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Abstract. In this paper we give some theoretical analyses and experimental results on synchronization of the two non-identical

exciters. Using the average method of modified small parameters, the dimensionless coupling equation of the two exciters is

deduced. The synchronization criterion for the two exciters is derived as the torque of frequency capture being equal to or greater

than the absolute value of difference between the residual electromagnetic torques of the two motors. The stability criterion of

synchronous state is verified to satisfy the Routh-Hurwitz criterion. The regions of implementing synchronization and that of

stability of phase difference for the two exciters are manifested by numeric method. Synchronization of the two exciters stems

from the coupling dynamic characteristic of the vibrating system having selecting motion, especially, under the condition that

the parameters of system are complete symmetry, the torque of frequency capture stemming from the circular motion of the rigid

frame drives the phase difference to approach PI and carry out the swing of the rigid frame; that from the swing of the rigid

frame forces the phase difference to near zero and achieve the circular motion of the rigid frame. In the steady state, the motion

of rigid frame will be one of three types: pure swing, pure circular motion, swing and circular motion coexistence. The numeric

and experiment results derived thereof show that the two exciters can operate synchronously as long as the structural parameters

of system satisfy the criterion of stability in the regions of frequency capture. In engineering, the distance between the centroid

of the rigid frame and the rotational centre of exciter should be as far as possible. Only in this way, can the elliptical motion of

system required in engineering be realized.

Keywords: Synchronization, vibrating system, stability, vibratory synchronization transmission

1. Introduction

In the natural world, human society, or fields of engineering and technology, the synchronous phenomena or

synchronous problems can be found everywhere. The earliest detailed accounts on synchronized motion was made

by Huygens [1]. Since 1894, the synchronous phenomena was also found in nonlinear circuits by scientists, such

as Rayleigh [2] found that two organ tubes could produce a synchronized sound when the outlets are close to each

other, and Pol [3] observed the synchronization of certain electrical-mechanical system. They called this phenomena

as “frequency capture”. “Frequency capture” or “synchronization”, therefore, is a unique phenomenon of nonlinear

system. In the 1960s, Blekhman [4–10] in Soviet Union proposed the synchronization theory of mechanical exciters.

Chinese scholar Prof. Wen, applied such synchronization theory to engineering and established a branch of vibration
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utilization engineering [11–15]. Balthazar [16] has also given some short comments on self-synchronization of two

non-ideal sources by means of numerical simulations. Many theories of synchronization of more than two exciters

are studied by scholars, in which the main methods used are the method of direct motion separation [4–10] and the

averaging method of small parameters [17–20]. In Refs. [17–19] synchronization of the two non-identical exciters

with rotating oppositely in a non-resonant vibrating system of plane motion was investigated, and that of the two

exciters of spatial motion was also discussed in Ref. [20]. In this paper, synchronization of the two Homodromy

exciters is studied by using the average method of modified small parameters. We present that the vibrating system

driven by the two exciters has the coupling dynamic characteristic of selecting motion, and the theory method used

is verified to be feasible and descriptive by experiment.

This paper contains the following elements: The dynamic model and motion equations of system are given firstly.

The criterion of implementing frequency capture and that of stability of the synchronous state are deduced by

followed. Next section, a quantitative numeric discussions are provided. Experiments are given in Section 5. Finally,

concludes this paper.

2. The dynamic model and motion equations of system

The dynamic model of the considered vibrating system is illustrated in Fig. 1. Springs are connected to a rigid

frame. The two induction motors, are supplied with the same electrical source at the same time, and installed sym-

metrically in the rigid frame, rotate in the same directions and drive two eccentric lumps (two exciters) to excite the

vibrating system. The frame oxy is a fixed frame, and its origin o is the equilibrium point of centroid of the rigid

frame. The motions of the rigid frame are vibrations in x- and y-directions, denoted by x and y, and swing about its

centroid, denoted by ψ. Each eccentric lump rotates about its spin axis, denoted by ϕi, i = 1, 2. Using Lagrange’s

equations, and choosing the x, y, ψ, ϕ1, and ϕ2 as the generalized coordinates, we derive the differential equations

of motion of the vibrating system in the form:

Mẍ+ fxẋ+ kxx = m1r1(ϕ̇
2
1 cosϕ1 + ϕ̈1 sinϕ1) +m2r2(ϕ̇

2
2 cosϕ2 + ϕ̈2 sinϕ2)

Mÿ + fy ẏ + kyy = m1r1(ϕ̇
2
1 sinϕ1 − ϕ̈1 cosϕ1) +m2r2(ϕ̇

2
2 sinϕ2 − ϕ̈2 cosϕ2)

Jψ̈ + fψψ̇ + kψψ = m1r1l0[ϕ̇
2
1 sin (ϕ1 − β)− ϕ̈1 cos (ϕ1 − β)]

−m2r2l0[ϕ̇
2
2 sin (ϕ2 + β)− ϕ̈2 cos (ϕ2 + β)] (1)

J01ϕ̈1 + f1ϕ̇1 = Te1 −m1r1[ÿ cosϕ1 − ẍ sinϕ1 + l0ψ̈ cos(ϕ1 − β) + l0ψ̇
2 sin(ϕ1 − β)]

J02ϕ̈2 + f2ϕ̇2 = Te2 −m2r2[ÿ cosϕ2 − ẍ sinϕ2 − l0ψ̈ cos(ϕ2 + β)− l0ψ̇
2 sin(ϕ2 + β)]

where

M = m+

2
∑

i=1

mi, J = (m+m1 +m2)l
2
e , fψ =

1

2
(fxl

2
y + fyl

2
x), kψ =

1

2
(kyl

2
x + kxl

2
y), J0j = mir

2 + joj .

m is the mass of the rigid frame; mi the mass of the exciter i, i = 1, 2; l0 the distance between the rotational centre

oi of the exciter-i and the mass centre o of the rigid frame; r1 = r2 = r the eccentric radius of two eccentric lumps;

β the angle between o1o and x-axis; β1 the angle between Ao and x-axis; kx, ky and kψ the constants of springs,

and fx, fy and fψ the damping constants in x-, y- and ψ-directions, respectively; fj the damping constant of rotor

of the motor j and J0j its moment of inertia; joj the moment of inertia of motor-oj axis which can be neglected,

j = 1, 2; le the equivalent rotating radius of the vibrating system about the centroid of the rigid frame; Tej the

electromagnetic torque of the motor j. (•̇) and (•̈) signify d • /dt and d2 • /dt2, respectively.
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3. Frequency capture of the two exciters and stability of synchronous state

As illustrated in Fig. 1, assuming the average phase of the two exciters and their phase difference to be ϕ and 2α,

respectively, then we obtain

ϕ1 = ϕ+ α, ϕ2 = ϕ− α (2)

The average mechanical angular velocity of the two exciters therefore, is ϕ̇. Due to the periodical motion of the

vibrating system, the mechanical angular velocities of the two motors change periodically. If the least common

multiple period of the two motors is assumed to be TLCMP, the average value of their average angular velocity over

time TLCMP, then must be a constant, i.e.

ωm0 =
1

TLCMP

∫ t′+TLCMP

t′
ϕ̇(t)dt = constant (3)

Assuming the instantaneous change coefficients of ϕ̇ and α̇ to be ε1 and ε2 (ε1 and ε2 are the functions of time

t), i.e., ϕ̇ = (1 + ε1)ωm0, α̇ = ε2ωm0, respectively, we have

ϕ̇1 = (1 + ε1 + ε2)ωm0 = (1 + ν1)ωm0, ν1 = ε1 + ε2

ϕ̇2 = (1 + ε1 − ε2)ωm0 = (1 + ν2)ωm0, ν2 = ε1 − ε2
(4)

The two exciters can operate synchronously, if the average values of ε1 and ε2 over the single period (T0 =
2π/ωm0) are zero, i.e., ε̄1 = 0 and ε̄2 = 0. Generally in engineering, the masses of eccentric lumps are far smaller

than that of the rigid frame [11–14], the coupling terms of ψ̈ in the first two formulae of Eq. (1) and that of ẍ and ÿ
in the third formula, therefore, have been neglected. On the other hand, the slip of an induction motor usually ranges

from 2% to 8% [21], i.e., ε̇1 ≪ 1 and ε̇2 ≪ 1, so ϕ̈1 and ϕ̈2 can be neglected in the first three formulae of Eq. (1)

when the vibrating system operates in the steady-state. We assume m1 is m0 and m2 is ηm0 (0 < η � 1), and

Eq. (4) are inserted into the first three formulae of Eq. (1) to yield

Mẍ+ fxẋ+ kxx = m0rω
2
m0[(1 + ε1 + ε2)

2 cos(ϕ+ α) + η(1 + ε1 − ε2)
2 cos(ϕ− α)]

Mÿ + fy ẏ + kyy = m0rω
2
m0[(1 + ε1 + ε2)

2 sin(ϕ+ α) + η(1 + ε1 − ε2)
2 sin(ϕ− α)]

Jψ̈ + fψψ̇ + kψψ = m0rω
2
m0l0[(1 + ε1 + ε2)

2 sin(ϕ+ α− β)− η(1 + ε1 − ε2)
2 sin(ϕ− α− β)]

(5)

For a non-resonant machinery, the operating frequency of system is about (3∼10) times of its natural frequency

and the damping constants of springs are very small [11–14] according to Ref. [17], the responses of Eq. (5) can be

expressed in the form:

x = −rmr

µx

[cos(ϕ+ α+ γx) + η cos(ϕ− α+ γx)],

y = −rmr

µy

[sin(ϕ+ α+ γy) + η sin(ϕ− α+ γy)],

ψ = −rmrrl
leµψ

[sin(ϕ+ α− β + γψ)− η sin(ϕ− α+ β + γψ)].

(6)

where

rm =
m0

M
, le =

√

J

M
, rl =

l0
le
, µx = 1− ω2

nx

ω2
m0

, µy = 1−
ω2
ny

ω2
m0

, µψ = 1−
ω2
nψ

ω2
m0

, ωnx =

√

kx
M

,

ωny =

√

ky
M

,ωnψ =

√

kψ
J

, γi =
2ξni(ωni/ωm0)

1− (ωni/ωm0)2
, i = x, y, ψ
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ξnx, ξny and ξnψ are the damping ratios of springs (ξnx � 0.07, ξny � 0.07 and ξnψ � 0.07) [11,12], π − γi,
denotes the phase angle in i-direction, i = x, y, ψ.

Differentiating x, y and ψ in Eq. (6) with respect to time t by the chain rule, respectively, we obtain ẍ, ÿ and ψ̈,

which are inserted into the last two formulae of Eq. (1) and integrating them over ϕ = 0 ∼ 2π, and neglecting the

highorder terms of ε1 and ε2, the balanced equations of the two exciters are expressed as

J01ωm0( ˙̄ε1 + ˙̄ε2) + f1ωm0(1 + ε̄1 + ε̄2) = Te1 − T̄L1

J02ωm0( ˙̄ε1 − ˙̄ε2) + f2ωm0(1 + ε̄1 − ε̄2) = Te2 − T̄L2

(7)

with

T̄L1 = χ′

11
˙̄ε1 + χ′

12
˙̄ε2 + χ11ε̄1 + χ12ε̄2 + χa + χf1

T̄L2 = χ′

21
˙̄ε1 + χ′

22
˙̄ε2 + χ21ε̄1 + χ22ε̄2 − χa + χf2

(8)

where

χ′

11 = m0r
2ωm0[−Wc0 −Ws sin(2α+ θs) +Wc cos(2α+ θc)]/2,

χ′

12 = m0r
2ωm0[−Wc0 +Ws sin(2α+ θs)−Wc cos(2α+ θc)]/2,

χ′

21 = m0r
2ωm0[−η2Wc0 +Ws sin(2α+ θs) +Wc cos(2α+ θc)]/2,

χ′

22 = m0r
2ωm0[η

2Wc0 +Ws sin(2α+ θs) +Wc cos(2α+ θc)]/2,

χ11 = m0r
2ω2

m0[Ws0 +Ws cos(2α+ θs) +Wc sin(2α+ θc)],

χ12 = m0r
2ω2

m0[Ws0 −Ws cos(2α+ θs)−Wc sin(2α+ θc)],

χ21 = m0r
2ω2

m0[η
2Ws0 +Ws cos(2α+ θs)−Wc sin(2α+ θc)],

χ22 = m0r
2ω2

m0[−η2Ws0 +Ws cos(2α+ θs)−Wc sin(2α+ θc)],

χf1 = m0r
2ω2

m0[Ws0 +Ws cos(2α+ θs)]/2,

χf2 = m0r
2ω2

m0[η
2Ws0 +Ws cos(2α+ θs)]/2,

χa = m0r
2ω2

m0Wc sin(2α+ θc)/2, Ws0 = rm

(

sin γx
µx

+
sin γy
µy

+
r2l sin γψ

µψ

)

,

Wc0 = rm

(

cos γx
µx

+
cos γy
µy

+
r2l cos γψ

µψ

)

,

Ws = ηrm
√

a2s + b2s, θs =

{

arctan(−bs/as), as � 0

π + arctan(−bs/as), as < 0
, Wc = ηrm

√

a2c + b2c,

θc =

{

arctan(bc/ac), ac � 0

π + arctan(bc/ac), ac < 0
,

as =
sin γx
µx

+
sin γy
µy

− r2l sin γψ
µψ

cos(2β), bs = −r2l sin γψ
µψ

sin(2β),

ac = −cosγx
µx

− cosγy
µy

+
r2l cos γψ

µψ

cos(2β), bc = −r2l cos γψ
µψ

sin(2β).

Compared with the change of ϕ (ϕ̇ = ωm0) with respect to time t, that of ε1, ε2, ε̇1 and ε̇2 are very small. ε1 and

ε2, therefore, are considered to be slow-changing parameters, while the change of ϕ is considered as fast-changing

parameter, in this study. According to the method of direct separation of motions [4–10], ε1, ε2, ε̇1, ε̇2 and α are
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assumed to be the middle values of their integrations ε̄1, ε̄2, ˙̄ε1, ˙̄ε2 and ᾱ respectively during the aforementioned

integration.

If the two motors are supplied with the same electric source and have identical pole pairs, their electromagnetic

torques can be expressed as follows:

Te1 = Te01 − ke01(ε̄1 + ε̄2), Te2 = Te02 − ke02(ε̄1 − ε̄2) (9)

where Te01 and Te02 are the electromagnetic torques, ke01 and ke02 the stiffness of angular velocity when the two

motors operate at the angular velocity of ωm0 [20].

We choose exciter 1 as the standard exciter (m1 = m0,m2 = ηm0, 0 < η � 1) to normalize Eq. (7) in the

following manner: firstly substituting Eqs (8) and (9) into Eq. (7), and then dividing Eq. (7) by the moment of the

standard exciter, m0r
2ωm0, after that, adding two formulae as the first row, subtracting the second formula from the

first one as the second row, next introducing the non-dimensional parameters ρ1 ρ2, κ1, κ2, and ν̄1, ν̄2

ρ1 = 1−Wc0/2, ρ2 = η − η2Wc0/2, ν̄1 = ε̄1 + ε̄2, ν̄2 = ε̄1 − ε̄2

κ1 = ke01/(m0r
2ω2

m0) + f1/(m0rωm0) +Ws0, κ2 = ke02/(m0r
2ω2

m0) + f2/(m0r
2ωm0) + η2Ws0,

and finally writing them into the matrix form, frequency capture equation of the two exciters can be expressed in the

form:

Aν̇ = Bν + u (10)

where

ν = {ν̄1, ν̄2}T , u = {u1, u2}T ,

a11 = ρ1 + ρ2 +Wc cos(2ᾱ+ θc), a12 = ρ1 − ρ2 +Ws cos(2ᾱ+ θs),

a21 = ρ1 − ρ2 −Ws sin(2ᾱ+ θs), a22 = ρ1 + ρ2 −Wc cos(2ᾱ+ θc),

b11 = −ωm0(κ1 + κ2 − 2Ws cos(2ᾱ+ θs), b12 = −ωm0(κ1 − κ2 − 2Wc sin(2ᾱ+ θc),

b21 = −ωm0(κ1 − κ2 + 2Wc sin(2ᾱ+ θc), b22 = −ωm0(κ1 + κ2 + 2Ws cos(2ᾱ+ θs)).

u1 = [Te01/(m0r
2ωm0)− f1/(m0r

2)] + [Te02/(m0r
2ωm0)− f2/(m0r

2)]− ωm0Ws0(1 + η2)/2

− ωm0Ws cos(2ᾱ+ θs),

u2 = [Te01/(m0r
2ωm0)− f1/(m0r

2)]− [Te02/(m0r
2ωm0)− f2/(m0r

2)]− ωm0Ws0(1−η2)/2

− ωm0Wc sin(2ᾱ+ θc).

Equation (10) describes the coupling relation of the two exciters and is referred to as the dimensionless coupling

equation of the two exciters.

3.1. The criterion of implementing frequency capture

Substituting ν̄1 = 0 and ν̄2 = 0 into Eq. (10), we have u1 = 0 and u2 = 0. Calculating the sum and the difference

of u1 and u2, and rearranging them as following

Te01 + Te02 − (f1 + f2)ωm0 − [m0r
2ω2

m0Ws0(1 + η2)/2 +m0r
2ω2

m0Ws cos(2ᾱ+ θs)] = 0 (11)

(Te01 − Te02)− (f1 − f2)ωm0 −m0r
2ω2

m0Ws0(1−η2)/2 = m0r
2ω2

m0Wc sin(2ᾱ+ θc) (12)

In the above Eq. (11), Te01 + Te02 is the sum of electromagnetic torques of the two motors; (f1 + f2)ωm0 is that

of the rotors damping torques of the two motors; the last terms, χf1 + χf2, is the sum of the load torques that the
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vibrating system acts on the two motors. Equation (11), therefore, is the equation of torque balance of the vibrating

system operating in the steady-state.

Rewriting Eq. (12), we have

sin(2ᾱ+ θc) = TD/TC, 2ᾱ = arcsin(TD/TC)− θc (13)

where

TC = m0r
2ω2

m0Wc, TD = TR1 − TR2, TR1 = Te01 − f1ωm0 −m0r
2ω2

m0Ws0/2,

TR2 = Te02 − f2ωm0 −m0r
2ω2

m0η
2Ws0/2.

TC is the torque of frequency capture; TD the difference between the residual electromagnetic torques of the two

motors; TR1 and TR2 the residual electromagnetic torques of the motors 1 and 2, respectively.

Since |sin(2ᾱ+ θc)| � 1, the criterion of implementing vibrating synchronization is

TC � |TD| (14)

Equation (14) indicates that the criterion of synchronization for the two exciters is that the torque of frequency

capture is equal to or greater than the absolute value of difference between the residual electromagnetic torques of

the two motors.

Equations (11) and (12) are nonlinear functions of ωm0 and ᾱ, their solutions, ω∗

m0 and ᾱ0, can be determined by

numeric method.

3.2. Stability of synchronous state

Linearizing Eq. (10) around ᾱ = ᾱ0 and appending the third row, ∆α̇ = ω∗

m0ε̄2 (∆α = ᾱ − ᾱ0), after that,

writing them as a system of the three first-order differential equations, and using the notation z = {ς1 ς2 ∆α}
yields

ż = A
′−1

B
′
z (15)

where

z = {ε̄1 + ε̄2, ε̄1 − ε̄2, ᾱ− ᾱ0}T ,A′ =

⎡

⎣

a′11 a′12 0
a′21 a′22 0
0 0 1

⎤

⎦, B′ =

⎡

⎣

b′11 b′12 −2ω∗

m0Ws sin(2ᾱ0 + θs)
b′21 b′22 2ω∗

m0Wc cos(2ᾱ0 + θc)
0 ω∗

m0 0

⎤

⎦.

It should be noted that, a′ij and b′ij denote the values of aij and bij in matrixA andB for ᾱ = ᾱ0 and ωm0 = ω∗

m0.

Exponential time-dependence of the form ż = u exp(λt) is now assumed, and inserted into Eq. (15). Solving the

determinant equation det(A′−1
B

′ − λI) = 0, we deduce the characteristic equation for eigenvalue λ

λ3 + c1λ
2 + c2λ+ c3 = 0 (16)

where c1 = 4ω∗

m0H1/H0, c2 = 2ω∗2
m0H2/H0, c3 = 2ω∗3

m0H3/H0

H0 =4ρ1ρ2 −W 2
c cos2 (2ᾱ0 + θc) +W 2

s sin2 (2ᾱ0 + θs), H1=ρ1κ2+ρ2κ2 −WsWc cos(θc−θs),

H2 =2κ1κ2 + (ρ1 + ρ2)Wc cos(2ᾱ0 + θc) + (ρ1 − ρ2)Ws sin(2ᾱ0 + θs)−W 2
s

−W 2
s sin2(2ᾱ0 + θs) +W 2

c +W 2
c cos2(2ᾱ0 + θc),

H3 =(κ1 + κ2)Wc cos(2ᾱ0 + θc) + (κ1 − κ2)Ws sin(2ᾱ0 + θs) + 2WsWc cos(θc − θs).

(17)
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Fig. 1. Dynamic model of a vibrating system with the two homodromy exciters. Fig. 2. The maximum of r2
l

.

In engineering, compared with Wc in the expression of c1, c2 and c3, Ws is so small that it can be neglected [17–
20]. H0, H1, H2 and H3, then, can be simplified as:

H ′

0 = 4ρ1ρ2 −W 2
c cos2 (2ᾱ0 + θc) , H

′

1 = ρ1κ2 + ρ2κ1,

H ′

2 = 2κ1κ2 + (ρ1 + ρ2)Wc cos(2ᾱ0 + θc) +W 2
c +W 2

c cos2(2ᾱ0 + θc), (18)

H ′

3 = (κ1 + κ2)Wc cos(2ᾱ0 + θc).

Based on the Routh-Hurwitz criterion [23], it can be seen that if and only if all roots of λ in Eq. (16) have the
negative real part, i.e., Eq. (19) is satisfied, the zero solution of Eq. (15), z = 0, is stable. It should be noted that, since
the two motors having the identical rated speed are supplied with the same electric source, the difference between
the two motors’ speed is the rather small. Furthermore, due to the periodical rotations of the two motors, and based
on the method of direct separation of motions by averaging, when the time t → +∞, Eq. (19) can guarantee that
the synchronous state of the vibrating system caused by the torque of frequency capture is stable, i.e., z

limt→+∞

= 0

means εi
limt→+∞

= 0 and νi
limt→+∞

= 0, i = 1, 2, we have Aν
limt→+∞

= 0.

c1 > 0, c3 > 0 and c1c2 > c3 (19)

According to the sign of H ′

0, Eq. (19) can be rewritten as Eqs (20) and (21)

H ′

0 > 0, H ′

1 > 0, H ′

3 > 0 and 4H ′

1H
′

2 −H ′

0H
′

3 > 0 (20)

H ′

0 < 0, H ′

1 < 0, H ′

3 < 0 and 4H ′

1H
′

2 −H ′

0H
′

3 > 0 (21)

From H ′

0 > 0 and H ′

1 > 0 (κ1 > 0 and κ2 > 0), we can deduce

ρ1 > 0, ρ2 > 0 and 4ρ1ρ2 −W 2
c cos2 (2ᾱ0 + θc) > 0 (22)

By H ′

3 > 0, we obtain

cos(2ᾱ0 + θc) > 0 (23)

Inserting H ′

0, H ′

1, H ′

2 and H ′

3 into 4H ′

1H
′

2 −H ′

0H
′

3 > 0 and rearranging it, we have

[4ρ21κ2 + 4ρ22κ2 + (κ1 + κ2)W
2
c cos2(2ᾱ0 + θc)]Wc cos(2ᾱ0 + θc) >

−4(ρ1κ2 + ρ2κ1)(2κ1κ2 +W 2
c +W 2

c sin2(2ᾱ0 + θc))
(24)

As shown in Eq. (24), if cos(2ᾱ0 + θc) > 0, the left hand-side of Eq. (24) is greater than zero, and its right
hand-side is less than zero when ρ1 > 0 and ρ2 > 0. Hence, Eqs (22) and (23) satisfy Eq. (24).

When H ′

0 < 0, from H ′

1 < 0, we have ρ1k2+ρ2k1 < 0, and H ′

3 < 0 requires cos(2ᾱ0+θc) < 0. In this case, the
left hand-side of Eq. (24) is less than zero and its right hand-side is greater than zero. H ′

0 < 0, H ′

1 < 0 and H ′

3 < 0
hence, can not meet the need of 4H ′

1H
′

2 −H ′

0H
′

3 > 0.
Besides, one can see that, 2ᾱ0+θc ∈ (−π/2, π/2) satisfies Eq. (23), from which the interval of 2ᾱ0 is determined

by θc. Equations (22) and (23), therefore, are the stability criterions of synchronous states for the two exciters.
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Fig. 3. Regions of frequency capture for the two identical motors: (a) β = 0; (b) β ∈ (0, π/4].

4. Numeric discussions: The regions of frequency capture and characteristic of selecting motion

Section 3 has given some theoretical analyses in the simplified form on synchronization problem. This section

will compare quantitatively the numeric results of the regions of frequency capture and the motion types of the

vibrating system, with its above theoretically analytical results in the simplified form.

Based on the expression of rl, its maximum can be simplified in the form

r2lmax = lim
l0→∞

r2l =
1 + rm(1 + η)

rm(1 + η)
(25)

If r2lmax
satisfies Eqs (22) and (23), the synchronous state of system is always stable. As shown in Fig. 2, rlmax ≈

7 for η = 1, the value of rl can be arranged from 0 to 7 in the following discussions.

From Eq. (14), the main parameters that influence frequency capture of system are Ws0 and Wc, which are

functions of the dimensionless structural parameters rm, rl, η, ux, uy and uψ. In a non-resonant vibrating system,

however, ux, uy and uψ change little (24/25–99/100) [11,12], we focus on investigating the effect of dimensionless

parameters rm, rl, η on the frequency capture. To guarantee the torque of frequency capture, TC in Eq. (13) should

sufficiently overcome TD, i.e., TC > |TD|. When the two identical motors are taken to drive the two non-identical

unbalanced rotors, we have

TD = TR1 − TR2 = −m0r
2ω2

m0Ws0(1− η2)/2 (26)

Here, we assume that Te01−f1ωm0−(Te02−f2ωm0) ≈ 0 just for convenient discussion (in engineering, actually,

the difference between the electromagnetic torques of the two identical motors is not complete zero).

Equation (14), therefore, can be simplified in the form

Wc �
∣

∣−Ws0(1− η2)/2
∣

∣ (27)

Figure 3(a) shows the regions of implementing frequency capture in ηrl-plane for β = 0. From Eq. (27), rm has no

effect on the frequency capture. ηrl-plane is divided into three Regions: I, II and III. The regions of implementing

frequency capture are in Regions I and II, and the phase difference in the steady state is 2α0 ∈ (−π/2, π/2) in

Region I, 2α0 ∈ (π/2, 3π/2) in Region II. The vibrating system can not implement frequency capture in Region

III. Regions I, II and III converge into a point (η = 1.0, rl = 1.414 ≈
√
2), at this point, TD = 0, in other words,

when the two motors are identical, this point is the best-matching parameters of the two exciters that can enhance

the ability of the frequency capture.

Figure 3(b) shows the regions of the frequency capture with β 	= 0 (β ∈ (0, π/4]). Here, it is noteworthy that, η
has little effect on the frequency capture by the fact that Ws is far smaller than Wc, i.e., Eq. (27) is always satisfied

in Regions I and II.
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Table 1

The motion types of the vibrating system

Parameters of vibrating system 2α0 Motion types of

vibrating system

η = 1.0 β = 0◦ rl <
√
2(i.e., ac < 0) π Pure swing

rl >
√
2(i.e., ac > 0) 0 Circular motion

0◦ < β < 90◦ (0, π) Swing and circular motion

β = 90◦ π Pure swing

η �= 1.0 β = 0◦ rl <
√
2(i.e., ac < 0) π Swing and circular motion

rl >
√
2(i.e., ac > 0) 0 Circular motion

0◦ < β < 90◦ (0, π) Swing and circular motion

β = 90◦ π Swing and circular motion

Fig. 4. The values of ac for β and rl.

Fig. 5. Approximate values of 2α0 with the two identical motors: (a) η = 0.2; (b) η = 0.5; (c) η = 0.8; (d) η = 1.0.

We assume that ρC = TC sin(2ᾱ+ θc)/2, if the structural parameters of system are Region I and II in Figs 3(a)

and (b), from Eqs (11) and (12), we can see that, ρC acting on the phase-leading exciter is the load torque that limits

the increase of its angular velocity. Meanwhile, it also acts on the other phase-lagging exciter, in which ρC is the

driving torque that limits its the decrease of the angular velocity. Finally, the synchronous and stable operation of

the two exciters is reached. When the two exciters operate in the steady state, the torque of frequency capture does

no work.

When the two motors are identical, according to Eq. (13), the approximate values of 2α0 for rl, η and β are shown

in Fig. 5.

Based on the sign of ac and the value of 2α0 in Figs 4 and 5, respectively, the motion types of the vibrating system

are expressed in Table 1.

In Table 1, when the structural parameters of system are complete symmetry, i.e., η = 1.0, β = 0◦ (Wc =
ηrm |ac|), according to the expression of the torque of frequency capture, which is determined by ac. In this case,
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Table 2

The parameters of experimental system

Contents Values

The mass of vibrating system: M (kg) 152

The moment of vibrating system: J (kg·m2) 17

The mass of standard eccentric lamp (r = 0.05 m): m0 (kg) 4

The constant of springs in x-direction: kx (N/m) 77000

The constant of springs in y-direction: ky (N/m) 77650
The constant of springs in ψ-direction: kψ (Nm/rad) 3000

The damping constant in x-directions: fx (N/(m/s)) 270

The damping constant in y-directions: fy (N/(m/s)) 270

The damping constant in ψ-directions: fψ (N/(m/s)) 220

Fig. 6. The angle of the general dynamic symmetry.

Fig. 7. A laboratory model of a vibrating system: (a) Schematic of experimental setup; (b) Vibrating synchronization bedstand.

the motions of the rigid frame excited by the two exciters are the circular motion (x- and y-directions) and the swing

(ψ-direction) about its centroid. The torque of frequency capture resulting from the circular motion of the rigid

frame drives the phase difference to approach π and implement the swing of the rigid frame; that from the swing

of the rigid frame forces the phase difference to approach 0 and carry out the circular motion of the rigid frame. In

the expression of ac, the terms related to the circular motion of the rigid frame are negative, and that referred to the

swing are positive. ac < 0 (i.e., rl <
√
2) means that the contribution of the circular motion on the ρC is greater

than that of the swing, the vibrating system, thus, selects the swing of the rigid frame, vice versa.

When η = 1.0, 0◦ < β < 90◦, the torque of frequency capture is determined by ac and bc (bc is related to the

swing of rigid frame), in this case, the system shares the circular motion and the swing of the rigid frame. The phase

difference of the two exciters and the motion types of rigid frame are shown in the relevant figures of Fig. 5 and

Table 1.

If η = 1.0, β = 90◦, we have ac < 0 (as shown in Fig. 4), the vibrating system still selects the swing of the rigid

frame.

Under the condition of η 	= 1.0, the torque of frequency capture decreases to η (0 < η < 1) times of its

original value. Based on the above principle discussed, the torque of frequency capture drives the phase difference

to approach the corresponding value shown in Fig. 5. The motion types of the rigid frame are shown in Table 1, here,

we do not discuss in more detail.

The above facts demonstrate that the vibrating system has the coupling dynamic characteristic of selecting mo-

tion. Under the case that the criterions of the frequency capture and that of the stability of the two exciters are all
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Fig. 8. The experimental results of the two non-identical exciters rotating in the same directions (η = 0.5): (a) Rotational velocities of the two

exciters; (b) The phase difference between the two exciters (2α = ϕ1 −ϕ2); (c) Acceleration in x-direction; (d) Acceleration in y-direction; (e)

Acceleration in ψ-direction.

satisfied, the vibrating system will select one of the following three types of motion: pure circular motion, pure
swing, the swing and the circular motion coexistence. The synchronization of the two exciters stems from such
coupling dynamic characteristic of selecting motion. It is of great significance to design in engineering. In order to
realize the feasible circular motion of the rigid frame, β should be zero and the longer l0.

Figure 6 shows the angle of general dynamic symmetry [19], the better the structural symmetry of system, the
better the tendency that the phase difference of the two exciters approaches −θc. By the comparison of Figs 4 and
5, we can see that 2α0 is greatly close to −θc when β = 0, in other words, the structure of system is complete
symmetry. Otherwise, the case is reverse.

5. Experiments

In this section, we address the validity of the simplified model and the theoretical and numerical results of the
above sections, by comparing to experimental results for a laboratory model of a vibrating system.

5.1. Experiment illustration

Figure 7(a) shows the setup schematically, three acceleration sensors and two Hall-sensors are used to measure
the acceleration of experimental system in x-, y- and ψ-directions and the phases of the two exciting motors, re-
spectively. At the same time, the instantaneous phases of the two exciting motors with synchronous operation are
continuously recorded by high-speed camera. Vibrating synchronization bedstand is shown in Fig. 7(b). The two
exciting motors (exciters) are installed symmetrically in the main rigid body and rotating in the same directions, as
shown in Fig. 7(b).

At first, it is necessary to introduce the measuring method of swinging acceleration, ψ̈: Two acceleration sensors
are installed on the centroid position of the vibrating system (one is responsible for measuring acceleration in x-
direction, the other in y-direction); the third acceleration sensor for y-direction is installed on the point A in Fig. 1,
denoted by ÿA. According to the vector mechanic analysis method, ψ̈ can be expressed as

ÿA = ÿ − lψ̈ cosβ1, ψ̈ = (ÿ − ÿA)/(l cosβ1) (28)



338 X.-L. Zhang et al. / Theoretical and experimental study on synchronization of the two homodromy exciters

Fig. 9. The phases recorded by high-speed camera before the exciter 2 is cut off (η = 0.5).

Each exciting motor has two pairs eccentric lumps which are symmetrical distribution on both ends of axis. We

can adjust the included angle between two eccentric lumps to accommodate certain excited force.

The parameters of the two exciting motors are identical, model VB-326-W (380 V, 50 Hz, 6-pole, Y-connected,

0.82 A, the rated speed 950 r/min, exciting force 0∼3 kN, mass 29 kG, protection grade IP54), f1 = f2 = 0.002,

β = 15◦, l0 = 0.36 m, ξnx = 0.07, ξny = 0.07, and ξnψ = 0.07, rl = 1.08, ux = 0.97, uy = 0.93 and

uψ = 0.98. The other experimental system parameters are shown in Table 2. The two exciting motors are regulated

into operating with 40 Hz by converter.

5.2. Experiment results

Figure 8 shows some experimental results of the two non-exciters rotating in the same directions. Here, the masses

of the two exciters are m1 = m0 = 4 kg, m2 = 2 kg (η = 0.5), and their equivalent eccentric radius are same

(r = 0.053 m). During the starting few seconds, the two exciters are supplied with the electric source at the same

time, when their angular velocities pass through the resonant region of system, the two exciters excite the resonant

acceleration responses in x-, y- and ψ-directions, and angular acceleration of exciter 2 is greater than that of exciter 1

since the moment of the exciter 2 (0.0056 kg·m2) is less than that of the exciter 1 (0.0112 kg·m2), the corresponding

phase difference changed periodically, as shown in Fig. 8. Because of the damping effect, the resonant responses

resulting from the starting process gradually disappear. With the time being, the two exciters reach the synchronous

operation by self-adjusting of TC , the responses of system in x-, y- and ψ-directions rapidly stabilize, the rotational

velocity of synchronization nears 791 r/min and the phase difference in the steady-state nears 145◦. In this case, the

motion type of the rigid frame is swing and circular motion coexistence, and swing has priority because that 2α nears

π. The above facts coincide with the contents in Fig. 3(b) and Table 1. When time reaches 5 s, the power supply of



X.-L. Zhang et al. / Theoretical and experimental study on synchronization of the two homodromy exciters 339

Fig. 10. The experimental results of phase difference of the two exciters rotating in the same directions for different η (2α = ϕ1 − ϕ2): (a)

η = 1.0; (b) η = 0.8.

the motor 2 is cut off, the phase difference decreases from 145◦ to 132.9◦ and the synchronous rotational velocity

increases to 795.5 r/min, as shown in Figs 8(a) and (b). But the synchronization of the two exciters continues, this is

so-called vibratory synchronization transmission [11], during which, the torque of capture, TC transmits the driving

torque from motor 1 to motor 2 to overcome the load torque of motor 2. The accelerations of x(t), y(t) and ψ(t) are

shown in the relevant figures in Fig. 8, respectively. As shown in Figs 8(a) and (b) during vibratory synchronization

transmission, the stability of its synchronous state is better than that for the case before cutting off, as for the reason,

is the absence of a motor’s disturbance, in my opinion.

In the above experiment for η = 0.5, before exciter 2 is cut off, we recorded continuously phases of the two

exciters within two cycles by high-speed camera in the steady-state, which are shown in Fig. 9. Here, high-speed

camera shooting frequency is 50/s, by Fig. 9, the phase difference of the two exciters is 2α = ϕ1−ϕ2 ≈ 143◦∼146◦,

which is roughly the same as that of in Figs 8(b) and 5(b) by comparing. The two exciters, hence, can operate stably

and synchronously.

Figure 10 is the experimental results for η = 1.0 and η = 0.8. In Fig. 10(a), η = 1.0, the synchronous phase

difference of the two exciters is 2α = 152◦, at 50 s, the exciter 2 is cut off, 2α increases from 152◦ to 164.3◦; In

Fig. 10(b), η = 0.8 the synchronous phase difference is 2α = 160◦, at 50 s, the exciter 2 is cut off, 2α increases

from 160◦ to 173.7◦. Compared the results in Fig. 10 with that in Figs 5(c) and (d), 2α has the error of 2◦∼5◦, why?

Personally I think, although the models of the two motors are completely identical, electromagnetic torques of the

two motors are not complete equality in practice, i.e., Te01 − f1ωm0 − (Te02 − f2ωm0) 	= 0 in Eq. (13). Here, the

motion type of the vibrating system in Figs 10(a) and (b) is still swing and elliptical motion coexistence.

6. Conclusions

By the theoretical investigation and experiment, the following remarks should be stressed:

With the introduction of the average method of modified small parameters, the frequency capture equation of

the vibrating system is deduced. The criterion of implementing synchronization for the two exciters is derived, and

that of stability of synchronous state satisfies Routh-Hurwitz criterion. These criterions can be used to evaluate and

discriminate whether a self-synchronous machine used in industries is able to achieve vibratory synchronization

or not, as well as to supervise the design of a self-synchronous vibrating machine has the capacity of achieving

vibratory synchronization.

The regions of implementing frequency capture are presented by numeric method, as well as corresponding

stabilized regions of phase difference of the two exciters.

The coupling dynamic characteristic that the vibrating system has selecting motion is discussed. Especially, in

light of the case that the parameters of system are complete symmetry, the torque of frequency capture resulting

from the circular motion of the rigid frame drives the phase difference to approach π and implement the swing

of the rigid frame; that from the swing of the rigid frame forces the phase difference to near 0 and achieve the
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circular motion of the rigid frame. When the parameters of system satisfy the criterion of stability in the regions of

frequency capture, and the torque of frequency capture resulting from the circular motion is prior to that from the

swing motion, the rigid frame embodies mainly the swing motion, otherwise, the circular motion. The motion of

the rigid frame will be one of the following three types: pure swing, pure circular motion, swing and elliptical one

coexistence. The synchronization of the two exciters stems from such dynamic characteristic of selecting motion.

The corresponding motion type of the vibrating system can be achieved to meet the requirements in engineering by

adjusting its structural parameters rl, η and β. In engineering, β should near zero and l0 as far as possible.

By the comparison of theory, numeric and experiment results, the feasibility of theory method is proved.

Acknowledgment

This work is supported by the National Natural Science Foundations of China (No. 51075063 and No. 50975045).

References

[1] C. Huygens, Horologium Oscilatorium, Paris, Frence, 1673.

[2] J. Rayleigh, Theory of Sound, Dover, New York, 1945.

[3] B. Van der Pol, Theory of the amplitude of free and forced triode vibration, Radio Rev 1 (1920), 701–710.

[4] I.I. Blekham, Synchronization in Science and Technology, ASME Press, New York, 1988.

[5] I.I. Blekhman, Synchronization of Dynamical Systems, Nauka, Moscow, (in Russian), 1971.

[6] I.I. Blekhman, Vibrational Mechanics, World Scientific, Singapore, 2000.

[7] I.I. Blekhman, Selected Topics in Vibrational Mechanics, World Scientific, Singapore, 2004
[8] I.I. Blekhman, A.L. Fradkov, H. Nijmeijier et al., On self-synchronization and controlled synchronization, System & Control Letters 31

(1997), 299–305.

[9] I.I. Blekhman, A.L. Fradkov, O.P. Tomchina et al., Self-synchronization and controlled synchronization, Mathematics and Computers in

Simulation 58 (2002), 367–384.

[10] I.I. Blekhman and N.P. Yaroshevich, Extension of the domain of applicability of the integral stability criterion (extremum property) in

synchronization problems, Journal of Applied Mathematics and Mechanics 68 (2004), 839–846.

[11] B.C. Wen, J. Fan, C.Y. Zhao et al., Vibration Synchronization and Controlled Synchronization in Engineering, Science Press, Beijing,
2009.

[12] B.C. Wen, H. Zhang, S.Y. Liu et al., Theory and Techniques of Vibrating Machinery and Their Applications, Science Press, Beijing, 2010.

[13] B.C. Wen, Y.N. Li and Y.M. Zhang, Vibration Utilization Engineering, Science Press, Beijing, (in Chinese), 2005.

[14] B.C. Wen, Y.N. Li and Q.K. Han, Nonlinear Vibration in Engineering, Science Press, Beijing, (in Chinese), 2007.

[15] B.C. Wen, Recent development of vibration utilization engineering, Frontiers of Mechanical Engineering in China 2(1) (2008), 1–9.

[16] J.M. Balthazar, J.L. Palacios Felix and R.M.L.R.F. Brasil, Short comments on self-synchronization of two non-ideal sources supported by

a flexible portal frame structure, Journal of Vibration and Control 10 (2004), 1739–1748.

[17] C.Y. Zhao, H.T. Zhu, R.Z. Wang et al., Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear
motion Part I: Theoretical analysis, Shock and Vibration 16 (2009), 505–516.

[18] C.Y. Zhao, H.T. Zhu, T.J. Bai et al., Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear

motion Part II: Numeric analysis, Shock and Vibration 16 (2009), 517–528.

[19] C.Y. Zhao, Y.M. Zhang and B.C Wen, Synchronization and general dynamic symmetry of a vibrating system with two exciters rotating in

opposite directions, Chinese Physics B 19 (2010), 030301.

[20] C.Y. Zhao, H.T. Zhu, Y.M. Zhang et al., Synchronization of two coupled exciters in a vibrating system of spatial motion, Acta Mech Sin

(2009), DOI 101007/s10409-009-0311-1.

[21] J. Chen, Mathematical Model and Speed Adjustment System of Alternating Motors, Defense Press, Beijing, (in Chinese), 1989.
[22] R.F. Naganv, Dynamic of Synchronizing System, Spring, Berlin, 2003.

[23] Q.S. Lu, Qualitative Methods and Bifurcations of Ordinary Differential Equations, Press of Beijing, University of Aeronautics and Astro-

nautics, Beijing, (in Chinese), 1989.

[24] X.H. Zhang and Q.L. Zhang, Control Theory of Nonlinear Differential Algebraic System and Its Applications, Science Press, Beijing, (in

Chinese), 2007.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


