D_{E}}{2} - Z_{E}^{i}\right) \cdot \left(Z_{E}^{i} \cdot \left(D_{E} - Z_{E}^{i}\right)\right)^{\frac{1}{2}}\right)$$
(104)
$$V_{EV} = L_{E} \cdot \left(\frac{\pi \cdot D_{E}^{2}}{8} + \frac{D_{E}^{2}}{4} \cdot Arc \sin\left(1 - \frac{2 \cdot Z_{E}}{D_{E}}\right) + \left(\frac{D_{E}}{2} - Z_{E}\right) \cdot \left(Z_{E} \cdot \left(D_{E} - Z_{E}\right)\right)^{\frac{1}{2}}\right)$$
(105)

Vacuum volume is the total space occupied by vapor in the flash chamber and can be computed by adding the vapor space of both condenser and evaporator to the volume of the connecting duct and subtracting the volume of the coiled tube of the condenser. Therefore, the initial and dynamic vacuum volumes can be calculated by

$$V_{V}^{i} = V_{EV}^{i} + V_{CV}^{i} + \frac{\pi}{4} \cdot \left(PL_{E} \cdot PD_{E}^{2} - L_{CT} \cdot D_{CT}^{2} \right)$$
(106)

$$V_{V} = V_{EV} + V_{CV} + \frac{\pi}{4} \cdot \left(PL_{E} \cdot PD_{E}^{2} - L_{CT} \cdot D_{CT}^{2} \right)$$
(107)

4.2.6 Vacuum Pressure

Seawater flow rate and the flash temperature are the only controlled variables of the proposed continuous desalination operation, and their effects on the system will be analyzed later. Seawater flow rate determines the amount of non–condensable gases accumulated, while the flash temperature determines the equilibrium temperature reached inside the flash chamber in line with the above mass and energy balance.

The accumulated amount of non–condensable gases and the reached equilibrium temperature, as well as the calculated vacuum volume, determine vacuum pressure according to any equation of state. It is imperative to express the vacuum pressure properly to simulate the proposed continuous desalination operation accurately because of the profound impact of vacuum pressure on the outcome of the flash operation. The ideal gas model describes fluid properties without considering molecular size or intermolecular attractions; therefore, its accuracy diminishes at higher pressures and lower temperatures. Low vacuum pressure marginalizes the effect of molecular size, while the fairly high flash temperature, manifested in higher thermal kinetic energy, weakens the relative importance of intermolecular attractions. Consequently, the ideal gas law becomes a suitable equation of state to express rising vacuum pressure inside the flash chamber due to build up of non–condensable gases in the flash chamber.

Initial vacuum pressure is an input value and should be very close to or equal to the saturated pressure of water at ambient conditions, while the initial vacuum volume can be determined by the above mentioned relations, knowing initial levels in the flash chamber. The gas phase primarily consists of water molecules at first, and their amount can then be estimated by

$$n_{V}^{i} = \frac{P_{V}^{i} \cdot V_{V}^{i}}{R \cdot (T + 273.15)}$$
(108)

Non-condensable gas molecules progressively accumulate in the flash chamber, and their amount must be added to the initial amount computed above to express the dynamic amount of molecules in the gas phase as

$$n_V = n_V^i + \int N_C^a dt \tag{109}$$

Initial and the dynamic saturated pressures of water are needed to express vacuum pressure in a little while. The dynamic saturated pressure of water is given above as a function of dynamic equilibrium temperature, while initial saturated pressure of water is a function of ambient temperature and can be calculated by [15]

$$P_{H_2O}^i = exp\left[PA - \left(\frac{PB}{T + PC}\right)\right]$$
(110)

The vacuum pressure needs to be specified to proceed with the flash calculations ultimately leading to convergence of the whole model; therefore, the simulation is executed incrementally, where the computed vacuum pressure of one time increment becomes the input vacuum pressure to the next time increment. The known initial vacuum pressure value is input to the first time increment to initialize this progression. This scheme is known as the *Iterative and Incremental Development* in the art of software development. Consequently, the incremented vacuum pressure is expressed by

$$P_{V}\Big|_{t} = \frac{\psi \cdot n_{V} \cdot R \cdot (T_{E} + 273.15)}{V_{V}} + \left[P_{H_{2}O} - P_{H_{2}O}^{i}\right]$$
(111)

$$P_{V} = P_{V} \big|_{t - \Delta t} \tag{112}$$

To illustrate the *Iterative and Incremental Development* concept as it pertains to the current model, consider the ensuing paradigm. The known initial vacuum pressure is fed to the computer code as dynamic vacuum pressure of the first increment resulting in a solution for the dynamic vacuum pressure of the second increment that is then fed to the computer code resulting in a solution for the vacuum pressure of the third increment, and so forth until the last increment is reached.

The dynamic quantity of molecules in the gas phase incorporates accumulated non-condensable gas molecules plus water molecules present at the initial ambient point; however, there are more water molecules in the gas phase not account for due to the temperature increase from ambient to equilibrium. Consequently, the second term on right hand side of the vacuum pressure expression, $P_{H2O} - P^i_{H2O}$, is added to correct the dynamic amount of water molecules in the gas phase by accounting for the increase in vapor pressure due to temperature rise from ambient to equilibrium.

The model assumes total accumulation of non-condensable gases in the flash chamber; however, water vapor dissolves a small quantity of non-condensable gases as it condenses. In addition, average values for seawater content of dissolved gases are input to the model, as the real seawater content of dissolved gases is indefinite and could be somewhat different from the average values. Moreover, the true vapor-liquid equilibrium for carbon dioxide involves more than just the afore mentioned K-values due to presence of several carbonates in seawater that are also in equilibrium with carbon dioxide.

Consequently, a correction factor for the dynamic amount of molecules in the gas phase is included in the vacuum pressure expression. Experimental data can be used to perform adiabatic flash calculations, generating correction factor data that are then used to find a correction factor correlation resembling

$$\psi = f\left(\frac{P_V}{P_{H_2O}}\right) \tag{113}$$

Other expressions of vacuum pressure can be worked out, but it is very important for the expressed vacuum pressure to match experimental values closely due to its strong impact on the outcome of the simulation as mentioned earlier.

Operating pressure inside the flash chamber has to be between the dew point and the bubble point to carry out a successful flash separation. Dew point and bubble point pressures are estimated by

$$\frac{P_{BP}}{P_{V}} = z_{N_{2}}\alpha_{N_{2}}K_{N_{2}} + z_{O_{2}}\alpha_{O_{2}}K_{O_{2}} + z_{Ar}\alpha_{Ar}K_{Ar} + z_{CO_{2}}\alpha_{CO_{2}}K_{CO_{2}} + z_{H_{2}O}\alpha_{H_{2}O}K_{H_{2}O}$$
(114)

$$\frac{P_V}{P_{DP}} = \frac{z_{N_2}}{\alpha_{N_2} \cdot K_{N_2}} + \frac{z_{O_2}}{\alpha_{O_2} \cdot K_{O_2}} + \frac{z_{Ar}}{\alpha_{Ar} \cdot K_{Ar}} + \frac{z_{CO_2}}{\alpha_{CO_2} \cdot K_{CO_2}} + \frac{z_{H_2O}}{\alpha_{H_2O} \cdot K_{H_2O}}$$
(115)
4.2.7 System Performance

Pressure drop is a design parameter used in accounting for pressure reduction due to friction. Total pressure drop of seawater flow from the seawater tank to flash chamber can be determined by summing up the pressure drops of each upstream pipe

$$\Delta P = \Delta P_S + \Delta P_P + \Delta P_X + \Delta P_H + \Delta P_{HT} + \Delta P_{CT}$$
(116)

If a throttling valve is used to control flow rate of seawater, the pump will run at full capacity, and work exerted on seawater by the pump is a direct function of the power of the pump, that is $W_P = -44742 \cdot HP_P$. If a variable–frequency drive is used to control flow rate of seawater, the pump will run at modulated speeds, and work exerted on seawater by the pump is a function of the head pressure.

The proposed desalination system will consider a variable–frequency drive to control flow rate of seawater due to its superior energy efficiency over a throttling valve; therefore, work exerted on seawater by the pump can be estimated using Bernoulli's fluid equation as

$$W_{P} = -M_{P} \cdot \left[g \cdot (Z_{S} - Z_{O}) \cdot 10^{-7} + \frac{P_{V} - P - \Delta P}{10 \cdot \rho_{P}} \right]$$
(117)

An appropriate circulation pump can be selected from the catalog of any process equipment manufacture based on required flow rate and total head. Selecting the pump will set many parameters including its power and suction force. The procedure of selecting a pump or any required piece of equipment for the process is beyond the scope of this analysis; however, equipment sizing is a common straightforward practice. Formulae for sizing pumps, valves, vessels, pipes, expansion orifices, and many other process equipment are abundantly available in literature [23]. A solar heater is employed in the proposed desalination system to heat the preheated seawater coming out of the condenser further before flashing it in the evaporator. Solar heating can be accomplished in a variety of ways; however, the present model assumes the heater to be a single–glazed flat–plate solar collector directly heating seawater flowing through its absorbing tubes.

Solar insolation is geographically referenced and continually varying due to dynamic solar angles. In addition, solar insolation incident on the collector varies with plate geometry, sky clearness, ground reflectivity, and many other factors. Average values for a generic single–glazed flat–plate solar collector will be used to simplify comparison among the different simulation scenarios.

The solar insolation area of the collector needed to meet the required heating load can be found using the Hottel–Whillier–Bliss correlation [8]

$$A_{SC} = \frac{Q_H}{60 \cdot F_{SC} \cdot \left[\tau_{SC} \cdot \alpha_{SC} \cdot I - U_{SC} \cdot \left(T_X - T\right)\right]}$$
(118)

Solar heating is usually accomplished indirectly by an intermediary heat exchanger that transfers heat from a solar collector loop to a process loop. The proposed desalination system drops this intermediary heat exchanger by flowing seawater directly through the absorbing tubes of the solar collector; therefore, increasing the efficiency and reducing the cost of the solar heater. On the other hand, this direct heating scheme has its drawbacks by increasing the risk of corrosion and scale formation causing equipment damage and inhibiting heat transfer. Hermann–Koschikowski–Rommel [24] developed corrosion–free solar collectors for thermal desalination systems use composed of a series of coated glass tubes mounted inside a conventional flat-plate solar collector enclosure; therefore, flowing seawater directly through the collector is a viable alternative. Condenser efficiency is defined as the percent of the ratio of the temperature gradient on the cold tube side to the temperature gradient on the hot shell side as

$$\eta_{C} = \frac{T_{X} - T_{P}}{T_{E} - T_{C}} \times 100\%$$
(119)

Heat recovery efficiency is defined as the percent of total enthalpy change that was essentially accomplished by reclaiming heat from the condensing vapor as

$$\eta_{R} = \frac{H_{X} - H_{S}}{H_{H} - H_{S}} \times 100\%$$
(120)

Thermal efficiency of the proposed desalination system is defined as the percent of the total thermal energy supplied that was actually used to vaporize water as

$$\eta_T = \frac{M_E \cdot \left(H_E + H_E^L\right)}{M_H \cdot H_H} \times 100\%$$
(121)

Prime energy consumption is a very important parameter in evaluating feasibility of any desalination system and is defined as the ratio of the amount of energy exhausted to the amount of fresh water produced. The total amount of energy exhausted is the heat supplied by the heater plus power supplied by the pump.

Prime energy consumption can be expressed as a constantly shifting parameter by $PEC = (Q_H + W_P) / M_C$ on instantaneous basis; however, it is typically desired to express prime energy consumption as a single value attained on a totalized basis by integrating the implicated dynamic process variables over the entire operating period. Total prime energy consumption of the proposed unit is given by

$$PEC = \frac{\int Q_H dt + \int W_P dt}{\int M_C dt}$$
(122)

4.2.8 Physical Properties

Laminar flow is a smooth flow pattern, where fluid layers are flowing in parallel concentric cylindrical layers without any inter–layer mixing in a manner determined by the viscosity of the fluid [25]. Turbulent flow is a rough flow pattern, where fluid particles are randomly fluctuating in transverse to the general flow direction in a manner determined by inertial forces of the fluid [25]. Figure 24 illustrates the streaming profile of both flow regimes.

Figure 24. Flow regimes

Reynolds number is a dimensionless quantity that represents the ratio of inertial forces to viscous forces and is used to classify different flow regimes as either laminar or turbulent. Laminar flow behavior occurs at low Reynolds numbers, while turbulent flow behavior occurs at high Reynolds numbers. The critical Reynolds number of 2300 is generally accepted as the midpoint of the transition range between laminar and turbulent flows in cylindrical pipes.

Reynolds number of process streams is given by

$$Re_{j} = \frac{M_{j}}{15 \cdot \pi \cdot PD_{j} \cdot \mu_{j}}$$
(123)

The pressure of a flowing fluid inside a pipe inevitably drops due to gravity and wall drag. This pressure drop and loss can be approximated depending on the flow pattern by the Hagen–Poiseuille equation: $\Delta P_j = 6.79 \cdot 10^{-7} \cdot (\mu_j \cdot PL_j \cdot M_j) / (\rho_j \cdot PD_j^4)$ for laminar or by the Moody equation: $\Delta P_j = 9.01 \cdot 10^{-10} \cdot (f_j \cdot PL_j \cdot M_j^2) / (\rho_j \cdot PD_j^5)$ for turbulent flows [15], where *f* is the dimensionless Fanning Friction Factor available in literature as a function of both Reynolds number and pipe roughness. The current desalination process will be designed to include streams exhibiting laminar flow conditions to simplify experimental simulations later; hence, the model will employ the Hagen–Poiseuille equation to estimate average pressure drops of process streams as

$$\Delta P_{j} = \frac{6.79 \cdot 10^{-7} \cdot \mu_{j} \cdot PL_{j} \cdot M_{j}}{\rho_{j} \cdot PD_{j}^{4}}$$
(124)

Thermal conductivity is a property that gauges heat conduction ability of a given substance. Dependence of thermal conductivity on temperature relates to the freedom of movement molecules enjoy; therefore, thermal conductivity varies with temperature in fluids but remains fairly constant in solids. Thermal conductivities of process streams are calculated empirically by the Caldwell Relation [26]

$$k_{j} = \left(5711.16 + 17.1335 \cdot T_{j} - 0.0585 \cdot T_{j}^{2} - 1656.2364 \cdot \varphi_{j}\right) \cdot 10^{-6}$$
(125)

Furthermore, thermal conductivities of flashing water vapor and accumulating non-condensable gases are not required but can be calculated empirically by [27]

$$k_E = \begin{bmatrix} 2.2744e - 12 \cdot (1.8 \cdot T_j + 32)^3 - 5.8518e - 10 \cdot (1.8 \cdot T_j + 32)^2 \\ + 3.8912e - 7 \cdot (1.8 \cdot T_j + 32) + 1.6943e - 4 \end{bmatrix}$$
(126)

$$k_{C}^{a} = \begin{bmatrix} 1.5207e - 13 \cdot (T_{j} + 273.15)^{3} - 4.8574e - 10 \cdot (T_{j} + 273.15)^{2} \\ + 1.0184e - 6 \cdot (T_{j} + 273.15) - 3.9333e - 6 \end{bmatrix}$$
(127)

The stream densities used in several correlations above will be calculated by an empirical relationship experimentally developed by the Rosenstiel School of Marine and Atmospheric Science at the University of Miami to calculate density of seawater as a function of temperature and salinity [28]. Densities of process streams are given by

$$\rho A_{j} = 0.82 + T_{j} \cdot \left(-4.09 \cdot 10^{-3} + T_{j} \cdot \left(7.64 \cdot 10^{-5} + T_{j} \cdot \left(-8.25 \cdot 10^{-7} + T_{j} \cdot 5.39 \cdot 10^{-9} \right) \right) \right)$$
(128)

$$\rho B_{j} = -5.72466 \cdot 10^{-3} + T_{j} \cdot \left(1.0227 \cdot 10^{-4} - 1.6546 \cdot 10^{-6} \cdot T_{j} \right)$$
(129)

$$\rho C_{j} = \left(6.79 \cdot 10^{-2} - \left(9.10 \cdot 10^{-3} - \left(10^{-4} - \left(1.12 \cdot 10^{-6} - 6.54 \cdot 10^{-9} T_{j}\right) \cdot T_{j}\right) \cdot T_{j}\right) \cdot T_{j}\right) \cdot T_{j}\right) \cdot T_{j} \right) \cdot T_{j} \left(130\right)$$

$$\rho_{j} = \frac{999.84 + \rho C_{j}}{1000} + \varphi_{j} \cdot \left(\rho A_{j} + \rho B_{j} \cdot (1000 \cdot \varphi_{j})^{\frac{1}{2}} + 0.48314 \cdot \varphi_{j}\right)$$
(131)

Stream viscosities used in several correlations above will be calculated by an empirical relationship that was experimentally developed to calculate the viscosity of seawater as a function of temperature and salinity [29]. Viscosities of process streams are given by

$$\mu A_j = 1.0675 \cdot 10^{-4} + 5.185 \cdot 10^{-5} \cdot T_j \tag{132}$$

$$\mu B_j = 2.591 \cdot 10^{-3} + 3.3 \cdot 10^{-5} \cdot T_j \tag{133}$$

$$\mu C_j = 553.5413 \cdot \rho_j \cdot \varphi_j \tag{134}$$

$$\mu D_{j} = 0.01002 \cdot 10^{\left[\frac{1.1709 \cdot (20 - T_{j}) - 1.827 \cdot 10^{-3} \cdot (T_{j} - 20)^{2}}{T_{j} + 89.93}\right]}$$
(135)

$$\mu_{j} = \left(1 + \mu A_{j} \cdot \mu C_{j}^{0.5} + \mu B_{j} \cdot \mu C_{j}\right) \cdot \mu D_{j}$$
(136)

stream enthalpies used in the energy balances above will be calculated by an empirical relationship that was experimentally developed to calculate heat capacity of seawater as a function of temperature and salinity [30] as follows

$$H_{j} = \begin{bmatrix} +\left(0.0530 - 1.6853 \cdot \varphi_{j} + 8.5367 \cdot \varphi_{j}^{2}\right) \cdot 10^{-4} \cdot T_{j}^{3} \\ -\left(0.0007 - 0.0310 \cdot \varphi_{j} + 0.1624 \cdot \varphi_{j}^{2}\right) \cdot T_{j}^{2} \\ +\left(4.2045 - 6.7823 \cdot \varphi_{j} + 14.7532 \cdot \varphi_{j}^{2}\right) \cdot T_{j} - 0.04881 \end{bmatrix}$$
(137)

Seawater flashes in the evaporator producing water vapor that acquires its latent enthalpy of vaporization from the concentrated brine. Then, the produced water vapor condenses in the condenser by losing its latent enthalpy of condensation to the entering saline water. Latent enthalpy of vaporization and the latent enthalpy of condensation are numerically equal but have opposite signs and can be estimated by [27]

$$H_E^L = 2496.2101 - 1.9535 \cdot T_E - 0.0042 \cdot T_E^{\ 2}$$
(138)

Nitrogen, oxygen, argon, and carbon dioxide are the only non–condensable gases considered in the model, since they make up more than 99.9 % of the total dissolved gases in seawater [19]. The US National Institute of Standards and Technology provides the following correlation to calculate molar enthalpy of non–condensable gases [31]

$$\underline{H}_{NCG} = \begin{pmatrix} A_{NCG} \cdot (T_E + 273.15) + \frac{B_{NCG}}{2e3} \cdot (T_E + 273.15)^2 + \frac{C_{NCG}}{3e6} \cdot (T_E + 273.15)^3 \\ + \frac{D_{NCG}}{4e9} \cdot (T_E + 273.15)^4 - \frac{1e6 \cdot E_{NCG}}{(T_E + 273.15)} + 1e3 \cdot F_{NCG} \end{pmatrix}$$
(139)

Overall enthalpy of the accumulating non-condensable gases can be computed by adding molar enthalpies of each composing species weighted on a water-free basis, in relation to the assumption of total condensation of flashed water vapor. In addition, the average molecular weight of the accumulating gases referenced before was employed to convert its enthalpy units from molar to mass based. Thus, overall enthalpy of accumulating non-condensable gases is given by

$$H_{C}^{a} = \frac{y_{N_{2}} \cdot \underline{H}_{N_{2}} + y_{O_{2}} \cdot \underline{H}_{O_{2}} + y_{Ar} \cdot \underline{H}_{Ar} + y_{CO_{2}} \cdot \underline{H}_{CO_{2}}}{(1 - y_{H_{2}O}) \cdot MW_{C}^{a}}$$
(140)

4.3 Solution Algorithm

A computer code featuring the above equations, plus other correlations and parameters given later in CHAPTER 6 can be found in the APPENDICES section along with sample input and output values of process variables. Computer code execution is incremental due to time–based numerical integration used above to account for accumulation of non–condensable gases in the flash chamber, while convergence process is iterative due to interdependence of equations of the model. The increment size should be carefully selected to simplify convergence and reduce processing without jeopardizing the integrity of the simulation. A concise block diagram outlining the general scheme to solve the above model is shown in Figure 25.

Time is embedded in the model by flow rates of different streams; moreover, integration operations of the model are based on small time increments that evenly divide the entire run. Ambient temperature and pressure, as well as physical properties and geometrical dimensions of process pipes and vessels, are input to the model. Universal values such as gas constant and gravity acceleration, plus seawater composition and the molecular weights of the involved species, are also input to the model. Parameters for enthalpy and vapor–liquid equilibrium relations, as well as average values for a generic single–glazed flat–plate solar collector, are also supplied to the code.

Flash temperature is a controlled variable and will be supplied to code as a single set value. Initial vacuum pressure is a known quantity and will also be supplied to code to launch the simulation process. Initial vacuum pressure will be fed to the first increment, producing vacuum pressure for the second increment producing the vacuum pressure for the third increment and so forth.

Figure 25. Developed model solution algorithm

The mass and energy balance simultaneously solves with mass and heat transfer relations, as well as enthalpy and non–equilibrium allowance correlations. Mass and energy balance indirectly solves with the pump work relation via density and pressure drop correlations and with molecular weight relations via Rachford–Rice calculations.

Mass and energy balance provides inputs for density, viscosity, and pressure drop correlations, producing outputs that are fed to the pump work relation and Bernoulli's fluid equation. In addition, mass and energy balance provides inputs for thermal conductivity correlations used in heat transfer calculations and for efficiency relations that use those inputs along with other inputs from the enthalpy correlations to evaluate system performance. The mass and energy balance also provides input values for the Hottel–Whillier–Bliss correlation to estimate solar collection area needed and for an integrator that totalizes system variables before forwarding them both to the prime energy consumption function and to Bernoulli's fluid equation.

Mass and energy balance and the Rachford–Rice calculations are linked via molecular weight relations and concurrently solve for equilibrium temperature that is fed to vapor–liquid equilibrium relations, a vapor pressure correlation, and an equation of state. The equation of state estimates system vacuum pressure before it is lagged and forwarded to vapor–liquid equilibrium relations, where K–values are generated and fed to Rachford–Rice calculations to calculate the rate of accumulation of non–condensable gases that is integrated and fed back to the equation of state to calculate the pressure of the next time increment. The lagged system pressure is also fed to Bernoulli's fluid equation, where tank levels are calculated and forwarded to geometrical relations to compute volume of the vacuum before forwarding it to the equation of state.

CHAPTER 5. EXPERIMENTAL ANALYSIS

5.1 Process Description

A small pilot unit has been built to simulate the proposed continuous desalination system described previously experimentally. Figure 26 outlines a general process and instrumentation diagram of the small pilot unit. Experimental simulations were performed inside a laboratory to simplify operation and maintenance. Due to this indoor process, solar heating was hard to implement due to lack of solar insolation, and passive vacuum was difficult to produce due to limited elevation.

Solar heating is widely used in several applications, including desalination systems as was mentioned in CHAPTER 2; therefore, replicating it with an electric heater is considered acceptable, since the concept of solar heating does not require further proof. In addition, vacuum was passively generated by Goswami and Kharabsheh [11] for their desalination unit as was mentioned in CHAPTER 3; therefore, producing it with a vacuum pump is considered acceptable, since the phenomenon of passive vacuum generation using gravity has been experimentally established.

Placing the flash chamber at a low elevation in the experimental unit removed hydraulic head of the proposed unit; thus, a circulation pump is no longer required to pass seawater through the unit. The pressure difference between the vacuumed flash chamber and open seawater feed tank becomes the driving force of seawater flow, which was manually controlled by manipulating valve positions.

Figure 26. Process and instrumentation diagram of the experimental unit

5.2 Experimental Apparatus

The entire experimental unit is mounted on three-tier mobile skids built from slotted and unslotted struts with linking joints and brackets as shown in Figure 27. The three tiers are connected by four upright bars, the bottom two tiers include plywood for weight distribution, and the bottom tier is outfitted with four wheels for mobility.

The seawater feed tank is a 50–gallon open–top, horizontal polyethylene trough placed on the bottom tier of skids. The condenser is a 40–gallon painted–steel, upright cylinder, while the evaporator is a 40–gallon galvanized–steel, upright cylinder, and they are both placed on the middle tier of the skids directly above the seawater feed tank. Condenser, evaporator, and 2" Y–shaped CPVC pipe connecting them from the top make up the flash chamber. The condenser was cut open around its upper section to install a 4³/₄ m long ½" copper pipe coiled to provide the necessary condensing surface, then welded back to its original shape. In addition, a small hole was drilled at the bottom of the condenser to retrieve the condensed water. The evaporator and the 2" Y–shaped CPVC pipe are wrapped with sheets of insolating material to minimize heat loss. The condenser and evaporator have discharge pipes that drain into the seawater feed tank.

The heater is a 4.5 kW zinc–plated, copper electric heating element placed inside a copper shell, where seawater coming out of the condenser passes through it on its way to be flashed in the evaporator. A ¹/₂ HP vacuum pump is piped to the evaporator to create the initial vacuum, and a ¹/₂" polypropylene needle valve, V7 in Figure 26, is placed right before the evaporator to function as an expansion orifice for the incoming heated seawater to be flashed. The ¹/₂" CPVC pipe is used in connecting all of the above equipment as well as several ¹/₂" CPVC and copper pipe fittings. Several instruments have been integrated into the experimental unit to manage system variables as shown in Figure 26. These are used in monitoring and controlling system vacuum, seawater flow, and flash temperature, as well as monitoring temperature of each process stream. Nomenclature used in the P&ID of Figure 26 is consistent with the International Society of Automation symbol standards.

Pressure indicator PI is a liquid–filled analog vacuum gauge, while pressure element PE is a high–precision vacuum transmitter. The PI was used to help establish the initial system vacuum and to monitor its gradual erosion. The PE was used to continually supply the value of the system vacuum to a data acquisition system.

Flow indicator FI is an acrylic in–line flowmeter, while quantitative element QE is a glass 500 ml graduated cylinder. The FI was used to help establish and monitor the seawater flow through the system. The quantitative element QE was used to collect and measure the amount of fresh water produced at the end of each experiment.

Temperature elements TE10, TE11, TE12, TE13, and TE14 are single-output, while temperature element TE15 is dual-output ¹/₈" diameter T–Type thermocouples. All used to supply the value of the temperature of each process stream continually to a data acquisition system. In addition, TE15 is used to supply the temperature controller with the value of its controlled variable.

Pressure controller PC and flow controller FC are imaginary pressure and flow manual controllers, while temperature indicating controller TIC is an LED–equipped digital PID automatic controller. Regulators V1 and V4 are ¹/₄", while regulators V2, V3, V5, and V6 are ¹/₂" full port ball valves. Detailed descriptions of all of the above apparatus taken from their vendors are in the APPENDICES section.

Figure 27. 3-tier mobile skids layout

5.3 Control Scheme

The three feedback control loops pertaining to system vacuum, seawater flow, and flash temperature shown in Figure 26 are replicated in Figure 28 in isolation to clarify their control techniques. System vacuum and seawater flow are manually adjusted, while flash temperature is automatically controlled.

The system vacuum feedback control loop is invoked prior to running the experiment to attain the desired initial vacuum. It consists of measuring the vacuum with pressure indicator PI while the vacuum pump is running. Once the desired vacuum set point SP is reached, hand switch HS is manually switched off to shut down motor M of the vacuum pump, which remains shut during the entire experiment.

The seawater flow feedback control loop is invoked at the beginning of the experiment to attain the desired seawater flow rate, which remains constant throughout the experiment. It consists of measuring flow with flow indicator FI, while manually manipulating the valve position of V5 until the desired flow rate set point SP is realized. The valve position is kept constant throughout the experiment.

Figure 28. Feedback control loops of the experimental unit

The flash temperature feedback control loop is constantly active to stabilize flash temperature during the experiment. It consists of measuring temperature of seawater coming out of the heater with temperature element TE15, then supplying that measurement to temperature indicating controller TIC that automatically manipulates the current input into the heat element of the heater, effectively varying its heat output to the incoming seawater until the desired flash temperature set point SP is achieved.

A simplified block diagram of the flash temperature feedback control loop is given in Figure 29. The assigned arrows SP, E, CO, TO, and U are the frequency–domain Laplace transform functions of the set point, error, controller output, transmitter output, and disturbance signals, respectively.

Block TIC represents the transfer function of the digital PID automatic temperature controller given generically as

$$TIC(s) = K_C \cdot \left(1 + \frac{1}{\tau_I \cdot s} + \tau_D \cdot s\right)$$
(141)

Automatic temperature controller TIC is equipped with an automatic tuning ability that was used to tune its parameters during a dry run, yielding the following values PB = 20 % TO / % CO

 $K_{C} = 100 / PB = 5 \% CO / \% TO$

 $\tau_{\rm I} = 60$ seconds

 $\tau_D = 2$ seconds

The cycle time or total period that controller output cycles on and off when the controlled variable is within the PB was set to 1 second. In addition, a derivative approach control of $2.5 \times PB$ was used to remove derivative action at system start–up. The fail–safe mode of the controller was set to turn off SP upon input signal loss.

Block PL represents the transfer function of the process loop between the controlled and manipulated variables, which is usually represented by a first order model with dead time compensation as follows

$$PL(s) = \frac{K_{PL} \cdot EXP(-t_0 \cdot s)}{\tau_{PL} \cdot s + 1}$$
(142)

Block DL represents the transfer function of the disturbance loop between the controlled variable and disturbance, which is usually represented by a first order model with dead time compensation as follows

$$DL(s) = \frac{K_{DL} \cdot EXP(-t_0 \cdot s)}{\tau_{DL} \cdot s + 1}$$
(143)

Block PL and block DL are actually combinations of several transfer functions that were lumped into a single first order model to simplify representing the dynamic response of the process. Block PL merges a sequence of transfer functions characterizing thermocouple TE15, the heating process, and electric heater. Block DL merges a sequence of transfer functions characterizing thermocouple TE15 and flowing process. The automatic tuning ability of controller TIC is based on obtaining the parameters of the first order models representing block PL and block DL.

Figure 29. Block diagram of the flash temperature feedback control loop

5.4 Data Acquisition

A data acquisition system designed to sample and record process variables was assembled and attached to the experimental apparatus. Configuration of the data acquisition system is illustrated in Figure 30.

Pressure element PE outputs an analog current signal corresponding to system vacuum with a range from 4–20 mA to fieldbus module FBM1 through a 2–wire cable. Temperature elements TE10, TE11, TE12, TE13, TE14, and TE15 output analog voltage signals corresponding to system temperatures, each with a range from -0.001–0.01 mV to fieldbus module FBM2, through thermocouple extension wires.

Fieldbus module FBM1 is a multiplexing signal conditioner, where the analog current signal of pressure element PE is converted to a corresponding analog voltage signal with a range from 1–5 V. Fieldbus module FBM2 is a multiplexing signal conditioner, where the analog voltage signals of temperature elements TE10, TE11, TE12, TE13, TE14, and TE15 are converted to corresponding analog voltage signals with a range of 1–5 V. The conditioned analog output signals of fieldbus modules FBM1 and FBM2 are multiplexed via multiplexer MUX, which is a DC–37 ribbon connecting cable.

Analog to digital converter ADC is a 16–bit data acquisition system that converts continuous analog signals supplied by multiplexer MUX to discrete digital signals and forwards them to human–machine interface HMI through an enhanced parallel port LPT cable. Human–machine interface HMI is a notebook PC running a data acquisition software that converts acquired data from its conditioned voltage units to its corresponding physical attributes. The data acquisition software also displays and stores the acquired data for later analysis as shown in Figure 31.

Figure 30. Data acquisition structure

Figure 31. Data acquisition software

5.5 Operating Procedure

Operation of the experimental unit closely resembled that of the proposed desalination system described in CHAPTER 4. Initial vacuum was created by running the vacuum pump until a reasonable vacuum was reached. Running the vacuum pump further will trap moisture in its oil reservoir significantly inhibiting its performance.

Synthetic seawater was prepared by mixing 13 pounds of commercial–grade sea salt with 40 gallons of tap water. The seawater mix was stirred well before each experiment to ensure full solution of sea salt. The seawater trough has a large open surface that enhances evaporation; therefore, small amounts of fresh water were often added before running experiments to reach a 40–gallon level mark in the trough.

Temperature indicating controller TIC is not interlocked with seawater flow; thus, ensuring seawater flow through the electric heater is a very critical safety measure. Regulators V5 and V6, plus needle valve V7, are instruments that control seawater flow. The valve position of needle valve V7 was kept constant at about 90 % open for all runs, because narrowing valve position caused flow oscillations regardless of the valve positions of regulators V5 and V6. The valve position of regulator V6 was used to start and stop the experiment; therefore, it was toggled between fully open and fully close. Valve position of regulator V5 was used to manipulate the flow as was mentioned above.

Pressure element PE is calibrated by the manufacture, while Fieldbus module FBM2 contains a built-in cold junction compensation that automatically calibrates thermocouple outputs. In addition, data acquisition software wais set to execute one scan per second and to average every ten scans to reduce signal noise. The acquired data were saved to an assigned ASCII formatted file on the Human-machine interface HMI.

The experimental unit must be kept motionless during operation due to its high center of gravity, while its normal operating procedure is as follows

- 1. Start data acquisition system
- 2. Open regulator V2 fully
- 3. Start vacuum pump until desired vacuum is reached
- 4. Close regulator V2 fully
- 5. Stop vacuum pump
- 6. Slowly open regulator V6 fully
- 7. Set seawater flow rate through regulator V5 and flow indicator FI
- 8. Activate temperature indicating controller TIC
- 9. Trigger data recording function of data acquisition software
- 10. Run unit until the specified period of the experiment is reached
- 11. Stop data recording function of data acquisition software
- 12. Disable temperature indicating controller TIC
- 13. Quickly close regulator V6 fully
- 14. Stop data acquisition system
- 15. Open regulator V1 to terminate the vacuum
- 16. Open regulator V3 to drain brine into the seawater trough
- 17. Open regulator V4 to drain fresh water into quantitative element QE
- 18. Record amount produced then drain into the seawater trough
- 19. Fully close regulator V1
- 20. Fully close regulator V3
- 21. Fully close regulator V4

5.6 Experimental Design

Experiments were conducted at analogous conditions to simplify design evaluation but with different values of the controlling variables to enhance process analysis and modeling. All experiments were run for a period of three hours starting with an initial system vacuum of 0.14 bars. Experiments were carried out at two different seawater flow rate ranges and at four different flash temperatures of 50, 60, 70, and 80 degrees centigrade. In addition, each experiment was duplicated three times to estimate its variation. Table 6 illustrates the experimental matrix, while Figure 32 gives an overall view of the experimental unit.

Number	Start Time	Stop Time	Initial PI (bar)	FI (LPM)	TIC SP (°C)	QE (ml)
1						
2					50	
3						
4				lower		
5				flow	60	
6				JIOW		
7				1		
8				around	70	
9				~ 0.50		
10						
11					80	
12			0.14			
13			0.14			
14					50	
15						
16				higher		
17				flow	60	
18				JIOW		
19				around		
20					70	
21				~ 0.70		
22]			
23					80	
24						

Table 6. Experimental matrix

Figure 32. Overall view of the experimental unit

CHAPTER 6. PARAMETRIC ANALYSIS

6.1 Analyses Synchronization

Theoretical and experimental analyses must be synchronized to compare their outputs properly. The model developed in CHAPTER 4 holds for the proposed desalination system outlined in Figure 21; however, it needs to be modified to represent the experimental unit outlined in Figure 26 to validate its predictions.

The flash chamber of the experimental unit is not elevated for passive vacuum generation, and levels of the flash chamber are not hydrostatically balanced as was mentioned in CHAPTER 5. Vacuum is created before running the unit by a vacuum pump; furthermore, the flash chamber is closed during operation to maintain that vacuum, since it can not be maintained hydrostatically. Consequently, Bernoulli's fluid equation can not be used to estimate initial and the dynamic levels in the evaporator and condenser. Initial levels are equal to zero as vessels are drained before operation while dynamic levels are functions of totalized, or integrated, inlet flows. Therefore, Equation 98 through Equation 101 are substituted with

$Z_C^i = 0$	(Alternate 98)
$Z_{C} = Z_{C}^{i} - \frac{\int M_{C} dt}{\rho_{C} \cdot XA_{C}}$	(Alternate 99)
$Z_E^i = 0$	(Alternate 100)
$Z_E = Z_E^i - \frac{\int M_W dt}{\rho_W \cdot X A_E}$	(Alternate 101)

The condenser and evaporator are modeled as horizontally–mounted right circular cylinders as can be seen in Figure 21; however, the condenser and evaporator of the experimental unit are vertically–mounted right circular cylinders as can be seen in Figure 26. Consequently, the geometry of the vacuum volume needs to adapt; therefore, Equation 102 through Equation 105 are substituted with

$$V_{CV}^{i} = XA_{C} \cdot (L_{C} - Z_{C}^{i})$$
(Alternate 102)

$$V_{CV} = XA_{C} \cdot (L_{C} - Z_{C})$$
(Alternate 103)

$$V_{EV}^{i} = XA_{E} \cdot (L_{E} - Z_{E}^{i})$$
(Alternate 104)

$$V_{EV} = XA_{E} \cdot (L_{E} - Z_{E})$$
(Alternate 105)

The experimental unit does not include a feed pump as was mentioned in CHAPTER 5; therefore, Equation 117 is substituted with

$$W_P = 0$$
 (Alternate 117)

6.2 Parameter Expressions

The model developed in CHAPTER 4 along with the above alternate equations were coded and executed using experimental temperature, pressure, and flow rate values as inputs generating pseudo–experimental data of model parameters. This data mining process is used to uncover patterns in model parameters so they can be properly expressed in the model via correlations obtained using non–linear regression.

The counter-current departure correction factor for the condenser tube is used to correct its log mean temperature difference to solve accurately for the temperature of preheated seawater before it enters the heater, which is essential for estimating prime energy consumption and efficiency of the condenser and heat recovery. A correlation for the counter–current departure correction factor for the condenser tube is obtained by regressing the mined data as shown in Figure 33 yielding

 $F_{CT} = 0.0293 + 0.1655 \cdot S_{CT} + 2.9102 \cdot S_{CT}^2 - 6.1629 \cdot S_{CT}^3 + 4.2518 \cdot S_{CT}^4$ (Alternate 90)

The counter-current departure correction factor for the condenser is used to correct its log mean temperature difference to solve for the temperature of the condensed fresh water accurately; however, experimental data show that the temperature of the condensed fresh water remained rather constant with a value about two degrees above ambient regardless of how high the equilibrium temperature was. This outcome is most likely due to a good heat rejection by the condenser, in addition to the fact that the amount of cool seawater flowing through the condenser tube vastly exceeds that of the condensing water vapor outside the condenser tube.

Consequently, a correlation for the counter–current departure correction factor for the condenser will be replaced by

$$T_c = T + 2 \tag{Alternate 91}$$

The counter–current departure correction factor for the evaporator is used in correcting its log mean temperature difference to estimate its heat loss accurately. Temperatures of the flashed vapor and concentrated brine diverge due to boiling point elevation and non–equilibrium allowance as mentioned in CHAPTER 4 as well as a small amount of heat loss from the insulated evaporator.

To simplify calculations, heat loss from the evaporator is ignored, and a correlation for the non–equilibrium allowance is obtained by regressing the experimental data as shown in Figure 34 yielding

 $Q_E = 0$

(Alternate 92)

$$\xi = 1.6836 \cdot \zeta^{2} - 3.3898 \cdot \zeta + 2.7785 - 0.1399 \cdot exp(-5.9154 \cdot \zeta^{-29.3208})$$
Where $\xi = \frac{T_{W} + 273.15}{T_{E} + 273.15}$ $\zeta = \frac{T_{H} + 273.15}{25 + 273.15}$ (Alternate 93)

The activity coefficient of water is used to correct its molar fractions to solve for its K-value accurately. Theoretical expressions for activity coefficients of species in electrolyte solutions, such as seawater, are available in literature but very challenging to implement due to the large number of interactions present among all ions and molecules. Those interactions are characterized by parameters that in most cases must be experimentally determined.

To simplify calculations, a correlation for the activity coefficient of water is obtained by regressing the mined data as shown in Figure 35 yielding

$$\gamma_{H_2O} = 0.0020 + 1.0385 \cdot \frac{P_V}{P_{H_2O}}$$
 (Alternate 48)

The gas phase molecular content correction factor is used in correcting the equation of state to solve for the vacuum pressure accurately as was mentioned earlier in CHAPTER 4. It accounts for both gases dissolving in the condensing water vapor and any possible discrepancy in the input seawater content of dissolved gases or the calculated vapor–liquid equilibrium for carbon dioxide.

To simplify calculations, a correlation for gas phase molecular content correction factor is obtained by regressing the mined data as shown in Figure 36 yielding

$$\psi = 1 - 2.2861 \cdot exp\left(-\frac{P_V}{P_{H_2O}}\right)$$
(Alternate 113)

The Matlab[™] codes used for regressing all of the above mined data are found in the APPENDICES section.

Figure 33. Counter-current departure correction factor of condenser tube

Figure 34. Non-equilibrium allowance representation

Figure 35. Activity coefficient of water

Figure 36. Gas phase molecular content correction factor

6.3 Parameter Inputs

Seawater is a solution of many salts and contains a small amount of dissolved gases as mentioned earlier in CHAPTER 4. Input parameters used for sea salt are given in Table 7, while input parameters used for seawater are given in Table 8. The molecular weights given in both tables are obtained from NIST [31], while mass fractions given in both tables are obtained from an oceanography manual [16]. In addition, the relativity factors given in Table 8 are found by averaging temperature–stamped data [19], while enthalpy parameters given in Table 8 are obtained from NIST [31].

As mentioned in CHAPTER 4, the SUPERTRAPPTM code was employed to perform isobaric phase equilibria flash calculations for water with an average content of non–condensable gas as reported in literature [16] at various temperatures to produce a dataset of K–values. SUPERTRAPPTM flash calculations were executed at a constant pressure of 1 bar; therefore, the produced K–values are equivalent to Henry's constant for non–condensable gases and vapor pressure for water. The reported values of HC°_i and HF_i [17] plus *PA*, *PB*, and *PC* [15] were used as initial guesses in MatlabTM least squares regression codes to adjust their values to best fit the produced K–value dataset to Henry's constant and vapor pressure correlations.

The SUPERTRAPPTM code used for generating the K-value dataset and MatlabTM codes used for regressing them are in the APPENDICES section. The performed regressions yielded excellent results with correlation coefficients very close to unity as can be seen in Figure 37 through Figure 41. Better estimates of K-values denote better representation of the vapor-liquid equilibrium, ultimately resulting in more reliable flash calculations.

	MW	ω		MW	ω		MW	ω
Cl	35.45	0.55030	Ca	40.08	0.01180	BO ₃	58.81	0.00080
Na	22.99	0.30590	K	39.10	0.01110	Sr	87.62	0.00040
SO_4	96.06	0.07680	HCO ₃	61.02	0.00410	F	19.00	0.00003
Mg	24.31	0.03680	Br	79.90	0.00190			

Table 7. Sea salt parameters [16] [31]

Table 8. Seawater parameters [16] [31]

	MW	arphi	α	A	В	С	D	E	F	HC°	HF	PA	PB	PC
N_2	28.01	1.26E-05	1.21	26.0920	8.2188	-1.9761	0.1593	0.0444	-7.9892	8067573	-3546			
O_2	32.00	7.70E-06	1.22	29.6590	6.1373	-1.1865	0.0958	-0.2197	-9.8614	358815	-2209			
Ar	39.94	4.00E-07	1.23	20.7860	2.83E-07	-1.46E-07	1.09E-08	-3.66E-08	-6.1974	384073	-2308			
CO_2	44.01	2.20E-07	1.17	24.9974	55.1870	-33.6914	7.9484	-0.1366	-10.0851	10915	-445			
Salt		3.50E-02												
H_2O	18.01		0.9816	30.0920	6.8325	6.7934	-2.5345	0.0821	-9.0546			13	4391	245
	-											-		-

Figure 37. Henry's constant of nitrogen

Figure 38. Henry's constant of oxygen

Figure 39. Henry's constant of argon

Figure 40. Henry's constant of carbon dioxide

Figure 41. Vapor pressure of water

6.4 Equipment Specifications

The seawater feed as well as brine and fresh water tanks are modeled as horizontal polyethylene troughs; moreover, the condenser and evaporator are modeled as painted–steel and galvanized–steel upright cylinders, respectively. The connecting pipes are modeled as CPVC with copper tubing used inside the condenser and heater. The condenser tube is a protracted copper tube vertically coiled inside the condenser in four loops, that is $N_{CT} = 4$. Copper is not suited for seawater due to its corrosivity and should not be used in desalination systems; however, for theoretical and short–term experimental simulations, it is considered acceptable. Dimensions and the heat transfer parameters of the experimental unit are given in Table 9 and Table 10, and these values will be input to the model as well. In addition, the model neglects any heat input by any pump as well as any work output by the heater, condenser, or evaporator, that is $Q_P = W_C = W_H = W_E = 0$.

Table 9. Equipment dimensions

Vessel	D	L	Pipe	D	L		Pipe	D	L
Seawater	90	30	S	1.27	95	-	E	5.08	180
Brine Water	90	30	Р	1.27	25	-	С	0.32	35
Fresh Water	90	30	X	1.27	60	_	CT	1.27	475
Evaporator	35	160	Η	1.27	75		HT	1.27	13
Condenser	35	160	W	1.27	30	-			

Table 10. Heat transfer equipment parameters

	h ^{id}	h^{od}	δ	k^{w}
Condenser Tube	0.20	0.50	0.125	3.810
Condenser	0.50	0.75	0.250	0.450
Evaporator	0.50	0.75	0.250	0.001

The model also uses typical absorptance and transmittance values plus average heat transfer and removal factors pertaining to a single–glazed flat–plate solar collector, in addition to a standard value for the intensity of solar insolation, to estimate the solar collection area needed to meet the computed heater load adequately. Explicitly declaring: $I = 600 W/m^2$, $F_{SC} = 0.82$, $U_{SC} = 0.92 W/m^2-°C$, $\alpha_{SC} = 0.92$, $\tau_{SC} = 0.90$.

6.5 Simulation Specifications

Model simulations will be carried out at conditions corresponding to those of the experimental simulations so they can be compared. Simulated operations will run for a period of three hours and will be modeled using one minute increments with the same initial seawater tank level and vacuum pressure. Simulations were carried out at two different seawater flow rate ranges and at four different flash temperatures.

Mass flow rate of a fluid across an orifice is given by $M = \rho \cdot CV \cdot \sqrt{(\Delta P / SG)}$. The flow rate was manually adjusted during experiments using a ball valve. The valve position was kept constant for each flow rate range; however, flow rate slightly varied within each range due to varying fluid densities caused by different fluid temperatures and varying differential pressures across the valve caused by the different vacuum pressures. In addition, flow rates were progressively decreasing during each experiment due to declining differential pressure caused by the increasing vacuum pressure. An average flow rate value was computed for each experiment and input to the corresponding model simulation as a constant value to simplify calculations. The average flow rate value was obtained by dividing the estimated amount of seawater transferred from the seawater feed tank by the duration of the experiment.
The diffusion rate correlation given in CHAPTER 4 includes two adjustable parameters. Parameter σ serves as a diffusion coefficient and can be thought of as a conductance term, while parameter Ω serves as a diffusion barrier and can be thought of as a resistance term. Both parameters were adjusted using the same code mentioned earlier for generating pseudo–experimental data of model parameters by arbitrarily assigning a value for parameter σ while tuning parameter Ω to match the output amount of fresh water produced by the code to the actual amount of fresh water produced. It is important to point out once more that those obtained diffusion rate correlation parameter values pertain to the geometry of the current experimental set–up and should be readjusted whenever applied to different geometries using new experimental records.

The above mentioned experimental and adjusted simulation settings are given in Table 11 and will be input to the model. The experimental simulations were conducted in a laboratory; consequently, ambient conditions are considered accordingly, T = 20 °C and P = 1.01325 bar. Finally, temperature in the seawater feed tank is assumed equal to ambient, $T_S = T$, while common literature values were used for the universal gas constant and the gravity acceleration, R = 83.14472 bar–cm³/mol–°C and g = 980.0665 cm/s².

Simulation	$Z^{i}{}_{S}$	$P^{i}{}_{V}$	M_S	T_H	σ	${\it \Omega}$
1	24	0.14	496	50	2	0.118
2	24	0.14	474	60	2	0.150
3	24	0.14	453	70	2	0.120
4	24	0.14	388	80	2	0.019
5	24	0.14	711	50	2	0.135
6	24	0.14	690	60	2	0.197
7	24	0.14	668	70	2	0.229
8	24	0.14	582	80	2	0.103

Table 11. Simulation settings

CHAPTER 7. DISCUSSION OF RESULTS

7.1 Discussion Guide

Model and experimental results will be compared and discussed throughout this chapter. Model results are obtained by executing a code comprised of the equations given in CHAPTER 4 as well as the alternate equations and the parameter values given in CHAPTER 6. Experimental results correspond to two sets of experiments, where one set was conducted at lower seawater flow rates, and the other set was conducted at higher seawater flow rates. In addition, each set of experiments includes four variations of flash temperature, where each variation was duplicated three times to validate its outcome. So, each table value and figure curve given in this dissertation designated as an experimental result is in fact the averaged outcome of three matching experiments. The experimental matrix and conditions were provided earlier in Table 6 and Table 11. Experimental results will sometimes correspond to pseudo-experimental data generated by a code comprised of the equations and the alternate equations mentioned above, but with the mass and energy balance relations replaced by experimental temperature and pressure as well as flow rate values. Each figure will use a solid line to represent model data and a dotted line fitted with a translucent error band to represent experimental data. A detailed error analysis can be found in the APPENDICES section. The figures will also indicate if the experimental data correspond to real experimental data or to pseudo-experimental data by dubbing the data as either "experiment" or "mined", respectively, in their legend.

The controlled variables of the current desalination system are seawater flow rate and flash temperature. Their effects on the desalination process will be analyzed through graphical representations of several system variables that illustrate their dynamics during each simulation. Twelve time–varying system variables will be examined by a set of twelve figures provided for each one. Every set includes four figures, each corresponding to a single flash temperature at lower seawater flow rates, as well as four figures, each corresponding to a single flash temperature at higher seawater flow rates. Furthermore, each figure will sketch two profiles, where one corresponds to model simulation, and the other corresponds to experimental simulation, both at analogous conditions. Each set also includes four figures, where the four different flash temperature profiles of each seawater flow rate range are joined on one figure for both model and experimental simulations.

The legend of each figure includes the correlation coefficient that measures the linear dependence between the modeled and experimental datasets. The correlation coefficient is also known as the Pearson product moment correlation coefficient and is computed by dividing the covariance of two variables by the product of their standard deviations, yielding a value between -1 and +1. The computation process of the correlation coefficient is rather cumbersome; however, it is available as a built–in function in many software packages. A correlation coefficient of 0 indicates the total lack of correlation, while a correlation coefficient of +1 indicates a perfect negative linear correlation. A correlation coefficient less than -0.8 or greater than 0.8 typically indicates a strong correlation, while a correlation coefficient between -0.5 and +0.5 typically indicates a weak correlation.

7.2 Vacuum Erosion

System vacuum pressure accounts for the water vapor in addition to the accumulating non-condensable gases as was mentioned in CHAPTER 4. System vacuum gradually eroded for both seawater flow rates; moreover, it eroded a little faster at higher seawater flow rates. Vacuum pressure increased with flash temperatures for both seawater flow rates, since vapor pressure is directly proportional to flashing temperature.

The initial rapid increase of vacuum pressure was caused by the early rapid increase of water vapor pressure caused by the early rapid increase of temperature inside the flash chamber. Vacuum pressure continued to increase afterwards but at a much lower rate due to slow accumulation of non–condensable gases. The rate of increase of vacuum pressure, $\partial P_V / \partial t$, was decelerating for higher flash temperatures but was accelerating for lower flash temperatures for both seawater flow rates. This is especially obvious for higher flow experiments flashing at 50 °C indicating that higher flow rates entail a higher rate of accumulation of non–condensable gases. Decreasing pressure at a given temperature increases vapor–liquid equilibrium coefficient value resulting in more overall evaporation. Consequently, flashing seawater at lower flow rates slowed the rate accumulation of non–condensable gases, which decelerated vacuum erosion rate, resulting in more evaporation and more fresh water production.

Model prediction of vacuum pressure resembled the experimental results but was generally lower, and the discrepancy increased with temperature. This is probably due to the constant seawater flow rate assumed by the model, while it was progressively decreasing during experiments due to the declining differential pressure caused by the eroding vacuum. Vacuum pressure profiles are shown in Figure 42 through Figure 53.

Figure 42. Modeled vacuum pressure profiles at lower flow

Figure 43. Experimental vacuum pressure profiles at lower flow

Figure 44. Modeled vacuum pressure profiles at higher flow

Figure 45. Experimental vacuum pressure profiles at higher flow

Figure 46. Vacuum pressure at 50°C flash and lower flow

Figure 47. Vacuum pressure at 50°C flash and higher flow

Figure 48. Vacuum pressure at 60°C flash and lower flow

Figure 49. Vacuum pressure at 60°C flash and higher flow

Figure 50. Vacuum pressure at 70°C flash and lower flow

Figure 51. Vacuum pressure at 70°C flash and higher flow

Figure 52. Vacuum pressure at 80°C flash and lower flow

Figure 53. Vacuum pressure at 80°C flash and higher flow

7.3 Equilibrium Attainment

The temperature of seawater drops from a set flash temperature to an equilibrium temperature corresponding to the system vacuum pressure as it enters the evaporator. Equilibrium temperature quickly increased, then mostly leveled for both seawater flow rates; moreover, it was higher to some extent at higher seawater flow rates. In addition, equilibrium temperatures increased with elevated flash temperatures for both seawater flow rates in compliance with the energy balance around the evaporator.

The equilibrium temperature was close to ambient at first; however, it rapidly increased as hot seawater was introduced to the evaporator, reaching a plateau comparable to the flash temperature for both seawater flow rates. Flash operation of the proposed desalination process is an adiabatic expansion, where temperature of seawater drops upon entering the flash chamber due to the drawn enthalpy of vaporization, forming fresh water vapor at an equilibrium status corresponding to the vacuum pressure.

The model utilizes the *Iterative and Incremental Development* scheme as mentioned in CHAPTER 4, where the computed vacuum pressure of a previous time increment becomes the input vacuum pressure to the executing time increment, solving for the equilibrium temperature and vacuum pressure of the next time increment. The entire model execution progression is initiated by the known initial vacuum pressure.

The model prediction of equilibrium temperature resembled the experimental results but was slightly lower, and the discrepancy increased with temperature. This observation understandably matches that of vacuum pressure seen earlier, since the attained equilibrium temperature depends on the system vacuum pressure. Equilibrium temperature profiles are shown in Figure 54 through Figure 65.

Figure 54. Modeled equilibrium temperature profiles at lower flow

Figure 55. Experimental equilibrium temperature profiles at lower flow

Figure 56. Modeled equilibrium temperature profiles at higher flow

Figure 57. Experimental equilibrium temperature profiles at higher flow

Figure 58. Equilibrium temperature at 50°C flash and lower flow

Figure 59. Equilibrium temperature at 50°C flash and higher flow

Figure 60. Equilibrium temperature at 60°C flash and lower flow

Figure 61. Equilibrium temperature at 60°C flash and higher flow

Figure 62. Equilibrium temperature at 70°C flash and lower flow

Figure 63. Equilibrium temperature at 70°C flash and higher flow

Figure 64. Equilibrium temperature at 80°C flash and lower flow

Figure 65. Equilibrium temperature at 80°C flash and higher flow

7.4 Equilibrium Departure

Concentrated brine temperature is usually a bit lower than equilibrium temperature due to boiling point elevation and non–equilibrium allowance plus a small amount of heat loss from the insulated evaporator as mentioned in CHAPTER 4. Concentrated brine temperature quickly increased then leveled for both seawater flow rates; moreover, it was slightly higher at lower seawater flow rates. In addition, concentrated brine temperatures increased with elevated flash temperatures for both seawater flow rates in compliance with the energy balance around the evaporator.

The concentrated brine temperature was close to ambient at first; however, it rapidly increased as hot seawater was introduced to the evaporator, reaching a plateau parallel to equilibrium temperature for both seawater flow rates. The concentrated brine temperature remained lower than the equilibrium temperature except for the lowest flash temperature for both seawater flow rates, where concentrated brine temperature started lower but ended higher than equilibrium temperature. This can be attributed to some heat loss from the flashed water vapor along with diminishing vaporization rates as vacuum pressure rises at a relative low equilibrium temperature since the flashed vapor obtains its heat of vaporization from the concentrated brine.

The model prediction of concentrated brine temperature resembled the experimental results but was slightly higher, with the discrepancy rising with increasing flash temperatures. This can be attributed to the neglected small amount of heat loss from the insulated hot evaporator to the cool ambiance combined with the imprecision of the non–equilibrium allowance correlation used in the model. Concentrated brine temperature profiles are shown in Figure 66 through Figure 77.

Figure 66. Modeled concentrated brine temperature profiles at lower flow

Figure 67. Experimental concentrated brine temperature profiles at lower flow

Figure 68. Modeled concentrated brine temperature profiles at higher flow

Figure 69. Experimental concentrated brine temperature profiles at higher flow

Figure 70. Concentrated brine temperature at 50°C flash and lower flow

Figure 71. Concentrated brine temperature at 50°C flash and higher flow

Figure 72. Concentrated brine temperature at 60°C flash and lower flow

Figure 73. Concentrated brine temperature at 60°C flash and higher flow

Figure 74. Concentrated brine temperature at 70°C flash and lower flow

Figure 75. Concentrated brine temperature at 70°C flash and higher flow

Figure 76. Concentrated brine temperature at 80°C flash and lower flow

Figure 77. Concentrated brine temperature at 80°C flash and higher flow

7.5 Heat Reclamation

Cold incoming seawater is preheated in the condenser by hot water vapor condensing on the surface of the condenser tube before it enters the heater as mentioned in CHAPTER 4. The preheat temperature rapidly increased to reach a maximum early, before it slowly declined for both seawater flow rates; moreover, the preheat temperature attained at lower seawater flow rates, was higher. It increased with flash temperatures for both seawater flow rates since the amount and temperature of the condensing water vapor are directly proportional to flashing temperature.

Hot water vapor condenses by losing its latent heat of condensation to the entering seawater in the condenser; hence, preheat temperature indirectly denotes the rate of water vaporization and condensation. The preheat temperature rapidly increased due to high initial rate of vaporization caused by rapidly increasing equilibrium temperature at lower vacuum pressures, then it slowly declined due to the decreasing rate of vaporization caused by the stabilizing equilibrium temperature at rising vacuum pressures for both seawater flow rates as was shown previously. The preheat temperature profiles for both seawater flow rates are similar; however, they were higher for lower flow rates due to more condensation caused by more vaporization as will be seen later.

Model prediction of preheat temperature loosely resembled the experimental results due to the inability of the condenser tube heat transfer module to capture the rate of condensation. Modeling a heat transfer operation with a phase change is extremely complex, especially in the presence of non–condensable gases. The precision of the model in predicting the preheat temperature affects the quality of its evaluation of system performance. Preheat temperature profiles are shown in Figure 78 through Figure 89.

Figure 78. Modeled preheat temperature profiles at lower flow

Figure 79. Experimental preheat temperature profiles at lower flow

Figure 80. Modeled preheat temperature profiles at higher flow

Figure 81. Experimental preheat temperature profiles at higher flow

Figure 82. Preheat temperature at 50°C flash and lower flow

Figure 83. Preheat temperature at 50°C flash and higher flow

Figure 84. Preheat temperature at 60°C flash and lower flow

Figure 85. Preheat temperature at 60°C flash and higher flow

Figure 86. Preheat temperature at 70°C flash and lower flow

Figure 87. Preheat temperature at 70°C flash and higher flow

Figure 88. Preheat temperature at 80°C flash and lower flow

Figure 89. Preheat temperature at 80°C flash and higher flow

7.6 Heater Size

Preheated seawater coming out of the condenser is further heated by the solar heater to a set flash temperature as mentioned in CHAPTER 4. The heater load was fairly constant at lower flash temperatures but spiked, then rapidly decreased, reaching a minimum before it steadily increased at higher flash temperatures for both seawater flow rates. Moreover, heater loads at lower seawater flow rates were lower. The heater load increased with flash temperatures, reaching a maximum between 60 and 70 °C, after which it decreased for both seawater flow rates due to improve heat recovery caused by increased condensation experienced at higher flashing temperature as was mentioned.

The heater load makes up nearly all energy input to the desalination system due to the relatively small pumping work; hence, curtailing it enhances the feasibility of the process. The heater load logically increased with flash temperature at first but started to decrease later at higher flash temperature due to improved heat recovery caused by increased condensation for both seawater flow rates. Increased vaporization and the subsequent condensation improve heat recovery manifested in higher preheat temperatures that reduce the temperature gradient around the heater, ultimately reducing the heater load in line with the energy balance. The heater load profiles for both seawater flow rates are similar; however, they were lower for lower flow rates, since there was less volume to heat as well as the superior heat recovery as was seen earlier.

Model prediction of heater load loosely resembled the pseudo-experimental results due to the inexact preheat temperature calculation seen earlier. The precision of the model in predicting the heater load affects the quality of its evaluation of system performance. Heater load profiles are shown in Figure 90 through Figure 101.

Figure 90. Modeled heat load profiles at lower flow

Figure 91. Mined heat load profiles at lower flow

Figure 92. Modeled heat load profiles at higher flow

Figure 93. Mined heat load profiles at higher flow

Figure 94. Heat load at 50°C flash and lower flow

Figure 95. Heat load at 50°C flash and higher flow

Figure 96. Heat load at 60°C flash and lower flow

Figure 97. Heat load at 60°C flash and higher flow

Figure 98. Heat load at 70°C flash and lower flow

Figure 99. Heat load at 70°C flash and higher flow

Figure 100. Heat load at 80°C flash and lower flow

Figure 101. Heat load at 80°C flash and higher flow

7.7 Collector Size

The heater is modeled as a single–glazed flat–plate solar collector directly heating seawater flowing through its absorbing tubes; moreover, it is sized by the solar collection area needed to meet the heater load computed by a correlation given in CHAPTER 4 [8]. The required solar collection area is directly proportional to the heater load, resulting in matching profiles of both variables. The required solar collection area was fairly constant at lower flash temperatures, but spiked, then rapidly decreased, reaching a minimum before it steadily increased at higher flash temperatures for both seawater flow rates; moreover, the required solar collection area at lower seawater flow rates were lower. Required solar collection area increased with flash temperatures, reaching a maximum between 60 and 70 °C, after which it decreased for both seawater flow rates due to improved heat recovery caused by increased condensation at higher flashing temperature.

The required solar collection area increased with flash temperature at first but started to decrease later at higher flash temperature, matching the above detailed profile of heater load for both seawater flow rates. The required solar collection area profiles for both seawater flow rates were similar; however, they were lower for lower flow rates due to reduced heater load, since there was less volume to heat as was seen earlier.

Model prediction of required solar collection area did not closely resemble the pseudo–experimental results because of poorly estimated heater load values caused by inexact preheat temperature calculation as was mentioned earlier. Reliability of model estimates of the required solar collection area depends on the accuracy of heater load computations, which relies on precision of preheat temperature computations. Required solar collection area profiles are shown in Figure 102 through Figure 113.

Figure 102. Modeled required solar collection area profiles at lower flow

Figure 103. Mined required solar collection area profiles at lower flow

Figure 104. Modeled required solar collection area profiles at higher flow

Figure 105. Mined required solar collection area profiles at higher flow

Figure 106. Required solar collection area at 50°C flash and lower flow

Figure 107. Required solar collection area at 50°C flash and higher flow

Figure 108. Required solar collection area at 60°C flash and lower flow

Figure 109. Required solar collection area at 60°C flash and higher flow

Figure 110. Required solar collection area at 70°C flash and lower flow

Figure 111. Required solar collection area at 70°C flash and higher flow

Figure 112. Required solar collection area at 80°C flash and lower flow

Figure 113. Required solar collection area at 80°C flash and higher flow

7.8 System Throughput

The fresh water produced is due to condensation of flashed and diffused water vapor moving from the evaporator to condenser as was mentioned in CHAPTER 4. Fresh water production rate was highest at first, then slowly declined for both seawater flow rates; moreover, it was generally higher for lower seawater flow rates. The difference between fresh water production rates of both seawater flow rates is more significant at medium flash temperatures and seems to diminish at both low and high flash temperatures. Fresh water production rate increased with flash temperatures for both seawater flow rates, since the amounts of flashing and diffusing water vapor are directly proportional to flashing temperature and the temperature–induced vapor pressure gradient between the evaporator and condenser, respectively.

Fresh water production rate was high at first due to the high initial rate of vaporization caused by the rapidly increasing equilibrium temperature at lower vacuum pressures, then it slowly declined due to the decreasing rate of vaporization caused by the stabilizing equilibrium temperature at rising vacuum pressures, almost reaching a plateau comparable to the flash temperature for both seawater flow rates. Fresh water production rate profiles for both seawater flow rates are similar; however, they were higher for lower flow rates due to more condensation caused by more vaporization.

Model prediction of fresh water production rate appropriately resembled the pseudo–experimental results due to adequate prediction of system vacuum and equilibrium temperature. Furthermore, adjusted parameters played a significant role in shifting the profile of fresh water production rate to match pseudo–experimental results. Fresh water production rate profiles are shown in Figure 114 through Figure 125.

Figure 114. Modeled fresh water production rate profiles at lower flow

Figure 115. Mined fresh water production rate profiles at lower flow

Figure 116. Modeled fresh water production rate profiles at higher flow

Figure 117. Mined fresh water production rate profiles at higher flow

Figure 118. Fresh water production rate at 50°C flash and lower flow

Figure 119. Fresh water production rate at 50°C flash and higher flow

Figure 120. Fresh water production rate at 60°C flash and lower flow

Figure 121. Fresh water production rate at 60°C flash and higher flow

Figure 122. Fresh water production rate at 70°C flash and lower flow

Figure 123. Fresh water production rate at 70°C flash and higher flow

Figure 124. Fresh water production rate at 80°C flash and lower flow

Figure 125. Fresh water production rate at 80°C flash and higher flow

7.9 System Capacity

The total amount of fresh water produced is calculated by numerically integrating the dynamic fresh water production rate over the entire operating period as was revealed in CHAPTER 4. Fresh water production amount was rising for both seawater flow rates; moreover, it was generally higher for lower seawater flow rates. The difference between fresh water production amounts of both seawater flow rates is more obvious at medium flash temperatures and diminishes at both low and high flash temperatures corresponding to the fresh water production rate results. The fresh water production amount increased with flash temperatures for both seawater flow rates in line with the fresh water production rate results due to enhanced evaporation rates at higher flash temperatures according to thermodynamic phase equilibria resulting in more fresh water production.

The profile of fresh water production amount is not exactly linear, as it was rising at a higher rate at first due to the high initial fresh water production rate, as seen earlier for both seawater flow rates. Fresh water production amount profiles for both seawater flow rates are similar; however, they were higher for lower seawater flow rates due to higher fresh water production rates, as seen earlier.

Model prediction of fresh water production amount properly resembled the pseudo-experimental results due to accurate portrayal of fresh water production rate as a result of adequate prediction of system vacuum and equilibrium temperature mentioned earlier; furthermore, adjusted parameters played a significant role in shifting the fresh water production rate profile to match pseudo-experimental results, resulting in good estimates of fresh water production amount. Fresh water production amount profiles are shown in Figure 126 through Figure 137.

Figure 126. Modeled fresh water production amount profiles at lower flow

Figure 127. Mined fresh water production amount profiles at lower flow

Figure 128. Modeled fresh water production amount profiles at higher flow

Figure 129. Mined fresh water production amount profiles at higher flow

Figure 130. Fresh water production amount at 50°C flash and lower flow

Figure 131. Fresh water production amount at 50°C flash and higher flow

Figure 132. Fresh water production amount at 60°C flash and lower flow

Figure 133. Fresh water production amount at 60°C flash and higher flow

Figure 134. Fresh water production amount at 70°C flash and lower flow

Figure 135. Fresh water production amount at 70°C flash and higher flow

Figure 136. Fresh water production amount at 80°C flash and lower flow

Figure 137. Fresh water production amount at 80°C flash and higher flow

7.10 Process Feasibility

Feasibility of the proposed desalination system can be evaluated using its resulting prime energy consumption, defined as the ratio of the total amount of energy exhausted to total amount of fresh water produced, as mentioned in CHAPTER 4. Energy consumed is attributed to heat provided by the heater plus work supplied by the pump. The pumping work of the proposed desalination system was insignificant relative to the heater load whether the flow rate of seawater was controlled with a throttling valve or a variable–frequency drive; hence, the presented prime energy consumption computations ignore the pumping work, that is $PEC \approx \int Q_H dt / \int M_C dt$. No economic analysis was performed in this venture, but the optimization process of the proposed desalination system lies within minimizing the prime energy consumption via maximizing production and minimizing heater load.

Prime energy consumption steadily increased for both seawater flow rates; however, it was higher at higher seawater flow rates due to higher heater loads. It declined rapidly with flash temperature due to the increasing fresh water production and decreasing heater load due to the improved heat recovery caused by the increased condensation associated with higher flash temperatures. In addition; the difference between prime energy consumption experienced at both seawater flow rates was more significant at low flash temperatures and diminished at higher flash temperatures.

Model prediction of prime energy consumption deteriorated with decreasing flash temperatures but improved with increasing flash temperatures due to contrasting effects of poor heater load prediction and good production amount prediction. Prime energy consumption profiles are shown in Figure 138 through Figure 149.

Figure 138. Modeled prime energy consumption profiles at lower flow

Figure 139. Mined prime energy consumption profiles at lower flow

Figure 140. Modeled prime energy consumption profiles at higher flow

Figure 141. Mined prime energy consumption profiles at higher flow

Figure 142. Prime energy consumption at 50°C flash and lower flow

Figure 143. Prime energy consumption at 50°C flash and higher flow

Figure 144. Prime energy consumption at 60°C flash and lower flow

Figure 145. Prime energy consumption at 60°C flash and higher flow

Figure 146. Prime energy consumption at 70°C flash and lower flow

Figure 147. Prime energy consumption at 70°C flash and higher flow

Figure 148. Prime energy consumption at 80°C flash and lower flow

Figure 149. Prime energy consumption at 80°C flash and higher flow

7.11 Condensing Efficiency

Condenser efficiency describes its heat transfer effectiveness and is defined as the ratio of the temperature gradient on the cold tube side to the temperature gradient on the hot shell side written as a percentage, that is $\eta_C = [(T_X - T_P)/(T_E - T_C)] \cdot 100$ %, as was mentioned in CHAPTER 4. Condenser efficiency rapidly increased to reach a maximum early before it slowly declined for both seawater flow rates; however, condenser efficiency attained at lower seawater flow rates was higher. The condenser efficiency increased with flash temperatures for both seawater flow rates, since the preheat temperature is directly proportional to the flashing temperature.

The condenser efficiency indirectly conveys the percent of available heat that was utilized for preheating seawater. It rapidly increased because of the rapidly rising preheat temperature due to the high initial rate of vaporization caused by rapidly increasing equilibrium temperature at lower vacuum pressures, then it slowly declined because of the decreasing preheat temperature due to the decreasing rate of vaporization caused by stabilizing equilibrium temperature at rising vacuum pressures for both seawater flow rates. The condenser efficiency profiles for both seawater flow rates are similar; however, they are higher for lower flow rates because of the higher preheat temperature experienced at lower seawater flow rates due to more condensation caused by more vaporization as seen before.

Model prediction of condenser efficiency loosely resembled experimental results because of the loose depiction of the preheat temperature due to the inability of the condenser tube heat transfer module of the model to capture the rate of condensation. Condenser efficiency profiles are shown in Figure 150 through Figure 161.

Figure 150. Modeled condenser efficiency profiles at lower flow

Figure 151. Experimental condenser efficiency profiles at lower flow

Figure 152. Modeled condenser efficiency profiles at higher flow

Figure 153. Experimental condenser efficiency profiles at higher flow

Figure 154. Condenser efficiency at 50°C flash and lower flow

Figure 155. Condenser efficiency at 50°C flash and higher flow

Figure 156. Condenser efficiency at 60°C flash and lower flow

Figure 157. Condenser efficiency at 60°C flash and higher flow

Figure 158. Condenser efficiency at 70°C flash and lower flow

Figure 159. Condenser efficiency at 70°C flash and higher flow

Figure 160. Condenser efficiency at 80°C flash and lower flow

Figure 161. Condenser efficiency at 80°C flash and higher flow

7.12 Recovery Efficiency

Recovery efficiency is defined as the ratio of seawater enthalpy change due to condensing water vapor to the overall enthalpy change required to attain the set flash temperature written as a percentage, that is $\eta_R = [(H_X - H_S)/(H_H - H_S)] \cdot 100$ %, as was mentioned in CHAPTER 4. In other words, it is the percent of total enthalpy change that was essentially accomplished by reclaiming heat from condensing vapor. Recovery efficiency rapidly increased to reach a maximum early before it slowly declined for both seawater flow rates; however, recovery efficiency was higher at lower seawater flow rates. It increased with flash temperatures for both seawater flow rates, since preheat enthalpy is directly proportional to preheat temperature that is directly proportional to flashing temperature as seen earlier.

Recovery efficiency directly expresses the percent of required heat that is reclaimed from condensing vapor. Recovery efficiency rapidly increased because of rapidly rising preheat enthalpy due to rapidly rising preheat temperature, then it slowly declined because of decreasing preheat enthalpy due to decreasing preheat temperature. Recovery efficiency profiles for both seawater flow rates are similar; however, they were higher for lower flow rates because of higher preheat enthalpy due to higher preheat temperature experienced at lower seawater flow rates due to more condensation caused by more vaporization.

Model prediction of recovery efficiency loosely resembled experimental results because of loose depiction of preheat temperature due to inability of the condenser tube heat transfer module of the model to capture the rate of condensation. Recovery efficiency profiles are shown in Figure 162 through Figure 173.

Figure 162. Modeled recovery efficiency profiles at lower flow

Figure 163. Experimental recovery efficiency profiles at lower flow

Figure 164. Modeled recovery efficiency profiles at higher flow

Figure 165. Experimental recovery efficiency profiles at higher flow

Figure 166. Recovery efficiency at 50°C flash and lower flow

Figure 167. Recovery efficiency at 50°C flash and higher flow

Figure 168. Recovery efficiency at 60°C flash and lower flow

Figure 169. Recovery efficiency at 60°C flash and higher flow

Figure 170. Recovery efficiency at 70°C flash and lower flow

Figure 171. Recovery efficiency at 70°C flash and higher flow

Figure 172. Recovery efficiency at 80°C flash and lower flow

Figure 173. Recovery efficiency at 80°C flash and higher flow

7.13 Thermal Efficiency

Thermal efficiency of the desalination process is a performance measure defined as the ratio of heat used in vaporizing water to overall heat added to bulk seawater written as a percentage, that is $\eta_T = [M_E \cdot (H_E + H^L_E) / (M_H \cdot H_H)] \cdot 100$ %, as was mentioned in CHAPTER 4. In other words, it is the percent of total thermal energy supplied that was actually used to vaporize water. Thermal efficiency rapidly increased to reach a maximum early before it slowly declined, then stabilized for both seawater flow rates; however, thermal efficiency was higher at lower seawater flow rates. The thermal efficiency increased with flash temperatures for both seawater flow rates, since the amounts and the temperatures of the water vapor are directly proportional to the flashing temperature as seen earlier.

Thermal efficiency rapidly increased because of rapidly increasing water vapor enthalpy due to its rising amount and temperature, and then it slowly declined, reaching a plateau because of slowly stabilizing water vapor enthalpy due to gradually declining vaporization rates, but gradually rising temperatures, of the water vapor for both seawater flow rates. Thermal efficiency profiles for both seawater flow rates are similar; however, they were higher for lower flow rates due to higher vaporization rates.

Model prediction of thermal efficiency of the proposed desalination process properly resembled pseudo–experimental results due to accurate portrayal of water vaporization rates; furthermore, adjusted parameters and correlations played a significant role in shifting vaporization rate profiles to match pseudo–experimental results, resulting in excellent thermal efficiency estimates for the proposed desalination process. Thermal efficiency profiles are shown in Figure 174 through Figure 185.

Figure 174. Modeled thermal efficiency profiles at lower flow

Figure 175. Mined thermal efficiency profiles at lower flow

Figure 176. Modeled thermal efficiency profiles at higher flow

Figure 177. Mined thermal efficiency profiles at higher flow

Figure 178. Thermal efficiency at 50°C flash and lower flow

Figure 179. Thermal efficiency at 50°C flash and higher flow

Figure 180. Thermal efficiency at 60°C flash and lower flow

Figure 181. Thermal efficiency at 60°C flash and higher flow

Figure 182. Thermal efficiency at 70°C flash and lower flow

Figure 183. Thermal efficiency at 70°C flash and higher flow

Figure 184. Thermal efficiency at 80°C flash and lower flow

Figure 185. Thermal efficiency at 80°C flash and higher flow

7.14 Disambiguation

The preceding discussion included references to three different types of data as it examined profiles of twelve time–varying system variables. Model data refer to data obtained by running the developed model with its alternate equations and adjusted parameter values and expressions. Experimental data refer to averaged temperature and pressure values recorded by the data acquisition system of three matching experiments; furthermore, experimental data also include observed values for seawater flow rate and fresh water amount. Pseudo–experimental data refer to results generated by a computer code composed of the developed model with its alternate equations but without adjusted parameter values and expressions; moreover, energy balance relations were deactivated, while experimental temperature and pressure, as well as recorded seawater flow rate and produced fresh water amount, were supplied to the computer code. The entire data mining procedure is illustrated in Figure 186.

Figure 186. Experimental and pseudo-experimental data acquisition

CHAPTER 8. CONCLUSION

8.1 Summary

A flash desalination process sustainable by natural forces of solar radiation and gravity has been proposed. In addition, experimental and theoretical simulations of the proposed desalination process have been carried out. The process includes a start–up procedure and continuous operation consisting of pumping seawater through a solar heater before flashing it under vacuum in an elevated chamber. The vacuum is passively created and subsequently maintained by hydrostatic balance between pressure inside the elevated flash chamber and outdoor atmospheric pressure.

Experimental simulations were carried out by a pilot unit depicting the proposed system but emulating solar heating and passive vacuum operations. Theoretical simulations were performed using a computer code comprising fundamental physical and thermodynamic laws plus numerous correlations and parameters. Experimental data were fed to an adapted computer code generating pseudo–experimental data; moreover, experimental and pseudo–experimental data were regressed, generating parametric values and correlations that were included in the developed computer model.

Experimental and theoretical simulations were run at varying operating conditions but at analogous circumstances, and their results were compared and analyzed to validate the developed model. Feasibility of the proposed system rapidly increased with flash temperature due to increased fresh water production and improved heat recovery.

8.2 Outcome

Experimental and pseudo-experimental data were regressed, generating four correlations given in CHAPTER 6 that were included in the model. In addition, a dataset of K-values was regressed to adjust parameter values of Henry's constant and vapor pressure correlations for non-condensable gases and water, respectively.

The developed correlation for the counter–current departure correction factor for the condenser tube yielded acceptable results as was seen in CHAPTER 6; however, preheat temperature computed by the model using that developed correlation yielded poor predictions as was seen in CHAPTER 7. The data mining code used the log mean temperature difference scheme to generate pseudo–experimental data of F_{CT} that were regressed to generate the aforementioned correlation. This observation suggests that the log mean temperature difference scheme is probably not the best option to model the heat transfer operation across the condenser tube. Modeling a heat transfer operation with a phase change is extremely complex, especially in the presence of non–condensable gases. Precision of the model in predicting preheat temperature affects the quality of its evaluation of system performance as was seen in CHAPTER 7.

The developed correlation for the non–equilibrium allowance yielded average results as was seen in CHAPTER 6; consequently, equilibrium and concentrated brine temperatures computed by the model also yielded average predictions as was seen in CHAPTER 7. Heat loss of the evaporator was ignored, while non–equilibrium allowance correlation and energy balance around the evaporator were used to find equilibrium and the concentrated brine temperatures. This observation suggests that heat loss from the evaporator may need to be accounted for in the model.

The developed correlation for the activity coefficient of water yielded excellent results as was seen in CHAPTER 6. The data mining code used the Rachford–Rice scheme along with experimental values of equilibrium temperature and system pressure, plus average reported composition of seawater to generate pseudo–experimental data of γ_{H2O} that were regressed to generate the previously mentioned correlation. In addition, the data mining code included parameter values of Henry's constant and vapor pressure correlations for non–condensable gases and water obtained using the SUPERTRAPPTM code from NIST [31] as was mentioned in CHAPTER 4. The Rachford–Rice scheme and SUPERTRAPPTM code, plus the reported composition of seawater, are well recognized in literature for their accuracy; therefore, quality of the developed correlation for the activity coefficient of water is believed to be very high.

The developed correlation for the gas phase molecular content correction factor yielded good results, except for the case of higher seawater flow rates flashing at 50 °C as was seen in CHAPTER 6. The data mining code used the ideal gas law with experimental values of equilibrium temperature and system pressure, plus a straightforward formula for calculating dynamic vacuum volume to generate pseudo–experimental data of ψ that were regressed to generate the previous correlation. This observation suggests that flashing seawater at lower temperatures and higher flow rates rapidly increases the rate of accumulation of non–condensable gases. This phenomenon has been experimentally explored and theoretically modeled by Abtahi [32] via the molecular arrival rate concept. Results for ψ seen in CHAPTER 6 indicate that deviation from ideal behavior increases with decreasing P_V / P_{H2O} values due to rising temperature gradient between the hot and the cold sides of the flash chamber. This observation was also confirmed by Abtahi [32].

The results seen in CHAPTER 7 suggest that the proposed process becomes more feasible if operated at higher temperatures and more moderate flow rates. Higher flash temperatures will result in more evaporation and subsequent condensation, resulting in more fresh water production. In addition, the increased amount of heat reclaimed from condensing vapor reduced overall heater load and thus required less solar collection area. The collective outcome of increased fresh water output and decreased heater load is a significant decrease in prime energy consumption of the desalination unit, making it more economically viable. These observations are quantified in Figure 187 and Figure 188 for seawater conversion efficiency and prime energy consumption, respectively.

The results seen in CHAPTER 7 also suggest that most fresh water production occurs in the beginning of the operation, where vacuum pressure is lowest. The current experimental simulations were launched at a reasonably low vacuum; however, a much lower vacuum can be achieved using less energy if the proposed method of creating a passive vacuum is implemented. The collective outcome of applying passive vacuum and solar heating schemes is a significant decrease in prime energy consumption of the unit due to lower energy input and higher product output, furthering its feasibility.

The efficiency of the unit can also be boosted by exploiting the thermal energy of hot brine by either employing multi-stage schemes or including heat recovery provisions to increase the amount of reclaimed heat, effectively reducing prime energy consumption. The temperature difference manifested in the vapor pressure gradient between the two compartments of the flash chamber is the driving force of vapor transfer from the hot evaporator to the cold condenser; therefore, any attempt to exploit the thermal energy of the hot concentrated brine should be carefully applied as not to compromise that gradient.

Figure 187. Seawater conversion dependence on flash temperature

Figure 188. Prime energy consumption dependence on flash temperature

8.3 Prospects

The results of this exploration demonstrate great potential for application of the proposed desalination system, especially in light of growing energy and water demands. This section is aimed at offering recommendations for prospective researchers seeking to optimize and further feasibility of the proposed desalination system.

CHAPTER 2 includes a brief overview of the most common conventional and solar desalination methods. An immense number of renewable energy driven desalination systems have been proposed and examined but never commercially materialized. The current study did not present those systems; nevertheless, including them in the literature review of future research would be supportive of the novelty of the current system. In addition, corrosion and scaling are major challenges to all desalination systems; however, they were overlooked in this study to keep the focus on simulation of the proposed desalination system, but they should be addressed in future investigations.

Moving the experimental unit to an outdoor setting would enhance replication of the proposed system. An outdoor unit can be furnished with a real solar heater and will enable the proposed passive vacuum generation by elevating the flash chamber to at least ten meters above ground. Implementing the proposed passive vacuum generation will also allow for much lower vacuums to be achieved using less energy, which translates to more fresh water production. In addition, vacuum erosion will be slower in an outdoor unit because vacuum volume will be increasing as system pressure increases due to the hydrostatic balance between the levels of the ground tanks and the flash chamber, which translates to more fresh water production due to lower pressures. Also, an outdoor unit will enable automatic flow control via a throttling valve or a variable–frequency drive. Accuracy of model output and pseudo–experimental data, as well as the precision of the regression, deeply rely on certainty of their input. There are slight discrepancies in literature when it comes to reporting seawater content; therefore, it is essential to investigate the seawater parameters given in CHAPTER 6 further, explicitly φ_i and α_i , especially those pertaining to carbon dioxide due to its complex kinetics.

Model convergence was difficult at times due to interdependence nature of its equations; therefore, other programming tools may be explored. In addition, the current model executes and integrates using one minute increments, yielding smooth results; however, easier convergence and smoother results can be obtained by decreasing increment size but that will also increase program run time.

Heat transfer relations of the current model did not produce very reliable results; consequently, they should be improved to predict heat loss of the flash chamber accurately as well as heat transfer across the condenser tube. Rigorous heat transfer computations will result in better predictions of equilibrium and brine temperatures resulting in superior flash calculations. More rigorous heat transfer computations will also result in better predictions of preheat temperature, resulting in enhanced performance evaluation due to regression of a more precise mined data.

The log mean temperature difference method should be substituted with a more appropriate heat transfer model capable of handling the complexity of phase change operations. Experimental data should always be used to fine-tune the parameters of the employed heat transfer model. In addition, if heat transfer computations remained imprecise, adjusting local and overall heat transfer coefficients should be explored as an alternative to adjusting the parameters of the heat transfer model. Abtahi [32] hypothesized that the non–condensable gas molecules accumulating in the condenser tend to amass around the cold surface of the condenser tube, in essence forming an insulation layer that hampers heat transfer from the condensing water vapor. In addition, some heat transfer texts include mass transfer parameters within heat transfer coefficient correlations in condensers as they try to model the diffusion of water vapor molecules through the non–condensable gas layer.

The current model assumes the total condensation of flashed water vapor and uses a regressed molecular content correction factor to account for rate of accumulation of non–condensable gases. Alternately, the distribution of non-condensable gases among flashed vapor, concentrated brine, and condensed water in the flash chamber can be estimated by assuming equilibrium among the three phases [33]. This approach may be more valid, but will exacerbate computations and hinder convergence.

A more accurate version of the correlation for the activity coefficient of water can be obtained by using a suitable activity coefficient model to write the activity coefficient formula, then adjusting its parameters using the data mining code mentioned earlier in CHAPTER 6 and found in the APPENDICES section.

The diffusion correlation developed in CHAPTER 4 includes two parameters that serve as conductance and resistance terms. In its current form, the model considers resistance to water vapor transfer to be pertinent only to diffusing and not flashing vapor. It would be more prudent to remove the resistance term, then readjust the conductance term in accordance with reported values [14]. Afterward, a resistance term pertaining to diffusing and flashing water vapor should be included in the model and adjusted using the data mining code mentioned in CHAPTER 6 and found in the APPENDICES section. The diffusion correlation development should be carried out alongside the above mentioned molecular arrival rate concept modeled by Abtahi [32]. This approach will make the adjusted conductance and resistance terms more consistent with the complex mass and heat transfer operations, which will ultimately result in improved vacuum pressure and preheat temperature predictions.

Feasibility of the proposed desalination process should be simply investigated via prime energy consumption, $PEC = (\int Q_H + \int W_P) / \int M_C$, and not via unnecessarily meticulous economic analyses. Process optimization is synonymous with prime energy consumption mitigation that is realized via minimizing the amount of energy exhausted or maximizing the amount of fresh water produced. Most of the exhausted energy of all thermal desalination processes is due to heat and not to power input as was seen earlier in CHAPTER 2 and as confirmed by the current experimental and theoretical simulations; therefore, optimizing the proposed desalination system should specifically revolve around reducing heater load and amplifying fresh water production rate. Detailed economic analyses can be performed by properly estimating capital and operating costs; however, these analyses can be quite cumbersome and should be carefully employed.

Seawater flash temperature is a set parameter; therefore, reducing heater load should be aimed for by increasing preheat temperature achieved via improved heat recovery in the condenser. Improving heat recovery in the condenser can be accomplished by improving the geometry of the condenser tube to harness the most of the latent heat of the condensing steam. Thermally insulating the condenser should be investigated to see its consequences on directing condensing steam away from the condenser wall and more towards the condenser tube. Amplifying the fresh water production rate is thermodynamically controlled via increasing equilibrium temperature and lowering system pressure. With the exception of increasing flash temperature set point, increasing equilibrium temperature is accomplished by minimizing heat loss of the evaporator via enhanced thermal insulation. System pressure is always increasing because of the eroding vacuum due to build up of non–condensable gases in the flash chamber; however, initial system pressure is a controlled variable, and lowering it would lower system pressure all through the desalination process. The proposed method of passively creating vacuums should accomplish very low vacuum pressures, in effect equaling ambient water vapor pressure. In addition, fresh water production rate can be significantly enhanced by employing the multi–stage scheme outlined earlier in CHAPTER 4. The current model should be extended from simulating single–stage to multi–stage desalination schemes. In addition, a qualitative sensitivity analysis of model parameters should be executed to evaluate the outcome of their variation on model results.

The proposed desalination system is meant to be driven by solar energy and average values for a generic solar collector were used to estimate solar collection area. Detailed solar computations should be used instead of the average values to broaden the applicability of the model to different geographies and different collectors. This would involve including several solar calculations that are widely available in literature [8].

Finally, experimental results discussed earlier have proven that some of the flashed vapor condenses prematurely in the evaporator before making it to the condenser; therefore, resistance to vapor transfer from the evaporator to condenser should be reduced to increase fresh water production and improve heat recovery.

REFERENCES

1. National Atlas of the United States. *Water Resources of the United States*; U. S. Geological Survey: Reston, VA, 2005.

2. Minton, P. E. *Handbook of Evaporation Technology*; Noyes Publications: Westwood, NJ, 1986.

3. Maxwell, E., George R., Wilcox S. *Climatological Solar Radiation Model*; the National Climatic Data Center: Asheville, NC, 1998.

4. Culp, A. Principles of Energy Conversion; McGraw Hill: New York, NY, 1991.

5. Wangnick, K. *Worldwide Desalting Plants Inventory*; Report Number 15; International Desalination Association: Topsfield, MA, 1998.

6. Miller, J. E. *Review of Water Resources and Desalination Technologies*; Materials Chemistry Department; Sandia National Laboratories: Albuquerque, NM, 2003.

7. Kalogirou, S. A. Seawater Desalination Using Renewable Energy Sources, *Progress in Energy and Combustion Science* 2005, 31(3), pp 242–281.

8. Goswami, D. Y., Kreith, F., Kreider, J. F. *Principles of Solar Engineering*, second edition; Taylor & Francis: Philadelphia, PA, 2000.

9. Delyannis, E. Historic Background of Desalination and Renewable Energies, *Solar Energy* 2003, 75(5), pp 357–366.

10. Tzen, E., Morris, R. Renewable Energy Sources for Desalination, *Solar Energy* 2003, 75(5), pp 375–379.

11. Al-Kharabsheh, S. *Theoretical and Experimental Analysis of Water Desalination System Using Low Grade Solar Heat*, Doctoral Dissertation; University of Florida: Gainesville, Florida, 2003.

12. Maroo, S. C. Theoretical Analysis of Solar Driven Flash Desalination System Based on Passive Vacuum Generation, Master Thesis; University of Florida: Gainesville, Florida, 2006.

13. Rachford, H. H., Rice J. D. Procedure for Use of Electronic Digital Computers in Calculation Flash Vaporization Hydrocarbon Equilibrium, *Petroleum Technology* 1952, 4, 9.

14. Bemporad, G. A. Basic Thermodynamic Aspects of a Solar Energy Based Desalination Process, *Solar Energy* 1995, 54 (2), pp 125–134.

15. Geankoplis, C. J. *Transport Processes and Separation Process Principles*; Prentice Hall: Englewood Cliffs, NJ, 2003.

16. Turekian, K. K. Oceans; Prentice Hall: Englewood Cliffs, NJ, 1968.

17. Sander, R. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, www.henrys-law.org, 1999.

18. Perry, R. H., Green, D. *Perry's Chemical Engineers' Handbook*; McGraw–Hill: New York, NY, 1984.

19. Thibodeaux, L. J. *Environmental Chemodynamics*; John Wiley & Sons: New York, NY, 1996.

20. Sinnott, R. K. Coulson and Richardson's Chemical Engineering; Butterworth-Heinemann: Oxford, UK, 1996.

21. E1–Nashar, A. M., Qamhiyeh, A. A. Simulation of the Steady–State Operation of a Multi–Effect Stack Seawater Distillation Plant, *Desalination* 1995, 101(3), pp 231–243.

22. Miyatake, O., Murakami, K., Kawata, Y., Fujii, T. Fundamental Experiments with Flash Evaporation, *Heat Transfer – Japan Research* 1973, 2(4), pp 89–100.

23. Coker, A. K. Chemical Process Design, Analysis, and Simulation; Gulf Publishing: Houston, TX, 1995.

24. Hermann M., Koschikowski J., Rommel M. Corrosion–Free Solar Collectors for Thermally Driven Seawater Desalination, *Solar Energy* 2002, 72(5), pp 415–426.

25. Granet, I. Fluid Mechanics; Prentice Hall: Englewood Cliffs, NJ, 1996.

26. Caldwell, D. R. The Thermal Conductivity of Seawater, *Deep–Sea Research* 1974, 21, 131–138.

27. Chopey, N. P. *Handbook of Chemical Engineering Calculations*; McGraw–Hill: New York, NY, 1994.

28. Millero, F. J., Poisson, A. International One Atmosphere Equation of State of Seawater, *Deep–Sea Research* 1981, 28, pp 625–629.

29. Sündermann, J. Numerical Data and Functional Relationships in Science and Technology – New Series Group V: Geophysics and Space Research, *Oceanography* 1986, 3(A), Springer–Verlag, Berlin, Germany.

30. Mamaev, O. I. *Temperature–Salinity Analysis of World Ocean Waters*; translation from Russian by Burton, R. J.; Elsevier Scientific Publishing: Amsterdam, Netherlands, 1975.

31. Chase, M. W. *NIST–JANAF Themochemical Tables*. Journal of Physical and Chemical Reference, Number 9; American Chemical Society: Washington, DC, 1998.

32. Abtahi, H. Investigation of local pressure characteristics in gas-loaded heat pipes, *Proceedings of the ASME National Heat Transfer Conference*, Houston, TX, 1988; American Society of Mechanical Engineers: New York, NY, 1988, A89 53251 23 34, pp 347–352.

33. Abutayeh, M., Goswami, D. Y. Passive Vacuum Solar Flash Desalination, *American Institute of Chemical Engineers* [Online] 2009, pp 1547–5905.

APPENDICES

Appendix A. The operating procedure

Figure 189. Preparing to fill up the condenser

Figure 190. Condenser full of fresh water

Figure 191. Preparing to fill up the evaporator

Figure 192. Evaporator full of seawater

Appendix A (Continued)

Figure 193. Switching the valve positions of the flash chamber

Figure 194. Flash chamber passively vacuumed

Figure 195. Preparing to start the desalination process

Figure 196. Desalination process taking place

Figure 197. Flash chamber vented to terminate vacuum

Figure 198. Flash chamber drained
Appendix B. SUPERTRAPPTM code to generate K-values

NIST Standard Reference Database 4 NIST THERMOPHYSICAL PROPERTIES OF HYDROCARBON MIXTURES Program SUPERTRAPP - Version 3.1, beta 1 Based on research sponsored by the NASA Lewis Research Center, the NIST Supercritical Fluid Property Consortium and Standard Reference Data Marcia L. Huber Physical and Chemical Properties Division Distributed by Standard Reference Data National Institute of Standards and Technology Gaithersburg, MD 20899 USA Copyright 2002 by the U.S. Secretary of Commerce on behalf of the United States of America All rights reserved. For help in response to any question, enter "?". For a brief description of SUPERTRAPP, enter "?". Press enter to continue. Do you want to use default settings? (Y/N) (The default settings are whatever you last selected for units and file I/O.) How many components (maximum is 20, enter 0 to stop) ? 5 Enter the name of component 1 ? N2 Enter the name of component 2 ? C2 3 ? Ar 4 ? CO2 5 ? H2O Enter the name of component Enter the name of component 4 ? CO2 Enter the name of component 5 ? H2O Enter the name of component 5 ? H2O Enter the moles of nitrogen? 0.000892430051332573 Enter the moles of oxygen? 0.00043752734545909 Enter the moles of argon? 0.0000200300450676013 Enter the moles of carbon dioxide? 0.00409007248517348 Enter the moles of water? 107.121933077247 For a list of available options, type? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 288.15,1 2-Phase Flash results at T = 288.150 K and P = 1.00000bar ---Feed--- --Li qui d-- --Vapor--0. 833055E-05 0. 344128E-07 0. 427495 ---- Component ----- Feed---- - Vapor - - -- - - Phi - - - -- - K- nitrogen 0.427528 . 12E+08 0. 408418E-05 0. 409242E-06 0. 189368 0. 189267 . 46E+06 0. 186974E-06 0. 175174E-07 0. 873203E-02 0. 872798E-02 . 50E+06 0. 381795E-04 0. 312301E-04 0. 358131 0. 356581 . 11E+05 oxygen argon carbon di oxi de 0.999949 0.999968 0. 162738E-01 0. 161498E-01 . 16E-01 water Molar Basis 1.00000 0.999981 0. 194064E-04 Feed Fraction 18. 0211 18. 0208 34. 4373 0. 762087E- 03 0. 742729E- 03 0. 998250 34.4373 Molar Mass Comp. Factor, Z 0. 418133E-01 D, mol / liter -145. 202 H, kJ/mol 210. 196 S, J/mol . K 32. 3969 Cp, J/mol . K 56. 1983 - 287. 429 54.7708 - 287. 426 64. 9320 76. 7509 64. 9348 76. 7500 Cp/ Cv Sound Speed, m/s 1.26448 1.34988 3410.20 305.911 - 0. 193114E- 01 0. 496588 11292. 3 171. 639 579. 549 22. 0159 JT, K/bar Visc., uP Th. Cond., mW m K (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma.

^{293. 15, 1}

2-Phase Flash result	ts at T = 293.	150 K and P =	1.00000	bar
Component nitrogen oxygen argon carbon dioxide water Molar Basis	Feed 0.833055E-05 (0.408418E-05 (0.186974E-06 (0.381795E-04 (0.999949 (- Li qui d	- Vapor	- Phi K . 429076 . 10E+08 . 187490 . 41E+06 . 864843E-02 . 44E+06 . 350834 . 11E+05 . 222965E-01 . 22E-01
	1.00000 18.0211 0.754310E-03 54.3917 -286.753 67.1288 75.6292	0. 999981 18. 0208 0. 735038E- 03 55. 8178 - 286. 755 67. 1260 75. 6301 1. 19949 3277. 46 0. 201080E- 01 10054. 1 588. 761	0. 193178E-04 34. 2739 0. 998342 0. 410963E-01 - 144. 235 210. 722 32. 4522 1. 34891 309. 206 0. 483944 173. 823 22. 4243	Feed Fraction Molar Mass Comp. Factor, Z D, mol/liter H, kJ/mol S, J/mol.K Cp, J/mol.K Cp/Cv Sound Speed, m/s JT, K/bar Visc., uP Th. Cond.,mWV m K
(VLE=PRS, PROPS=EXCS For a list of avail enter command or, i enter T(K) and P(ba 298.15,1	T) able options, t f you wish to c r) separated by	ype ? Otherwi lo a flash cal ⁄a comma.	se cul at i on,	
2–Phase Flash result	ts at T = 298.	150 K and P =	1.00000	bar
Component nitrogen oxygen argon carbon dioxide water Molar Basis	Feed 0.833055E-05 (0.408418E-05 (0.186974E-06 (0.381795E-04 (0.999949 (- Li qui d 0. 525102E- 07 0 0. 514592E- 06 0 0. 222940E- 07 0 0. 315055E- 04 0 0. 999968 0	- Vapor . 429422 0 . 185172 0 . 854277E- 02 0 . 346245 0 . 306178E- 01 0	- Phi K . 429493 . 82E+07 . 185096 . 36E+06 . 853976E-02 . 38E+06 . 344888 . 11E+05 . 304033E-01 . 31E-01
	1.00000 18.0211 0.746899E-03 54.0102 -286.086 69.2517 74.5180	0.999981 18.0208 0.727667E-03 55.4377 -286.089 69.2490 74.5188 1.14872 3164.64 0.209314E-01 9000.45 597.672	0. 192772E-04 34. 0849 0. 998416 0. 404041E-01 - 143. 669 211. 245 32. 5133 1. 34788 312. 599 0. 474132 175. 802 22 8360	Feed Fraction Molar Mass Comp. Factor, Z D, mol/liter H, kJ/mol S, J/mol.K Op, J/mol.K Op/Ov Sound Speed, m/s JT, K/bar Visc., uP Th. Cond. mWym K
(VLE=PRS, PROPS=EXCS For a list of avail enter command or, i enter T(K) and P(ba 303.15,1	T) able options, t f you wish to c r) separated by	ype ? Otherwi lo a flash cal a comma.	se cul at i on,	
2–Phase Flash result	ts at T = 303.	150 K and P =	1.00000	bar
Component nitrogen oxygen argon carbon dioxide water Molar Basis	Feed 0. 833055E-05 (0. 408418E-05 (0. 186974E-06 (0. 381795E-04 (0. 999949 (- Li qui d 0. 639249E- 07 0 0. 570542E- 06 0 0. 248543E- 07 0 0. 316181E- 04 0 0. 999968 0	- Vapor . 428310 0 . 182049 0 . 839976E- 02 0 . 339991 0 . 412514E- 01 0	- Phi K . 428401 . 67E+07 . 181984 . 32E+06 . 839729E-02 . 34E+06 . 338717 . 11E+05 . 409730E-01 . 41E-01
	1.00000 18.0211 0.739394E-03 53.6585 -285.463 71.2038 73.5538	0.999981 18.0208 0.720137E-03 55.0934 -285.465 71.2010 73.5546 1.11477	0. 193005E-04 33. 8644 0. 998470 0. 397356E-01 - 143. 617 211. 762 32. 5823 1. 34678	Feed Fraction Molar Mass Comp. Factor, Z D, mol/liter H, kJ/mol S, J/mol.K Cp, J/mol.K Cp/Cv

316. 121 3076.35 Sound Speed, m/s JT, K/bar Visc., uP 0.216544E-01 0.467549 8098.85 177.528 606.261 23.2528 Th. Cond., mW m K (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 308.15, 1 2-Phase Flash results at T = 308.150 K and P = 1.00000bar ---Feed--- --Li qui d-- --Vapor---0. 833055E-05 0. 769946E-07 0. 425229 ---- Component ----- Feed---- - - Phi - - - -- - K- -. 55E+07 nitrogen 0.425343 0. 403418E-05 0. 627324E-06 0. 178100 0. 178049 .28E+06 0. 186974E-06 0. 274689E-07 0. 821784E-02 0. 821594E-02 .30E+06 0. 381795E-04 0. 317072E-04 0. 333489 0. 332291 .11E+05 oxygen argon .11E+05 carbon di oxi de 0. 549638E-01 0. 546051E-01 . 55E-01 water 0.999949 0.999968 Molar Basis 0.999981 1.00000 0.194096E-04 Feed Fraction 18.0211 18.0208 33.6055 Molar Mass 0. 729280E- 03 0. 709913E- 03 0. 998501 53. 5200 54. 9800 0. 390896 Comp. Factor, Z 0. 390896E-01 D, mol/liter -144.212 H, kJ/mol - 285. 087 - 285. 089 72. 4311 73. 5116 212.268 72.4338 S, J/mol.K Cp, J/mol.K Cp/Cv 73.5108 32.6618 1.12424 1.34556 3052.71 319.808 Sound Speed, m/s - 0. 215396E- 01 0. 464722 JT, K∕bar 7323.15 178.947 Visc., uP 614.421 23.6766 Th. Cond., mW m K (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 313. 15, 1 2-Phase Flash results at T = 313.150 K and P = 1.00000bar ---Phi-------- Component ----- Feed----- - Li qui d- -- - Vapor - - -- - K- -0. 833055E- 05 0. 916537E- 07 0. 419638 0. 408418E- 05 0. 683483E- 06 0. 173211 .46E+07 ni t r ogen 0.419776 . 25E+06 0. 173173 oxygen 0. 186974E-06 0. 300721E-07 0. 799164E-02 0. 799034E-02 . 27E+06 0. 381795E-04 0. 317661E-04 0. 326694 0. 325564 . 10E+05 ar gon 0. 326694 0. 325564 . 10E+05 0. 724650E-01 0. 720057E-01 . 72E-01 carbon di oxi de 0.999949 0.999967 water Molar Basis 1.00000 0.999980 0. 196333E-04 Feed Fraction 18. 0211 18. 0208 33. 2997 0. 719666E- 03 0. 700076E- 03 0. 998506 33. 2997 Molar Mass Comp. Factor, Z 54.8624 -284.715 53.3690 0.384653E-01 D, mol/liter - 284. 712 - 145. 607 212. 756 32. 7550 H, kJ/mol 73.6397 73.6369 S, J/mol.K 73.4841 Cp, J/mol.K Cp/Cv 73.4833 1.34419 3029.90 323.706 Sound Speed, m/s - 0. 214130E- 01 0. 466334 JT, K/bar 6652.37 179.992 Visc., uP 622.271 24.1101 Th. Cond., mW m K (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 318. 15, 1 2-Phase Flash results at T = 318.150 K and P = 1.00000bar
 ----Feed-- ---Li qui d- ---Vapor-- ---Phi --- ----K-

 0. 833055E-05
 0. 107669E-06
 0. 410902
 0. 411067
 .38E+07

 0. 408418E-05
 0. 737106E-06
 0. 167256
 0. 167232
 .23E+06

 0. 186974E-06
 0. 325762E-07
 0. 771537E-02
 0. 771471E-02
 .24E+06
 ---Component----nitrogen oxygen ar gon 0. 381795E-04 0. 317855E-04 0. 319543 carbon di oxi de 0.318473 .10E+05

0.999949 0.999967 0.945847E-01 0.939993E-01 .95E-01 water Molar Basis 1.00000 0.999980 0.200118E-04 Feed Fraction 18.0208 18.0211 32.9372 Molar Mass 0.710577E-03 0.690609E-03 0.998482 Comp. Factor, Z 53.2022 54.7404 0.378617E-01 D, mol/liter - 147. 979 - 284. 339 - 284. 341 H, kJ/mol S, J/mol.K Cp, J/mol.K 74.8225 74.8197 213.214 73. 4714 73.4722 32.8654 Cp/ Cv Sound Speed, m/s 1.14539 1.34263 3007.94 327.872 JT, K∕bar - 0. 212745E- 01 0. 473293 Visc., uP Th. Cond., mW m K 180. 587 6069.52 629.807 24.5568 (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 323. 15, 1 2-Phase Flash results at T = 323.150 K and P = 1.00000bar - - - Phi - - - ----- Component ----- Feed---- - Li qui d- -- - Vapor - - -- - K- -0.833055E-05 0.124565E-06 0.398291 0.398487 . 32E+07 nitrogen 0. 408418E-05 0. 785728E-06 0. 160097 0. 160088 .20E+06 0. 186974E-06 0. 348681E-07 0. 738275E-02 0. 738280E-02 .21E+06 oxygen ar gon .98E+04 carbon di oxi de 0. 381795E-04 0. 317532E-04 0. 311946 0.310930 0.999949 0.999967 0.122284 0.121540 .12E+00 water Molar Basis 1.00000 0.999979 0.206030E-04 Feed Fraction Molar Mass Comp. Factor, Z 18.0211 18.0208 32.5064 0.702055E-03 0.681498E-03 0.998424 53.0148 54.6139 0.372780E-01 D, mol/liter - 283. 969 75. 9804 H, kJ/mol S, J/mol.K - 283. 966 - 151. 523 75.9832 213.624 73.4754 73.4762 32.9972 Cp, J/mol.K 1.15716 1.34083 Cp/ Cv 2986.83 332.379 Sound Speed, m/s JT, K/bar - 0. 211239E- 01 0. 486828 Visc., uP Th. Cond., mW m K 5560.75 180.639 637.027 25.0208 (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 328.15,1 2-Phase Flash results at T = 328.150 K and P = 1.00000bar
 ----Feed-- ---Li qui d- ---Vapor-- ---Phi --- ---K-

 0. 833055E-05
 0. 141527E-06
 0. 380999
 0. 381229
 .27E+07

 0. 408418E-05
 0. 826198E-06
 0. 151580
 0. 151589
 .18E+06

 0. 186974E-06
 0. 368027E-07
 0. 698684E-02
 0. 698769E-02
 .19E+06
 ---- Component ----- Feed---ni t r ogen oxygen ar gon 0. 381795E-04 0. 316511E-04 0. 303770 0. 999949 0. 999967 0. 156664 .96E+04 carbon di oxi de 0.302803 water 0.155721 .16E+00 Molar Basis 1.00000 0.999979 0.214936E-04 Feed Fraction 18.0211 18.0208 31.9935 0.694172E-03 0.672728E-03 0.998326 31.9935 Molar Mass Comp. Factor, Z 52.7999 54.4829 0.367137E-01 D, mol/liter H, kJ/mol S, J/mol.K - 283. 595 - 283. 598 - 156. 454 77.1200 77.1229 213.961 33. 1549 73.4953 73.4962 Cp, J/mol.K 1.16979 1.33875 Cp/ Cv 2966.57 337.320 Sound Speed, m/s - 0. 209608E- 01 0. 508656 5114. 70 180. 042 JT, K/bar Visc., uP 643.930 25.5071 Th. Cond., mW m K (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma.

333.15,1

2-Phase Flash results at T = 333.150 K and P = 1.00000bar ---Feed--- --Li qui d-- --Vapor--0. 833055E-05 0. 157290E-06 0. 358158 ---- Component ----- --- Feed------Phi----- - Vapor - - -- - K- -. 23E+07 nitrogen 0.358430 0. 408418E-05 0. 854500E-06 0. 141528 0. 141557 . 17E+06 0. 186974E-06 0. 381947E-07 0. 651966E-02 0. 652142E-02 . 17E+06 oxygen ar gon 0. 381795E-04 0. 314525E-04 0. 294815 0. 999949 0. 999967 0. 198979 0.293892 .94E+04 carbon di oxi de 0.197782 . 20E+00 water Molar Basis 0.999977 0.228202E-04 Feed Fraction 1.00000 18. 0211 18. 0208 31. 3818 0. 687051E- 03 0. 664287E- 03 0. 998177 Molar Mass Comp. Factor, Z 0. 361680E-01 D, mol/liter -162. 995 H, kJ/mol 214. 188 S, J/mol. K 54.3471 52.5465 - 283. 228 78. 2394 - 283, 225 78.2425 73. 5324 1. 18333 2947. 16 Cp, J/mol.K Cp/Cv 33. 3432 73.5315 1.33636 Sound Speed, m/s 342.819 - 0. 207850E- 01 0. 541296 JT, K/bar Visc., uP Th. Cond., mW m K 178.677 4722.05 650.515 26.0218 (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 338. 15, Ì 2-Phase Flash results at T = 338.150 K and P = 1.00000bar ---Feed--- --Li qui d-- --Vapor--0. 833055E-05 0. 170017E-06 0. 328901 0. 408418E-05 0. 865497E-06 0. 129726 ---Phi-------- Component ----- Feed---- - Vapor - - -- - K- -0.329223 . 19E+07 nitrogen .15E+06 oxygen 0.129778 0. 186974E-06 0. 388077E-07 0. 597171E-02 0. 597455E-02 . 15E+06 0. 381795E-04 0. 311150E-04 0. 284758 0. 283878 .92E+04 argon . 92E+04 carbon di oxi de 0.999949 0.999968 0.250644 0.249120 water 25F+00 Molar Basis 1.00000 0.999975 0.248116E-04 Feed Fraction 18.0211 30.6511 18.0208 Molar Mass Comp. Factor, Z D, mol/liter H, kJ/mol 0. 680907E-03 0. 656162E-03 0. 997966 52. 2366 54. 2065 0. 356408E-01 - 171. 361 214. 254 - 282. 858 - 282. 856 79.3396 73.5849 1.19785 79.3429 S, J/mol.K Op, J/mol.K Op/Ov 33. 5673 73.5839 1.33363 2928.60 349.043 Sound Speed, m/s 2928.60 - 0. 205963E- 01 0. 588638 4375 04 176.560 JT, K/bar Visc., uP Th. Cond., mW m K 656.778 26.5724 (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 343. 15, 1 2-Phase Flash results at T = 343.150 K and P = 1.00000bar - - Vapor - - ----- Component ----- --- Feed---- - Li qui d- ----Phi----- - K- -0. 833055E- 05 0. 177209E- 06 0. 292456 0. 408418E- 05 0. 852608E- 06 0. 115916 0.292840 .17E+07 nitrogen 0.115996 .14E+06 oxygen 0. 186974E-06 0. 38384E-07 0. 533152E-02 0. 533568E-02 . 14E+06 0. 381795E-04 0. 305679E-04 0. 273056 0. 272223 . 89E+04 0. 999949 0. 999968 0. 313241 0. 311289 . 31E+00 ardon carbon di oxi de water Molar Basis 0.999972 0. 278789E-04 Feed Fraction 1.00000 18.0208 29.7758 18.0211 Molar Mass 0. 676138E-03 0. 648342E-03 0. 997674 Comp. Factor, Z 0. 351317E-01 D, mol/liter -181. 721 H, kJ/mol 51.8386 54.0610 - 282. 487 - 282. 490 80.4252 80.4215 214.085 S, J/mol.K

73.6530 73.6541 33.8314 Cp, J/mol.K Cp/Cv Sound Speed, m/s 1.21342 1.33058 2910.91 356.232 - 0. 203943E- 01 0. 657058 JT, K/bar Visc., uP Th. Cond., mW m K 4067.22 173.651 662.720 27.1684 (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 348. 15, 1 2-Phase Flash results at T = 348.150 K and P = 1.00000bar
 ----Feed-- ---Li qui d- ---Vapor-- ---Phi --- ---K-

 0. 833055E-05
 0. 175706E-06
 0. 248355
 0. 248816
 . 14E+07

 0. 408418E-05
 0. 807485E-06
 0. 997923E-01
 0. 999089E-01
 . 12E+06

 0. 186974E-06
 0. 364031E-07
 0. 458567E-02
 0. 459148E-02
 . 13E+06

 0. 381795E-04
 0. 296847E-04
 0. 258740
 0. 2577688
 . 87E+04
 ----Component----- --- Feed--ni t r ogen oxygen ar gon carbon di oxi de water 0.999949 0.999969 0.388527 0.386000 39E+00 Molar Basis 0.328354E-04 Feed Fraction 28.7214 Molar Mass 1.00000 0.999967 18.0211 18.0208 0.673540E-03 0.640815E-03 0.997272 Comp. Factor, Z 0. 346411E- 01 - 194. 119 53.9105 D, mol/liter 51.2911 - 282. 119 - 282. 122 H, kJ/mol 81.4902 81.4859 213.573 S, J/mol.K Čp, J/mol.K Cp/Cv 73.7401 34. 1379 1. 32728 73.7388 2894.09 364.745 Sound Speed, m/s - 0. 201789E- 01 0. 757657 JT, K∕bar 3793.21 169.625 Visc., uP 668.338 27.8239 Th. Cond., mW m K (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 353.15,1 2-Phase Flash results at T = 353.150 K and P = 1.00000bar
 ----Feed-- ---Li qui d- ---Vapor-- ---Phi --- ---K-

 0. 833055E-05
 0. 161986E-06
 0. 196831
 0. 197385
 .12E+07

 0. 408418E-05
 0. 720114E-06
 0. 810616E-01
 0. 812226E-01
 .11E+06

 0. 186974E-06
 0. 325409E-07
 0. 372127E-02
 0. 372913E-02
 .11E+06

 0. 381795E-04
 0. 282225E-04
 0. 239954
 0. 239281
 .85E+04

 0. 475112
 478E+04
 0. 4761420
 0. 4751420
 .4764420
 --- Component ---- Feed--nitroaen oxygen ar gon carbon di oxi de 0.999971 0.478432 0.475112 water 0.999949 . 48E+00 Molar Basis 0.999958 1.00000 0.415005E-04 Feed Fraction 27.4376 18.0211 18.0207 Molar Mass 0. 674910E-03 0. 633572E-03 0. 996706 Comp. Factor, Z 0.341701E-01 D, mol/liter 50.4623 53.7548 - 208. 291 - 281. 751 - 281. 754 H, kJ/mol 82.5336 73.8432 212.554 82.5390 S, J/mol.K 34.4836 J/mol.K 73.8415 Cp, Cp/ Cv 1.24796 1.32396 Sound Speed, m/s 2878.14 375.167 - 0. 199497E- 01 0. 910718 3548. 48 164. 386 JT, K/bar Visc., uP 673.632 28.5632 Th. Cond., mW m K (VLE=PRS, PROPS=EXCST) For a list of available options, type ? Otherwise enter command or, if you wish to do a flash calculation, enter T(K) and P(bar) separated by a comma. 358.15.1 2-Phase Flash results at T = 358.150 K and P = 1.00000 bar ---Feed--- --Li qui d-- --Vapor---0. 833055E-05 0. 133193E-06 0. 139622 ---Phi --------Component ------ - K- -0.140262 . 10E+07 nitrogen oxygen 0. 408418E-05 0. 580861E-06 0. 596710E-01 0. 598798E-01 . 10E+06

argon carbon di oxi do	0.186974E-06	0.263063E-07	0.273661E-02	0.274667E-02.10E+06
water	0. 999949	0. 999974	0. 585062	0.580665 $.59E+00$
Molar Basis				
	1.00000	0.999941	0.587112E-04	Feed Fraction
	18.0211	18.0207	25. 8425	Molar Mass
	0.685034E-03	3 0.626603E-03	0.995858	Comp. Factor, Z
	49.0224	53.5938	0.337217E-01	D, mol/liter
	- 281. 383	- 281. 387	- 223. 258	H, kJ/mol
	83. 5729	83.5654	210.774	S, J/mol.K
	73.9614	73.9637	34. 8491	Cp, J/mol.K
		1.26709	1.32111	Cp/ Cv
		2863.07	388.563	Sound Speed, m/s
		- 0. 197064E- 01	1.15016	JT, K/bar
		3329.19	157.890	Visc., uP
		678.600	29. 4386	Th. Cond., mW m K
(VLE=PRS, PROPS=EXCST	Γ)			,
For a list of availa	able options.	type ? Otherwi	se	
enter command or, if enter T(K) and P(bar	you wish to) separated b	do a flash cal by a comma.	cul at i on,	

stop

Appendix C. Matlab code for F_{CT} data regression

```
% Non-Linear Least-Squares Regression of Condenser Tube Counter Current Departure
Correction Factor
a = 0.0293;
b = 0.1655;
c = 2.9102;
d = 6.1629;
e = 4.2518;
T_P = Parameters(:, 2);
T_E = Parameters(:, 5);
T_X = Parameters(:, 6);
F_CT = Par amet er s(:, 10);
S_CT = (T_X - T_P) . / (T_E - T_P);
% Global Variables, Initial Guesses, & Options
global S_CT F_CT;
parameters =[a b c d e];
OPTI ONS( 1) =0;
% The Fun Function ( An m-File )
     % f unct i on f =f un(par amet er s);
     % global S_CT F_CT;
     \% a = parameters(1, 1);
     \% b = parameters(1, 2);
     \% c = parameters(1, 3);
     \% d = parameters(1, 4);
     \% e = parameters(1, 5);
     % Fc_CT = a + b .* S_CT + c .* S_CT .^ 2 - d .* S_CT .^ 3 + e .* S_CT .^ 4;
     \% f = sum ( ( Fc_CT - F_CT ) .^2);
% Regression & Results, Fc_CT = Calculated Condenser Tube Counter Current Departure Correction Factor
x=f minsear ch('f un(x)', par amet er s, OPTI ONS);
a=x(1, 1);
b=x(1,2);
c = x(1, 3);
d=x(1, 4);
e=x(1,5);
a = 0.021965104279624;
b = 0.275138363079761;
c = 2.449155721049220;
d = 5. 436838343831495;
e = 3.869806028493753;
```

Fc_CT = a + b .* S_CT + c .* S_CT .^ 2 - d .* S_CT .^ 3 + e .* S_CT .^ 4; r = corr2(F_CT, Fc_CT); r = 0.995860313403891;

 $\begin{array}{l} \text{pl ot} (S_CT(1:170), F_CT(1:170), 'm', S_CT(171:340), F_CT(171:340), 'm', S_CT(341:510), F_CT(341:510), F_CT(341:510), F_CT(511:680), F_CT(511:680), 'm', S_CT(681:850), F_CT(681:850), 'm', S_CT(851:102, 0), F_CT(851:1020), 'm', S_CT(1021:1190), F_CT(1021:1190), 'm', S_CT(1191:1360), F_CT(1191:136, 0), F_CT(1191:136, 0), F_CT(1191:136, 0), F_CT(1191:136, 0), F_CT(1191, F_CT(119, F_CT($

% Non-Linear Least-Squares Regression of Non-Equilibrium Allowance Ratio

```
a = 1.6836
b = 3.3898;
c = 2.7785;
d = 0. 1399;
e = 5. 9154;
f = 29.3208;
 T0 = 273.15;
Tr = 298.15;
 T_H = Par amet er s(:, 7);

T_E = Par amet er s(:, 5);

T_W = Par amet er s(:, 4);
  \begin{array}{l} R1 \ = \ ( \ T_H \ + \ T0 \ ) \ . \ / \ \ Tr \ ; \\ R2 \ = \ ( \ T_W \ + \ T0 \ ) \ . \ / \ \ ( \ T_E \ + \ T0 \ ) \ ; \\ \end{array} 
 % Global Variables, Initial Quesses, & Options
 global R1 R2;
 parameters =[a b c d e f];
OPTIONS(1)=0;
 % The Fun Function ( An m-File )
            % function f=fun(parameters);
% global R1 R2;
             \% a = parameters(1, 1)
            % b = par amet er s(1, 2);
% c = par amet er s(1, 3);
             \% d = parameters(1, 4)
            % e = parameters(1,5);
% f = parameters(1,6);
% R2c = a .* R1 .^ 2 - b .* R1 + c - d .* exp ( - e .* R1 .^ - f );
% f = sum ( ( R2c - R2 ) .^ 2 );
% Regression & Results, R2c = Calculated Non-Equilibrium Allowance Ratio
 x=f mi nsear ch(' f un(x)', par amet er s, OPTI ONS);
 a=x(1,1);
b=x(1,2);
 c=x(1,3)
 d=x(1, 4)
 e=x(1,5);
 f = x(1, 6)
          1. 346445189163027;
 a =
b = 2.976010121977662;
c = 2.674925159910569;
 d = 0.099408245751382
 e = 11.939078418864948
f = 28.250917259494326;
R2c = a .* R1 .^ 2 - b .* R1 + c - d .* exp ( - e .* R1 .^ - f );
r = corr2(R2, R2c);
 r = 0.948793730491143;
pl ot (R1(1:170), R2(1:170), 'm', R1(171:340), R2(171:340), 'm', R1(341:510), R2(341:510), 'm', R 1(511:680), R2(511:680), 'm', R1(681:850), R2(681:850), 'm', R1(851:1020), R2(851:1020), 'm', R 1(1021:1190), R2(1021:1190), 'm', R1(1111:360), R2(1191:1360), 'm', R1(11:170), R2(851:1020), 'm', R 1(171:340), R2(171:340), 'k-', R1(341:510), R2(341:510), 'k-', R1(511:680), R2c(511:680), 'k-', R1(681:850), R2c(681:850), 'k-', R1(511:1020), R2c(1511:1020), 'k-', R1(1021:1190), R2c(1021:1190), 'k-', R1(1191:1360), R2c(1511:1020), 'k-', R1(1021:1190), R2c(1021:1190), 'k-', R1(1191:1360), R2c(1191:1360), 'k-'), ... axis([1.05 1.20 0.92 1.02]), xi abel('(T_H + 273.15)) / (25 + 273.15)'), yl abel('(T_W + 273.15)) / (T_E + 273.15)'), gt ext('^. ^. ^. ^. = experiment'), gt ext(' = regression'), gt ext('r = +0.9487937')
```

Appendix E. Matlab code for γ_{H2O} data regression

```
% Non-Linear Least-Squares Regression of Water Activity Coefficient
b = 0.0020;
m = 1.0385;
PA = 12.762946317344;
PB = 4391.12942196166;
PC = 245.367016018802;
T_E = Parameters(:, 5);
P_V = Par amet er s(:, 1);
gamma_H2O = Parameters(:, 8);
P_H2O = exp(PA - PB./(T_E + PC));
PoP = P_V . / P_H2O;
% Global Variables, Initial Guesses, & Options
global PoP gamma H2O;
parameters =[b m];
OPTI ONS( 1) =0;
% The Fun Function ( An m-File )
            % function f=fun(parameters);
            % global PoP gamma_H2O;
            \% b = parameters(1, 1);
            \% m = parameters(1, 2);
            \% gammac_H2O = b + m . * PoP;
            % f = sum ( ( gammac_H2O - gamma_H2O ) .^ 2 );
% Regression & Results, gammac_H2O = Calculated Water Activity Coefficient
x=f minsearch('fun(x)', par amet ers, OPTI ONS);
b=x(1, 1);
m = x(1, 2);
b = 0.002040679931641;
m = 1.038442953491211;
gammac_H2O = b + m . * PoP;
r = corr 2(gamma_H2O, gammac_H2O);
r = 0.99999864855922;
pl ot (PoP(1:170), gamma_H2Q(1:170), 'm', PoP(171:340), gamma_H2Q(171:340), 'm', PoP(341:510), g
amma_H2Q(341:510), 'm', PoP(511:680), gamma_H2Q(511:680), 'm', PoP(681:850), gamma_H2Q(681:85
0), 'm', PoP(851:1020), gamma_H2Q(851:1020), 'm', PoP(1021:1190), gamma_H2Q(1021:1190), 'm', P
oP(1191:1360), gamma_H2Q(1191:1360), 'm', PoP(1:170), gammac_H2Q(1:170), 'k-
', PoP(171:340), gammac_H2Q(171:340), 'k-', PoP(341:510), gammac_H2Q(341:510), 'k-
', PoP(511:680), gammac_H2Q(511:680), 'k-', PoP(681:850), gammac_H2Q(681:850), 'k-
', PoP(851:1020), gammac_H2Q(851:1020), 'k-', PoP(1021:1190), gammac_H2Q(1021:1190), 'k-
', PoP(1191:1360), gammac_H2Q(851:1020), 'k-', PoP(1021:1190), gammac_H2Q(1021:1190), 'k-
', PoP(1191:1360), gammac_H2Q(851:020), 'k-', PoP(1021:1190), gammac_H2Q(1021:1190), 'k-
axis([1 5 1 5]), xl abel ('P_V / P_H_2_O), yl abel ('\gamma_H_2_O), gt ext ('^.^.^.^. = mi ned dat a'), gt ext ('__ = regression'), gt ext ('r = +0.9999999')
```

% Non-Linear Least-Squares Regression of Fraction of NOG Molecules Accumulating

```
a = 2.29;
PA = 12.762946317344;
PB = 4391.12942196166;
PC = 245.367016018802;
T_E = Parameters(:, 5);
P_V = Parameters(:, 1);
psi = Parameters(:, 9);
P_H2O = exp(PA - PB./(T_E + PC));
PoP = P_V . / P_H2O;
% Global Variables, Initial Guesses, & Options
global PoP psi;
parameters =[a];
OPTI ONS(1) =0;
% The Fun Function ( An m-File )
     % function f=fun(parameters);
     % global PoP psi;
     \% a = par amet er s(1, 1);
     % psic = 1 - a .* exp ( - PoP );
     % f = sum ( ( psic - psi ) . ^ 2 );
% Regression & Results, psic = Calculated Fraction of NCG Molecules Accumulating
x=f mi nsear ch(' f un(x)', par amet er s, OPTI ONS);
a=x(1, 1);
a = 2.276134765625000;
psic = 1 - a .* exp ( - PoP );
r = corr2(psi,psic);
r = 0.991470128181259;
pl ot (PoP(1:170), psi (1:170), 'm', PoP(171:340), psi (171:340), 'm', PoP(341:510), psi (341:510),
'm', PoP(511:680), psi (511:680), 'm', PoP(681:850), psi (681:850), 'm', PoP(851:1020), psi (851:
1020), ' m ' , PoP( 1021: 1190), psi ( 1021: 1190), ' m ' , PoP( 1191: 1360), psi ( 1191: 1360), ' m ' , PoP( 1: 17
0), psi c(1:170), 'k-', PoP(171:340), psi c(171:340), 'k-', PoP(341:510), psi c(341:510), 'k-'
', PoP(511:680), psic(511:680), 'k-', PoP(681:850), psic(681:850), 'k-
', PoP(851:1020), psic(851:1020), 'k-', PoP(1021:1190), psic(1021:1190), 'k-
', PoP(1191:1360), psi c(1191:1360), 'k-'), ...
axis([1 5 0 1.5]), xl abel ('P_V / P_H_2_O), yl abel ('\psi'), gt ext ('^. ^. ^. ^. = mi ned
dat a'), gt ext ('- = regression'), gt ext ('r = +0.9914701')
```

Appendix G. Matlab code for HC_{N2} data regression

```
% Non-Linear Least-Squares Regression of Temperature-Henry's Constant
% Data for Nitrogen Obtained from NIST's SUPERTRAPP Program at 1 bar
T0 = 273.15;
Tr = 298.15;
HRI N2 = 91973;
HFI N_2 = 1300;
T = [15 \ 20 \ 25 \ 30 \ 35 \ 40 \ 45 \ 50 \ 55 \ 60 \ 65 \ 70 \ 75 \ 80 \ 85]';
HC_N2 = [1.20E+07 \ 1.00E+07 \ 8.20E+06 \ 6.70E+06 \ 5.50E+06 \ 4.60E+06 \ 3.80E+06 \ 3.20E+06 \ \ldots
        2.70E+06 2.30E+06 1.90E+06 1.70E+06 1.40E+06 1.20E+06 1.00E+06]';
% Global Variables, Initial Guesses, & Options
global THCN2;
parameters = [HRI_N2 HFI_N2];
OPTI ONS(1) =0;
% The Fun Function ( An m-File )
     % function f = fun(parameters);
     % global T HC_N2;
     \% HR_N2 = parameters(1, 1);
     \% HF N2 = parameters(1, 2);
     % HCc_N2 = HR_N2 .* exp ( - HF_N2 .* ( ( 1 ./ ( T + 273.15 ) ) - ( 1 ./ 298.15 ) ) );
     \% f = sum ( ( HCc_N2 - HC_N2 ) .^2 );
% Regression & Results, HCc_N2 = Calculated Henry's Constant
x=f minsearch('fun(x)', par amet ers, OPTI ONS);
HR_N2=x(1, 1);
HF N2=x(1, 2);
HR_N2 = 8.0676e+006;
HF N2 = -3.5456e+003;
HCc1_N2 = HR_N2 .* exp( - HF_N2 .* ( ( 1 ./ ( T + T0 ) ) - ( 1 ./ Tr ) ) );
HCc2_N2 = HRI_N2. * exp ( - HFI_N2 . * ( ( 1 . / ( T + T0 ) ) - ( 1 . / Tr ) ) );
r = corr2(HC_N2, HCc1_N2);
r = 0.999717396687485;
plot (T, HC_N2, 'mo', T, HCc1_N2, 'k-', T, HCc2_N2, 'm'), xl abel ('Temperature
(°C)'), yl abel ('HC_N_2 (bar)'),...
axis([0 100 0 14e6]), gt ext ('o = NIST'), gt ext ('-= r egr ession'), gt ext ('^. ^. ^. ^. =
Sander'), gt ext ('r = +0. 9997174')
```

Appendix H. Matlab code for HC_{O2} data regression

```
% Non-Linear Least-Squares Regression of Temperature-Henry's Constant
% Data for Oxygen Obtained from NIST's SUPERTRAPP Program at 1 bar
T0 = 273.15;
Tr = 298.15;
HRI O2 = 43154;
HFI_02 = 1700;
T \;=\; [\;15\;\;20\;\;25\;\;30\;\;35\;\;40\;\;45\;\;50\;\;55\;\;60\;\;65\;\;70\;\;75\;\;80\;\;85]\;'\;;
HC \ O2 = [4.60E+05 \ 4.10E+05 \ 3.60E+05 \ 3.20E+05 \ 2.80E+05 \ 2.50E+05 \ 2.30E+05 \ 2.00E+05 \ ...
         1.80E+05 1.70E+05 1.50E+05 1.40E+05 1.20E+05 1.10E+05 1.00E+05];
% Global Variables, Initial Guesses, & Options
global T HC_O2;
parameters = [HRI_02 HFI_02];
OPTI ONS(1) =0;
% The Fun Function ( An m-File )
     % function f=fun(parameters);
     % global T HC_O2;
     \% HR O2 = parameters(1, 1);
     \% HF_O2 = parameters(1, 2);
     % HCc_O2 = HR_O2 .* exp ( - HF_O2 .* ( ( 1 ./ ( T + 273.15 ) ) - ( 1 ./ 298.15 ) ) );
     % f = sum ( ( HCc_O2 - HC_O2 ) . ^ 2 );
% Regression & Results, HCc_O2 = Calculated Henry's Constant
x=fminsearch(fun(x)), par amet er s, OPTI ONS);
HR O_{2=x(1,1)};
HF_02=x(1, 2);
HR O2 = 3.5881e+005;
HF_{O2} = -2.2088e+003;
HCc1_{O2} = HR_{O2} \cdot (-HF_{O2} \cdot ((1 \cdot (T + T0))) - ((1 \cdot (T + T0)));
HCc2_Q2 = HRI_Q2 .* exp( - HFI_Q2 .* ( ( 1 ./ ( T + T0 ) ) - ( 1 ./ Tr ) ) );
r = corr2(HC_02, HCc1_02);
r = 0.999564809550137;
pl ot (T, HC_02, 'mo', T, HCc1_02, 'k-', T, HCc2_02, 'm'), xl abel ('Temper at ur e
(°C)'), yl abel ('HC_O_2 (bar)'),...
axis([0 100 0 5e5]), gt ext (' o = NIST'), gt ext (' -= r egression'), gt ext (' ^. ^. ^. ^. =
Sander'), gt ext ('r = +0. 9995648')
```

Appendix I. Matlab code for HC_{Ar} data regression

```
% Non-Linear Least-Squares Regression of Temperature-Henry's Constant
% Data for Argon Obtained from NIST's SUPERTRAPP Program at 1 bar
T0 = 273.15;
Tr = 298.15;
HRI Ar = 40074;
HFI_Ar = 1300;
T = [15 \ 20 \ 25 \ 30 \ 35 \ 40 \ 45 \ 50 \ 55 \ 60 \ 65 \ 70 \ 75 \ 80 \ 85]';
HC Ar = [5.00E+05 4.40E+05 3.80E+05 3.40E+05 3.00E+05 2.70E+05 2.40E+05 2.10E+05 ...
        1.90E+05 1.70E+05 1.50E+05 1.40E+05 1.30E+05 1.10E+05 1.00E+05];
% Global Variables, Initial Guesses, & Options
global T HC_Ar;
parameters = [HRI_Ar HFI_Ar];
OPTI ONS(1) =0;
% The Fun Function ( An m-File )
     % function f = fun(parameters);
     % global T HC_Ar;
     \% HR Ar = parameters(1, 1);
     \% HF_Ar = parameters(1, 2);
     % HCc_Ar = HR_Ar .* exp ( - HF_Ar .* ( ( 1 ./ ( T + 273.15 ) ) - ( 1 ./ 298.15 ) ) );
     \% f = sum ( ( HCc_Ar - HC_Ar ) .^2 );
% Regression & Results, HCc_Ar = Calculated Henry's Constant
x=fminsearch(fun(x)), par amet er s, OPTI ONS);
HR_Ar = x(1, 1);
HF_Ar = x(1, 2);
HR Ar = 3.8407e+005;
HF Ar = -2.3080e+003;
HCc1\_Ar = HR\_Ar . * exp ( - HF\_Ar . * ( ( 1 . / ( T + T0 ) ) - ( 1 . / Tr ) ) );
HCc2_Ar = HRI_Ar .* exp( - HFI_Ar .* ( ( 1 ./ ( T + T0 ) ) - ( 1 ./ Tr ) ) );
r = corr2(HC_Ar, HCc1_Ar);
r = 0.999658097432208;
pl ot (T, HC_Ar, 'mo', T, HCc1_Ar, 'k-', T, HCc2_Ar, 'm'), xl abel ('Temper at ur e
(°C)'), yl abel ('HC_A_r (bar)'),...
axis([0 100 0 6e5]), gt ext (' o = NIST'), gt ext (' -= r egression'), gt ext (' ^. ^. ^. ^. =
Sander'), gt ext ('r = +0. 9996581')
```

Appendix J. Matlab code for HC_{CO2} data regression

```
% Non-Linear Least-Squares Regression of Temperature-Henry's Constant
% Data for Carbon Dioxide Obtained from NIST's SUPERTRAPP Program at 1 bar
T0 = 273.15;
Tr = 298.15;
HRI CO2 = 1652;
HFI _CO2 = 2400;
T \;=\; [\;15\;\;20\;\;25\;\;30\;\;35\;\;40\;\;45\;\;50\;\;55\;\;60\;\;65\;\;70\;\;75\;\;80\;\;85]\;'\;;
HC_CCQ = [1.10E+04 \ 1.10E+04 \ 1.10E+04 \ 1.10E+04 \ 1.10E+04 \ 1.00E+04 \ 1.00E+04 \ 9.80E+03 \ ...
          9.60E+03 9.40E+03 9.20E+03 8.90E+03 8.70E+03 8.50E+03 8.30E+03]';
% Global Variables, Initial Guesses, & Options
global T HC_CO2;
parameters = [HRI_CO2 HFI_CO2];
OPTI ONS(1) =0;
% The Fun Function ( An m-File )
     % function f=fun(parameters);
     % global T HC_CO2;
     \% HR CO2 = parameters(1, 1);
     % HF_CO2 = parameters(1,2);
     % HCc_CO2 = HR_CO2 .* exp ( - HF_CO2 .* ( ( 1 ./ ( T + 273.15 ) ) - ( 1 ./ 298.15 ) ) );
     % f = sum ( ( HCc_CO2 - HC_CO2 ) .^ 2 );
% Regression & Results, HCc_CO2 = Calculated Henry's Constant
x=f minsear ch('f un(x)', par amet er s, OPTI ONS);
HR_CO2 = x(1, 1);
HF_CO2 = x(1, 2);
HR CO2 = 1.0915e+004;
HF_CO2 = -445.1906;
HCc1_CO2 = HR_CO2 .* exp( - HF_CO2 .* ( ( 1 ./ ( T + T0 ) ) - ( 1 ./ Tr ) ) );
HCc2_OQ2 = HRI_OQ2 .* exp( - HFI_OQ2 .* (( 1 ./ (T + T0 )) - ( 1 ./ Tr )));
r = corr2(HC_OO2, HCc1_OO2);
r = 0.966663199694565;
pl ot (T, HC_CO2, 'mo', T, HCc1_CO2, 'k-', T, HCc2_CO2, 'm'), xl abel ('Temper at ur e
(°C)'), yl abel ('HC_C_O_2 (bar)'),...
axis([0 100 0 1.2e4]), gt ext ('o = NIST'), gt ext ('-= regression'), gt ext ('^.^.^. =
Sander'), gt ext ('r = +0. 9666632')
```

Appendix K. Matlab code for P_{H2O}^{sat} data regression

```
% Non-Linear Least-Squares Regression of Temperature-Saturated Pressure
% Data for Water Obtained from NIST's SUPERTRAPP Program at 1 bar
PAI = 12;
PBI = 3993;
POI = 234;
T = [15 \ 20 \ 25 \ 30 \ 35 \ 40 \ 45 \ 50 \ 55 \ 60 \ 65 \ 70 \ 75 \ 80 \ 85]';
P_H2O = [1.60E-02 2.20E-02 3.10E-02 4.10E-02 5.50E-02 7.20E-02 9.50E-02 1.20E-01 ...
            1.60E-01 2.00E-01 2.50E-01 3.10E-01 3.90E-01 4.80E-01 5.90E-01];
% Global Variables, Initial Guesses, & Options
global T P_H2O;
parameters = [PAI PBI PCI];
OPTI ONS(1) =0;
% The Fun Function ( An m-File )
     % function f = fun(parameters);
     % global T P_H2O;
     \% PA = par ameters(1, 1);
     \% PB = parameters(1, 2);
     \% PC = parameters(1,3);
     % PPC = exp (PA - (PB . / (T + PC)));
     \% f = sum ( ( PPC - P_H2O ) .^2 );
% Regression & Results, Psat PC = Calculated Saturated Pressure
x=fm nsearch(fun(x)), par amet er s, OPTI ONS);
PA=x(1,1);
PB=x(1,2);
PC=x(1,3);
PA = 12.7629;
PB = 4.3911e+003;
PC = 245.3670;
Pc1_H2O = exp(PA - (PB . / (T + PC)));
Pc2_H2O = exp(PAI - (PBI ./ (T + PCI)));
r = corr2(P_H2O, Pc1_H2O);
r = 0.999963505331023;
pl ot ( T, P_H2O, ' mo' , T, Pc1_H2O, ' k-' , T, Pc2_H2O, ' m ' ) , xl abel (' Temper at ur e
(°C)'), yl abel ('P^s^a^t _H_2_O (bar)'),...
axis([0 100 0 0.7]),gtext('o
                                    = NIST'), gt ext ('- = regression'), gt ext ('^.^.^. =
Geankoplis'), gt ext ('r = +0. 9999635')
```

Appendix L. Sample TK Solver code for data mining

Solver	REPORT
Rules Sheet	
Rules	
Material Balance	
SG H = $\frac{1000 \cdot \rho_{-}H}{1000 \cdot \rho_{-}H}$	
ρC_H	
$FI = CV \cdot \left[\frac{P - P_V}{SG_H}\right]^{0.5}$	
V_V = Vi_V - 1000 · FI · t	
M_P = 1000 · ρ · FI	
M_X= M_P	
M_H=M_X	
$EM = \rho \cdot QE$	
N_H=N_E+N_W	
N_E = N_C + Na_C	
Na_C = (1 - y_H2O) · N_E	
M_H = M_E + M_W	
M_E = M_C + Ma_C	
$\Phi_{H} \cdot M_{H} = \Phi_{W} \cdot M_{W}$	
M_H=N_H·MW_H	
$Md_{E} = \sigma \cdot XA_{E} \cdot \left[\frac{(1 - 0.54 \cdot \Phi_{W}) \cdot \left[e^{\left[PA - \frac{PB}{T_{W} + PC} \right]} \right]}{\sqrt{T_{W} + 273.15}} - \frac{e^{\left[PA - \frac{PB}{T_{C} + PC} \right]} + \Omega}{\sqrt{T_{C} + 273.15}} \right]$	
ΣMd_E = INTEGRAL(" Md_E , t " , ELT('t , ELT() - 1 , ti) , t) + ELT('ΣMd_E , ELT() - 1 , 0)	
$M_W = N_W \cdot MW_W - Md_E$	
M_E = N_E · MW_E + Md_E	
Ma_C = Na_C · MWa_C	
Parameters	
$hi_CT = 0.0003052505007075309 \cdot \left[\frac{1.35 + 0.02 \cdot T_X}{D_CT}\right] \cdot \left[\frac{M_X}{-p_X \cdot D_CT}\right]^{0.8}$	
$ho_CT = 0.725 \cdot \left[\frac{g \cdot HL_E \cdot \rho_X^2 \cdot \kappa_X^3}{N_CT \cdot \mu_X \cdot (D_CT + \delta_CT) \cdot (T_E - T_X)} \right]^{0.25}$	

$$\begin{split} \hline \text{Rules} \\ \hline 1 &= \frac{1}{\text{ho}_{C}\text{CT}} + \frac{1}{\text{ho}_{L}\text{CT}} + \frac{D_{C}\text{CT} + \delta_{C}\text{T}}{D_{C}\text{CT} \cdot \text{h}_{L}\text{CT}} + \frac{D_{C}\text{CT} + \delta_{C}\text{T}}{D_{C}\text{CT} \cdot \text{h}_{L}\text{CT}} \cdot \ln\left[\frac{D_{C}\text{CT} + \delta_{C}\text{T}}{D_{C}\text{CT}}\right] \\ \Delta \text{Tm}_{c}\text{CT} &= \frac{T_{c}\text{X} \cdot \text{T}_{p}}{\mu_{b}\left[\frac{T_{E} + T_{p}}{T_{E} + T_{A}}\right]} \\ A_{c}\text{CT} = \pi \cdot D_{c}\text{CT} \cdot L_{c}\text{CT} \\ M_{x} \cdot H_{x}\text{-M}_{p} \cdot H_{p} = 60 \cdot U_{c}\text{CT} \cdot A_{c}\text{CT} \cdot F_{c}\text{CT} \cdot \Delta \text{Tm}_{c}\text{CT} \\ M_{x} \cdot H_{x}\text{-M}_{p} \cdot H_{p} = 60 \cdot U_{c}\text{CT} \cdot A_{c}\text{CT} \cdot F_{c}\text{CT} \cdot \Delta \text{Tm}_{c}\text{CT} \\ \hline \text{h}_{c}\text{C} = 1.13 \cdot \left[\frac{9 \cdot \text{H}_{c}\text{E} \cdot p_{c}^{2} \cdot k_{c}^{3}}{\mu_{c}\text{C} \cdot L_{c} \cdot (\text{T}(\text{E} - \text{T})}\right]^{025} \\ \hline \frac{1}{U_{c}} = \frac{1}{h_{c}\text{C}} + \frac{1}{h_{c}\text{O}} + \frac{D_{c}\text{C} + \delta_{c}}{D_{c}\text{C} \cdot \text{h}_{c}\text{C}} + \frac{D_{c}\text{C} + \delta_{c}}{2 \cdot \text{kw}_{c}\text{C}} \cdot \text{LN}\left[\frac{D_{c}\text{C} + \delta_{c}}{D_{c}\text{C}}\right] \\ \Delta \text{Tm}_{c} = \frac{T_{c} \cdot \text{T}}{U_{c}} \\ \hline \frac{1}{U_{c}} = \frac{1}{h_{c}\text{C}} + \frac{1}{h_{c}\text{O}} + \frac{D_{c}\text{C} + \delta_{c}}{D_{c}\text{C} \cdot \text{h}_{c}\text{C}} + \frac{D_{c}\text{C} + \delta_{c}}{2 \cdot \text{kw}_{c}\text{C}} \cdot \text{LN}\left[\frac{D_{c}\text{C} + \delta_{c}\text{C}}{D_{c}\text{C}}\right] \\ \Delta \text{Tm}_{c} = \frac{T_{c} \cdot \text{T}}{U_{c}} \\ \hline \frac{1}{U_{c}} = \frac{1}{h_{c}\text{C}} + \frac{1}{h_{c}\text{O}} + \frac{D_{c}\text{E} + \delta_{c}\text{E}}{D_{c}\text{E} \cdot \text{h}_{c}\text{E}} + \frac{D_{c}\text{E} + \delta_{c}\text{E}}{2 \cdot \text{kw}_{c}\text{E}} \cdot \text{LN}\left[\frac{D_{c}\text{E} + \delta_{c}\text{E}}{D_{c}\text{E}}\right] \\ A_{c} = \pi \cdot D_{c} \cdot L_{c} \\ \hline - D_{c} = 60 \cdot U_{c} \cdot A_{c} \cdot F_{c} \cdot \Delta \text{Tm}_{c} \\ \hline \frac{1}{U_{c}} = \frac{1}{h_{c}} + \frac{1}{h_{c}} \frac{1}{e} + \frac{D_{c}\text{E} + \delta_{c}\text{E}}{D_{c}\text{E} \cdot \text{h}_{c}\text{E}} + \frac{D_{c}\text{E} + \delta_{c}\text{E}}{2 \cdot \text{kw}_{c}\text{E}} \cdot \text{LN}\left[\frac{D_{c}\text{E} + \delta_{c}\text{E}}{D_{c}\text{E}}\right] \\ \Delta \text{Tm}_{c} = \frac{T_{c}W^{-T}}{U_{c}\left[\frac{T_{c}\text{E} \cdot T}{T_{c}}\right]^{025} \\ \hline \frac{1}{L_{c}} = \frac{1}{h_{c}} + \frac{1}{h_{c}} \frac{1}{e} + \frac{D_{c}\text{E} + \delta_{c}\text{E}}{D_{c}\text{E} \cdot \text{h}_{c}\text{E}} + \frac{D_{c}\text{E} + \delta_{c}\text{E}}{2 \cdot \text{kw}_{c}\text{E}} \cdot \text{LN}\left[\frac{D_{c}\text{E} + \delta_{c}\text{E}}{D_{c}\text{E}}\right] \\ \Delta \text{Tm}_{c} = \frac{T_{c}W^{-T}}{U_{c}\left[\frac{T_{c}\text{E} \cdot T}{T_{c}} \text{T}}\right] \\ A_{c} = \pi \cdot D_{c} \cdot L_{c} \cdot \text{E} \cdot \text{L} \quad \text{Tm}_{c}\text{E} = \frac{1}{D_{c}\text{E} \cdot \text{L}} + \frac{1}{D_{c}\text{E} \cdot \text{L}}$$

```
Rules
Ed_E = Md_E \cdot (H_W - H_E - HL_E)
k_X= 0.00571116 + 0.00001713348 ⋅ T_X-0.00000005853939 ⋅ T_X<sup>2</sup> - 0.0016562364 ⋅ Φ_X
k_W = 0.00571116 + 0.00001713348 \cdot T_W - 0.00000005853939 \cdot T_W^2 - 0.0016562364 \cdot \Phi_W
k_C = 0.00571116 + 0.00001713348 ⋅ T_C - 0.00000005853939 ⋅ T_C<sup>2</sup> - 0.0016562364 ⋅ Φ_C
\Delta P = \frac{6.7906109052542E-07 \cdot \mu E \cdot PL E \cdot M E}{6.7906109052542E-07 \cdot \mu E \cdot PL E \cdot M E}
                        p_E · PD_E
        L-13.4579133153846 + 4.1055E-2 · (1.8 · T_E + 32) - 7.1159E-5 · (1.8 · T_E + 32) + 5.7039E-8 · (1.8 · T_E + 32) 3
p_E = e
\mu_{\text{E}} = 7.23123710739283E-5 + 2.37506847313357E-07 \cdot (1.8 \cdot T_{\text{E}} + 32) - 5.67031837890055E-11 \cdot (1.8 \cdot T_{\text{E}} + 32)^{2}
µA_X= 1.0675E-4 + 5.185E-5 · T_X
µB_X = 2.591E-3 + 3.3E-5 · T_X
μC_X = 553.541280340981 · ρ_X · Φ_X
                       1.1709 · (20 - T_X) - 1.827E-3 · (T_X - 20)<sup>2</sup>
T_X + 89.93
µD_X=0.01002 · 10<sup>L</sup>
\mu\_X = \left[1 + \mu A\_X \cdot \mu C\_X^{0.5} + \mu B\_X \cdot \mu C\_X\right] \cdot \mu D\_X
\rho A_X = 0.824493 + T_X \cdot (-0.0040899 + T_X \cdot (0.000076438 + T_X \cdot (-0.00000082467 + T_X \cdot 0.000000053875)))
\rho B_X = -0.00572466 + T_X \cdot (0.00010227 - 0.0000016546 \cdot T_X)
\rho_{-}X = \frac{\rho C_{-}X}{1000} + \Phi_{-}X + \rho B_{-}X + (1000 + \Phi_{-}X)^{0.5} + 0.48314 + \Phi_{-}X
µA_W = 1.0675E-4 + 5.185E-5 · T_W
µB_W = 2.591E-3 + 3.3E-5 · T_W
\mu C_W = 553.541280340981 \cdot \rho_W \cdot \Phi_W
                       1.1709 • (20 - T_W) - 1.827E-3 • (T_W - 20)<sup>2</sup>
T_W + 89.93
\mu D_W = 0.01002 \cdot 10^{L}
\mu_{-}W = \left| 1 + \mu A_{-}W \cdot \mu C_{-}W \right|^{0.5} + \mu B_{-}W \cdot \mu C_{-}W \left| \cdot \mu D_{-}W \right|
\rho B_W = -0.00572466 + T_W \cdot (0.00010227 - 0.0000016546 \cdot T_W)
\rho_{-}W = \frac{\rho_{-}W}{1000} + \Phi_{-}W \cdot \left[\rho_{-}A_{-}W + \rho_{-}B_{-}W \cdot (1000 \cdot \Phi_{-}W)\right]^{0.5} + 0.48314 \cdot \Phi_{-}W
```

```
Rules
 µA_C = 1.0675E-4 + 5.185E-5 · T_C
 µB_C = 2.591E-3 + 3.3E-5 · T_C
 \mu C_C = 553.541280340981 \cdot \rho_C \cdot \Phi_C
                                                         1.1709 · (20 - T_C) - 1.827E-3 · (T_C - 20)<sup>2</sup>
T_C + 89.93
 \mu D_C = 0.01002 \cdot 10^{L}
\mu\_C = \left[1 + \mu A\_C \cdot \mu C\_C\right] \cdot \mu B\_C \cdot \mu C\_C \right] \cdot \mu D\_C
 \rho A\_C = 0.824493 + T\_C \cdot (-0.0040899 + T\_C \cdot (0.000076438 + T\_C \cdot (-0.00000082467 + T\_C \cdot 0.000000053875)))
 \rho B_C = -0.00572466 + T_C \cdot (0.00010227 - 0.0000016546 \cdot T_C)
 \rho C\_C = 999.842594 + T\_C \cdot (0.06793952 + T\_C \cdot (-0.009095290 + T\_C \cdot (0.0001001685 + T\_C \cdot (-0.000001120083)))
\rho_{-}C = \frac{\rho_{-}C_{-}}{1000} + \Phi_{-}C \cdot \left[\rho_{-}A_{-}C + \rho_{-}B_{-}C \cdot (1000 \cdot \Phi_{-}C)^{0.5} + 0.48314 \cdot \Phi_{-}C\right]
 \rho A_{-}H = 0.824493 + T_{-}H + (-0.0040899 + T_{-}H + (0.000076438 + T_{-}H + (-0.00000082467 + T_{-}H + 0.0000000053875)))
 \rho B_H = -0.00572466 + T_H \cdot (0.00010227 - 0.0000016546 \cdot T_H)
 \rho C\_H = 999.842594 + T\_H \cdot (0.06793952 + T\_H \cdot (-0.009095290 + T\_H \cdot (0.0001001685 + T\_H \cdot (-0.000001120083)))
\rho_{-}H = \frac{\rho_{-}C_{-}H}{1000} + \Phi_{-}H \cdot \left[\rho_{-}A_{-}H + \rho_{-}B_{-}H \cdot (1000 \cdot \Phi_{-}H)^{0.5} + 0.48314 \cdot \Phi_{-}H\right]
 \Sigma M_C = INTEGRAL(" M_C, t ", ELT('t, ELT() - 1, ti), t) + ELT('\Sigma M_C, ELT() - 1, 0)
 ΣNa_C = INTEGRAL(" Na_C , t " , ELT('t , ELT() - 1 , ti) , t) + ELT('ΣNa_C , ELT() - 1 , ΣNai_C)
Pi_V = \frac{\Sigma Nai_C \cdot R \cdot (T + 273.15)}{Vi_V}
P_V = \frac{\Psi \cdot \Sigma Na_C \cdot R \cdot (T_E + 273.15)}{V_V V} + (P_H2O - Pi_H2O)
Pi_H2O = e^{\left[\frac{PA - \frac{PB}{T + PC}\right]}{}
                            PA - PB
T_E+PC
 P H2O = e
 ; Flash
H_P = 4.204501 · T_P - 6.78226 · Φ_P · T_P + 14.7532 · Φ_P<sup>2</sup> · T_P - 0.00068002552 - 0.03095114 · Φ_P + 0.1624434
H_X=4.204501 · T_X-6.78226 · \phi_X · T_X + 14.7532 · \phi_X^2 · T_X-0.00068002552 - 0.03095114 · \phi_X + 0.1624438 ·
H_{W} = 4.204501 \cdot T_{W} - 6.78226 \cdot \Phi_{W} \cdot T_{W} + 14.7532 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 - 0.03095114 \cdot \Phi_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} - 0.00068002552 \cdot \Phi_{W}^{2} \cdot T_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} + 0.16232 \cdot \Phi_{W}^{2} \cdot T_{W} + 0.00068002552 \cdot \Phi_{W}^{2} \cdot T_{W}^{2} \cdot T
H_C = 4.204501 · T_C - 6.78226 · \Phi_C · T_C + 14.7532 · \Phi_C^2 · T_C - 0.00068002552 - 0.03095114 · \Phi_C + 0.1624434
H_E = 4.204501 · T_E - 6.78226 · Φ_E · T_E + 14.7532 · Φ_E<sup>2</sup> · T_E - 0.00068002552 - 0.03095114 · Φ_E + 0.1624438
```


Rules								
			0	Þ_N2				
7 N2=-			M	W_N2				
	Φ_N2 +	Φ_02	+	Φ_CO2 +	<u>Ф</u> Н +	Ф_H2O		
	MVV_N2	MW_02	MVV_Ar	MVV_CO2	MVV_Salt	MVV_H2O		
			-	Þ_02				
z_02 = -	Φ N2	Φ 02	Φ Ar	Φ CO2	ΦH	Φ H2O		
	MW_N2	MW_02	MW_Ar	MW_CO2 +	MW_Salt	MW_H2O		
			d	Ar				
7 Ar=-			M	W_Ar				
2_^	Φ_N2 +	Φ_02 +	+	Φ_CO2 +	<u>Ф_Н</u> +	ΦH2O		
	MW_N2	MW_02	MW_Ar	MW_CO2	MW_Salt	MW_H2O		
			_	Ф_CO2				
z_CO2 =	- N2	¢ 02	the Ar	1W_CO2	<u>т</u> Ц	♠ Ц20	-	
	MW N2	+ 02	+ MW Ar	+	+ MW Salt	+		
			100000-010	ф Н				
• •			N	IW Salt				
z_Salt =	Φ_N2	Φ_02	Ar	Φ_CO2	_ Ф_Н	ΦH2O	-3	
	MW_N2	MW_02	MW_Ar	MW_CO2	MW_Salt	MW_H2O		
x N2=-	z_N	2 · N_H						
-	N_W + N_E	• a_N2 • K_I	N2					
x_02 = -	z_C N_W + N_E	02 · N_H · α_02 · K_	02					
x_Ar =	z_Ar		r					
	7	C02 · N H						
x_CO2 =	N_W + N_	E · a_CO2 ·	K_C02					
x_Salt =	z_Salt · N	<u>_H</u>						
	7	H20 · N H						
x_H2O =	N_W+N	E · α_ H2O ·	K_H20					
y_N2 = x		2 · K_N2	ini T hui dhi e					
y_02=>	<_02 · α_0	2 · K_02						
$y_Ar = x$	Ar · a_Ar ·	K_Ar						
y CO2=	x CO2 · a	CO2 · K C	02					
y H2O =	- x H2O · α	H20 · K H	20					
Φ N2 +	Φ 02+Φ/	Ar + Φ CO2	+ Φ H + Φ I	H2O = 1				
z N2 + 2	z 02+z A	r+z CO2+	z Salt + z	H2O = 1				
x N2+>	02+x A	r+x CO2+	x Salt + x	H2O = 1				
v N2+1	02 + v A	r+v CO2+	v H2O = 1					
Perform	nance	,	/_/					
11 01011								

Rules
$A_SC = \frac{Q_H}{60 \cdot F_SC \cdot (T_SC \cdot \alpha_SC \cdot I - U_SC \cdot (T_X - T))}$
$\eta_T = \frac{100 \cdot M_E \cdot (H_E + HL_E)}{M_H \cdot H_H}$
$\eta_R = \frac{100 \cdot (H_X - H_P)}{H_H - H_P}$
$n_C = \frac{100 \cdot (T_X - T_P)}{T_E - T_C}$
ΣQ_H = INTEGRAL(" Q_H , t " , ELT('t , ELT() - 1 , ti) , t) + ELT('ΣQ_H , ELT() - 1 , 0)
$\Sigma W_P = INTEGRAL(" W_P, t", ELT('t, ELT() - 1, ti), t) + ELT('\Sigma W_P, ELT() - 1, 0)$
$PEC = \frac{\Sigma Q_H + \Sigma W_P}{\Sigma M_C}$
Q_H-W_H+Ein_H-Eout_H=0
$Ein_H = M_X \cdot H_X$
Eout_H = M_H · H_H
W_P = 0
; Error
$\epsilon P_V = \epsilon P$
εT_X=εT
εΤ_Ε = εΤ
$\varepsilon T_W = \varepsilon T$
$\epsilon \rho_{-} P = \epsilon \rho_{-}$
$\epsilon \rho_{-}H = \epsilon \rho_{-}$
$\epsilon \rho C = \epsilon \rho$
$\epsilon \rho = \epsilon \rho$
$\epsilon \Delta T = \sqrt{2} \cdot \epsilon T$
$\epsilon \Delta H = \sqrt{2} \cdot \epsilon H$
$\epsilon M_P = \left[M_P^{-2} \cdot \left[\left[\frac{\epsilon \rho_P}{\rho} \right]^2 + \left[\frac{\epsilon Fi}{Fi} \right]^2 \right] \right]^{0.5}$
$\epsilon M_{H} = \left[M_{H}^{2} \cdot \left[\left[\frac{\epsilon \rho_{H}}{\rho_{H}} \right]^{2} + \left[\frac{\epsilon FI}{FI} \right]^{2} \right] \right]^{0.5}$
$\epsilon M_E = \epsilon M_C$

Input	Name	Output	Unit	Comment
0	ti		min	Initial Time
1	t		min	Run Time
83.14472	R		(bar - cm ^ 3)/(mol - °C)	Universal Gas Constant
980.0665	g		cm / s ^ 2	Gravity Acceleration
310922.658770	VLV		cm ^ 3	Initial Total Vacuum Volume
	v_v	310418.662453	cm ^ 3	Total Vacuum Volume
	ΣNai C	1 785895	moles	Initial NCG Molar Amount
	ΣNa_C	1.786259	mol	NCG Amount
	Na_C	0.000364	mol / min	NCG Molar Accumulation Rate
	_ Ma_C	0.010799	g / min	NCG Molar Accumulation Rate
	ΣM	27.653921	g	Actual Product Amount
	ΣM_C	5.071088	g	Calculated Product Amount
	FI	0.503996	L/min	Average Flow Indicator Value
27	QE		cm ^ 3	Average Quantitative Element Value
0.546461	CV			Ball Valve Flow Coefficient
20	т		°C	Ambient Temperature
1.01325	P		bar	Ambient Pressure
1.024219	ρ		g / cm ^ 3	Stream Density
	k_X	0.005988	W/(cm-°C)	Stream Thermal Conductivity
	k_W	0.005990	W/(cm-°C)	Stream Thermal Conductivity
	k_C	0.006043	W/(cm-°C)	Stream Thermal Conductivity
.035	Ф_Р			Stream Salt Mass Fraction
.035	Φ_Χ			Stream Salt Mass Fraction
.035	Ф_Н			Stream Salt Mass Fraction
	Φ_W	0.035348		Stream Salt Mass Fraction
0	Φ_C			Stream Salt Mass Fraction
0	Φ_Ε			Stream Salt Mass Fraction
20	T_P		°C	Stream Temperature
21.022222	T_X		°C	Stream Temperature
43.078889	т_н		°C	Stream Temperature
24 241111	TE		°C	Stream Temperature

Input	Name	Output	Unit	Comment
21.240556	T_W		°C	Stream Temperature
20.850556	T_C		°C	Stream Temperature
	PI_H2O	0.022722	bar	Initial Vapor Pressure
	P_H2O	0.029477	bar	Vapor Pressure
.14	Pi_V		bar	Initial Vacuum Pressure
0.140585	P_V		bar	Vacuum Pressure
35	D_E		cm	Evaporator Nominal Diameter
160	L_E		cm	Evaporator Length
35	D_C		cm	Condenser Nominal Diameter
160	L_C		cm	Condenser Length
26.092	A_N2			Nitrogen Molar Enthalpy Parameter
8.218801	B_N2			Nitrogen Molar Enthalpy Parameter
-1.976141	C_N2			Nitrogen Molar Enthalpy Parameter
.159274	D_N2			Nitrogen Molar Enthalpy Parameter
.044434	E_N2			Nitrogen Molar Enthalpy Parameter
-7.98923	F_N2			Nitrogen Molar Enthalpy Parameter
29.659	A_02			Oxygen Molar Enthalpy Parameter
6.137261	B_02			Oxygen Molar Enthalpy Parameter
-1.186521	C_02			Oxygen Molar Enthalpy Parameter
.09578	D_02			Oxygen Molar Enthalpy Parameter
219663	E_02			Oxygen Molar Enthalpy Parameter
-9.861391	F_02			Oxygen Molar Enthalpy Parameter
20.786	A_Ar			Argon Molar Enthalpy Parameter
0.000000	B_Ar			Argon Molar Enthalpy Parameter
0.000000	C_Ar			Argon Molar Enthalpy Parameter
0.000000	D_Ar			Argon Molar Enthalpy Parameter
0.000000	E_Ar			Argon Molar Enthalpy Parameter
-6.19735	F_Ar			Argon Molar Enthalpy Parameter
24.99735	A_CO2			Carbon Dioxide Molar Enthalpy Parameter
55.18696	B_CO2			Carbon Dioxide Molar Enthalpy Parameter
-33.69137	C_CO2			Carbon Dioxide Molar Enthalpy Parameter
7.948387	D_CO2			Carbon Dioxide Molar Enthalpy Parameter
136638	E_CO2			Carbon Dioxide Molar Enthalpy Parameter
-10.0851	F_C02			Carbon Dioxide Molar Enthalpy Parameter

Input	Name	Output	Unit	Comment
6.832514	B_H2O			Water Molar Enthalpy Parameter
6.793435	C_H2O			Water Molar Enthalpy Parameter
-2.53448	D_H2O			Water Molar Enthalpy Parameter
.082139	E_H2O			Water Molar Enthalpy Parameter
-9.054600	F_H2O			Water Molar Enthalpy Parameter
	H_N2	-32.686204	J / mol	Nitrogen Molar Enthalpy
	H_02	-41.255674	J / mol	Oxygen Molar Enthalpy
	H_Ar	-15.778230	J / mol	Argon Molar Enthalpy
	H_CO2	-31.084062	J / mol	Carbon Dioxide Molar Enthalpy
	H_H2O	-24.962916	J / mol	Water Molar Enthalpy
	H_P	79.740379	J/g	Stream Enthalpy
	н_х	83.823279	J/g	Stream Enthalpy
	н_н	172.043899	J/g	Stream Enthalpy
	н_w	84.655639	J/g	Stream Enthalpy
	H_E	101.548881	J/g	Stream Enthalpy
	HL_E	2446.400305	J/g	Stream Enthalpy of Vaporization
	H_C	87.369790	J/g	Stream Enthalpy
	Ha_C	-1.192302	J/g	NCG Enthalpy
	MVV_H	18.287997	g / mol	Stream Molecular Weight
	MW_W	18.298045	g / mol	Stream Molecular Weight
	MW_E	18.018971	g / mol	Stream Molecular Weight
	MW_C	18.0148	g / mol	Stream Molecular Weight
	MWa_C	29.655264	g / mol	Stream Molecular Weight
	N_H	28.226315	mol / min	Stream Molar Flow Rate
	N_W	27.210002	mol / min	Stream Molar Flow Rate
	N_E	1.016312	mol / min	Stream Molar Flow Rate
	N_C	1.015948	mol / min	Stream Molar Flow Rate
	M_P	516.202756	g/min	Stream Mass Flow Rate
	M_X	516.202756	g/min	Stream Mass Flow Rate
	M_H	516.202756	g/min	Stream Mass Flow Rate
	M_W	511.120869	g / min	Stream Mass Flow Rate
	M_E	5.081887	g / min	Stream Mass Flow Rate
	M_C	5.071088	g/min	Stream Mass Flow Rate
		00000 50 1755	112125-00	
	EIN_E	88809.534752	J/min	Evaporator Energy Input
0	Eout_E	56217.653939	J/min	Evaporator Energy Output
U	Q_E		J / min	Evaporator Heat Input

Input	Name	Output	Unit	Comment
0	W_E		J / min	Evaporator Work Output
	Ea_C	-0.012876	J / min	NCG Energy Accumulation
	Ein_C	54110.593734	J / min	Condenser Energy Input
	Eout_C	43712.867337	J / min	Condenser Energy Output
	Q_C	-10397.739273	J / min	Condenser Heat Input
0	w_c		J / min	Condenser Work Output
0.000013	Φ_N2			Nitrogen Mass Fraction in Ambient Seawater
0.000008	Φ_02			Oxygen Mass Fraction in Ambient Seawater
0.000000	Φ_Ar			Argon Mass Fraction in Ambient Seawater
0.000000	Φ_CO2			Carbon Dioxide Mass Fraction in Ambient Seawater
	Ф_Н2О	0.964979		Water Mass Fraction in Ambient Seawater
	z_N2	0.000008		Nitrogen Mole Fraction in Ambient Seawater
	z_02	0.000004		Oxygen Mole Fraction in Ambient Seawater
	z_Ar	0.000000		Argon Mole Fraction in Ambient Seawater
	z_CO2	0.000000		Carbon Dioxide Mole Fraction in Ambient Seawater
	z_Salt	0.020374		Salt Mole Fraction in Ambient Seawater
	z_H2O	0.979613		Water Mole Fraction in Ambient Seawater
	x_N2	0.000000		Nitrogen Mole Fraction in Brine Water
	x_02	0.000000		Oxygen Mole Fraction in Brine Water
	x_Ar	0.000000		Argon Mole Fraction in Brine Water
	x_CO2	0.000000		Carbon Dioxide Mole Fraction in Brine Water
	x_Salt	0.021135		Salt Mole Fraction in Brine Water
	x_H2O	0.978865		Water Mole Fraction in Brine Water
	y_N2	0.000228		Nitrogen Mole Fraction in Vaporized Water
	y_02	0.000122		Oxygen Mole Fraction in Vaporized Water
	y_Ar	0.000005		Argon Mole Fraction in Vaporized Water
	y_CO2	0.000003		Carbon Dioxide Mole Fraction in Vaporized Water
	y_H2O	0.999642		Water Mole Fraction in Vaporized Water
28.0134	MW_N2		g / mol	Nitrogen Molecular Weight
31.998	MW_02		g / mol	Oxygen Molecular Weight
39.94	MW_Ar		g / mol	Argon Molecular Weight
44.009	MW_CO2		g / mol	Carbon Dioxide Molecular Weight
31.416538	MW_Salt		g / mol	Approximated Seawater Salt Molecular Weight
18.0148	MW_H2O		g / mol	Water Molecular Weight
8067573.136086	HC_N2		bar	Nitrogen Reference State Henry's Constant

Input	Name	Output	Unit	Comment
358814.929481	HC_O2		bar	Oxygen Reference State Henry's Constant
384073.329688	HC_Ar		bar	Argon Reference State Henry's Constant
10914.952753	HC_CO2		bar	Carbon Dioxide Reference State Henry's Constan
-3545.567207	HF N2		°C	Nitrogen Henry's Coefficient
-2208 812178	HE O2		°C	Oxygen Henry's Coefficient
-2308 046425	HE Ar		°C	Argon Henry's Coefficient
-445.190581	HF_CO2		°C	Carbon Dioxide Henry's Coefficient
12.762946	PA			Water Vapor Pressure Coefficient
4391.129422	PB		°C	Water Vapor Pressure Coefficient
245.367016	PC		°C	Water Vapor Pressure Coefficient
	- 10			New York Database Database
1.21	a_N2			Nitrogen Relative Solubility
1.22	α_02			Oxygen Relative Solubility
1.23	a_Ar			Argon Relative Solubility
1.17	α_CO2			Carbon Dioxide Relative Solubility
.9816	a_H2O			Water Relative Vapor Pressure
	K_N2	59153990.173289		Evaporator-Based Nitrogen VLE Distribution Coefficient
	K_02	2601014.888961		Evaporator-Based Oxygen VLE Distribution Coefficient
	K_Ar	2786476.236923		Evaporator-Based Argon VLE Distribution Coefficient
	K_CO2	77936.106242		Evaporator-Based Carbon Dioxide VLE Distribution
	K_H2O	1.040368		Evaporator-Based Water VLE Distribution Coefficient
	pA_X	0.765685		Stream Density Coefficient
	pA_H	0.742783		Stream Density Coefficient
	pA_W	0.765301		Stream Density Coefficient
	pA_C	0.765990		Stream Density Coefficient
	oB X	-0.004306		Stream Density Coefficient
		-0.004300		Stream Density Coefficient
	OB W	-0.004390		Stream Density Coefficient
	OB C	-0.004233		Stream Density Coefficient
	hp70	-0.004312		Grean Densky Coencient
	pC_X	997.990004		Stream Density Coefficient
	pC_H	991.010632		Stream Density Coefficient
	pC_W	997.942402		Stream Density Coefficient
	pC_C	998.027088		Stream Density Coefficient
	0 X	1 024499	a / cm ^ 2	Stream Density
	P_X	1.024489	g / cm ^ 3	Stream Density

Input	Name	Output	Unit	Comment
	ρ_H	1.016691	g / cm ^ 3	Stream Density
	p_W	1.024694	g / cm ^ 3	Stream Density
	ρ_C	0.998027	g / cm ^ 3	Stream Density
	uA X	0.001197		Stream Viscosity Coefficient
		0.001208		Stream Viscosity Coefficient
	μΑ_Ο	0.001208		Stream Viscosity Coefficient
	PA-20	0.001100		
	μB_X	0.003285		Stream Viscosity Coefficient
	μB_W	0.003292		Stream Viscosity Coefficient
	µB_C	0.003279		Stream Viscosity Coefficient
	μC_X	19.848398		Stream Viscosity Coefficient
	μC_W	20.049759		Stream Viscosity Coefficient
	hC_C	0		Stream Viscosity Coefficient
	D . X	0.000774		Ohanna Managalin Operficient
	иD_X	0.009774		Stream Viscosity Coefficient
	μΟ_00	0.009722		Stream Viscosity Coefficient
	μD_C	0.009814		Stream Viscosity Coemcient
	µ_X	0.010463	P	Stream Viscosity
	μ_W	0.010417	P	Stream Viscosity
	µ_C	0.009814	P	Stream Viscosity
1.27	D_CT		cm	Condenser Tube Diameter
475	L_CT		cm	Condenser Tube Length
19200	1010/0-0010			
.2	hid_CT		W/(cm^2-°C)	Condenser Tube Inside Dirt Coefficient
.5	hod_CT		W/(cm^2-°C)	Condenser Tube Outside Dirt Coefficient
	hi_CT	0.051020	W/(cm^2-°C)	Condenser Tube Inside Fluid Film Coefficient
	ho_CT	0.943999	W/(cm^2-°C)	Condenser Tube Outside Fluid Film Coefficient
.5	hid_E		W/(cm^2-°C)	Evaporator Inside Dirt Coefficient
.75	hod_E		W/(cm ^ 2- °C)	Evaporator Outside Dirt Coefficient
	hi_E	0.594382	W/(cm ^ 2- °C)	Evaporator Inside Fluid Film Coefficient
	ho_E	0.018067	W/(cm ^ 2 - °C)	Evaporator Outside Fluid Film Coefficient
.5	hid_C		W/(cm ^ 2 - °C)	Condenser Inside Dirt Coefficient
.75	hod_C		W/(cm^2-°C)	Condenser Outside Dirt Coefficient
	hi_C	0.599330	W/(cm^2-°C)	Condenser Inside Fluid Film Coefficient
	ho_C	0.018067	W/(cm^2-°C)	Condenser Outside Fluid Film Coefficient
4	N_CT			Number of Condenser Tube Vertical Rows
.751	191 4 7 19			

Input	Name	Output	Unit	Comment
.125	δ_CT		cm	Condenser Tube Thickness
3.81	kw_CT		W/(cm-°C)	Condenser Tube Thermal Conductivity
.25	ð_C		cm	Condenser Thickness
.45	kw_C		W/(cm-°C)	Condenser Thermal Conductivity
.25	δ_Ε		cm	Evaporator Thickness
.001	kw_E		W/(cm-°C)	Evaporator Thermal Conductivity
	U_СТ	0.033225	W/(cm^2-°C)	Condenser Tube Overall Heat Transfer Coefficient
	A_CT	1895.165768	cm ^ 2	Condenser Tube Surface Area
	ΔTm_CT	3.706537	°C	Condenser Tube Logarithmic Mean Temperature Difference
	U_E	0.005381	W/(cm^2-°C)	Evaporator Overall Heat Transfer Coefficient
	A_E	17592.918860	cm ^ 2	Evaporator Surface Area
	∆Tm_E	3.585132	°C	Evaporator Logarithmic Mean Temperature Difference
	U_C	0.016486	W/(cm^2-°C)	Condenser Overall Heat Transfer Coefficient
	A_C	17592.918860	cm ^ 2	Condenser Surface Area
	ΔTm_C	3.799981	°C	Condenser Logarithmic Mean Temperature Difference
	γ_H2O	4.961777		Evaporator-Based Water Activity Coefficient
	Ψ	0.940570		Fraction of NCG Molecules Accumulating
	F_CT	0.150507		Condenser Tube Counter Current Departure Correction Factor
	F_E	0		Evaporator Counter Current Departure Correction Factor
	F_C	0.157232		Condenser Counter Current Departure Correction Factor
	μ_E	0.000090	Ρ	Stream Viscosity
	ρ_Ε	0.000022	g / cm ^ 3	Stream Density
5.08	PD_E		cm	Stream Nominal Pipe Diameter
180	PL_E		cm	Stream Equivalent Pipe Length
962.112750	XA_E		cm ^ 2	Evaporator Cross Sectional Area
	ΔP_E	0.000004	bar	Stream Pressure Drop
	SG_H	1.025913		Stream Specific Gravity
.118	Ω		bar	Steam Diffusion Resistance
2	σ		(g - °C ^ 0.5)/(bar - min - cm ^ 2)	Steam Diffusion Coefficient
	Md_E	-13.231018	g/min	Steam Diffusion Rate
	ΣMd_E	-13.231018	g	Total Steam Diffused
	Ed_E	32591.880813	J / min	Steam Diffusion Energy
0	W_H		J / min	Heater Work Output
	Q_H	45539,727333	J / min	Heater Heat Input
	Ein_H	43269.807420	J / min	Heater Energy Input

Input	Name	Output	Unit	Comment
	Eout_H	88809.534752	J / min	Heater Energy Output
0	W_P		J / min	Pump Work Output
	ΣW_Ρ	0	J	Power Input
	ΣQ_H	45539.727333	J	Heat Input
	PEC	8980.267181	J/g	Prime Energy Consumption
	η_R	4.423341	%	Recovery Efficiency
	η_T	14.579955	%	Thermal Efficiency
	ղ_C	30.149107	%	Condenser Efficiency
.92	a_SC			Solar Collector Absorptance
.9	T_SC			Solar Collector Transmittance
.000092	U_SC		W/(cm^2-°C)	Solar Collector Heat Loss Conductance
.82	F_SC			Solar Collector Heat Removal Factor
.06	1		W/cm^2	Incident Insolation On Solar Collector
	A_SC	18666.660826	cm ^ 2	Solar Collector Area
.005	εP		bar	Pressure Transducer Error
1	εΤ		°C	Thermocouple Error
.045	εFI		L / min	Flow Indicator Error
.2	εQE		cm ^ 3	Quantitative Element Error
.000035	ερ		g/cm^3	Density Correlation Error
.045	εН		J/g	Enthalpy Correlation Error
	εP_V	.005	bar	Vacuum Pressure Error
	εΤ_Ε	1	°C	Stream Temperature Error
	εT_W	1	°C	Stream Temperature Error
	εT_X	1	°C	Stream Temperature Error
	ερ_Ρ	.000035	g / cm ^ 3	Stream Density Error
	ερ_Η	.000035	g / cm ^ 3	Stream Density Error
	ερ_Ε	.000035	g / cm ^ 3	Stream Density Error
	ερ_C	.000035	g / cm ^ 3	Stream Density Error
	εΔΤ	1.414214	°C	Temperature Gradient Error
	εΔΗ	0.063640	J/g	Enthalpy Gradient Error
	εM_P	46.089872	g / min	Stream Mass Flow Rate Error
	εM_H	46.089872	g / min	Stream Mass Flow Rate Error
	εM_E	0.452779	g / min	Stream Mass Flow Rate Error
	εM_C	0.452779	g / min	Stream Mass Flow Rate Error
	εΣΜ_C	0.037564	g	Product Amount Error
	εQ_H	4066.209798	J / min	Heater Heat Input Error
	εΣQ_Η	4066.209798	J	Heat Input Error
	EA_SC	1667.092631	cm ^ 2	Solar Collector Area Error
	εPEC	804.596245	J/g	Prime Energy Consumption Error
	εη_C	43.564826	%	Condenser Efficiency Error
	εη_R	0.069013	%	Recovery Efficiency Error

Input	Name	Output	Unit	Comment	
	εη_Τ	1.839071	%	Thermal Efficiency Error	

Appendix M. Sample TK Solver code for model simulation

Solver	REPORT
Rules Sheet	
Rules	
Phenomenological Equations	
Φ_S = Φ_Ρ	
Φ_Ρ = Φ_Χ	
Ф_Х= Ф_Н	
Φ_E = Φ_C	
; Salt Balance	
$\Phi_S \cdot M_S = \Phi_P \cdot M_P$	
$\Phi_P \cdot M_P = \Phi_X \cdot M_X$	
$\Phi_X \cdot M_X = \Phi_H \cdot M_H$	
$\Phi H \cdot M H = \Phi W \cdot M W$	
; Energy Balance	
Q_P - W_P + Ein_P - Eout_P = 0	
Q_C-W_C+Ein_C-Eout_C=Ea_C	
Q_H - W_H + Ein_H - Eout_H = 0	
Q_E - W_E + Ein_E - Eout_E = Ed_E	
; Energy Inputs	
Ein_P = M_S · H_S	
$Ein_C = M_P \cdot H_P + M_E \cdot (H_E + H_E)$	
Ein_H = M_X· H_X	
Ein_E = M_H · H_H	
; Energy Outputs	
Eout_P = M_P · H_P	
$Eout_C = M_X \cdot H_X + M_C \cdot H_C$	
Eout_H=M_H·H_H	
$Eout_E = M_W \cdot H_W + M_E \cdot (H_E + HL_E)$	
Energy Accumulation & Diffusion	
Ea_C = Ma_C · Ha_C	
$Ed_E = Md_E \cdot (H_W - H_E - HL_E)$	
; Quasi Steady State	
N_H = N_E + N_W	
N_E = N_C + Na_C	
Na_C = (1 - y_H2O) · N_E	

Rules -HF_CO2 · [1 - 1] T_E + 273.15 - 298.15] K_CO2=_____ P_V K_H2O = <u>Y_H2O · P_H2O</u> P_V γ_H2O = 0.0019583973 + <u>1.038491 · P_V</u> P_H20 ; Flash Calculations Φ N2 MW_N2 z_N2 = ____Φ_N2 $\frac{\Phi_{02}}{MW_{02}} + \frac{\Phi_{Ar}}{MW_{Ar}} + \frac{\Phi_{C02}}{MW_{C02}} + \frac{\Phi_{H}}{MW_{Salt}}$ Φ_H2O MW_N2 MW_H2O Φ_02 MW_02 $\frac{\Phi_{02}}{MW_{02}} + \frac{\Phi_{Ar}}{MW_{Ar}} + \frac{\Phi_{C02}}{MW_{C02}} + \frac{\Phi_{H}}{MW_{Salt}}$ Φ H2O -+-MW_N2 MW_H2O Φ_Ar MW_Ar z_Ar = ____Φ_N2 $\frac{\Phi_{N2}}{MW_{N2}} + \frac{\Phi_{O2}}{MW_{O2}} + \frac{\Phi_{Ar}}{MW_{Ar}} + \frac{\Phi_{CO2}}{MW_{CO2}} + \frac{\Phi_{H}}{MW_{Salt}} + \frac{\Phi_{H2O}}{MW_{H2O}}$ Ф_CO2 MW_CO2 z_CO2 = ________N2____ $\frac{\Phi_{N2}}{MW_{N2}} + \frac{\Phi_{O2}}{MW_{O2}} + \frac{\Phi_{Ar}}{MW_{Ar}} + \frac{\Phi_{CO2}}{MW_{CO2}} + \frac{\Phi_{H}}{MW_{Salt}} + \frac{\Phi_{H2O}}{MW_{H2O}}$ Ф_Н MW_Salt $z_{\text{Salt}} = \underbrace{-\frac{\Phi_{\text{N2}}}{MW_{\text{N2}}} + \underbrace{\Phi_{\text{O2}}}{MW_{\text{O2}}} + \underbrace{\Phi_{\text{Ar}}}{MW_{\text{Ar}}} + \underbrace{\Phi_{\text{CO2}}}{MW_{\text{CO2}}} + \underbrace{\Phi_{\text{H}}}{MW_{\text{Salt}}} + \underbrace{\Phi_{\text{H2O}}}{MW_{\text{H2O}}}$ z_N2 · N_H $x_N2 = \frac{2 N_2 + N_2 +$ z_02 · N_H $x_{02} = \frac{1}{N_{W} + N_{E} \cdot \alpha_{02} \cdot K_{02}}$ z_Ar · N_H $x_Ar = \frac{1}{N_W + N_E \cdot \alpha_Ar \cdot K_Ar}$ z_CO2 · N_H $x_{CO2} = \frac{2_{CO2} \cdot N_{CO2}}{N_{W} + N_{E} \cdot \alpha_{CO2} \cdot K_{CO2}}$ x_Salt = ____Salt · N_H N_W z_H20 · N_H $x_{H20} = \frac{2}{N_{W} + N_{E} \cdot \alpha_{H20} \cdot K_{H20}}$ $y_N2 = x_N2 \cdot \alpha_N2 \cdot K_N2$ $y_{02} = x_{02} \cdot \alpha_{02} \cdot K_{02}$ $y_{Ar} = x_{Ar} \cdot \alpha_{Ar} \cdot K_{Ar}$
Rules
$y_{CO2} = x_{CO2} \cdot \alpha_{CO2} \cdot K_{CO2}$
$y_{H2O} = x_{H2O} \cdot \alpha_{H2O} \cdot K_{H2O}$
; Flash Fractions Summation
$\Phi_N2 + \Phi_O2 + \Phi_Ar + \Phi_CO2 + \Phi_H + \Phi_H2O = 1$
z_N2 + z_O2 + z_Ar + z_CO2 + z_Salt + z_H2O = 1
x_N2 + x_O2 + x_Ar + x_CO2 + x_Salt + x_H2O = 1
y_N2 + y_O2 + y_Ar + y_CO2 + y_H2O = 1
; System Throughput
$SG_{H} = \frac{1000 \cdot \rho_{H}}{\rho C_{H}}$
$FI = CV \cdot \left[\frac{P - P_V}{SG_H}\right]^{0.5}$
FI = 0.483691505733334
$M_S = 1000 \cdot \rho_S \cdot FI$
$\Sigma M = \rho_S \cdot QE$
; Totalized Variables
ΣM_S = INTEGRAL(" M_S , t " , ELT('t , ELT() - 1 , ti) , t) + ELT('ΣM_S , ELT() - 1 , 0)
ΣM_W = INTEGRAL(" M_W , t " , ELT('t , ELT() - 1 , ti) , t) + ELT('ΣM_W , ELT() - 1 , 0)
ΣM_C = INTEGRAL(" M_C , t " , ELT('t , ELT() - 1 , ti) , t) + ELT('ΣM_C , ELT() - 1 , 0)
ΣΝa_C = INTEGRAL(" Na_C , t " , ELT('t , ELT() - 1 , ti) , t) + ELT('ΣΝa_C , ELT() - 1 , ΣΝai_C)
; Vessel Capacities
$XA_S = \frac{\pi \cdot D_S^2}{4}$
$XA_B = \frac{\pi \cdot D_B^2}{4}$
$XA_F = \frac{\pi \cdot D_F^2}{4}$
$XA_E = \frac{\pi \cdot D_E^2}{4}$
$XA_C = \frac{\pi \cdot D_C^2}{4}$
V_S = XA_S · L_S
V_B = XA_B · L_B
V_F = XA_F · L_F
V_E = XA_E · L_E
V_C = XA_C · L_C

Rules
; Vessel Levels
Zi_S = 24
$Z_{S} = Zi_{S} - \frac{\Sigma M_{S}}{\rho_{S} + XA_{S}}$
Zi_C = 0
$Z_C = ZI_C + \frac{\Sigma M_C}{\rho_C \cdot XA_C}$
$Zi_C = \frac{1000000 \cdot (P - Pi_V - \Delta P_C)}{\rho_C \cdot g} - PL_C + Z_F$
$Z_{C} = \frac{1000000 \cdot (P - P_{V} - \Delta P_{C})}{\rho_{C} \cdot g} - PL_{C} + Z_{F}$
Zī_E = 0
$Z_{E} = Zi_{E} + \frac{\Sigma M_{W}}{\rho_{W} \cdot XA_{E}}$
$Zi_{E} = \frac{1000000 \cdot (P - Pi_{V} - \Delta P_{W})}{\rho_{W} \cdot g} - PL_{W} + Z_{B}$
$Z_{E} = \frac{1000000 \cdot (P - P_{V} - \Delta P_{W})}{\rho_{W} \cdot g} - PL_{W} + Z_{B}$
; Vacuum Volume
$Vi_CV = XA_C \cdot (L_C - Zi_C)$
$V_CV = XA_C \cdot (L_C - Z_C)$
$Vi_{C}V = L_{C} \cdot \left[\frac{\pi \cdot D_{C}C^{2}}{8} + \frac{D_{C}C^{2}}{4} \cdot ASIN\left[1 - \frac{2 \cdot Z_{L}C}{D_{C}}\right] + \left[\frac{D_{C}C}{2} - Z_{L}C\right] \cdot (Z_{L}C \cdot (D_{C}C - Z_{L}C))^{0.5}\right]$
$V_{C}V = L_{C} \cdot \left[\frac{\pi \cdot D_{C}^{2}}{8} + \frac{D_{C}^{2}}{4} \cdot ASIN \left[1 - \frac{2 \cdot Z_{C}}{D_{C}} \right] + \left[\frac{D_{C}}{2} - Z_{C} \right] \cdot (Z_{C} \cdot (D_{C} - Z_{C}))^{0.5} \right]$
$Vi_EV = XA_E \cdot (L_E - ZI_E)$
$V_EV = XA_E \cdot (L_E - Z_E)$
$Vi_{E}V = L_{E} \cdot \left[\frac{\pi \cdot D_{E}E^{2}}{8} + \frac{D_{E}E^{2}}{4} \cdot ASIN\left[1 - \frac{2 \cdot Z_{E}E}{D_{E}} \right] + \left[\frac{D_{E}E}{2} - Z_{E} \right] \cdot (Z_{E} \cdot (D_{E} - Z_{E}))^{0.5} \right]$
$V_{E}V = L_{E} \cdot \left[\frac{\pi \cdot D_{E}^{2}}{8} + \frac{D_{E}^{2}}{4} \cdot ASIN \left[1 - \frac{2 \cdot Z_{E}}{D_{E}} \right] + \left[\frac{D_{E}}{2} - Z_{E} \right] \cdot (Z_{E} \cdot (D_{E} - Z_{E}))^{0.5} \right]$
$VI_V = VI_CV + VI_EV + \frac{\pi}{4} \cdot \left[PL_E \cdot PD_E^2 - L_CT \cdot D_CT^2 \right]$
$V_V = V_CV + V_EV + \frac{\pi}{4} \cdot \left[PL_E \cdot PD_E^2 - L_CT \cdot D_CT^2 \right]$
; Vacuum Pressure

$$\label{eq:results} \hline \text{Rotes} \\ \begin{aligned} h_{0,C} &= 0.04477637899495253 \cdot \left[\frac{T_{E}-T}{L_{C}}\right]^{0.25} \\ &= \frac{1}{U_{-C}} &= \frac{1}{h_{0,C}} + \frac{1}{h_{0,C}} + \frac{D_{-C} + \delta_{-C}}{D_{-C} + h_{-C} + \frac{D_{-C} + \delta_{-C}}{2 \cdot kw_{-C}} \cdot UN\left[\frac{D_{-C} + \delta_{-C}}{D_{-C}}\right] \\ &= A_{-C} = \pi \cdot D_{-C} \cdot L_{-C} \\ &= S_{-C} = \frac{T_{-C} - T}{U\sqrt{\frac{T_{-E} + T}{T_{-E} + T_{-C}}}} \\ &= \frac{T_{-C} - T}{U\sqrt{\frac{T_{-E} + T}{T_{-E} + T_{-C}}}} \\ &= Q_{-C} = 60 \cdot U_{-C} \wedge A_{-C} \cdot F_{-C} \wedge ATm_{-C} \\ &= 1.13 \cdot \left[\frac{g \cdot H_{-E} + \rho_{-W} \cdot k_{-W} w^3}{\mu_{-W} + U_{-E} + (T_{-E} + T)}\right]^{0.25} \\ &= \frac{1}{U_{-E}} = \frac{1}{h_{0,E}} + \frac{1}{h_{0,E}} + \frac{D_{-E} + \delta_{-E}}{D_{-E} + h_{0,E}} + \frac{D_{-E} + \delta_{-E}}{2 \cdot kw_{-E}} \cdot UN\left[\frac{D_{-E} + \delta_{-E}}{D_{-E}}\right] \\ &= A_{-E} = \pi \cdot D_{-E} \cdot L_{-E} \\ &= S_{-E} = \frac{T_{-V} - T}{T_{-E} - T} \\ &= F_{-T} = \frac{1}{U\sqrt{\frac{T_{-E} - T}{T_{-E} - T}}} \\ &= Q_{-E} = 60 \cdot U_{-E} \wedge A_{-E} \cdot F_{-E} \wedge ATm_{-E} \\ &= E = \frac{T_{-V} - T}{U\sqrt{\frac{T_{-E} - T}{T_{-E} - T_{-T}}}} \\ &= Q_{-E} = 60 \cdot U_{-E} \wedge A_{-E} \cdot F_{-E} \wedge ATm_{-E} \\ &= Equipment Sizing \\ &= H^{-P} = \frac{-4W_{-P}}{44741.984} \\ &= \frac{1000000 \cdot (P_{-P} - (P_{-E} - \Delta P_{-S})}{p_{-S} \cdot g} + \frac{\left[\frac{M_{-S}}{15 \cdot \pi \cdot \rho_{-S} \cdot PD_{-S}^{-2}}\right]^{2}}{2 \cdot g}}{A_{-P} \wedge A_{-P} \wedge A_{-P} \times A_{-P} + A_{-P} - H_{-T} + A_{-P} - CT} \\ &= Q_{-P} = \frac{-14318.750242778}{M_{-H}}} \cdot (\rho_{-} H_{-V} (V_{-}))^{0.5} \\ &= C_{-D} = \left[\frac{41318.750242778}{M_{-H}}} + (\rho_{-} - P_{-V} (V_{-}))^{0.5} \\ \end{aligned}$$

ΔP X= <u>6.7906109052542E-07 · μX · PLX · MX</u>
Anto - sol service 4
p_X· PD_X
$\Delta P_{-}H = -\frac{6.7906109052542E-07 \cdot \mu_{-}H \cdot PL_{-}H \cdot M_{-}H}{2}$
₽_H· PD_H [®]
$\Delta P W = \frac{6.7906109052542E-07 \cdot \mu W \cdot PL W \cdot M W}{1000000000000000000000000000000000000$
ρ_W · PD_W ⁴
AP C = 6.7906109052542E-07 · µ_C · PL_C · M_C
ρ_C · PD_C ⁴
ΔP E = 6.7906109052542E-07 · μ_E · PL_E · M_E
ρ_E · PD_E
6.7906109052542E-07 · μ_H · L_HT · M_H
ΔF_Π ρ H · D HT
Δ.D. CT_ 6.7906109052542E-07 · μ_X · L_CT · M_X
$\rho_X \cdot D_C T^4$
; Enthalpies
$H_{S} = 4.204501 \cdot T_{S} - 6.78226 \cdot \Phi_{S} \cdot T_{S} + 14.7532 \cdot \Phi_{S}^{2} \cdot T_{S} - \left[0.00068002552 - 0.03095114 \cdot \Phi_{S} + 0.1624438 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.1628 + 0.$
$H_{P} = 4.204501 \cdot T_{P} - 6.78226 \cdot \Phi_{P} \cdot T_{P} + 14.7532 \cdot \Phi_{P}^{2} \cdot T_{P} - \left[0.00068002552 - 0.03095114 \cdot \Phi_{P} + 0.1624434 + 0.162444 + 0.16244 + 0.1644 + 0.1644 + 0.162444 + 0.1644 + 0$
$H_X = 4.204501 \cdot T_X - 6.78226 \cdot \Phi_X \cdot T_X + 14.7532 \cdot \Phi_X^2 \cdot T_X - \left[0.00068002552 - 0.03095114 \cdot \Phi_X + 0.1624438 \cdot \Phi_X + 0.16244438 \cdot \Phi_X + 0.1624448 \cdot \Phi_X + 0.1624448 \cdot \Phi_X + 0.1624448 $
$H_{-}H = 4.204501 \cdot T_{-}H - 6.78226 \cdot \Phi_{-}H \cdot T_{-}H + 14.7532 \cdot \Phi_{-}H^{2} \cdot T_{-}H - \left[0.00068002552 - 0.03095114 \cdot \Phi_{-}H + 0.1624438 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.1628 + 0.1$
$H_W = 4.204501 \cdot T_W - 6.78226 \cdot \Phi_W \cdot T_W + 14.7532 \cdot \Phi_W^2 \cdot T_W - \left[0.00068002552 - 0.03095114 \cdot \Phi_W + 0.1632 + 0.00068002552 - 0.03095114 \cdot \Phi_W + 0.00068002552 + 0.000680028 + 0.00068008 + 0.000688 + 0.0006802 + 0.00068028 + 0.00068028 + 0.000688 + 0.0006808 + $
$H_{C} = 4.204501 \cdot T_{C} - 6.78226 \cdot \Phi_{C} \cdot T_{C} + 14.7532 \cdot \Phi_{C}^{2} \cdot T_{C} - \left[0.00068002552 - 0.03095114 \cdot \Phi_{C} + 0.1624438 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.16248 + 0.1628 + 0.1$
$H_{E} = 4.204501 \cdot T_{E} - 6.78226 \cdot \Phi_{E} \cdot T_{E} + 14.7532 \cdot \Phi_{E}^{2} \cdot T_{E} - \left[0.00068002552 - 0.03095114 \cdot \Phi_{E} + 0.1624438 + 0.162448 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.1624438 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.162448 + 0.1628 + 0.1628 + 0$
HL_E = 2496.21010517215 - 1.9534839865599 · T_E - 0.00417809176330114 · T_E ²
$H_{N2} = A_{N2} \cdot (T_{E} + 273.15) + \left[\frac{B_{N2}}{2000}\right] \cdot (T_{E} + 273.15)^{2} + \left[\frac{C_{N2}}{3000000}\right] \cdot (T_{E} + 273.15)^{3} + \left[\frac{D_{N2}}{4000000000}\right] \cdot (T_{N2} + 273.15)^{3} + \left[\frac{D_{N2}}{4000000000}\right] \cdot (T_{N2} + 273.15)^{3} + \left[\frac{D_{N2}}{40000000000}\right] \cdot (T_{N2} + 273.15)^{3} + \left[\frac{D_{N2}}{40000000000000000}\right] \cdot (T_{N2} + 273.15)^{3} + \left[\frac{D_{N2}}{400000000000000000000000000000000000$
$H_{O2} = A_{O2} \cdot (T_{E} + 273.15) + \left[\frac{B_{O2}}{2000}\right] \cdot (T_{E} + 273.15)^{2} + \left[\frac{C_{O2}}{3000000}\right] \cdot (T_{E} + 273.15)^{3} + \left[\frac{D_{O2}}{4000000000}\right] \cdot (T_{O2} + 273.15)^{3} + \left[\frac{D_{O2}}{4000000000}\right] \cdot (T_{O2} + 273.15)^{3} + \left[\frac{D_{O2}}{40000000000}\right] \cdot (T_{O2} + 273.15)^{3} + \left[\frac{D_{O2}}{400000000000000000}\right] \cdot (T_{O2} + 273.15)^{3} + \left[\frac{D_{O2}}{400000000000000000000000000000000000$
$H_Ar = A_Ar \cdot (T_E + 273.15) + \left[\frac{B_Ar}{2000}\right] \cdot (T_E + 273.15)^2 + \left[\frac{C_Ar}{300000}\right] \cdot (T_E + 273.15)^3 + \left[\frac{D_Ar}{400000000}\right] \cdot (T_E + 273.15)^3 + \left[\frac{D_Ar}{4000000000}\right] \cdot (T_E + 273.15)^3 + \left[\frac{D_Ar}{4000000000000000}\right] \cdot (T_E + 273.15)^3 + \left[\frac{D_Ar}{4000000000000000000}\right] \cdot (T_E + 273.15)^3 + \left[\frac{D_Ar}{4000000000000000000000000000000000000$

237

Rules
$Re_W = \frac{M_W}{15 \cdot \pi \cdot PD_W \cdot \mu_W}$
$Re_{C} = \frac{M_{C}}{15 \cdot \pi \cdot PD_{C} \cdot \mu_{C}}$
$Re_{E} = \frac{M_{E}}{15 \cdot \pi \cdot PD_{E} \cdot \mu_{E}}$
; Prandtl Numbers
$Pr_{S} = \frac{H_{S} \cdot \mu_{S}}{(T_{S} + 273.15) \cdot k_{S}}$
$Pr_{P} = \frac{H_{P} \cdot \mu_{P}}{(T_{P} + 273.15) \cdot k_{P}}$
$Pr_X = \frac{H_X \cdot \mu_X}{(T_X + 273.15) \cdot k_X}$
$Pr_{H} = \frac{H_{H} \cdot \mu_{H}}{(T_{H} + 273.15) \cdot k_{H}}$
$Pr_W = \frac{H_W \cdot \mu_W}{(T_W + 273.15) \cdot k_W}$
$Pr_{C} = \frac{H_{C} \cdot \mu_{C}}{(T_{C} + 273.15) \cdot k_{C}}$
$Pr_{E} = \frac{H_{E} \cdot \mu_{E}}{(T_{E} + 273.15) \cdot k_{E}}$
; Nusselt Numbers
$Nu_S = 1.86 \cdot \left[\frac{Re_S \cdot Pr_S \cdot PD_S}{PL_S} \right]^{0.33}$
$Nu_P = 1.86 \cdot \left[\frac{Re_P \cdot Pr_P \cdot PD_P}{PL_P}\right]^{0.33}$
$Nu_X = 1.86 \cdot \left[\frac{Re_X \cdot Pr_X \cdot PD_X}{PL_X}\right]^{0.33}$
$Nu_{H} = 1.86 \cdot \left[\frac{Re_{H} \cdot Pr_{H} \cdot PD_{H}}{PL_{H}}\right]^{0.33}$
$Nu_W = 1.86 \cdot \left[\frac{Re_W \cdot Pr_W \cdot PD_W}{PL_W} \right]^{0.33}$
$Nu_{C} = 1.86 \cdot \left[\frac{Re_{C} \cdot Pr_{C} \cdot PD_{C}}{PL_{C}} \right]^{0.33}$
$Nu_E = 1.86 \cdot \left[\frac{Re_E \cdot Pr_E \cdot PD_E}{PL_E} \right]^{0.33}$

Variables She	eet			
Input	Name	Output	Unit	Comment
0	ti		min	Initial Time
1	t		min	Run Time
20	т		°C	Ambient Temperature
1.01325	Р		bar	Ambient Pressure
	FI	0.483692	L / min	Average Flow Indicator Value
27	QE		cm ^ 3	Average Quantitative Element Value
	ΣΜ	27.668601	g	Actual Product Amount
83.14472	R		(bar - cm ^ 3)/(mol - °C)	Universal Gas Constant
980.0665	g		cm/s^2	Gravity Acceleration
	P_BP	47.803156	bar	Bubble Point Pressure
	P_DP	0.145822	bar	Dew Point Pressure
	ΣM_S	495.669161	g	Total Seawater Amount
	ΣM_W	495.911874	g	Total Brine Amount
	ΣM_C	-0.253082	g	Total Condensed Steam Amount
	ΣNa_C	1.786244	mol	Total NCG Amount
	ΣQ_Η	41983.941375	J	Heat Input
	ΣW_Ρ	0	J	Power Input
	PEC	-165890.373805	J/g	Prime Energy Consumption
.5503	ω_CI			Chloride Mass Fraction in Seawater Salt
.3059	ω_Na			Sodium Mass Fraction in Seawater Salt
.0768	ω_SO4			Sulfate Mass Fraction in Seawater Salt
.0368	ω_Mg			Magnesium Mass Fraction in Seawater Salt
.0118	ω_Ca			Calcium Mass Fraction in Seawater Salt
.0111	ω_Κ			Potassium Mass Fraction in Seawater Salt
.0041	ω_HCO3			Bicarbonate Mass Fraction in Seawater Salt
.0019	ω_Br			Bromide Mass Fraction in Seawater Salt
8000.	ω_BO3			Borate Mass Fraction in Seawater Salt
.0004	ω_Sr			Strontium Mass Fraction in Seawater Salt
.00003	ω_F			Fluoride Mass Fraction in Seawater Salt
35.453	MW_CI		g / mol	Chloride Molecular Weight
22.99	MW_Na		g / mol	Sodium Molecular Weight
96.062	MW_SO4		g / mol	Sulfate Molecular Weight
24.305	MW_Mg		g / mol	Magnesium Molecular Weight
40.078	MW_Ca		g / mol	Calcium Molecular Weight
39.098	MW_K		g / mol	Potassium Molecular Weight
61.016	MW_HCO3		g / mol	Bicarbonate Molecular Weight
79.904	MW_Br		g / mol	Bromide Molecular Weight
58.808	MW_BO3		g / mol	Borate Molecular Weight
87.62	MW_Sr		g / mol	Strontium Molecular Weight

Input	Name	Output	Unit	Comment
18.998	MVV_F		g / mol	Fluoride Molecular Weight
28.0134	MW_N2		g / mol	Nitrogen Molecular Weight
31.998	MW_02		g / mol	Oxygen Molecular Weight
39.94	MW_Ar		g / mol	Argon Molecular Weight
44.009	MW_CO2		g / mol	Carbon Dioxide Molecular Weight
	MW_Salt	31.416538	g / mol	Approximated Seawater Salt Molecular Weight
18.0148	MW_H2O		g / mol	Water Molecular Weight
0.000013	Φ_Ν2			Nitrogen Mass Fraction in Ambient Seawater
0.000008	Φ_Ο2			Oxygen Mass Fraction in Ambient Seawater
0.000000	Φ_Ar			Argon Mass Fraction in Ambient Seawater
0.000000	Φ_CO2			Carbon Dioxide Mass Fraction in Ambient Seawater
	Φ_H2O	0.964979		Water Mass Fraction in Ambient Seawater
	z_N2	0.00008		Nitrogen Mole Fraction in Ambient Seawater
	z_02	0.000004		Oxygen Mole Fraction in Ambient Seawater
	z_Ar	0.000000		Argon Mole Fraction in Ambient Seawater
	z_CO2	0.000000		Carbon Dioxide Mole Fraction in Ambient Seawater
	z_Salt	0.020374		Salt Mole Fraction in Ambient Seawater
	z_H2O	0.979613		Water Mole Fraction in Ambient Seawater
	x_N2	0.000000		Nitrogen Mole Fraction in Brine Water
	x_02	0.000000		Oxygen Mole Fraction in Brine Water
	x_Ar	0.000000		Argon Mole Fraction in Brine Water
	x_CO2	0.000000		Carbon Dioxide Mole Fraction in Brine Water
	x_Salt	0.020715		Salt Mole Fraction in Brine Water
	x_H2O	0.979285		Water Mole Fraction in Brine Water
	y_N2	0.000500		Nitrogen Mole Fraction in Vaporized Water
	y_02	0.000268		Oxygen Mole Fraction in Vaporized Water
	y_Ar	0.000011		Argon Mole Fraction in Vaporized Water
	y_CO2	0.000006		Carbon Dioxide Mole Fraction in Vaporized Water
	y_H2O	0.999216		Water Mole Fraction in Vaporized Water
~~~~~				
26.092	A_N2			Nitrogen Molar Enthalpy Parameter
8.218801	B_N2			Nitrogen Molar Enthalpy Parameter
-1.9/6141	C_N2			Nitrogen Molar Enthalpy Parameter
.1092/4	0_N2			Nitrogen Molar Enthalpy Parameter
7 00000	E_NZ			Nitrogen Molar Enthalpy Parameter
-1.96923	F_N2			Nitrogen Molar Enthalpy Parameter
20 650	1.00			Owigen Melar Enthalini Persmeter
23.003	R_02			Oxygen Molar Enthalpy Parameter
0.137201	B_02			Cxygen wolar Enuralpy Parameter

Input	Name	Output	Unit	Comment
-1.186521	C_02			Oxygen Molar Enthalpy Parameter
.09578	D_02			Oxygen Molar Enthalpy Parameter
219663	E_02			Oxygen Molar Enthalpy Parameter
-9.861391	F_02			Oxygen Molar Enthalpy Parameter
20.786	A_Ar			Argon Molar Enthalpy Parameter
0.000000	B_Ar			Argon Molar Enthalpy Parameter
0.000000	C_Ar			Argon Molar Enthalpy Parameter
0.000000	D_Ar			Argon Molar Enthalpy Parameter
0.000000	E_Ar			Argon Molar Enthalpy Parameter
-6.19735	F_Ar			Argon Molar Enthalpy Parameter
24.99735	A_CO2			Carbon Dioxide Molar Enthalpy Parameter
55.18696	B_CO2			Carbon Dioxide Molar Enthalpy Parameter
-33.69137	C_CO2			Carbon Dioxide Molar Enthalpy Parameter
7.948387	D_CO2			Carbon Dioxide Molar Enthalpy Parameter
136638	E_CO2			Carbon Dioxide Molar Enthalpy Parameter
-10.0851	F_C02			Carbon Dioxide Molar Enthalpy Parameter
30.092	A_H2O			Water Molar Enthalpy Parameter
6.832514	B_H2O			Water Molar Enthalpy Parameter
6.793435	C_H2O			Water Molar Enthalpy Parameter
-2.53448	D_H2O			Water Molar Enthalpy Parameter
.082139	E_H2O			Water Molar Enthalpy Parameter
-9.054600	F_H2O			Water Molar Enthalpy Parameter
	H_N2	408.621886	J / mol	Nitrogen Molar Enthalpy
	H_02	402.549078	J / mol	Oxygen Molar Enthalpy
	H_Ar	301.655669	J / mol	Argon Molar Enthalpy
	H_CO2	540.860997	J / mol	Carbon Dioxide Molar Enthalpy
	H_H2O	488.461223	J / mol	Water Molar Enthalpy
	H_S	79.740379	J/g	Stream Enthalpy
	H_P	79.740379	J/g	Stream Enthalpy
	H_X	115.076142	J/g	Stream Enthalpy
	н_н	199.777682	J/g	Stream Enthalpy
	H_W	160.594502	J/g	Stream Enthalpy
	H_C	92.177531	J/g	Stream Enthalpy
	H_E	165.347464	J/g	Stream Enthalpy
	HL_E	2412.499766	J/g	Stream Enthalpy of Vaporization
9067572 436000	HC NO		hor	Nitrogen Beferenze State Linguite Constant
0001013.130080	HO_NZ		Dai	Willogen Reference State Henry's Constant

Input	Name	Output	Unit	Comment
358814.929481	HC_O2		bar	Oxygen Reference State Henry's Constant
384073.329688	HC_Ar		bar	Argon Reference State Henry's Constant
10914.952753	HC_CO2		bar	Carbon Dioxide Reference State Henry's Constant
-3545.567207	HF_N2		°C	Nitrogen Henry's Coefficient
-2208.812178	HF_O2		°C	Oxygen Henry's Coefficient
-2308.046425	HF_Ar		°C	Argon Henry's Coefficient
-445.190581	HF_CO2		°C	Carbon Dioxide Henry's Coefficient
12.762946	PA			Water Vapor Pressure Coefficient
4391.129422	PB		°C	Water Vapor Pressure Coefficient
245.367016	PC		°C	Water Vapor Pressure Coefficient
1.21	a_N2			Nitrogen Relative Solubility
1.22	a_02			Oxygen Relative Solubility
1.23	a_Ar			Argon Relative Solubility
1.17	a_CO2			Carbon Dioxide Relative Solubility
.9816	α_H2O			Water Relative Vapor Pressure
	K_N2	33181360.195354		Evaporator-Based Nitrogen VLE Distribution Coefficient
	K_02	1817195.406546		Evaporator-Based Oxygen VLE Distribution Coefficient
	K_Ar	1915296.044397		Evaporator-Based Argon VLE Distribution Coefficient
	K_CO2	72743.446749		Evaporator-Based Carbon Dioxide VLE Distribution Coefficient
	K_H2O	1.039478		Evaporator-Based Water VLE Distribution Coefficient
	T_S	20	°C	Stream Temperature
	T_P	20	°C	Stream Temperature
	T_X	28.842820	°C	Stream Temperature
50	т_н		°C	Stream Temperature
	T_W	40.218905	°C	Stream Temperature
	T_C	22	°C	Stream Temperature
	T_E	39.512635	°C	Stream Temperature
.035	Φ_S			Stream Salt Mass Fraction
	Φ_Ρ	.035		Stream Salt Mass Fraction
	Φ_Χ	.035		Stream Salt Mass Fraction
	Ф_Н	.035		Stream Salt Mass Fraction
	Φ_W	0.034983		Stream Salt Mass Fraction
0	Φ_C			Stream Salt Mass Fraction
	Φ_Ε	0		Stream Salt Mass Fraction
	MW_S	18.287997	g / mol	Stream Molecular Weight
	MW P	18.287997	a / mol	Stream Molecular Weight

MW, X         18.287997         g / mol         Stream Molecular Weight           MW, H         18.287997         g / mol         Stream Molecular Weight           MW, C         18.0148         g / mol         Stream Molecular Weight           MW, C         18.0148         g / mol         Stream Molecular Weight           MW, E         18.023930         g / mol         Stream Molecular Weight           MW, E         18.023930         g / mol         Stream Molecular Weight           MW, E         18.023930         g / mol         Stream Mass Flow Rate           M_ F         495.669161         g / min         Stream Mass Flow Rate           M_ X         495.669161         g / min         Stream Mass Flow Rate           M_ H         495.669161         g / min         Stream Mass Flow Rate           M_ K         495.669161         g / min         Stream Mass Flow Rate           M_ K         495.669161         g / min         Stream Mass Flow Rate           M_ K         495.69161         g / min         Stream Mass Flow Rate           M_ K         20.22713         mol / min         Stream Molar Flow Rate           M_ K         21.03524         mol / min         Stream Molar Flow Rate           N_ K         <	Input	Name	Output	Unit	Comment	
MW_H         18.287997         g / mol         Stream Molecular Weight           MW_V         18.02413         g / mol         Stream Molecular Weight           MW_C         18.0148         g / mol         Stream Molecular Weight           MW_E         18.023930         g / mol         Stream Molecular Weight           M_S         495.669161         g / min         Stream Mass Flow Rate           M_A         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_LH         495.669161         g / min         Stream Mass Flow Rate           M_L         495.669161         g / min         Stream Mass Flow Rate           M_L         495.669161         g / min         Stream Mass Flow Rate           M_L         -0.252082         g / min         Stream Mass Flow Rate           M_L         -0.242713         g / min         Stream Molar Flow Rate           N_L         27.103524         mol / min         Stream Molar Flow Rate           N_L         27.103524         mol / min         Stream Molar Flow Rate           N_L         27.103524         mol / min         Stream Molar Flow Rate           N_L         27.103524<		MVV_X	18.287997	g / mol	Stream Molecular Weight	
MW_W         18.292413         g / mol         Stream Molecular Weight           MW_C         18.0148         g / mol         Stream Molecular Weight           MW_E         18.0148         g / mol         Stream Molecular Weight           MW_E         495.669161         g / min         Stream Mass Flow Rate           M_P         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_MX         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_W         495.911874         g / min         Stream Mass Flow Rate           M_C         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           N_P         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_L         0.445430         mol / min         Stream Molar Flow Rate           N_L         0.445430         mol / min         Stream Molar Flow Rate           N_L         0.445779		MW_H	18.287997	g / mol	Stream Molecular Weight	
MW_C         18.0148         g / mol         Stream Molecular Weight           MW_E         18.023930         g / mol         Stream Molecular Weight           M_S         495.669161         g / min         Stream Mass Flow Rate           M_A         495.669161         g / min         Stream Mass Flow Rate           M_A         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_W         495.91174         g / min         Stream Mass Flow Rate           M_W         495.91174         g / min         Stream Mass Flow Rate           M_W         495.91174         g / min         Stream Mass Flow Rate           M_W         -0.253082         g / min         Stream Molar Flow Rate           M_Z         -0.253082         g / min         Stream Molar Flow Rate           M_Z         -0.253082         g / min         Stream Molar Flow Rate           M_Z         27.103524         mol / min         Stream Molar Flow Rate           N_Z         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_W         26.657744		MW_W	18.292413	g / mol	Stream Molecular Weight	
MW_E         18.023930         g / mol         Stream Molecular Weight           M_S         495.669161         g / min         Stream Mass Flow Rate           M_X         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_W         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_W         495.6991874         g / min         Stream Mass Flow Rate           M_W         495.03242         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Molar Flow Rate           N_S         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_L         0.445430         mol / min         Stream Density Coefficient           N_L         0.44543		MW_C	18.0148	g / mol	Stream Molecular Weight	
M_S         495.669161         g / min         Stream Mass Flow Rate           M_P         495.669161         g / min         Stream Mass Flow Rate           M_X         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_W         495.6911874         g / min         Stream Mass Flow Rate           M_C         -0.253082         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           N_S         27.103524         mol / min         Stream Molar Flow Rate           N_Y         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_L         27.103524         mol / min         Stream Molar Flow Rate           N_L         0.446779 </td <td></td> <td>MVV_E</td> <td>18.023930</td> <td>g / mol</td> <td>Stream Molecular Weight</td> <td></td>		MVV_E	18.023930	g / mol	Stream Molecular Weight	
M_S         495.669161         g / min         Stream Mass Flow Rate           M_F         495.669161         g / min         Stream Mass Flow Rate           M_X         495.669161         g / min         Stream Mass Flow Rate           M_W         495.691181         g / min         Stream Mass Flow Rate           M_W         495.911874         g / min         Stream Mass Flow Rate           M_C         -0.253082         g / min         Stream Mass Flow Rate           M_C         -0.253082         g / min         Stream Mass Flow Rate           M_C         -0.222713         g / min         Stream Mass Flow Rate           M_Z         27.103524         mol / min         Stream Molar Flow Rate           N_S         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.03524         mol / min         Stream Molar Flow Rate           N_K         0.767535 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
M_P         496.669161         g / min         Stream Mass Flow Rate           M_X         495.669161         g / min         Stream Mass Flow Rate           M_H         496.669161         g / min         Stream Mass Flow Rate           M_W         495.511874         g / min         Stream Mass Flow Rate           M_C         -0.253082         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Molar Flow Rate           M_E         -0.242713         g / min         Stream Molar Flow Rate           M_E         -0.242713         mol / min         Stream Molar Flow Rate           N_E         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         0.767355         Stream Density Coefficient           N_E         0.445779         mol / min         Stream Density Coefficient           pA_S         0.767535         Stre		M_S	495.669161	g / min	Stream Mass Flow Rate	
M_X         495.669161         g / min         Stream Mass Flow Rate           M_H         495.669161         g / min         Stream Mass Flow Rate           M_W         495.911874         g / min         Stream Mass Flow Rate           M_C         -0.253082         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Molar Flow Rate           N_S         27.103524         mol / min         Stream Molar Flow Rate           N_Y         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Density Coefficient           N_K         26.657744         mol / min         Stream Density Coefficient           N_C         0.445799         mol / min         Stream Density Coefficient           A_S		M_P	495.669161	g / min	Stream Mass Flow Rate	
M_H         496.669161         g / min         Stream Mass Flow Rate           M_W         495.911874         g / min         Stream Mass Flow Rate           M_C         -0.253082         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           N_S         27.103524         mol / min         Stream Molar Flow Rate           N_Y         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_W         26.657744         mol / min         Stream Molar Flow Rate           N_W         26.657744         mol / min         Stream Density Coefficient           N_C         0.445300         mol / min         Stream Density Coefficient           N_Z         0.76735         Stream Density Coefficient           pA_S         0.767355         Stream Density Coefficient           pA_H         0.74091         Stream Density Coefficient           pA_X         0.763992         Stream Density Coefficient		M_X	495.669161	g / min	Stream Mass Flow Rate	
M_W         495.911874         g / min         Stream Mass Flow Rate           M_C         -0.253082         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           M_E         -0.242713         mol / min         Stream Molar Flow Rate           N_FS         27.103524         mol / min         Stream Molar Flow Rate           N_Y         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_L         27.005734         mol / min         Stream Molar Flow Rate           N_C         0.446430         mol / min         Stream Molar Flow Rate           N_E         0.446779         mol / min         Stream Density Coefficient           PA_S         0.767535         Stream Density Coefficient           PA_X         0.764059 <t< td=""><td></td><td>M_H</td><td>495.669161</td><td>g / min</td><td>Stream Mass Flow Rate</td><td></td></t<>		M_H	495.669161	g / min	Stream Mass Flow Rate	
M_C         -0.253082         g / min         Stream Mass Flow Rate           M_E         -0.242713         g / min         Stream Mass Flow Rate           N_S         27.103524         mol / min         Stream Molar Flow Rate           N_P         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_K         27.103524         mol / min         Stream Molar Flow Rate           N_L         26.657744         mol / min         Stream Molar Flow Rate           N_C         0.445430         mol / min         Stream Molar Flow Rate           N_C         0.445779         mol / min         Stream Density Coefficient           \$\mathbf{A}_{\mathbf{A}}\$         0.767535         Stream Density Coefficient           \$\mathbf{A}_\mathbf{A}_\mathbf{O}         0.767635         Stream Density Coefficient           \$\mathbf{A}_\mathbf{A}_\mathbf{O}         0.74059         Stream Density Coefficient           \$\mathbf{A}_\mathbf{A}_\mathbf{O}         0.74091         Stream Density Coefficient           \$\		M_VV	495.911874	g / min	Stream Mass Flow Rate	
M_E         -0.242713         g / min         Stream Mass Flow Rate           N_S         27.103524         mol / min         Stream Molar Flow Rate           N_P         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_LE         0.445430         mol / min         Stream Molar Flow Rate           N_LE         0.445779         mol / min         Stream Density Coefficient           pA_S         0.767535         Stream Density Coefficient           pA_L         0.767635         Stream Density Coefficient           pA_A         0.764059         Stream Density Coefficient           pA_L         0.764059         Stream Density Coefficient           pA_L         0.763992         Stream Density Coefficient		M_C	-0.253082	g / min	Stream Mass Flow Rate	
N_S         27.103524         mol / min         Stream Molar Flow Rate           N_P         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_W         26.657744         mol / min         Stream Molar Flow Rate           N_C         0.445430         mol / min         Stream Molar Flow Rate           N_E         0.445779         mol / min         Stream Molar Flow Rate           PA_S         0.767535         Stream Density Coefficient           PA_S         0.767636         Stream Density Coefficient           PA_A         0.764059         Stream Density Coefficient           PA_K         0.764059         Stream Density Coefficient           PA_K         0.764091         Stream Density Coefficient           PA_K         0.76392         Stream Density Coefficient           PA_C         0.76392         Stream Density Coefficient           PB_S         -0.004341         Stream Density Coefficient           PB_N         -0.004748         Stream Density Co		M_E	-0.242713	g / min	Stream Mass Flow Rate	
N_S         27.103524         mol / min         Stream Molar Flow Rate           N_P         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_W         26.657744         mol / min         Stream Molar Flow Rate           N_C         0.445430         mol / min         Stream Molar Flow Rate           N_E         0.445779         mol / min         Stream Molar Flow Rate           PA_S         0.767535         Stream Density Coefficient           PA_Y         0.767535         Stream Density Coefficient           PA_H         0.741681         Stream Density Coefficient           PA_H         0.744091         Stream Density Coefficient           PA_C         0.763992         Stream Density Coefficient           PA_S         -0.004341         Stream Density Coefficient           PB_S         -0.004341         Stream Density Coefficient           PB_H         -0.004288         Stream Density Coefficient           PB_W         -0.004276         Stream Density Coefficient           PB_C         -0.004276         Stream Density Coefficient						
N_P         27.103524         mol / min         Stream Molar Flow Rate           N_X         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_W         26.657744         mol / min         Stream Molar Flow Rate           N_C         0.445430         mol / min         Stream Molar Flow Rate           N_E         0.445779         mol / min         Stream Molar Flow Rate           PA         0.767535         Stream Density Coefficient           PA_P         0.767535         Stream Density Coefficient           PA_X         0.754059         Stream Density Coefficient           PA_H         0.741681         Stream Density Coefficient           PA_Q         0.763992         Stream Density Coefficient           PA_S         -0.004341         Stream Density Coefficient           PB_S         -0.004341         Stream Density Coefficient           PB_X         -0.004341         Stream Density Coefficient           PB_K         -0.004748         Stream Density Coefficient           PB_K         -0.004276         Stream Density Coefficient           PB_C         -0.004276         Stream Density Coefficient		N_S	27.103524	mol / min	Stream Molar Flow Rate	
N_X         27.103524         mol / min         Stream Molar Flow Rate           N_H         27.103524         mol / min         Stream Molar Flow Rate           N_W         26.657744         mol / min         Stream Molar Flow Rate           N_C         0.445430         mol / min         Stream Molar Flow Rate           N_E         0.445779         mol / min         Stream Molar Flow Rate           pA_S         0.767535         Stream Density Coefficient           pA_X         0.767635         Stream Density Coefficient           pA_A         0.767635         Stream Density Coefficient           pA_A         0.767639         Stream Density Coefficient           pA_A         0.764059         Stream Density Coefficient           pA_A         0.744091         Stream Density Coefficient           pA_C         0.763992         Stream Density Coefficient           pB_S         -0.004341         Stream Density Coefficient           pB_X         -0.004341         Stream Density Coefficient           pB_X         -0.004341         Stream Density Coefficient           pB_W         -0.004288         Stream Density Coefficient           pB_X         -0.004276         Stream Density Coefficient           pC_S		N_P	27.103524	mol / min	Stream Molar Flow Rate	
N_H         27.103524         mol / min         Stream Molar Flow Rate           N_W         26.657744         mol / min         Stream Molar Flow Rate           N_C         0.445430         mol / min         Stream Molar Flow Rate           N_E         0.445779         mol / min         Stream Molar Flow Rate           PA_S         0.767535         Stream Density Coefficient           PA_P         0.767536         Stream Density Coefficient           PA_X         0.754059         Stream Density Coefficient           PA_H         0.741681         Stream Density Coefficient           PA_C         0.744091         Stream Density Coefficient           PA_C         0.004341         Stream Density Coefficient           PB_S         -0.004341         Stream Density Coefficient           PB_H         -0.004341         Stream Density Coefficient           PB_K         -0.004288         Stream Density Coefficient           PB_W         -0.004276         Stream Density Coefficient           PB_C         -0.004276         Stream Density Coefficient           PC_S         998.206319         Stream Density Coefficient           PC_P         998.206319         Stream Density Coefficient           PC_P         998.206319 <td></td> <td>N_X</td> <td>27.103524</td> <td>mol / min</td> <td>Stream Molar Flow Rate</td> <td></td>		N_X	27.103524	mol / min	Stream Molar Flow Rate	
N_W         26.657744         mol / min         Stream Molar Flow Rate           N_C         0.445430         mol / min         Stream Molar Flow Rate           N_E         0.445779         mol / min         Stream Molar Flow Rate           pA_S         0.767535         Stream Density Coefficient           pA_P         0.767536         Stream Density Coefficient           pA_P         0.767536         Stream Density Coefficient           pA_A         0.754059         Stream Density Coefficient           pA_H         0.741681         Stream Density Coefficient           pA_V         0.744091         Stream Density Coefficient           pA_C         0.004341         Stream Density Coefficient           pB_S         -0.004341         Stream Density Coefficient           pB_X         -0.004341         Stream Density Coefficient           pB_K         -0.004748         Stream Density Coefficient           pB_K         -0.004748         Stream Density Coefficient           pB_K         -0.004276         Stream Density Coefficient           pC_S         998.206319         Stream Density Coefficient           pC_F         988.206319         Stream Density Coefficient           pC_C_R         998.206319         Stream		N_H	27.103524	mol / min	Stream Molar Flow Rate	
N_C0.445430mol / minStream Molar Flow RateN_E0.445779mol / minStream Molar Flow RatepA_S0.767535Stream Density CoefficientpA_P0.767535Stream Density CoefficientpA_X0.754059Stream Density CoefficientpA_H0.741681Stream Density CoefficientpA_W0.744091Stream Density CoefficientpA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_Y-0.004341Stream Density CoefficientpB_X-0.004341Stream Density CoefficientpB_K-0.004748Stream Density CoefficientpB_K-0.004276Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_L995.994512Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C997.773037Stream Density Coefficient		N_W	26.657744	mol / min	Stream Molar Flow Rate	
N_E0.445779mol / minStream Molar Flow RatepA_S0.767535Stream Density CoefficientpA_P0.767535Stream Density CoefficientpA_X0.754059Stream Density CoefficientpA_H0.741681Stream Density CoefficientpA_W0.744091Stream Density CoefficientpA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_Y-0.004341Stream Density CoefficientpB_X-0.004341Stream Density CoefficientpB_X-0.004748Stream Density CoefficientpB_K-0.004748Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_Y995.994512Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C997.773037Stream Density Coefficient		N_C	0.445430	mol / min	Stream Molar Flow Rate	
pA_S0.767535Stream Density CoefficientpA_P0.767535Stream Density CoefficientpA_X0.754059Stream Density CoefficientpA_H0.741681Stream Density CoefficientpA_W0.744091Stream Density CoefficientpA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_P-0.004341Stream Density CoefficientpB_X-0.004151Stream Density CoefficientpB_K-0.004288Stream Density CoefficientpB_RH-0.004276Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_K995.994512Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C997.773037Stream Density Coefficient		N_E	0.445779	mol / min	Stream Molar Flow Rate	
pA_P0.767535Stream Density CoefficientpA_X0.754059Stream Density CoefficientpA_H0.741681Stream Density CoefficientpA_W0.744091Stream Density CoefficientpA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_X-0.004341Stream Density CoefficientpB_X-0.004341Stream Density CoefficientpB_R-0.004341Stream Density CoefficientpB_R-0.004748Stream Density CoefficientpB_B_R-0.004748Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_A995.994512Stream Density CoefficientpC_H988.064493Stream Density CoefficientpC_C97.773037Stream Density Coefficient		pA_S	0.767535		Stream Density Coefficient	
pA_X0.754059Stream Density CoefficientpA_H0.741681Stream Density CoefficientpA_W0.744091Stream Density CoefficientpA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_P-0.004341Stream Density CoefficientpB_X-0.004341Stream Density CoefficientpB_R-0.004341Stream Density CoefficientpB_R-0.004341Stream Density CoefficientpB_R-0.004341Stream Density CoefficientpB_R-0.004288Stream Density CoefficientpB_H-0.004288Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_K995.994512Stream Density CoefficientpC_H988.064493Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C997.773037Stream Density Coefficient		pA_P	0.767535		Stream Density Coefficient	
pA_H0.741681Stream Density CoefficientpA_W0.744091Stream Density CoefficientpA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_P-0.004341Stream Density CoefficientpB_X-0.004341Stream Density CoefficientpB_K-0.004341Stream Density CoefficientpB_R-0.004341Stream Density CoefficientpB_K-0.004341Stream Density CoefficientpB_K-0.004343Stream Density CoefficientpB_K-0.004288Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_K995.994512Stream Density CoefficientpC_H988.064493Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C97.773037Stream Density Coefficient		pA_X	0.754059		Stream Density Coefficient	
pA_W0.744091Stream Density CoefficientpA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_P-0.004341Stream Density CoefficientpB_X-0.004151Stream Density CoefficientpB_H-0.004748Stream Density CoefficientpB_W-0.004288Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_K995.994512Stream Density CoefficientpC_H988.064493Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C97.773037Stream Density Coefficient		ρΑ_Η	0.741681		Stream Density Coefficient	
pA_C0.763992Stream Density CoefficientpB_S-0.004341Stream Density CoefficientpB_P-0.004341Stream Density CoefficientpB_X-0.004151Stream Density CoefficientpB_H-0.004748Stream Density CoefficientpB_W-0.004288Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_K995.994512Stream Density CoefficientpC_H988.064493Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C97.773037Stream Density Coefficient		pA_W	0.744091		Stream Density Coefficient	
ρB_S         -0.004341         Stream Density Coefficient           ρB_P         -0.004341         Stream Density Coefficient           ρB_X         -0.004151         Stream Density Coefficient           ρB_H         -0.004748         Stream Density Coefficient           ρB_W         -0.004288         Stream Density Coefficient           ρB_C         -0.004276         Stream Density Coefficient           ρB_C         -0.004276         Stream Density Coefficient           ρC_S         998.206319         Stream Density Coefficient           ρC_P         998.206319         Stream Density Coefficient           ρC_N         995.994512         Stream Density Coefficient           ρC_H         988.064493         Stream Density Coefficient           ρC_W         992.136617         Stream Density Coefficient           ρC_C         97.773037         Stream Density Coefficient		pA_C	0.763992		Stream Density Coefficient	
pB_S-0.004341Stream Density CoefficientpB_P-0.004341Stream Density CoefficientpB_X-0.004151Stream Density CoefficientpB_H-0.004748Stream Density CoefficientpB_W-0.004288Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_K995.994512Stream Density CoefficientpC_K995.136617Stream Density CoefficientpC_C997.773037Stream Density Coefficient						
ρB_P         -0.004341         Stream Density Coefficient           ρB_X         -0.004151         Stream Density Coefficient           ρB_H         -0.004748         Stream Density Coefficient           ρB_W         -0.004288         Stream Density Coefficient           ρB_C         -0.004276         Stream Density Coefficient           ρC_S         998.206319         Stream Density Coefficient           ρC_P         998.206319         Stream Density Coefficient           ρC_X         995.994512         Stream Density Coefficient           ρC_H         988.064493         Stream Density Coefficient           ρC_W         992.136617         Stream Density Coefficient           ρC_C         97.773037         Stream Density Coefficient		ρB_S	-0.004341		Stream Density Coefficient	
ρB_X         -0.004151         Stream Density Coefficient           ρB_H         -0.004748         Stream Density Coefficient           ρB_W         -0.004288         Stream Density Coefficient           ρB_C         -0.004276         Stream Density Coefficient           ρC_S         998.206319         Stream Density Coefficient           ρC_P         998.206319         Stream Density Coefficient           ρC_X         995.994512         Stream Density Coefficient           ρC_H         988.064493         Stream Density Coefficient           ρC_W         992.136617         Stream Density Coefficient           ρC_C         997.773037         Stream Density Coefficient		ρΒ_Ρ	-0.004341		Stream Density Coefficient	
pB_H-0.004748Stream Density CoefficientρB_W-0.004288Stream Density CoefficientρB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_X995.994512Stream Density CoefficientpC_H988.064493Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C997.773037Stream Density Coefficient		ρΒ_Χ	-0.004151		Stream Density Coefficient	
pB_W-0.004288Stream Density CoefficientpB_C-0.004276Stream Density CoefficientpC_S998.206319Stream Density CoefficientpC_P998.206319Stream Density CoefficientpC_X995.994512Stream Density CoefficientpC_H988.064493Stream Density CoefficientpC_W992.136617Stream Density CoefficientpC_C997.773037Stream Density Coefficient		ρΒ_Η	-0.004748		Stream Density Coefficient	
pB_C         -0.004276         Stream Density Coefficient           pC_S         998.206319         Stream Density Coefficient           pC_P         998.206319         Stream Density Coefficient           pC_X         995.994512         Stream Density Coefficient           pC_H         988.064493         Stream Density Coefficient           pC_W         992.136617         Stream Density Coefficient           pC_C         997.773037         Stream Density Coefficient		pB_W	-0.004288		Stream Density Coefficient	
ρC_S         998.206319         Stream Density Coefficient           ρC_P         998.206319         Stream Density Coefficient           ρC_X         995.994512         Stream Density Coefficient           ρC_H         988.064493         Stream Density Coefficient           ρC_W         992.136617         Stream Density Coefficient           ρC_C         997.773037         Stream Density Coefficient		pB_C	-0.004276		Stream Density Coefficient	
pC_S         998.206319         Stream Density Coefficient           pC_P         998.206319         Stream Density Coefficient           pC_X         995.994512         Stream Density Coefficient           pC_H         988.064493         Stream Density Coefficient           pC_W         992.136617         Stream Density Coefficient           pC_C         997.773037         Stream Density Coefficient		4.4	232222222			
ρC_P         998.206319         Stream Density Coefficient           ρC_X         995.994512         Stream Density Coefficient           ρC_H         988.064493         Stream Density Coefficient           ρC_W         992.136617         Stream Density Coefficient           ρC_C         997.773037         Stream Density Coefficient		pC_S	998.206319		Stream Density Coefficient	
pC_X         995.994512         Stream Density Coefficient           pC_H         988.064493         Stream Density Coefficient           pC_W         992.136617         Stream Density Coefficient           pC_C         997.773037         Stream Density Coefficient		pC_P	998.206319		Stream Density Coefficient	
pc_H     988.064493     Stream Density Coefficient       pC_W     992.136617     Stream Density Coefficient       pC_C     997.773037     Stream Density Coefficient		pC_X	995.994512		Stream Density Coefficient	
pC_W     992.136617     Stream Density Coefficient       pC_C     997.773037     Stream Density Coefficient		pC_H	988.064493		Stream Density Coefficient	
pC_C 997.773037 Stream Density Coefficient		pC_W	992.136617		Stream Density Coefficient	
		pC_C	997.773037		Stream Density Coefficient	

Input	Name	Output	Unit	Comment	
	p_S	1.024763	g / cm ^ 3	Stream Density	
	P_P	1.024763	g / cm ^ 3	Stream Density	
	ρ_Χ	1.022119	g / cm ^ 3	Stream Density	
	ρ_H	1.013632	g / cm ^ 3	Stream Density	
	p_W	1.017871	g / cm ^ 3	Stream Density	
	p_C	0.997773	g / cm ^ 3	Stream Density	
	p_E	0.000049	g / cm ^ 3	Stream Density	
	µA_S	0.001144		Stream Viscosity Coefficient	
	µA_P	0.001144		Stream Viscosity Coefficient	
	μA_X	0.001602		Stream Viscosity Coefficient	
	μΑ_Η	0.002699		Stream Viscosity Coefficient	
	μA_W	0.002192		Stream Viscosity Coefficient	
	µA_C	0.001247		Stream Viscosity Coefficient	
	µB_S	.003251		Stream Viscosity Coefficient	
	µB_P	.003251		Stream Viscosity Coefficient	
	µB_X	0.003543		Stream Viscosity Coefficient	
	µB_H	.004241		Stream Viscosity Coefficient	
	μB_W	0.003918		Stream Viscosity Coefficient	
	µB_C	.003317		Stream Viscosity Coefficient	
	hC_2	19.853702		Stream Viscosity Coefficient	
	µC_P	19.853702		Stream Viscosity Coefficient	
	hC ^x	19.802474		Stream Viscosity Coefficient	
	μC_H	19.638053		Stream Viscosity Coefficient	
	hc_M	19.710527		Stream Viscosity Coefficient	
	hc_c	0		Stream Viscosity Coefficient	
		0.000			
	μD_S	.01002		Stream Viscosity Coefficient	
	P_Ou	.01002		Stream Viscosity Coefficient	
	X_Uų	0.008175		Stream Viscosity Coefficient	
	μD_H	0.005471		Stream Viscosity Coefficient	
	W_OU	0.000505		Stream Viscosity Coefficient	
	μD_C	0.009547		Stream Viscosity Coencient	
		0.010718	P	Stream Viecceily	
	P_0	0.010718	P	Stream Viscosity	
	р_г ц ¥	0.008807	P	Stream Viscosity	
	P_A	0.005992	P	Stream Viscosity	
	u W	0.007070	P	Stream Viscosity	
	u C	0.009547	P	Stream Viscosity	
	P_4	0.000017			

Input	Name	Output	Unit	Comment
	μ_E	0.000096	P	Stream Viscosity
	k_S	0.005972	W/(cm-°C)	Stream Thermal Conductivity
	k_P	0.005972	W/(cm-°C)	Stream Thermal Conductivity
	k_X	0.006099	W/(cm - °C)	Stream Thermal Conductivity
	k_H	0.006364	W/(cm-°C)	Stream Thermal Conductivity
	k_W	0.006248	W/(cm-°C)	Stream Thermal Conductivity
	k_C	0.006060	W/(cm-°C)	Stream Thermal Conductivity
	k_E	0.000206	W/(cm - °C)	Stream Thermal Conductivity
	Re_S	772.754293		Stream Reynolds Number
	Re_P	772.754293		Stream Reynolds Number
	Re_X	940.429542		Stream Reynolds Number
	Re_H	1382.136449		Stream Reynolds Number
	Re_W	1171.973697		Stream Reynolds Number
	Re_C	-1.771727		Stream Reynolds Number
	Re_E	-10.539154		Stream Reynolds Number
	Pr_S	0.488137		Stream Prandtl Number
	Pr_P	0.488137		Stream Prandtl Number
	Pr_X	0.550268		Stream Prandtl Number
	Pr_H	0.582159		Stream Prandtl Number
	Pr_W	0.579965		Stream Prandtl Number
	Pr_C	0.492048		Stream Prandtl Number
	Pr_E	0.247172		Stream Prandtl Number
	Nu_S			Stream Nusselt Number
	Nu_P			Stream Nusselt Number
	Nu_X			Stream Nusselt Number
	Nu_H			Stream Nusselt Number
	Nu_W			Stream Nusselt Number
	Nu_C			Stream Nusselt Number
	Nu_E			Stream Nusselt Number
1.27	PD_S		cm	Stream Nominal Pipe Diameter
1.27	PD_P		cm	Stream Nominal Pipe Diameter
1.27	PD_X		cm	Stream Nominal Pipe Diameter
1.27	PD_H		cm	Stream Nominal Pipe Diameter
1.27	PD_W		cm	Stream Nominal Pipe Diameter
5.08	PD_E		cm	Stream Nominal Pipe Diameter
.3175	PD_C		cm	Stream Nominal Pipe Diameter
95	PL_S		cm	Stream Equivalent Pipe Length
25	PL_P		cm	Stream Equivalent Pipe Length
60	PL_X		cm	Stream Equivalent Pipe Length
75	PL_H		cm	Stream Equivalent Pipe Length

Input	Name	Output	Unit	Comment
30	PL_W		cm	Stream Equivalent Pipe Length
180	PL_E		cm	Stream Equivalent Pipe Length
35	PL_C		cm	Stream Equivalent Pipe Length
	AP_S	0.000129	bar	Stream Pressure Drop
	ΔΡ_Ρ	0.000034	bar	Stream Pressure Drop
	ΔΡ_Χ	0.000067	bar	Stream Pressure Drop
	ΔΡ_Η	0.000057	bar	Stream Pressure Drop
	ΔP_W	0.000027	bar	Stream Pressure Drop
	ΔP_C	-0.000006	bar	Stream Pressure Drop
	ΔΡ_Ε	0.000000	bar	Stream Pressure Drop
	ΔP_CT	0.000530	bar	Condenser Tube Side Pressure Drop
	ΔP_HT	0.000010	bar	Heater Tube Side Pressure Drop
	ΔΡ	0.000826	bar	Total Pressure Drop From Pump to Valve
90	D_S		cm	Seawater Tank Nominal Diameter
35	D_B		cm	Brine Water Tank Nominal Diameter
35	D_F		cm	Fresh Water Tank Nominal Diameter
35	D_E		cm	Evaporator Nominal Diameter
35	D_C		cm	Condenser Nominal Diameter
30	L_S		cm	Seawater Tank Length
160	L_B		cm	Brine Water Tank Length
160	L_F		cm	Fresh Water Tank Length
160	L_E		cm	Evaporator Length
160	L_C		cm	Condenser Length
	202 10	Terre and the second	10/201	
	XA_S	6361.725124	cm ^ 2	Seawater Tank Cross Sectional Area
	XA_B	962.112750	cm ^ 2	Brine Water Tank Cross Sectional Area
	XA_F	962.112750	cm ^ 2	Fresh Water Tank Cross Sectional Area
	XA_E	962.112750	cm ^ 2	Evaporator Cross Sectional Area
	XA_C	962.112750	cm ^ 2	Condenser Cross Sectional Area
	v_s	190851.753706	cm ^ 3	Seawater Tank Volume
	V_B	153938.040026	cm ^ 3	Brine Water Tank Volume
	V_F	153938.040026	cm ^ 3	Fresh vvater Tank Volume
	V_E	153938.040026	cm ^ 3	Evaporator Volume
	V_C	103938.040026	cm ^ 3	Condenser volume
	21_5	24	cm	Initial Seawater Lawa
	21_E	0	cm	Initial Condenses Level
	21_0	0	cm	Provincenser Level
5	2_5	23.923908	cm	Brine Water Tank Level
5	4_B		cm	Ereck Water Tank Level
5	4_r		CIII	FIGHT VALUE TATIK LEVEL

Input	Name	Output	Unit	Comment
	Z_E	0.506391	cm	Evaporator Level
	zc	-0.000264	cm	Condenser Level
	VI CV	153938.040026	cm ^ 3	Initial Condenser Vacuum Volume
	VI EV	153938.040026	cm ^ 3	Initial Evaporator Vacuum Volume
	VIV	310922.658770	cm ^ 3	Initial Total Vacuum Volume
	V CV	153938.293673	cm ^ 3	Condenser Vacuum Volume
	V EV	153450.835048	cm ^ 3	Evaporator Vacuum Volume
	vv	310435.707439	cm ^ 3	Total Vacuum Volume
.118	Ω		bar	Steam Diffusion Resistance
2	σ		(g-°C ^ 0.5)/(bar -min-cm ^ 2)	Steam Diffusion Coefficient
	Md_E	-8.277411	g / min	Steam Diffusion Rate
	Ed_E	20008.593395	J / min	Steam Diffusion Energy
	Ψ	0.685501		Fraction of NCG Molecules Accumulating
	ΣNai_C	1.785895	moles	Initial NCG Molar Amount
	γ_H2O	2.061926		Water Activity Coefficient
	PI_H2O	0.022722	bar	Initial Vapor Pressure
	P_H2O	0.070578	bar	Vapor Pressure
	PI_V	.14	bar	Initial Vacuum Pressure
	Pt_V	0.150395	bar	Transitional Vacuum Pressure
	P_V	.14	bar	Vacuum Pressure
	Ein_P	39524.846869	J / min	Pump Energy Input
	Ein_C	38899.169216	J / min	Condenser Energy Input
	Ein_H	57039.694651	J / min	Heater Energy Input
	Ein_E	99023.636026	J / min	Evaporator Energy Input
	Eout_P	39524.846869	J / min	Pump Energy Output
	Eout_C	57016.366136	J / min	Condenser Energy Output
	Eout_H	99023.636026	J / min	Heater Energy Output
	Eout_E	79015.042631	J / min	Evaporator Energy Output
0	Q_P		J / min	Pump Heat Input
	Q_C	18117.338871	J / min	Condenser Heat Input
	Q_H	41983.941375	J / min	Heater Heat Input
0	Q_E		J / min	Evaporator Heat Input
	W_P	0	J / min	Pump Work Output
0	w_c		J / min	Condenser Work Output
0	W_H		J / min	Heater Work Output
0	W_E		J / min	Evaporator Work Output
	ka_C	0.000272	W/(cm - °C)	NCG Thermal Conductivity
	Ha_C	13.689610	J/g	NCG Enthalpy

Input	Name	Output	Unit	Comment
	MWa_C	29.655207	g / mol	NCG Molecular Weight
	Ma_C	0.010369	g / min	NCG Mass Accumulation Rate
	Na_C	0.000350	mol / min	NCG Molar Accumulation Rate
	Ea_C	0.141950	J / min	NCG Energy Accumulation
2	Z_P		cm	Pump Center Elevation
250	z_o		cm	Expansion Orifice Center Elevation
	HP_P	0	HP	Pump Power
	NPSH	1008.068669	cm	Net Positive Suction Head
	P_O	0.763349	bar	Expansion Orifice Inlet Pressure
	c_o	66.261451	1 / cm ^ 2	Expansion Orifice Coefficient
	D_O	0.122846	cm	Expansion Orifice Nominal Diameter
	SG_H	1.025876		Stream Specific Gravity
	Mmax_O	7290.073786	g / min	Maximum Flow Delivered By Needle Valve
.64	cv_o			Needle Valve Flow Coefficient
0.546461	CV			Ball Valve Flow Coefficient
1.27	D_HT		cm	Heater Tube Diameter
13	L_HT		cm	Heater Tube Length
1.27	D_CT		cm	Condenser Tube Diameter
475	L_CT		cm	Condenser Tube Length
.2	hid_CT		W/(cm^2-°C)	Condenser Tube Inside Dirt Coefficient
.5	hod_CT		W/(cm^2-°C)	Condenser Tube Outside Dirt Coefficient
	hi_CT	0.053853	W/(cm ^ 2 - °C)	Condenser Tube Inside Fluid Film Coefficient
	ho_CT	0.737128	W/(cm^2-°C)	Condenser Tube Outside Fluid Film Coefficient
.5	hid_C		W/(cm^2-°C)	Condenser Inside Dirt Coefficient
.75	hod_C		W/(cm^2-°C)	Condenser Outside Dirt Coefficient
	hi_C	0.411422	W/(cm^2-°C)	Condenser Inside Fluid Film Coefficient
	ho_C	0.026460	W/(cm^2-°C)	Condenser Outside Fluid Film Coefficient
.5	hid_E		W/(cm^2-°C)	Evaporator Inside Dirt Coefficient
.75	hod_E		W/(cm^2-°C)	Evaporator Outside Dirt Coefficient
	hi_E	0.458323	W/(cm^2-°C)	Evaporator Inside Fluid Film Coefficient
	ho_E	0.026460	W/(cm^2-°C)	Evaporator Outside Fluid Film Coefficient
4	N_CT			Number of Condenser Tube Vertical Rows
.125	δ_CT		cm	Condenser Tube Thickness
3.81	kw_CT		W/(cm-°C)	Condenser Tube Thermal Conductivity
.25	δ_C		cm	Condenser Thickness
.45	kw_C		W/(cm-°C)	Condenser Thermal Conductivity
.25	ð_E		cm	Evaporator Thickness
.001	kw_E		W/(cm-°C)	Evaporator Thermal Conductivity
	U_CT	0.034173	W/(cm^2-°C)	Condenser Tube Overall Heat Transfer Coefficient
	A_CT	1895.165768	cm ^ 2	Condenser Tube Surface Area
	S_CT	0.453184		Condenser Tube Counter Current Departure Parameter

Input	Name	Output	Unit	Comment
	F_CT	0.307688		Condenser Tube Counter Current Departure Correction Factor
	∆Tm_CT	14.649078	°C	Condenser Tube Logarithmic Mean Temperature Difference
	U_C	0.022796	W/(cm^2-°C)	Condenser Overall Heat Transfer Coefficient
	A_C	17592.918860	cm ^ 2	Condenser Surface Area
	s_c	0.102498		Condenser Counter Current Departure Parameter
	F_C	-0.040709		Condenser Counter Current Departure Correction Factor
	ΔTm_C	18.494616	°C	Condenser Logarithmic Mean Temperature Difference
	U_E	0.005925	W/(cm ^ 2 - °C )	Evaporator Overall Heat Transfer Coefficient
	A_E	17592.918860	cm ^ 2	Evaporator Surface Area
	S_E	1.036195		Evaporator Counter Current Departure Parameter
	F_E	0		Evaporator Counter Current Departure Correction Factor
	ΔTm_E	6.092195	°C	Evaporator Logarithmic Mean Temperature Difference
	BPE		°C	Boiling Point Elevation
	NEA		°C	Non Equilibrium Allowance
75	η_P		%	Pumping Efficiency
	η_R	29.437318	%	Recovery Efficiency
	η_T	-0.631847	%	Thermal Efficiency
	n_C	50.493944	%	Condenser Efficiency
.92	a_SC			Solar Collector Absorptance
.9	T_SC			Solar Collector Transmittance
.000092	U_SC		W/(cm^2-°C)	Solar Collector Heat Loss Conductance
.82	F_SC			Solar Collector Heat Removal Factor
.06	L		W/cm^2	Incident Insolation On Solar Collector
	A_SC	17462.532227	cm ^ 2	Solar Collector Area
21.022222	T_Xe		°C	Experimental Value of Stream Temperature
21.240556	T_We		°C	Experimental Value of Stream Temperature
24.241111	T_Ee		°C	Experimental Value of Stream Temperature
0.140585	Pt_Ve		bar	Experimental Value of Vacuum Pressure

Number	Date	Start	Stop	t (minutes)	PE ⁱ (bar)	$V_S^{\ i}$ (Gallon)	V _S ^f (Gallon)	M _S (LPM)	TIC (°C)	QE (ml)
1	4/24/09	3:20:00 PM	6:20:00 PM	180	0.140	40	17	0.48	50	30
2	4/25/09	1:15:00 PM	4:15:00 PM	180	0.140	40	17	0.48	50	15
3	4/26/09	2:09:00 PM	5:09:00 PM	180	0.140	40	17	0.48	50	36
4	4/27/09	12:55:00 PM	3:55:00 PM	180	0.140	40	18	0.46	60	345
5	4/28/09	12:42:00 PM	3:42:00 PM	180	0.140	40	18	0.46	60	350
6	4/29/09	12:37:00 PM	3:37:00 PM	180	0.140	40	18	0.46	60	360
7	4/30/09	1:17:00 PM	4:17:00 PM	180	0.140	40	19	0.44	70	2030
8	5/1/09	2:49:00 PM	5:49:00 PM	180	0.140	40	19	0.44	70	2050
9	5/2/09	1:07:00 PM	4:07:00 PM	180	0.140	40	19	0.44	70	2030
10	5/3/09	1:37:00 PM	4:37:00 PM	180	0.140	40	22	0.38	80	4880
11	5/4/09	1:17:00 PM	4:17:00 PM	180	0.140	40	22	0.38	80	4720
12	5/5/09	1:47:00 PM	4:47:00 PM	180	0.140	40	22	0.38	80	4560
13	5/15/09	1:13:00 PM	4:13:00 PM	180	0.140	40	7	0.69	50	13
14	5/16/09	1:04:00 PM	4:04:00 PM	180	0.140	40	7	0.69	50	25
15	5/17/09	2:24:00 PM	5:24:00 PM	180	0.140	40	7	0.69	50	27
16	5/18/09	12:24:00 PM	3:24:00 PM	180	0.140	40	8	0.67	60	190
17	5/19/09	12:30:00 PM	3:30:00 PM	180	0.140	40	8	0.67	60	205
18	5/20/09	12:59:00 PM	3:59:00 PM	180	0.140	40	8	0.67	60	200
19	5/21/09	12:24:00 PM	3:24:00 PM	180	0.140	40	9	0.65	70	1310
20	5/22/09	1:24:00 PM	4:24:00 PM	180	0.140	40	9	0.65	70	1180
21	5/23/09	1:39:00 PM	4:39:00 PM	180	0.140	40	9	0.65	70	1145
22	5/24/09	2:42:00 PM	5:42:00 PM	180	0.140	40	13	0.57	80	4995
23	5/25/09	1:04:00 PM	4:04:00 PM	180	0.140	40	13	0.57	80	4770
24	5/26/09	1:04:00 PM	4:04:00 PM	180	0.140	40	13	0.57	80	4365

# Appendix N. Experimental record

## Appendix O. Experimental equipment specifications

#### 1 Seawater Tank - McMaster-Carr

Polyethylene Troughs



Orbeithefens Boughs are built tough so they won't usi, dent, or leak—even when frozen. All are nestable,
(A) Structural-team troughs have a heavwail construction and a 1 ist NPT female plasts or aim with plug. Max temperature is 120° F. Color is black,
(B) FUA compliant trough is lead for contents when a shatbon is limportant. Make of FDA compliant treats is also for contents when a shatbon is limportant. Make of FDA compliant treats is also for contents when a shatbon is limportant. Make of FDA compliant treats also for contents when a shatbon is limportant. Make of FDA compliant treats is also for contents when a shatbon is limportant. Make of FDA compliant resins and meats USDA requirements. Max temperature is
156° F. Color is white. *Debowl cover is* made of white beyothylene. *Debowl mobile base* is made of a galvanced sket angle frame and has feur 5° eta, phondie
switc costers. These adds 5 × of to bough height. O'all 0'ail

Cap.	Body Size,	Top Size,	0'all	Wall		
gal.	Lg. x Wd.†	Lg. x Wd.	Ht.	Thick.		Each
Structu	ral-Foam Troughs					
50	49 10" x 28 5/18"	52"x 31"	12"	1/4*	3673K49	\$118.22
100	49 1/2" x 28 1/2"	53"×31"	25"	1.45	3673K52	109.36
150	55" x 36 Le"	58" x 39"	25"	6/10"	3673K53	183.02
300	66 1/4" x 60 1/2"	69" x 63 1/4"	25	6/16*	35731454	284.35
† Represe	nts dimensions just befow top lip.					

#### 1 Condenser - McMaster-Carr

ASME Painted Steel Tanks

Manufactured in accordance with ASME codes. Maximum pressure is 150 psi. Maximum operating temperature is 450° F. Tanks have a gray ename! finish.



1 Evaporator - McMaster-Carr

Galvanized Steel Tanks



1 Electric Heater – McMaster–Carr

#### Water Heater Replacement Parts

Header elements are made of zin-plated ropper and must be mounted horizontally. Snow-in shie have 1* NPSM threads. Flatflange and raised flange shies have four both holes on a 2 rig" dia. circle (gaskets are included, shis" dia. Dolts are not). Flange is steel. Thermostats are for 120 to 480 VAC. Temp: range is 120" to 160" F. Pilot-light thermocouples include adapter nut. CSA certified. 0 Sel C 2 -Screwein Flat Flange rmostats



Heater	Elements			
Watts	VAC (Phase)	Amps	Min, Tank Dia.	Each
Screw-b	n			
1500	120(1)	\$2,5	8 1/2"	35555K31 \$9,12
1500	240 (1)	6.25	3 1/2"	35555K34 9.28
4500	240 (1)	18.76	12"	35555K32 8.49
5500	240(1)	22.92	12	35555K33 12.81
Flat Flan	ge Bolt-In			
1500	120(1)	12.5	\$ 1/2"	35555K21 10.89
4500	240(1)	18.75	12*	35555K22 11.12
5500	240 (1)	22.92	12*	36555K23 16.65
Raised F	lange Bolt-In			
1500	128(1)	12.5	8 1/2"	35555K41 10.60
4500	240(1)	18.75	12*	35555K42 9.93
Pilot Li	ght Thermocouple	s		
O'all Lg.				Each
18*				4148K14 \$5.68
24*				4148K15 5.93
36*				4148K17 6.42
48*				4148K19 7.43

#### Plastic Pipe Fittings and Pipe 26 products match your selections Shape Pipe Pipe Type Unthreaded Pipe to Pipe Connection Unthreaded (pipe) System of Measurement Inch Schedule 80 Perforation Type Solid Pipe Material CPVC Color Gray Specifications Met American Society for Testing and Malerials (ASTM) and National Sanitation Foundation (NSF) ASTM Specification ASTM D1764 and ASTM F441 NSF Specification NSF 61 Pipe/Thread Size Þ Pipe size is the accepted industry designation, not the actual measured size. To determine pipe size, first measure the inside diameter (00) or outside diameter (00) or a threaded titling or the 00 or unthreaded pip, as shown siteff. Then, round up the measurement to the closestID or 00 insted in the chart and select the corresponding pipe size. For example, if the fitting ID or 00 measures 1-3416°, the next highestID or 00 in the charts 1-387, and the corresponding pipe size is ". B Threaded Filling Pipe 3/8* 1/2* 1/8* 172" 578" 174" 5/8* 3/4* 3/8* 1* 1-3/8* 1-1/8* 1-3/8* 3/4* 1* 1-7/8° 2° 1-1/2° 4-1/2* 4-1/2* 4* Threaded Fitting ID or OD 3/4* 1* 1/2* 1-5/8* 1-3/4* 1-1/4* 2-3/8" 2-1/2" 2" 2-7/8* 2-7/8* 2-1/2* 3-1/2" 3-1/2" 3" 8-3/4" 6" Unthreaded Fitting and Pipe OD Pipe Size 1/4" | 3/6" | 1/2" | 3/4" | 1" | 1-1/4" | 1-1/2" | 2" | 2-1/2" | 3" | 4" | 6" | 8" Maximum Pressure (psi) PSI (pounds per square inch) is the amount of pressure a pipe fitting can endure. PS (bounds per square inch) is th Low Pressure High Pressure 250 520 220 630 370 850 400 920 420 1130 470 Length 51 10

## CPVC Piping & Fittings – McMaster–Carr



# Copper Piping & Fittings - McMaster-Carr Tubing 126 products match your selections Metal Copper Shape Single Line System of Measurement Inch organism at Alexandroment Incon Low Temperature Range 0° to -100° F Metal Construction. Seamless Fillings Used. Soldword Whot Copper Specifications Met. American Society for Testing and Materials (ASTM) ASTM Specification ASTM B88 | ASTM B280 Copper Material Type — Copper material comparison chart Drinking Water Copper (Alloy 122) | General Purpose Copper (Alloy 122) Dimensions - Outside Diameter lins Dier L Wall Thickness Select Outside Dia.; 🛁 Select Inside Dia.; 🛁 Select Wall Thickness; 👻 Tube Size Tube size is the accepted designation for wrot copper hubo fittings, not an actual diameter size. Specific diameters can be selected in Dimensions. 1/8° | 1/4° | 3/8° | 1/2° | 5/8° | 3/4° | 1° | 1-1/4° | 1-1/2° | 2° | 2° 1/2° | 3° Maximum Pressure Range, psi Select lite range of maximum pressure railings (ps?) that best approximates your need. 251-500 | 501-750 | 751-1,000 | 1,001-2,000 | 3,001-4,000 Operating Temperature Select the range of low and/or high temperature resistance that best approximates your need. Before purchasing a product, verify that the Operating Temperature range is suitable for your application. These selections are meant only as a general guide. High Temperature Range +101" to +200" F +301" to +500" F

Copper Tube Fittings















### 6 Ball Valves - McMaster-Carr

#### 4 1/2" Full Port with Lever Handle

### 2 ¼" Full Port with Lever Handle

Type 316 Stainless Steel Ball Valves



Full Port • Max: Pressure: W.O.O. (waler, oil, inert gas): 1000 psi @ 200* F ; WK3.P. (working steam pressure): 150 psi @ 366* F • Vacuum Rating: 28' Hg • Temperature Range: -25' to +450* F

 Reduced Port

 • Maximum Pressure: W.O.G. (water, cill, linert gas): 800 psl @ 100° F (W.S.P. (working steam pressure): 50 psl @ 297* F

 • Vacuum Rating: 25° Hg

 • Temperature Range:-25° to +450° F

Body, ball, and stem are Type 316 stainless steel for use in conceive environments. Stem is blowout proof. Handle is Type 301 stainless steel with viny gin: On full-port motifies, seats are glass-filled PTFE and seats are PTFE, on reduced port models, seats and packing are PTFE. Connections: VPT female. Valves can be locked in the closed position using a padlock (not included). These with an **oval handle** prevent accidental snagging.

Pipe	End-to-	Maximum Padlock Sharina Dia	wiLaver wiCval Handle Handle Each Each
Fell Doct	Life cg.	Charles Cha.	East East
tur"	7	10.00	48405/50 507 60 48405/70 500 00
	2	1004	ACADEVED 27 61 40405170 10 00
220	1	1920-4	ACADEMER 77.00 ACADEMON 10.17
1/2	2 23/04	19004	46465K61 27.66 46495K61 30.47 A6465K61 37.46 A6465K61 30.47
204	2.04	19/04	40405/02 07.10 40405/02 05.40 40405/02 60.00 40405/02 16.40
1	3 14	1000-1	40490K03 02.80 40490K83 00.48
1 1/4	3 51/6-1	19064	40490664 9217 40490684 84.54
1 1/2*	42164	19.04	48495K85 102.90 48495K85 102.83
2*	5 17/64	19,64	46495K66 137.97 46495K66 137.69
2 1/2"	6 37.64	3.6	464951/67 379.08
3*	7 36/6-7	3/6"	46495K68 467.32
Reduced Port			
124	1 17/22"	19,84	48325K46 19.27 46325K68 28.41
3.62"	1.42.64	10.54	46325K47 19.27 46325K67 23.28
1/2"	2 7632	10,84*	46325K48 20.63 46325K68 21.25
345	2000	10.04	48325K49 2875 46325K69 1344
1*	7.61.807	iced.	48325651 3178 48335671 4184
1 111	2	in a d	400001000 1700 10000170 50.00
	D street	1 Martine 1	40020F02 40.00 40020F72 04.00
1 374	3 17/04	1 March	+0325K53 70.50 40325K73 01.80
1	3 10/10	19,04	40325854 81,88 46325874 84,40

#### Insulation Material – McMaster-Carr

Plastics This product matches all of your selections.		
Part Number 85316K303	\$367.81	Each
Kalerial Malerial	Garolite	
Garolite Material	Grade XX Garolite	
Backing	Plain Back	
Shape	Sheets, Bars, Strips, and Cubes	
Sheets, Bars, Strips, and Cubes Type	Rectangular Sheet	
Thickness	I.	
Thickness Tolerance	1.033"	
Length	46"	
Length Tolerance	#1"	
Width	36"	
Width Tolerance	±1*	
Opaque	Black	
Operating Temperature Range	+32* to +266* F	
Performance Characteristic	High Tensile Strength	
Tensile Strength	23,900 psi lengthwise, 16,100 psi crosswise	
Impact Strength	0.55 ft-libs./in: lengthwise; 0.46 ft-libs./in. crosswise	
Tolerance	Standard	
Hardness	Barcol 50-85	
Specifications Met	Military Specifications (MIL), Underwriters Laboratories (UL)	
MIL Specification	MIL-1-24768	
UL Rating	UL94HB	

-

#### Strut Channels - McMaster-Carr

#### 2 1" Solid 10' bars

#### 7 1" Slotted-Hole 10' bars

#### 2 0.5" Slotted-Hole 10' bars

Strut Channel



The U-shaped dissign of shut channel provides connection points in suspending and routing applications. Brut channel can also be used to build structures such as racks. Stotted hole and round hole struct channel slow connections to the channel opening, as well as connections to the back of the channel without drilling. Solid struct channel allows: connections to the channel without drilling.

#### Strut channel and accessories are available in a variety of materials:

Zinc plated steel offers good corrosion resistance in most environments.
Primod steel is ready for custom painting with no prop work required. It provides some discussion and the stand-dipped zinc coabing for beller consision resistance than zince-lated steel.
Type 304 stainless steel offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additionary offers excellent corrosion resistance.
Type 304 stainless (converted) in additio

Strut Channel Save time—we have the length you need already cut. Strut channel is great for supporting conduit, pipe, electrical components, and duct. Stotted Hole Channel— Holes are one "Wd.x1" ne" Lg. exception liberglass, which has are "wd.x1" Lg. holes. All holes are spaced on 2" centers. 6 - Alt Slotted Hole Channel – Hore are two who in the targe sector and the sector of the sect Slotted Hole Solid Material Slotted-Hole Channel 16.a" x 15.a" Zinc-Plated Steel Primed Steel Choces - Color Steel Auminum Gaiv Steel Type 316 85 Type 318 85 Fiberglass -1-10 4-11. Lg.--PerFL 
 \$411
 3310T36
 \$10.52
 3310T112
 \$22.16
 3310T113
 \$24.86
 3310T214
 \$26.59
 3310T126

 \$82
 3310T116
 41.90
 3310T117
 47.63
 3310T118
 52.62
 3310T116
 63.50
 3310T126

 \$411
 3310T166
 14.92
 3310T117
 47.63
 3310T118
 52.62
 3310T116
 63.50
 3310T126

 \$411
 3310T461
 18.52
 3310T117
 27.68
 3310T174
 22.69
 3310T126
 3310T126
 3310T126
 3310T126
 3310T126
 3310T126
 3310T1174
 22.69
 3310T126
 3310T56
 3310T56
 3310T565
 3310T56
 33 3310T201 3310T334 3310T107 3310T285 3230T81 3310T628 33085T531 92085T531 \$34.94 74.97 34.94 39.53 47.34 88.48 144.33 33085T671 3261T66 330857761 201.45 Fiberglass 13/16" x 1 5/8" Zinc-Plated Steel 88.20 
 3.22
 3.3107740
 15.77
 3.3107742
 17.93
 3.3107743
 18.92
 3.31077344
 2.2.90
 3.31077

 3.32
 3.31077127
 3.0.02
 3.3107728
 3.4.13
 3.3107723
 19.92
 3.3107736
 4.4.5.0
 3.3107737

 3.32
 3.31077127
 3.3017728
 19.92
 3.3107736
 4.4.5.0
 3.3107737

 3.36
 3.30107221
 19.92
 3.3107724
 2.9.0
 3.3107736

 3.66
 3.30107221
 17.43
 3.3107723
 19.92
 3.310724
 2.9.0
 3.310724

 3.66
 3.30107221
 17.43
 3.3107236
 1.9.2
 1.9.63
 3.310724
 3.9.0
 3.310724
 3.9.0
 3.310724
 3.9.0
 3.310724
 3.9.0
 3.310724
 3.9.0
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724
 3.310724</td 3310T204 2inc-Plated Steel Primed Steel Choose- a-Color Steel Aluminum Galv, Steel Type 304 SS Type 316 SS Elieratiose 3310T335 3310T202 3310T291 3230T85 53.72 28.22 31.02 30.68 69.16 3310T629 33085T611 104.99 125.55 65.70 Fiberglass 3261T69 -10-11 Lg. Each 5-ft. Lg. ______ Fach _____ Each _____ Each -618" Lg.-Each Per Ft Materiai Solid Channel Solid Channel 168" x 168" Zinc-Plated Steel Primed Steel Graen-Painted Steel Audinum Galv, Steel Type 316 SS Type 316 SS Eiberdiscs 4.55 3310T37 9.05 3310T149 4.55 3310T441 5.26 3310T298 5.67 3230T85 9.87 3310T872 18.35 33085T21 25.57 33085T39 7.95 3261T25 21 61 43 10 21 61 24 94 26 93 46 88 87 16 121 46 37 76 24 57 49 09 24 57 28 35 30 62 53 30 99 09 138 08 42 93 33107132 33107156 33107112 33107299 3230722 33107673 33005716 33005716 33107133 33107157 33107157 331071301 3230723 33107674 33005717 33095727 27.30 54.54 27.30 31.60 34.02 59.22 110.10 3310T134 3310T158 3310T114 3310T302 3230T24 3310T675 33085T18 33085T28 32 76 65 45 32 76 37 80 40 82 71 06 132 12 184 10 331072 33107159 33107443 33107303 3230766 33107676 33085741 33085749 3310T103 3310T103 3310T336 3310T101 3310T297 3230T21 33005T15 33005T15 33005T25 77 27 38 67 44 62 40 20 63 89 155 98 153.42 217.34 Fiberglass 13/16" x 1 5/8" 3281781 3261762 3261763 47.70 3261T64 57.24 3261726 67.58 3.43 3310747 7.06 33107166 3.43 33107561 3.91 33107505 6.92 33107578 6.92 33107678 12.58 33085723 15.59 33085759 5.09 3261777 16.29 33107162 33.53 33107167 16.29 33107167 16.29 33107142 18.10 33107306 18.76 320732 31.45 33107879 59.76 330857421 74.05 330857471 24.18 3261776 
 33107163
 20.68

 33107168
 42.36

 33107143
 20.58

 33107307
 22.88

 3230733
 23.70

 33107681
 39.72

 330867422
 75.48

 32051472
 93.54
 33107164 24.70 33107169 50.83 33107169 50.83 33107144 24.70 33107068 24.74 33107068 47.68 330087423 90.58 330867423 90.58 330857423 112.25 3261781 36.65 3310T106 3310T337 Zinc-Plated Steel 18.52 38.12 18.52 20.57 21.33 35.76 67.93 84.18 27.49 3310T6 3310T176 29.16 68.01 Primed Steel Oreen-Painted Steel Choose- a-Color Steel 33101176 33107603 33107309 3230776 33107683 33085746 33085776 3261782 3310T337 3310T104 3310T304 3230T31 3310T632 33085T411 33085T461 3261T76 29.16 32.36 33.56 56.27 Aluminum Gaiv Steel Type 304 SS Type 316 SS Fiberglass 43.27

# Instant Ocean

## 15 lbs Sea Salt – Petco

#### Aquarium Systems Instant Ocean Aquarium Salt

Nitrate-free, phosphate-free, fast-dissolving mix contains every important major, minor and trace element necessary for the health of your aquarium.

12 of 13 (92%) of customers said they would recommend this product to a friend.

Aquarium Systems Instant Ocean Aquarium Salt 15 lbs. - Makes 50 Gallons

SKU: 77780

Instant Ocean salt is the most carefully formulated and most carefully manufactured synthetic sea salt in the world. It's pharmaceutically blended and scientifically analyzed. This complete formula contains every major, minor, and trace element necessary to insure that even the most delicate marine fish, invertebrates, and plants will thrive.

Exceptional solubility provides a clear solution in minutes and can be used immediately after mixing. Reaches and maintains proper pH quickly. The convenient one-part form is easy to use for mixing complete package or small quantities--no special additives to handle. Uniform particle size assures consistency throughout package--no separation during packaging and shipping.

Nitrate-free. Phosphate-free.

Simply put, no other product outperforms Instant Ocean salt. It's the world's most popular brand.

1 Needle Valve - Cole-Parmer

# Plastic Needle Valves



EW-03245-70	Qty:	1
PP Needle Valve, 1/2" NPT(F)	Ad	d to Cart
\$74.00/each (USD)	Available in 4	days.
Product Rating 🕄 🕄 🕄 🕄	(O Ratings)	

PVC and PP valves withstand up to 150 psi; PVDF up to 200 psi. Seats are made of PTFE and O-rings made of Viton[®]. Pipe thread connections.

#### Specifications

NPT(F)	1/2"
Max gpm	8
Max temperature	250°F (121°C)
Material	polypropylene

### 1 Vacuum Gauge - Cole-Parmer

# WIKA Forged-Brass Liquid-Filled Gauge





1 Pressure Transducer – Cole–Parmer

## Cole-Parmer High-Accuracy Pressure Transducers



–14.7 to 15 psig Cole-Par ±0.25%-Accuracy Compo Transmitter, 4 to 20 mA 0	rmer [©] Qty: <mark>1</mark> und Add to Car Jutput
\$149.00/each (USD)	In stock.
Product Rating	(O Ratings)

Specifications	
Output	4 to 20 mA
Accuracy	±0.25% full-scale
Process connection	1/4" NPT(M)
Power	9 to 30 VDC
Electrical connections	2-ft cable
Dimensions	2 3/4"L x 1 1/2" dia
Wetted parts	17-4 PH stainless steel
Range	-14.7 to 15 psig

#### 1 Flow Meter - Cole-Parmer

## Easy-View Acrylic In-Line Flowmeters



#### 1 Temperature Controller - Omega

#### 1/16 DIN Autotune PID/On-Off Controllers with Modular Output Options



The microprocessor holds all data in non-volatile memory, with the ability to retain data for 10 years with no power. The CN3000A has a large, 3 1/2 digit green LED readout, with auxiliary indicators for each cutput, and 3 LED's to indicate deviation from setpoint.

Selection of all operational controls is made through the keys on the front panel, with the display prompting the user through each step. After the parameters have been set, they can be locked in, simply by removing a jumper located behind the front beal. The user can select the control mode and parameters, display resolution (1 or 0.1%), and units (PFC). The operator can also utilize the ranging feature, which limits the range in which the setpoint may be chosen, or lock ut a user from changing the setpoint. The new single setpoint controller has rear termination. The optional second setpoint and output of the CN9000A model can be set for proportional, on-off or latching limit control, and can be set as either a tacking or non-tracking setpoint. Cycle time, proportional band and on-off deadband are all set independently of the primary setpoint.

## 1 ADC – Omega

#### Portable Data Acquisition SystemsFor Notebook and Desktop PCs

OMB DAQBOOK Series



- Links to Notebook or Desktop PCs via a Standard or Enhanced Parallel Port (EPP) or Optional PCMCA Link Operable From ac Adapter, Optional Hickel Cadmium Power Medule, 12 V Car Bottery, or Any 9 to 20 Vdc Source

- Two 12 bit Analog Outputs
   24 General-purpose Digital O Lines, Expandable to 192 Five Program mable 16 bit Cou
- . DOS and Windows Drivers

Click here for larger image. CMA-DAQBOCK portable data acquisition systems for notebook and desktop PCs offer 12- or 16-bit, 100 Hr data acquisition. The OM8-DAQBODK models provide >700 Kbyte/s bidirectional data communication to the PC via an enhanced parallel port (EPP) or PCMCIA ink interfaces. Operable from ac or dc power sources, OM8-DAQBOCK sones products are ideal for a vanity of pourable, field, and benchtop applications. The OM8-DAQBOCK's high performance A/D conversion and 100 KHz sampling make them particularly useful for applications with high accuracy and speed requirements. There extensive I/O and signal conditioning capabilities, and low cost per channel also make them an offective alternative to more expensive stand-alone data loggres, less portables strip-chart recorders, and less versatile dedicated hancheid devices. The OM8-DAQBOCKK are supplied with DaqView, a Windows-based data directly to disk. The package includes thermocouple linearization for direct readout of temperatures when used with an OM8-DAQBOCK are supplied with DaqView, a Windows-based data directly to disk. The package includes thermocouple and TNE OM8-DAQDOCK products include drivers for Visual Basic, Quick Basic, C, and Pascal, they also include DOS drivers that are compatible with DA5-16, PIO-12, and CTM-OS boards. Saveral graphical analysis and control software packages also support the OM8-DAQBOCKs.

## 5 Single–Output Thermocouples – Omega

**Quick Disconnect Thermocouples with Miniature Connectors** 



Alloy/ANSI Color Code	Sheath Dia. inches	Model No. 6" Length	Model No. 12" Length
J Iron-Constantan 304 SS Sheath	0.010 0.020 0.032 0.040 0.052 0.125	JMQSS-010(*)-6 JMQSS-020(*)-6 JMQSS-032(*)-6 JMQSS-040(*)-6 JMQSS-052(*)-6 JMQSS-125(*)-6	JMQSS-010(7)-12 JMQSS-020(7)-12 JMQSS-022(7)-12 JMQSS-040(7)-12 JMQSS-062(7)-12 JMQSS-125(7)-12
K CHROMEGA®-ALOMEGA® 304 SS Sheath	0.010 0.020 0.032 0.040 0.062 0.125	KMQSS-010(*)-6 KMQSS-020(*)-6 KMQSS-032(*)-6 KMQSS-040(*)-6 KMQSS-062(*)-6 KMQSS-125(*)-6	KMQSS-010(")-12 KMQSS-020(")-12 KMQSS-020(")-12 KMQSS-040(")-12 KMQSS-062(")-12 KMQSS-125(")-12
K CHROMEGA® ALOMEGA® Super OMEGACLAD® XL Sheath Sheath	0.010 0.020 0.032 0.040 0.062 0.125	КМОХL-010(")-6 КМОХL-020(")-6 КМОХL-020(")-6 КМОХL-040(")-6 КМОХL-040(")-6 КМОХL-052(")-6	KMQXL-010(*)-12 KMQXL-020(*)-12 KMQXL-032(*)-12 KMQXL-040(*)-12 KMQXL-040(*)-12 KMQXL-052(*)-12
N OMEGA-P®-OMEGA-N® Super OMEGACLAD® XL Sheath	0.020 0.032 0.040 0.062 0.125	NMQXL-020(*)-6 NMQXL-032(*)-6 NMQXL-040(*)-6 NMQXL-062(*)-6 NMQXL-125(*)-6	NMOXL-020(")-12 NMOXL-032(")-12 NMOXL-040(")-12 NMOXL-062(")-12 NMOXL-062(")-12
E CHROMEGA®-Constantan 304 SS Sheath	0.010 0.020 0.032 0.040 0.062 0.125	EMOSS-010(*)-6 EMOSS-020(*)-6 EMOSS-032(*)-6 EMOSS-040(*)-6 EMOSS-062(*)-6 EMOSS-052(*)-6	EMQSS-010(")-12 EMQSS-020(")-12 EMQSS-020(")-12 EMQSS-040(")-12 EMQSS-062(")-12 EMQSS-125(")-12
<b>T</b> Copper-Constantan 304 SS Sheath	0.020 0.032 0.040 0.062 0.125	TMQSS-020(7)-6 TMQSS-032(7)-6 TMQSS-040(7)-6 TMQSS-062(7)-6 TMQSS-125(7)-6	TMQSS-020(*)-12 TMQSS-032(*)-12 TMQSS-040(*)-12 TMQSS-052(*)-12 TMQSS-125(*)-12
N OMEGALLOY® Inconel 500 Sheath	0.010 0.020 0.032 0.040 0.062 0.125	NMGIN-010(")-6 NMGIN-020(")-6 NMGIN-022(")-6 NMGIN-062(")-6 NMGIN-062(")-6 NMGIN-125(")-6	NMGIN-010(*)-12 NMGIN-020(*)-12 NMGIN-032(*)-12 NMGIN-062(*)-12 NMGIN-062(*)-12 NMGIN-052(*)-12

#### 1 Dual–Output Thermocouple – Omega

Dual Element Thermocouple Assemblies with Standard Size Dual TC Connector





1 Vacuum Pump – Robin Air

Model	Free Air Displacement	Factory Micron Rating	No. of Stages	Intake Fitting	Oil Capacity	Motor Size	Voltage	Approvals	Weight	Dimensions
Domes 15234	tio Models 12:CFM	50 microns	2	1/4" MFL and 1/2" ACME	5 oz. (148ml)	1/8 hp	115V 50/60 Hz	u	10 lbs. (4.5kg)	8.5" H x 4 3" W x 9.5" L 215mm x 108mm x 240mm
15400	4 CFM	20 microns	2	1/4" MFL and 1/2" MFL	15 az. (445ml)	1/3 hp	116V 60 Hz	UL	27 lbs. (12.2 kg)	0.5" H x 6.5" W x 15" L 247mm x 142mm x 381mm
15434	4 CFM	20 microns	2	1/4" MPL and 1/2" ACME	15 az. (445ml)	1/3 hp	115V 60 Hz	UL	27 lbs. (12.2 kg)	9.5" H x 5.5" W x 15" L 247mm x 142mm x 381mm
15600	6 CFM	20 microns	2	1/4" MFL and 1/2" MFL	15 oz. (445mi)	1/2 hp	115V 60 Hz	UL	27 lbs. (12.2 kg)	9.5" H x 5.5" W x 15" L 247mm x 142mm x 391mm
15120A	10 CFM	20 microns	2	1/4" MFL and 1/2" MFL	17 oz. (500ml)	1/2 hp	115V 60 Hz	UL	38 lbs. (17.2 kg)	10" H x 5.5" W x 16" L 272mm x 142mm x 419mm
15226	28 Iters/minute	50 microns	2	1/4" MFL and 1/2" ACME	5 az. (148ml)	1/8 hp	220V 50/60 Hz	GE	10 lbs. (4.5kg)	8.5" H x 4.5" W x 9.5" L 215mm x 108mm x 240mm
15401	93 liters/minute	20 microns	2	1/4" MFL and 1/2" MFL	16 az. (445ml)	1/3 hp	115V/220-250V 60/60 Hz	CE	27 lbs. (12.2 kg)	9.5" H x 5.5" W x 15" L 247mm x 142mm x 381mm
15424	93 liters/minute	2D microns	2	1/4" MFL and 1/2" ACME	15 az. (445mi)	1/3 hp	115W220-250V 50/80 Hz	GE	27 lbs. (12.2 kg)	9.5° H x 5.5' W x 15' L 247mm x 142mm x 381mm
15601	142 liters/minute	20 microns	2	1/4" MFL and 1/2" MFL	16 az. (445ml)	1/3 hp	115V/220-250V 50/50 Hz	CE	27 lbs. (12.2 kg)	9.5" H x 5.6" W x 15" L 247mm x 142mm x 381mm
15121A	230 liters/minute	20 microns	2	1/4" MFL and 1/2" MFL	17 oz. (500ml)	1/2 hp	115V/220V 50/80 Hz	CE	38 lbs. (17.2 kg)	10" H x 5.5" W x 18" L 272mm x 142mm x 419mm



265

## Appendix P. Error analysis

Experimental data are directly measured and entail specific errors provided by the manufacture of the measuring devices. In addition, physical properties determined by empirical relations also entail certain errors given by the developers of those correlations. Pseudo–experimental data are generated using the experimental data and the empirically determined physical properties; consequently, they entail indirect errors that are propagations of the direct errors of the experimental data and the physical properties.

The errors associated with the previously mentioned devices and correlations are given in Table 12 while formulas to calculate the propagation of error as functions of directly measured errors are given in Table 13. The rules of Table 13 can be multiplexed to represent the error of other variations as will be seen shortly.

Table 12. Device and correlation errors

	Correl	lation	Device				
	ρ	Н	TE	PE	FI	QE	
	$(g/cm^3)$	(J/g)	(°C)	(bar)	(LPM)	$(cm^{3})$	
Error	$\pm 35 \cdot 10^{-6}$	$\pm 0.045$	$\pm 1.000$	$\pm 0.005$	$\pm 0.045$	$\pm 0.200$	

Table 13. Propagation of error rules	T 11 17			C	1
1 abic 15. 1 lopagation of citor fuics	Table L	K Prona	oation	of error	rilles
	1 4010 1.	7. I I O P u	gation		ruics

Relationship	Compounded Error
Z = X + Y	$\varepsilon_Z^2 = \varepsilon_X^2 + \varepsilon_Y^2$
Z = X - Y	$\varepsilon_Z^2 = \varepsilon_X^2 + \varepsilon_Y^2$
$Z = X \cdot Y$	$(\varepsilon_Z/Z)^2 = (\varepsilon_X/X)^2 + (\varepsilon_Y/Y)^2$
Z = X / Y	$(\varepsilon_Z/Z)^2 = (\varepsilon_X/X)^2 + (\varepsilon_Y/Y)^2$
$Z = X^n$	$(\varepsilon_Z/Z) = n \cdot (\varepsilon_X/X)$
Z = ln (X)	$\varepsilon_Z = (\varepsilon_X / X)$
Z = exp(X)	$(\varepsilon_Z/Z) = \varepsilon_X$
Many elements contribute to error in measurements; however, the average error values given above in Table 12 are considered inclusive of all errors since experiments were conducted at matching laboratory conditions and because a true measurement can never be claimed. The dynamic errors of the time–varying system variables that were graphically presented in CHAPTER 7 as error bands were computed using the values of Table 12 and the rules of Table 13 to generate the following perturbations

$$\varepsilon_{FI} = \pm 0.045 \tag{144}$$

$$\varepsilon_{QE} = \pm 0.2 \tag{145}$$

$$\varepsilon_{P_{V}} = \varepsilon_{PE} = \pm 0.005 \tag{146}$$

$$\varepsilon_{T_E} = \varepsilon_{T_W} = \varepsilon_{T_X} = \varepsilon_{TE} = \pm 1 \tag{147}$$

$$\varepsilon_{\rho_P} = \varepsilon_{\rho_H} = \varepsilon_{\rho_C} = \varepsilon_{\rho_E} = \varepsilon_{\rho} = \pm 35 \cdot 10^{-6} \tag{148}$$

$$\varepsilon_{H_P} = \varepsilon_{H_X} = \varepsilon_{H_H} = \varepsilon_{H_E} = \varepsilon_H = \pm 0.045 \tag{149}$$

$$\varepsilon_{AT} = \pm \sqrt{2} \cdot \varepsilon_{TE} \tag{150}$$

$$\varepsilon_{\Delta H} = \pm \sqrt{2} \cdot \varepsilon_H \tag{151}$$

$$\varepsilon_{M_{P}} = \pm \left[ M_{P}^{2} \cdot \left( \left[ \frac{\varepsilon_{\rho_{P}}}{\rho_{P}} \right]^{2} + \left[ \frac{\varepsilon_{FI}}{FI} \right]^{2} \right) \right]^{\frac{1}{2}}$$
(152)

$$\varepsilon_{M_{H}} = \pm \left[ M_{H}^{2} \cdot \left( \left[ \frac{\varepsilon_{\rho_{H}}}{\rho_{H}} \right]^{2} + \left[ \frac{\varepsilon_{FI}}{FI} \right]^{2} \right) \right]^{\frac{1}{2}}$$
(153)

$$\varepsilon_{M_E} = \varepsilon_{M_C} = \pm \left[ M_C^2 \cdot \left( \left[ \frac{\varepsilon_{\rho_C}}{\rho_C} \right]^2 + \left[ \frac{\varepsilon_{FI}}{FI} \right]^2 \right) \right]^{\frac{1}{2}}$$
(154)

$$\varepsilon_{\int M_C} = \pm \left[ \left( \int M_C \right)^2 \cdot \left( \left[ \frac{\varepsilon_{\rho_C}}{\rho_C} \right]^2 + \left[ \frac{\varepsilon_{QE}}{QE} \right]^2 \right) \right]^{\frac{1}{2}}$$
(155)

$$\varepsilon_{\int \mathcal{Q}_{H}} = \varepsilon_{\mathcal{Q}_{H}} = \pm \left[ \mathcal{Q}_{H}^{2} \cdot \left( \left[ \frac{\varepsilon_{M_{P}}}{M_{P}} \right]^{2} + \left[ \frac{\varepsilon_{\Delta H}}{H_{H} - H_{X}} \right]^{2} \right) \right]^{\frac{1}{2}}$$
(156)

$$\varepsilon_{A_{SC}} = \pm \left[ A_{SC}^{2} \cdot \left( \left[ \frac{\varepsilon_{Q_{H}}}{Q_{H}} \right]^{2} + \left[ \frac{U_{SC} \cdot \varepsilon_{T_{X}}}{\tau_{SC} \cdot \alpha_{SC} \cdot I - U_{SC} \cdot (T_{X} - T)} \right]^{2} \right) \right]^{\frac{1}{2}}$$
(157)

$$\varepsilon_{PEC} = \pm \left[ PEC^2 \cdot \left( \left[ \frac{\varepsilon_{\int \mathcal{Q}_H}}{\int \mathcal{Q}_H} \right]^2 + \left[ \frac{\varepsilon_{\int M_C}}{\int M_C} \right]^2 \right) \right]^{\frac{1}{2}}$$
(158)

$$\varepsilon_{\eta_{c}} = \pm 100 \cdot \left[ \left( \frac{\eta_{C}}{100} \right)^{2} \cdot \left( \left[ \frac{\varepsilon_{\Delta T}}{T_{X} - T_{P}} \right]^{2} + \left[ \frac{\varepsilon_{\Delta T}}{T_{E} - T_{C}} \right]^{2} \right) \right]^{\frac{1}{2}}$$
(159)

$$\varepsilon_{\eta_R} = \pm 100 \cdot \left[ \left( \frac{\eta_R}{100} \right)^2 \cdot \left( \left[ \frac{\varepsilon_{\Delta H}}{H_X - H_P} \right]^2 + \left[ \frac{\varepsilon_{\Delta H}}{H_H - H_P} \right]^2 \right) \right]^{\frac{1}{2}}$$
(160)

$$\varepsilon_{\eta_T} = \pm 100 \cdot \left[ \left( \frac{\eta_R}{100} \right)^2 \cdot \left( \left[ \frac{\varepsilon_{M_E}}{M_E} \right]^2 + \left[ \frac{\varepsilon_{H_E}}{H_E} \right]^2 + \left[ \frac{\varepsilon_{M_H}}{M_H} \right]^2 + \left[ \frac{\varepsilon_{H_H}}{H_H} \right]^2 \right) \right]^{\frac{1}{2}}$$
(161)

The above perturbations were included in the data mining code presented earlier to generate static error values for the primary variables and dynamic error values for the derived variables. The error values were then linked to their prospective variables to generate a translucent patch of error bars, or error bands, around their profiles as was presented earlier in CHAPTER 7.

## ABOUT THE AUTHOR

Mohammad Abutayeh is originally from Kafr Sur, Palestine: a small West Bank village approximately thirty miles north of Jerusalem. He came to America in search of a better life almost twenty years ago and has been calling it home since.

He received a Bachelor of Science in Chemical Engineering from the University of South Florida in 1997 with Cum Laude distinction. He continued on obtaining his Master of Science in Chemical Engineering from the University of South Florida in 1999 where he wrote a thesis on predicting the citrate soluble–loss of the dihydrate process.

He then worked in several engineering areas designing process control systems, optimizing unit operations, customizing process equipment, administering US patent laws, and many other functions. In addition, he successfully completed the Fundamentals of Engineering examination of the Florida Board of Professional Engineers, attended numerous seminars, and acquired several other certifications.

He published several journal articles and presented his thesis and dissertation research findings at national and international venues. He graduated with a Doctor of Philosophy in Chemical Engineering from the University of South Florida in 2010 where he wrote a dissertation on simulating the passive vacuum solar flash desalination.