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By using two velocity direction-position relations, we investigate free-molecular effusion flows out of a two-

dimensional slit with a nonzero average exit velocity and a free-molecular effusion flow out of an annular slit with a

zero average exit velocity. This study yields two sets of exact solutions and expressions for number density and

velocity distributions in front of the exits. These solutions include the exact exit geometry parameters. Several

properties of the solutions are discussed mathematically and physically. Numerical simulation results obtained with

the direct simulation Monte Carlo method validate the analytical solutions. In general, the comparisons between

analytical and numerical results are virtually identical. Besides the theoretical significance, the methodology used in

this study can be further applied to study more realistic plume flows.

Nomenclature

d = atomic radius
f = velocity distribution function
H = semiheight for a 2-D slit
h = y coordinate for a point on a 2-D slit
Kn = Knudsen number
n = number density
R = inner and outer radii for an annulus, universal gas

constant
U, V,W = macroscopic velocity
u, v, w = microscopic velocity
X, Y, Z = a point in front of the exit
X� = a specific position on the centerline passing an

annulus
� = 1=�2RT�
� = specific heat ratio
� = mean free path
� = ratio of R2=R1

� = specific solid angle, one component for a polar
coordinate

� = integral domain in velocity space

Subscript

o = averaged property at exit

I. Introduction

F REE-MOLECULAR flows passing through small holes
represent fundamental and important problems in real appli-

cations such as materials processing in high vacuum chambers [1],

spacecraft design [2], and metrology of gas flow [3]. Several
investigators have proposed analytical expressions for the mass flow
rate near the free-molecular regime in the case of gas flow from an
orifice expanding into vacuum. For example, Liepmann [4] reported
the efflux of gases through circular apertures, which is an example of
a transition from the gasdynamic to the gaskinetic regime.Narasimha
[5–7] further obtained the exact solutions of density and velocity
distributions for a free-molecular effusion flow, and the results for a
nearly free-molecular effusion flow, expanding into vacuum through
a circular orifice. Brook [8] reported the density field of directed free-
molecular flow from an annulus, to study the gas leakage effect from
a spacecraft hatch. Recently, a detailed numerical study of rarefied
gas flow through a thin orifice was reported [9].

In aerospace engineering, plume flows exhausted from electric
propulsion devices are of current research interest. This study is an
initial attempt to analytically investigate such plume flows. Electric
propulsion systems such as Hall thrusters have several advantages
over traditional chemical thrusters, and they are designed to operate
in space for purposes of primary propulsion and on-orbit applications
such as stationkeeping. For electric thrusters, their plume flows are of
major interest for several reasons: First, plume flows can be used to
study the performance of a thruster. Second, plume impingement on
a spacecraft can have significant adverse effects.

There are many experimental measurements and numerical
simulations of plasma plumes of electric thrusters, but there are very
few reports of analytical studies in the literature. Most related
previous kinetic work in the literature was concentrated on free-
molecular flows out of a simplified geometry such as an orifice [5],
and most studies concentrated on effusion flows with a zero average
exit velocity, U0 � 0. Obviously, further analytical results of the
plume flowfield with more detailed thruster geometries, or nonzero
average exit velocity, can provide new insights and aid the
understanding of the plume flows out of electric thrusters.

Although there are several fundamental aspects of a plume flow
out of an electric thruster, this study considers a few primary features.
The fundamental features are as follows. First, most electric
propulsion plume flows are almost free-molecular. The mean free
path for gas propellant out of a thruster can be estimated with the
following equation for the hard sphere collision model, ��
1=�

���
2
p
�d2n0�, where d is the atomic diameter and n0 is the reference

number density. With a typical number density of 5 � 1018 m�3 at
the exit of a Hall thruster, the mean free path for xenon is 0.268 m,
which is wider than a typical Hall thruster acceleration channel.
Second, the average velocity at a thruster exit plane is greater than
zero. The average neutral speed at the thruster exit plane is usually
sonic, and the average ion speed is always supersonic due to

Presented as Paper 3800 at the 9th AIAA/ASME Joint Thermophysics and
Heat Transfer Conference, San Francisco, CA, 6–8 June 2006; received 22
June 2006; revision received 5 December 2006; accepted for publication 13
December 2006. Copyright © 2007 by Chunpei Cai. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to theCopyright Clearance Center,
Inc., 222RosewoodDrive,Danvers,MA01923; include the code 0022-4650/
07 $10.00 in correspondence with the CCC.

∗Computational Fluid Dynamics Specialist, 9489 East Ironword Square
Drive, previously Graduate Student Research Assistant, Department of
Aerospace Engineering, University of Michigan, Ann Arbor, Michigan.
Senior Member AIAA.

†Professor, Department of Aerospace Engineering, 1320 Beal Avenue.
Associate Fellow AIAA.

JOURNAL OF SPACECRAFT AND ROCKETS

Vol. 44, No. 3, May–June 2007

619

http://dx.doi.org/10.2514/1.25893


electrostatic acceleration inside the thruster. Third, electric-field
effects in the plume are important for ions. Fourth, collisions are
important because they change the density and velocity distributions,
but collisions happen rarely because the flow is almost free-
molecular. Fifth, the ions are also accelerated rapidly inside the
thruster, leading to plume divergence. To include all of these features
in one step is unrealistic, and as an initial effort, by neglecting the
primary features 3, 4, and 5 (i.e, the electric field), all collision
effects, and the plume divergence, this paper investigates two
different free-molecular gas flows out of a two-dimensional slit and
an annular exit. The exact solutions to the two problems providefirst-
order approximations to cold plume flows, and they provide
foundations to investigate new cases in a future study.

In the rest of this study, Sec. II presents the problems to be studied
and a general solution method, Secs. III and IV present two free-
molecular flow problems and their analytical solutions, Sec. V
compares the results with particle simulation results, and Sec. VI
summarizes this study.

II. Free-Molecular Flow Problems
and General Treatment

The flows considered in this study are two problems of free-
molecular gas flows out of an exit into vacuum:

1) In a two-dimensional thin slit with a width of 2H, the average
exit velocity U0 is greater than zero.

2) In an annulus characterized by an inner radius R1 and an outer
radius R2, the average exit velocity U0 is zero.

This study adopts the following coordinate systems. Denote the
plume direction as theX-axis direction, the direction normal to theX
axis as the Y-axis direction, and the middle point of the slit/annulus
center is the origin. The objective of this study is to obtain the
analytical plume field flow solutions, especially the number density
and velocities at any point downstream of the exit. Suppose the gas at
the exit is in equilibrium with a uniform static temperature T0 and a
uniform number density n0. Although the plume itself is in a highly
nonequilibrium state, it is reasonable to assume that the flow is at
equilibrium before it escapes from the exit. Using T0 and n0 to
describe this equilibrium state is a natural selection, which was used
by many researchers in the past.

A. General Methods

For a dilute gasflow at rest in equilibrium, the velocity distribution
is described as a full Maxwellian distribution [10–12]. With a
number density n0 and a temperature T0, the velocity distribution
function at any point follows a Maxwellian distribution:

f�u; v; w� � n0
�
�

�

�
3=2

exp����u2 � v2 � w2�	 (1)

where �� 1=2RT0. The highest velocity probability occurs at phase
point �u; v; w� � �0; 0; 0�. For a velocity with a nonzero average
value ofU0 along theX direction but a zero average value along theY
andZ directions, the distribution Eq. (1) is shifted along theU axis by
a value of U0.

With a known velocity distribution f�u; v; w� at a point �X; Y; Z�,
the average number density normalized by a reference number
density and velocities at �X; Y; Z� can be evaluated using the velocity
distribution function [11]:

n�X; Y; Z� �
Z
�

f�u; v; w� du dv dw (2)

U�X; Y; Z� � 1

n�X; Y; Z�

Z
�

uf�u; v; w� du dv dw (3)

V�X; Y; Z� � 1

n�X; Y; Z�

Z
�

vf�u; v; w� du dv dw (4)

W�X; Y; Z� � 1

n�X; Y; Z�

Z
�

wf�u; v; w� du dv dw (5)

Hence, the critical step is to obtain the velocity distribution
function and the integral domain in the velocity phase space.
Narasimha [5] made an important observation for a free-molecular
flow of gas escaping from an orifice, discussed next.

B. Observation

For any point �X; Y; Z� in front of the orifice, its velocity space can
only have nonzero velocity within a specific solid angle� subtended
by the specific point and exit edges:

f�u; v; w� �

8><
>: n0

�
�
�

�
3=2

exp����u2 � v2 �w2�	; u; v; w 2 �;

0; u; v; w =2 �

(6)

where �� 1=2RT0 and � represents the integral domain in the
velocity phase space. Figure 1 illustrates the velocity spaces for two
points in front of the exit. One point, A, is outside the plume core
region, whereas the other point, B, is inside the plume core. Velocity
space A1-O-A2 represents the first point’s integral domain, and B1-
O-B2 represents the second point’s integral domain. Line O-A3
represents the velocity contributed by particles starting from point 3,
whereas the particle starting at point 3 that can arrive at point B is
represented by the positive U axis.

Although this observation is critical, it is not enough to solve the
high-speed plumeflow, because the preceding fact about solid angles
is not valid with a nonzero exit velocity U0. To truly attack the free-
molecular flows listed in this study, we believe it is necessary to
reinterpret this fact with a deeper view as a velocity direction-
position relation. From a given point on the exit, only particles with
specific velocity components can arrive at a specific point �X; Y; Z�
in front of the exit; on the other hand, if a particle’s velocity direction
satisfies this relation, then the particle must pass through the point in
front of the thruster. Hence, this key velocity direction-position
relation is a necessary and sufficient condition. This relation takes
different forms in the two cases andwill be illustrated later as Eqs. (7)
and (13). These equations actually have three effects. First, they
guarantee a one-to-one mapping relation between velocity phase
spaces and provide a complete support to Eq. (6). Second, they can
provide integral boundaries in the velocity space. Third, they may
simplify the integral process by changing integral variables from
velocities to geometry parameters of the exit.

III. Problem 1: Free-Molecular Flow Out
of a Slit (U0 > 0)

Narasimha [6] discussed the jet flow out of a point source with a
nonzero average exit velocity. In this section, the finite semiwidth of
slitH is considered. Consider the velocity space for a point �X; Y� in
front of the slit. The velocity distribution at the point still follows
Eq. (1), but the integral domain changes significantly because of the
nonzero average exit velocity. With this change, from any point
�0; h� on the slit, particles can arrive at the point �X; Y� if, and only if,
their velocity components �u; v� satisfy the following relation:

A1

A3A2

B2

B3

B1

u

v

2

3

1

OB

A

H

-H

Fig. 1 Velocity spaces for points inside or outside of the plume core.
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tan��� � Y � h
X
� v

u�U0

; �H < y <H (7)

To compare the difference in the integral domains for this case, the
velocity distribution function does not shift to the right with a value
ofU0. Hence, u�U0 represents a particle’s actual velocity along the
X direction. Obviously, the nonzero average velocity U0 does not
destroy the one-to-one mapping relation between velocity phase
spaces.

The nonzero values in the velocity space of point �X; Y� form a pie
shape bounded by two lines from the slit edge points to the point
�X; Y�, and the number density and velocities at the point �X; Y� can
be obtained by integrating the probability distribution function in the
velocity phase within two lines, both starting from the origin point:

�1 � arctan

�
Y �H
X

�
; �2 � arctan

�
Y �H
X

�
(8)

With this simple integral domain in the velocity phase space, the
integrals can be simplified with the following relation:

du dv� �V d �V d� (9)

where �V �
����������������
u2 � v2
p

.
Figure 2 shows the effect of the nonzero exit velocity on the

integral domain in velocity space. On the left side is a case of zero
average exit velocity and the right side is a case of nonzero average
exit velocity. In both plots, region Aoa represents an integral domain
for a point �X; Y� out of the plume core �jYj>H�, and region Bob
represents an integral domain for a point in the plume core �jYj<H�.
The integral domainwidens as the point �X; Y� becomes closer to the
slit. It is immediately observed that there are several changes between
these two integral domains. The existence of a nonzeroU0 translates
the integral domain to the left, without any effects on the slopes of the
two domain boundaries. The two boundaries shift up or down,
resulting in different effects on the points inside the plume core
�jYj<H� and outside the plume core �jYj>H�. If the point is inside
the core, then the number density increases for the case of a nonzero
average exit velocity because of a larger integral domain including
regions close to the origin with the highest probability, whereas the
number density at a point outside the plume core decreases because
the origin point is excluded from the integral domain. Physically, this
is reasonable: With a higher average exit velocity, more particles are
injected axially into the simulation domain, whereas there is less time
for particles to diffuse vertically outside the core region, because they
flow downstream quite quickly. Hence, a nonzero average exit
velocity results in a higher density at points inside the plume core and
a lower density at points outside the core region.

Note from Eq. (8) that �2 > �1, 0< �2 < �=2, and ��=2<
�1 < �=2, therefore, the number density and velocities at any point
�X; Y� in front of the slit can be derived [13,14]. The final results
are

n�X; Y� �
exp

�
��U2

0

�
2�

��2 � �1�

� 1

4

�
erf�

����
�

p
U0 sin �2� �

�1
j�1j

erf�
����
�

p
U0 sin j�1j�

�

�
���������
�=�

p
2

Z
�2

�1

exp
�
��U2

0sin
2�
�
U0 cos �erf�

����
�

p
U0 cos �� d�

(10)

U�X;Y������������
2RT0
p �

exp
�
��U2

0

�
2n�

�����������
2RT0
p

�
�Z

�2

�1

� ���������
�=�

p
2

exp
�
�U2

0cos
2�
�
cos��1�erf�

����
�

p
U0cos��	

�
d�

�U0��2��1�
2

�U0�sin�2�2��sin�2�1�	
4

�
�������
��

p
�
Z
�2

�1

h
U2

0cos
3��1�erf�

����
�

p
U0cos��

i
exp

�
�U2

0 cos�
�i

d�

	
(11)

V�X; Y������������
2RT0
p

� 1

4
����
�
p

n

n
exp

�
��U2

0sin
2�1

�
cos �1�1� erf�

����
�

p
U0 cos �1�	

� exp
�
��U2

0sin
2�2

�
cos �2�1� erf�

����
�

p
U0 cos �2�	

o
(12)

This set of solutions includes two types of factors: geometry factors
represented by �1 and �2 and other factors involving complex
nonlinear relations with U0, the average exit velocity at the slit.

From Eqs. (10–12), it can be proved that n�X;�Y� � n�X; Y�,
U�X;�Y� �U�X; Y�, and V�X;�Y� � �V�X; Y�. These results
can be obtained with aid from the fact that for points �X; Y� and
�X;�Y�, the integral domains in velocity space are symmetric about
the U axis.

Another interesting comparison is the quantities on the exit center
and exit tip. Though it is difficult to obtain the exact values at these
two points, the integral domain has some simple properties: On the
exit center, the integral domain is from ���=2� to �=2, whereas on
the exit tip, the integral domain is from 0 to �=2. Hence, it can be
concluded from Eqs. (10) and (11) that the number density at the exit
tip is half of the value at the exit center, whereas the velocity along the
X direction has a uniform value.

IV. Problem 2: Free-Molecular Effusion Flow Out
of an Annular Exit (U0 � 0)

This free-molecular flow is not only applicable for the situation of
effusion flows out of Hall thrusters, but also to estimate the flow out
of a poorly sealed spacecraft hatch. Previously, Brook [8] reported
the density field results, and in this study, we intend to give a
complete set of results with velocity distributions.

For this case, the velocity direction-position relation takes a new
format. Suppose that the average velocity at the circular exit is zero;
from any point �0; y; z� on the exit that is characterized by an internal
radius of R1 and an external radius of R2, only particles with the
following special velocity components can arrive at a point �X; Y; Z�
in front of the exit:

X

u
� Y � y

v
� Z � z

w
(13)

where X > 0, Y > 0, and Z > 0. Combined with geometry relations

z� r sin �� Z � Xw=u; y� r cos �� Y � Xv=u (14)

where r 2 �R1; R2	, � 2 �0; 2�	, the integrals for the number density
and the velocities can be simplified using the following variableFig. 2 Effect on velocity space by the average exit velocity.
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change:

dv dw�






@v
@r

@v
@�

@w
@r

@w
@�






 dr d�� u
2

X2
r dr d� (15)

By observing the integral domains, the free-molecular flow out of
an annulus can be considered as a large circular source of radius R2

minus a small circular sink of radius R1.
The final results of number density and velocities at a point
�X; 0; Z� are

n�X; 0; Z� � � X
4�

Z
�

��

�
d���������������������������������������������������������

X2 � Z2 � R2
2 � 2R2Z sin �

p
� Z sin ��R2 � Z sin �� d�
�X2 � Z2cos2��

��������������������������������������������������������
X2 � Z2 � R2

2 � 2R2Z sin �
p �

� X

4�

Z
�

��

�
d���������������������������������������������������������

X2 � Z2 � R2
1 � 2R1Z sin �

p
� Z sin ��R1 � Z sin �� d�
�X2 � Z2cos2��

��������������������������������������������������������
X2 � Z2 � R2

1 � 2R1Z sin �
p �

(16)

U�X; 0; Z������������
2RT0
p � X2

2�n
����
�
p

0
BB@ ����������������������������������������������������������

X2 � Z2 � R2
1

�
2 � 4R2

1Z
2

r

� ����������������������������������������������������������
X2 � Z2 � R2

2

�
2 � 4R2

2Z
2

r

�
Z
�

��

2
4 Z sin ��R2 � Z sin �� d�
2
�
X2 � Z2 � R2

2 � 2R2Z sin �
�
�X2 � Z2cos2��

� Z sin ��R1 � Z sin �� d�
2
�
X2 � Z2 � R2

1 � 2R1Z sin �
�
�X2 � Z2cos2��

� Z sin � d�

2�X2 � Z2cos2��3=2 arctan
R2 � Z sin ������������������������������
X2 � Z2cos2�
p

� Z sin � d�

2�X2 � Z2cos2��3=2 arctan
R1 � Z sin ������������������������������
X2 � Z2cos2�
p

3
5 d�

1
CCA

(17)

W�X; 0; Z������������
2RT0
p � 1

2�n
����
�
p

Z
2�

0

2
64 ��Z=2� cos�2�� d�h
X2 � R2

2 � Z2 � 2R2Z sin �
i

� �Z=2� cos�2�� d�h
X2 � R2

1 � Z2 � 2R1Z sin �
i

� sin��� d������������������������������
X2 � Z2cos2�
p

�
arctan

R2 � Z sin ������������������������������
X2 � Z2cos2�
p

� arctan
R1 � Z sin ������������������������������
X2 � Z2cos2�
p

�

� sin ��X2 � 2Z2cos2�� d�
2�X2 � Z2cos2��3=2

�
arctan

R2 � Z sin ������������������������������
X2 � Z2cos2�
p

� arctan
R1 � Z sin ������������������������������
X2 � Z2cos2�
p

�

� sin ��X2 � 2Z2cos2���R2 � Z sin �� d�
2�X2 � Z2cos2��

�
X2 � Z2 � R2

2 � 2R2Z sin �
�

� sin ��X2 � 2Z2cos2���R1 � Z sin �� d�
2�X2 � Z2cos2��

�
X2 � Z2 � R2

1 � 2R1Z sin �
�
3
75 (18)

From the preceding relations, the centerline variations are

n�X; 0; 0� � X

2
������������������
X2 � R2

1

p � X

2
������������������
X2 � R2

2

p
U�X; 0; 0������������

2RT0
p � X����

�
p

 
1������������������

X2 � R2
1

p � 1������������������
X2 � R2

2

p
! (19)

Obviously, when X changes from 0 to 1, the centerline number
density increases from 0 to a specific value, then decreases slowly to
zero, whereas the speed ratioU�X; 0; 0�=

�����������
2RT0
p

increases from 0 to
2=

����
�
p

.

V. Simulations and Discussions

Although the preceding results involve several integral terms that
cannot be explicitly removed, numerical evaluations are convenient
via a computer. The subroutine for the error function can be found in
any numerical computing book [15].

Because the flows are rarefied, it is appropriate to compute them
using the direct simulation Monte Carlo (DSMC) method [10]. In
this study, we used a specificDSMCpackage namedMONACO [16]
to perform the validation simulations. The simulation domain and
mesh are quite simple, and the collision function in MONACO is
turned off. Under this situation, the value of the number density at the
exit does not produce any difference in the final result, and an exact
free-molecular flow is guaranteed.

First, consider the high-speed flow passing through a 2-D slit. The
existence of a nonzero average exit velocity has a significant effect on
the flowfield. If the exit average velocity U0 � 0, then the boundary
line between the flowfield and a vacuum is the vertical line above the
slit. When the average exit velocity increases, the boundary line
begins to decline toward the plume core, though it still starts with the
upper tip �0; H�. Hence, there will be a larger void region connected
with point �0; H� and residing above the slit. This presents a problem
for evaluation of the analytical results, because the number density is
a component of the denominators in the velocities expressions, and in
the analytical vacuum region, the numerical error may exceed the
small analytical magnitudes of the number densities. For simulation
results from the DSMC method, this is not a problem, because the
evolution of velocities does not involve a denominator of number
density. For the analytical solutions to the slit problem, an effective
boundary line of n=n0 � 0:0001 is introduced to represent the plume
edge, and the comparisons are restricted to areas within this
boundary. Figure 3 shows several such effective boundary lines with
different average exit velocities at the slit. It indicates that as the
average exit velocity increases, the plume region narrows because
particles have less time to diffuse vertically. When the exit speed is
high enough, the flowfield is confined to a narrow region close to the
plume core.

X, m

Y,
m

0 0.5 1 1.5 2
0

0.5

1

1.5

2

n
/n

ex
it
=

0
.0

0
0

1
( M

=
0
.1

)

n/n exit
=0 .0

001
(M

=1 .0
)

n/n exit
=0 .0001

( M
=5 .0 )

n/n exit
=0 .0001 ( M=10.0)

Fig. 3 Case 1 analytical plume boundary lines; H� 0:1 m.
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Figure 4 shows a comparison of number density contours with the
DSMC results for a slit with a semiheight ofH� 0:1 m. The average
exit velocity at the slit is the sonic speed. The exit temperature is set to
T � 300 K. By turning off the collision function in the DSMC
method, the results are expected to be close to free-molecular.
Generally, the comparison shows almost identical results.

Figures 5 and 6 show the corresponding simulation results of
velocity contours. Because of the singularity problem mentioned
earlier, the analytical results are not valid beyond the boundary line;
hence they are omitted here. It can be observed that the flow patterns
have a narrow zone inwhich exit effects dominate, but in the far field,
the contour lines are straight.

An axisymmetric DSMC simulation without collisions is per-
formed to validate the analytical results for the annular flows. The
inner and outer radii of the annulus are set to R1 � 0:2 m and
R2 � 0:4 m, respectively. About 19,200 rectangular cells are used to
represent a square simulation domain of 1.2 by 1.2 m. As before, the
temperature at the exit is set to 300 K.

Figure 7 shows the contours of number density; the bottom
contours are the analytical results and the top contours represent the
DSMC results. In the whole simulation domain, the comparison
shows almost identical results. Figures 8 and 9 show the contours of
velocities. Both comparisons are quite satisfactory, as well. In all
three results, both the exit region and the slow “cavity” region in the
center, which is characterized by negative Wz, are clearly captured.
There are two branches of zero-value lines forWz: one is along theX
axis, whereas the other curved branch starts from a point inside the

exit and ends on theX axis. The intersection point of the twobranches
can be found analytically from Eqs. (18), on the specific point
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From this condition, it is straightforward to show thatX �
�����������
R1R2

p
is

the intersection point on the axis.
Another important result is obtained for the location on the axis for

which the highest number density occurs. From Eq. (16),
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This leads to
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nmax � 1
2
��2=3 � 1��1� �2=3 � �4=3��1=2 (23)

where �� R2=R1 > 1. Further notice that Eq. (22) is an increasing
function of �, therefore a range of X� can be determined as

R1=
���
2
p

< X� < �
1=3R1 �

�
R2
1R2

�
1=3
<
2R1 � R2

3
(24)

It is interesting to notice that this distance is less than the average
value of the inner and outer radius.

Equations (22) and (23) contain only the inner radius and outer
radius of the annulus. This is because the derivation is based on a
free-molecular flow assumption without collision effects, hence the
final expression contains only geometry factors, which is quite
expected and reasonable. For an annulus with R1 � 0:2 m and
R2 � 0:4 m, the highest number density along the centerline is
0.1299 at X � 0:196 m. The DSMC simulation without collisions
predicts the same value at the same location.

VI. Conclusions

In this study, two fundamental free-molecular flows out of an exit
with different geometries were investigated analytically and
validated by particle simulations. The important velocity-position
relations, Eqs. (7) and (13), provided one-to-one mapping relations
between velocity spaces for a specific point in front of the exit and a
point on the exit. These two relations validated Eq. (6) and provided
integral domains for both problems.

This study yielded analytical exact solutions or exact expressions
for detailed exit geometries. The first problem was of significant
importance, because it is the case closest to realistic plumeflows. The
analytical results of thefirst problem indicated that the solutionswere
composed of two factors: one factor representing simple geometry
relations and the other factor representing complex nonlinear effects
from the average exit velocity at the slit. The second case belongs to a
category of true effusion problems with a zero average exit velocity.

Itsflowfieldswere associatedwith geometry factors and no collisions
effects were considered. These results included accurate geometry
factors, hence they were expected to yield more accurate results than
existing models in the literature. These analytical results clearly
captured all features of the whole flowfield.

Two particle simulations were performed with the DSMCmethod
to validate the analytical solutions obtained in this study, and in these
simulations, the collision functions were turned off. Generally,
simulations for these two cases yield good agreement with the
analytical results andmost of the results are essentially identical, and
all detailed flow structures are captured successfully. It can be
concluded that the general treatment of these two free-molecular
flows from different exit shapes are valid.

This study is an initial effort to seek analytical results to describe
the free-molecular plume flows from electric propulsion thrusters. It
provided a solid basis for further analytical studies such as plume
flows out of a circular or annular thruster with a nonzero average
velocity at the thruster exit.

To keep this paper concise, the lengthy and complex derivation
process are omitted. More details of these two cases and another four
different cases of free-molecular flows can be found in [13].
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