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Theoretical and Observed Acoustic-Gravity Waves 
from Explosive Sources in the Atrnosphere 

DAVID G. HARKR•DER 

Cali]ornia Institute o] Tech•ology, Pasadena 

Abstract. A matrix formulation is used to derive the pressure variation for acoustic-gravity 
waves from an explosive source in an atmosphere modeled by a large number of isothermal 
layers. Comparison of theoretical and observed barograms from large thermonuclear explo- 
sions leads to the following conclusions: (1) The major features on the barogram can be ex- 
plained by the superposition of four modes, (2) different parts of the vertical temperature 
structure of the atmosphere control the relative excitation of these modes, (3) a scaled point 
source is sufficient to model thermonuclear explosions, (4) the observed shift in dominance of 
certain frequencies with yield and altitude can be explained by means of the empirical scaling 
laws derived from the direct wave near the explosion, and (5) out to 50 ø from the source, the 
observed variation of amplitude with distance can be accounted for by geometrical spreading 
over a spherical surface. 

Introduction. During the past few years, a 

large number of thermonuclear bombs have been 

exploded in the atmosphere. These events have 

given geophysicists a controlled experiment with 
which to test the theories of pulse propagation 

in a complex wave guide. The value of the ex- 
periment is enhanced by the fact that the 'mega- 

ton'-class explosions were large enough to excite 

long atmospheric waves which were recorded by 
a world-wide net of sensitive barographs [Ya- 

momoto, 1956, 1957; Hunt et al., 1960; Rose 

et al., 1961; Carpenter et al., 1961; Donn and 
Ewing, 1962a, b; Wexler and Hass, 1962]. 

Early theoretical studies [Scorer, 1950; Pe- 
keris, 1948; Yamomoto, 1957; Hunt et al., 

1960] were of limited use in analyzing these 
barograms because of their oversimplified at- 
mospheric models. 

With the advent of high-speed computers it 

became possible to obtain numerical solutions 
for more realistic atmospheric models. Numeri- 

cal solutions of the problem have been formu- 

lated by two different approaches. The first 
study with a complex temperature model was 
made by Weston [1960, 1961a, b, c]. He formu.- 
lated the inhomogeneous problem of an explo- 
sive source in an atmosphere with a continuous 

vertical temperature distribution. The problem 
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of determining the eigenfrequencies and eigen- 
functions was reduced to the evaluation of a 

second-order differential equation with coeffi- 

cients that vary with altitude. 

Papers by Press and Harkrider [1962] and 
P/e#er and Zarichny [1962] used a matrix for- 
mulation suggested by Haskell [1953] in which 
the vertical temperature of the atmosphere was 

represented by a large number of isothermal 
layers. The resultant multilayered matrix for- 
mulation is particularly suited for programming 

on a digital computer. 

These papers presented results for the homo- 

geneous problem of wave propagation in which 

the atmosphere is considered a two-dimensional 

wave guide without a source. Phase and group 

velocity dispersion curves and vertical pressure 

distributions were numerically evaluated for a 
number of modes and discussed in terms of the 

different models of atmospheric structure. The 

results of Press and Harkrider [1962] and 

P/e#er and Zarichny [1962] differed somewhat 
because the latter authors terminated their at- 

mosphere model at a lower altitude. Later work 
with a more complete model [P/e#er and 

Zarichny, 1963] gives results which agree with 
those of Press and Harkrider and contains a 

wider variety of atmospheric models. 

In this paper the homogeneous theory of 
Press and Harkrider is extended to include the 

effect of an explosive source at various altitudes 

in the atmosphere. We first represent the corn- 
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plex vertical temDerature structure of the at- 

mosphere by a large number of horizontally 

stratified isothermal layers. In one of the layers, 

we place a point source. The strength of the 
source in the frequency domain is scaled so that 

the pressure variation with time of the direct 
wave near the source is in agreement with the 
observations near actual nuclear detonations. 

After the far-field term of the plane multi- 

layered solution is obtained, it is approximately 

corrected for curvature in order to represent the 

spectral amplitude and phase of acoustic-gravity 

waves traveling over a spherical earth. The in- 

homogeneous theory, i.e., source inclusion, then 
makes it possible to calculate the effect of source 
altitude and yield on the spectral amplitude of 
various modes. With the inhomogeneous theory 

and the known response of the observing baro- 

graph we are able to calculate theoretical baro- 
grams in the time domain. These theoretical 

barograms are compared with actual barograms 
recorded at Pasadena for the 1961 Soviet nu- 

clear atmospheric test series. 

Some of the early studies also included the 
effect of sources [Pekeris, 1948; Hun• e• al., 

1960]. In these studies the effect of source alti- 

tude was not investigated, since they were con- 
cerned with surface explosions. The recent 

papers by Weston mentioned above included 
the effect of source height. His technique is 

limited by the difficulty in obtaining from the 
available nuclear test data the actual excess 

pressures and normal velocities on a surface en- 

closing an explosion. This difficulty is overcome 

in this paper by the use of a closed-form expres- 
sion for the source model. The form of the source 

term is such that it may readily be scaled to rep- 

resent the observed pressure-time variation of 
the direct wave at locations near the source. 

P/ef/er and Zarichny [1963] also present a 
theoretical barogram for a point source at an 
altitude of 2 km and a distance of 6650 km. 

The details or references for obtaining the rela- 

tive excitation function were not given, and no 

attempt was made to calculate the absolute 

pressure for a given yield and altitude. 

Symbols. 

p, excess pressure. 

r, horizontal cylindrical coordinate. 
z, vertical cylindrical coordinate or altitude. 
h, square of the vertical scale factor. 

c•, acoustic velocity. 

•y = C,,/C,, specific heat ratio. 
g, gravity field strength. 

•, angular frequency. 

as, Brunt cutoff frequency. 

t, time. 

D, source altitude. 

s, subscript denoting source medium. 

(p,o), excess pressure of source in frequency 
domain. 

2 )•, exponential decay factor of density with 
altitude in isothermal layer. 

i•,, horizontal wave number of direct source 
wave. 

•(w, a,), source scaling factor. 
a,, scaling distance for direct source wave. 

J0, Bessel function of zero order. 

[p,0], excess pressure of source in time domain. 

Pa,, peak excess pressure at a,. 

ta,, arrival time of peak excess pressure at a,. 

T+a,, duration of the positive phase at a,. 
b, = (T+a•,)-L 

•, time after some fiducial time. 

ix,, vertical wave number of direct source wave. 

erx, acoustic cutoff. 

a0, standard scaling distance. 

5, distance scale factor. 

W, yield. 

p0, ambient pressure. 

p0, ambient density. 

p, density perturbation. 

R*, universal gas constant. 

M0, molecular weight at ground. 

R = R*/Mo. 
K*, real kinetic temperature in degrees Kelvin. 

K = (Mo/M)K*, molecular scale temperature. 
m, subscript denoting mth layer constants. 

kr,m, vertical air wave number in layer m. 

k, horizontal wave number. 

Wm, vertical particle velocity perturbation in 
layer m. 

PPm, excess pressure at upper interface of layer m. 

Zm, the altitude at the top of layer m. 
dm= Zm -- Zm--X, thickness of layer m. 

(•m, air wave matrix for layer m. 

Am', propagation coefficient of ascending wave 
in layer m. 

Am 't , propagation coefficient of descending wave 
in layer m. 

So, source coefficient in the frequency-wave num- 
ber domain. 

n, the number of layers including half-space. 
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A, product matrix of layer matrices from i to 
n-- 1. 

A,•, product matrix of layer matrices from 1 to sl. 

A'% product matrix of layer matrices from s2 to n. 

p0, excess pressure at the earth's surface. 

$w,, discontinuity in vertical particle velocity 

integrand at source. 

$p•,, discontinuity in pressure integrand at 
source. 

X, vector element defined by (33). 

¾, vector element defined by (33). 

E• -•, matrix defined by (37). 

b•,, matrix element defined by (35). 

b•,, matrix element defined by (35). 

½ = w/k, horizontal phase velocity. 
N`4(•), integrand numerator factor defined by 

(41). 

F`4, integrand denominator defined by (41). 
N`4(•), integrand numerator factor defined by 

(43). 

(), designates frequency domain quantity. 
j, subscript denotes roots of F`4 = 0. 

{ }Ai, designates residue contribution of integral 
solution. 

[ Ira, homogeneous ratio evaluated at jth root of 
F`4 = 0. 

H0 •a•, Hankel function of zero order. 
ae, radius of the earth. 

0, spherical colatitude angle. 

r, separation constant. 

P•, Q,, Legendre functions. 

6t, amplitude of barograph response. 

•, phase of barograph response. 

•o•, natural frequency of the float transducer. 
½•, damping constant of the float transducer. 
ws, natural frequency of the galvanometer. 

es, damping constant of the galvanometer. 

•, coupling factor. 

[ ]a•, denotes time domain expression. 
I•, defined by (67). 

I,., defined by (67). 

5.4 (1), defined by (67). 

5:`4 e.), defined by (67). 

AAi, amplitude response of surface source and 
receiver; defined by (67). 

z`4, defined by (67). 

0•, phase of source time function. 
z`4', defined by (67). 

Zx, defined by (67). 
U, horizontal group velocity. 

Theoretical explosive-source model. The par- 

tial differential equation governing the excess 
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pressure p in an isothermal gravitating atmos- 

phere can be given in cylindrical coordinates by 

I (O2p• q•Op co 2 ) + XYzz- + + p = o 
where 

and a time dependence of e•' has been assumed. 
The derivation of (1) closely parallels the 

derivation given by Lamb [1945] and Pekeris 
[1948] for the first time derivative of the dilata- 

tion and will not be given here. 

As a source model for an atmospheric nuclear 

blast, we use an azimuthally symmetric, simple 

point source located in layer s at an altitude D. 

This point source or Green's function, located 

at r = 0 and z = D, is here de•ed as the par- 

ticular solution of the elementary inhomoge- 

neous form of (1), or 

r Or r Or / 

1 (Oap• q•g•Op• 07 + ,. +-%p, ors O Z Ct s 

8(r) $(z- D)e 
r 

The solution of (2) is given by 

1/2 -X, (z-D) 

---•-- e 

where 

(2) 

--• [ra+hs (z--D) •1 •/• 
e ioJt 

[r •' --[- h•(z -- D)211/2 • (3) 

It is easy to verify by direct substitution that 
the Green's function (3) is a solution of the 

homogeneous equation (1) for all (r, z) except 

at the point (0, D). Also, if we let g -- 0, the 
Green's function reduces to the well-known 

point source for outgoing spherical pressure 
waves in an acoustic medium. 

<p) = --(1/2R)e i•';'-•/'") 

where R- [F+ (z- D)•] •:'•. 
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We now insert j(•, as) in (3), so that after 

integrating (3) over •o we have at a distance a8 

directly below the source, the observed excess 

pressure-time variation [Glasstone, 1962]. 

for 

As 1/2 ( 602 -- 0.2 - )iTi I 

[p,o(0, D- a,; t)] 

= , -- '•'+a,e for r >_ 0 (4) 
0 for r<0 

where r -- t -- taB. Applying a Fourier trans- 

form to (4) 

[p•o(0, D- as; t)]e -'•'t dt 

--io•tas 

p•e (ico q- 1/T+•8) 2 (5) 
and equating the result to (3), evaluated at 

(0, D -- as) with the e '•t excluded, yields 

/(co, a,) = -- 2pa,e 

where b• -- 1/T+• and X• • -- •'øhs. Thus, 
an explosion source, we have 

(6) 

for 

and 

co > • and --• > co 

= -- -- .d)] 

where 

2 2 

0.1 • ø'2 

for 3, > 1. Although not shown here, the above 
criteria can be obtained by shifting paths of in- 

tegration in the complex o• plane arbitrarily 
close to the real axis under the condition that 

Re (•) > 0 and Re(hff') > 0. 

The condition that Re(•,) > 0 and Re(hff '•) 
> 0 enables us to write (7) as the following ex- 

pression [Erdelyi et al., 1954]: 

(P•o) = h•pa•e (XS-x•)a•e-X•(z-D)½-i•t•"a•ico 

fO e -ikr'•slz-D] ß •-1•2•: Jo(kr)k dke iø't 
where 

(9) 

Pso) . •/2 (x•-X•)e-X•(z-D)e-ia•t•,s = n• pa•e 

--•, [r • +hs (z--D) • ] x/• 
a•i• e 

'(b, -[- ico)" Jr' -[- h•(z -- m)2] 1/2e 
(7) 

We note that • has four branch points lo- 

cated at o• -- -----ax and ___a.o, and h• TM has two 
branch points located at o• -- ñ0',, where a•= ---- 

)?g,'/4 a• • and a..= -- (¾ -- 1)g•=/a• •. In order 
that the integration of (7) over •o be convergent 

for all reasonable (r, z) outside of a,, we require 
that for 

0'2 > co > --0's 

= -- -- 

and 

for 

0.• > co > 0',• and 

and 

--0'• < co < --0'a 

- 

(8) 

This form will be used as our source term in the 

matrix formulation because, as we shall see, its 

integrand is expressed in the solutions of the 

homogeneous excess-pressure equation. 

Instead of inserting a different Pa•, a•, t•, and 

T+a8 for different yields and altitudes in order to 

synthesize a barogram, we use the measurements 
from a 'standard' bomb size of 1 kiloton at a 

Pao such that ao is in the linear region; then, 

keeping p• fixed, we scale the other parameters 

to explosives under different conditions by means 

of the empirical scale factors given by Glasstone 

[1962]. For a given excess pressure, the distance 

from the blast at which it is found is given by 
the distance scale factor 

= "'•Po IP, ) 

For the time measurements t• and T+a• at this 

new distance, we use • and in addition a velocity 

ratio, since the standard quantities are given at 

surface or sea-level velocities. According to these 

scaling laws, the appropriate bomb character- 
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istics for yields and altitudes other than the 
reference or 'standard' bomb are 

a• = •ao ta• = • O•o taO T+a• -- • O•__o T+ao (12) 
Og s 

where 

• = (W•.poO/p•O),/:• = (WspoOoto2/psOots2),/3 (13) 

since, by the equation of state, pO _ RKOoO and 
•2 = •/RK o = ¾pO/pO. 

Matrix formulation and solution for the ex- 

plosive source in a horizontally stratified atmos- 

phere. For an isothermal or constant velocity 
layer m in a horizontally stratified atmosphere 
not containing the source, the equation for ex- 

cess pressure is given by (1): 

r Or r Or/ 

+ "Y gm Op.. •o • ) --• -- _qt_ • Pm -- 0 (14) 
Ogm (•Z Ogm 

If the radial or r dependence of Pm is given by 
Jo (kr), (14) reduces to 

gmOPm ( • ) 02Pro '•- ? --• -•Z '•- •---• kmk2 OZ 2 am Ogre- Pm-- 0 (15) 
Making use of Press and Harkrider's [1962] 
first three equations we can express the vertical 

velocity perturbation as 

_ i (Opm ) Wm -- •OpmO•Z) hm \ OZ -•- % Pm (16) 
As in Press and Harkrider [1962], the bound- 

ary conditions are continuity of vertical particle 

velocity and total pressure across the disturbed 

interfaces. Since the equations of motion were 

linearized under the assumption of small mo- 

tion, we retain only first-order terms. With this 

assumption we find that the change in total 

pressure at an interface which is displaced a 

vertical distance, --iw/o•, from its static equi- 

librium position is given by 

P•..• = Pm •o2h,,, \ OZ '•- % Pm (17) 
Therefore, at the layer interfaces we require 

Wm(Zm--1) = Wm--l (•m--1) (18) 

PPm(Zm --1) ---- PPm--i (Zm--1) (19) 
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in order to guarantee continuity of vertical 

particle velocity and total pressure. 

The general solution of (14) is given by 

Pm -- ½ [Amle-ik .... 

_•_ Am,,½ik .... ]Zo(kr)eiO•t (20) 

Substituting (20) in (16) and (17), evaluating 
at the top, Zm, and bottom, z .... ,_, of l•yer m, and 

eliminating the propagation coe•cients •' and 

•m", we obtain the following matrix relation: 

Pm(Zm-i) 

where the elements of the •m m•trix •re given by 
Press and Harkrider's [1962] equations 12. 

For layer s, which contains the source, we 
add a source term of the form 

p•o(Z) •o• -•-• -••-• • = e o(r)e 

where So is not • function of r or z, so that we 
now have 

p•(z) = e-XSZ[A•'e -ik .... _• A•,,ei• .... 

-•- SoeXSZ)e-•k•"•'z-z)']do(kr)e•t (23) 

Decomposing layer s into two layers, s2 and sl, 
with the same temperature and g, we can write 
(23) as 

V•(z) = e-X•{[a• ' + Soe (x•+•'•]e -• 

• A•"e • .... }•o(kr)e • (24) 
forz• % z % D and 

__ __ 

psi(Z) • e-X•{ •s'e -ik .... 

• [•stt • Soe(k•-ikra•)D]eik .... }Zo(kr)ei•t 

ford • z • z•_• 

Evaluating (24) and (25) at the tops and 
bottoms of their respective sublayers and elimi- 

nating the propagation coe•cients, we see that 
for layers s2 and sl we have the same matrix 

relation as is given in (21), with the m sub- 

scripts replaced by s2 and sl, respectively. Also, 
it can be shown that the matrix product 

a•a•l = a• (26) 

where a• is the l•yer m•trix for I•yer s if no 
source is present. 

For M1 interfaces except the interface between 
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layers s2 and sl, we have continuity of w and pp. 
Using this continuity and the matrix relation 
(21), we get 

pp,,-l(Zn-1) (27) 

and 

We now define X and Y by the matrix opera- 
tion 

Lp•82(D)J 

Multiplying (31) by As• -•, and using (33) and 
(29), we have 

p•8•( D)• [p•(0)_J 

where A" = a•_• ... a,2 and A,• = a,• ... (•1. 

A• z = 0, layer i is in contact with a fiat rigid 
boundary where we require w•(0) = 0, and thus 

ppx(0) • p•(0) • p0. Equation 28 then reduces to 

p•,•(D)• po 

Since Op•o/Oz is discontinuous across z = D, 

we have, from (24) and (25), substituted in 

(16) and (17) the following relations: 

p•(D) -- p•(D) = 0 

•( •) - •( •) 

- - oz 

p•,•( D) -- pP81( D) 

_ g___• IOp•2(D) - --•h. Oz 
and 

Oz 

(3o) 

IOp•,.(D) Op,•(D)] , Oz -- •; = --i2kr"•SøJø(kr)e• 
where the partial derivatives with respect to z 
are evaluated at D by letting z approach D 
from their respective layers. From (30) we ob- 
tain the vector relation 

(3•) 

pp•(D)2 •p•(D)2 •pp• 

where 

aw8 -- •h•o•O( D) 

ig•p•ø(D) 

or 

Po $P•,-J 

(34) 

X = (A,•-•)• $w8 -}- (A,•-•)•=$p•,. (35) 
po = Y- [(A,•-•),.•(•w, + 

For the case of an atmosphere bounded by an 

isothermal half-space, we require that the nth 
layer propagation coefiqcient A," -- 0. For (o•, k) 
such that (kr•,) •' •> 0, this is equivalent to re- 

quiring that there be no radiation from infinity 
into the wave guide. For (o•, k) such that 

(kr•,) • <( 0, this condition guarantees that the 
kinetic energy integrated over a column of at- 
mosphere be finite. 

Setting A," -- 0 in equations for w,(z) and 
p•.,(z) evaluated at z,_•, we find that 

and the matrix E, -• is given by 

E•-• = E(1/ø•n) ø I (37) 0 (l/b,,) 

where 

)knZn--I 

b, n e -ik ....... (kc)2 -- 

{ g,,(a,•'/c" -- q,'/2) -- ia.'(kr•.) } Yo(kr)e 
(as) 

pnO(Zn--1) i•t 

c = o•/• 

Defining the matrix A by the matrix product 

)knZn--1 

ß e -i• ....... (kc)= 
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A = A s2Asi 

we obtain from (36), (27), and (33) 

Performing an integration over k, where 

as''' (•1 (Pm> -- Pm dk (Wm> : W m dk 

(39) (PPm> -- fO © PPm dk 
and letting 

Finally, eliminating Ag from (39), we have 

Y = i(N.4(')/F.4)X (40) 

where 

NA (1) _•. All -- (bln/b2n $) A21 $ 

FA ---- A12* + (bln/b2n $) A22 

iAik* = Aik and ib2* = 

Substituting (40) in (35) yields 

Po = i•ws 
FA 

where 

(4]) 

(42) 

Na (2) • (Asl 1)11 + • (Asl 12 

From Press and Harkrider [1962] we know 

that the determinant of the individual layer 

matrix is equal to unity; therefore, the deter- 
minant of any matrix product of these Nyer 
matrices is also equal to unity. Therefore, the 
inverse of A,• is given by 

Asl-•__ I (A•1)22- (Asl)121 (44) -- (Asl)21 (Asl)111 

Substituting this result in (43) yields 

Using (32), the definition of pp, and (29), we 
get 

NA 
(2, psi(D) 

+ iF A [(Asl)21' -- gspsø(D)(Asl)11] (•O) 

(47) 

(x.-xs>a. hs ei=ta' (48) So -- paswase (bs + iw) • 
in order that p.o = •o'p.odk be equal to (9), we 
have from (32) 

2k e 

•w• - p•O( D) a•p• ( b• + i•) • 

ß Jo(kr)e •(t-t•' (49) 
and 

(Xs-Xs)as 
Pas e iw (t-t ) 

(po} = ia, O(D) (b• + iw) 2e • 2 p• 

ß •5- Jo(kr)k dk (50) 
In this paper we are interested only in the 

waves which are 0 (r-•/•). These waves are given 
by the residue contribution of (50) due to the 
zeros of Fa. Evaluating (50) for the residue con- 

tribution, we obtain for each mode or ks root, 
m fixed, of Fa = 0 

a,pa, e 

(]) (2) 

where (aF•/ak)•,,, N•"', and N•, © are eva]u- 
ated at (•, k•) so that F•(•, k) = 0. F• = 0 is 
the period equation given by Press and Hark- 
rider [1962]. Roots, dispersion curves, and the 
homogeneous velocity and pressure ratios at alti- 
tude for various temperature models of the at- 
mosphere, along with a discussion of the 'cutoff' 
region, can be found in this reference. 

•t •(•,•,)= 0, by (40), 

(2) Psl(D) 
- (52) 

Po 

and, since the determinant of product matrix is 
unity, that is 
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[AI ---- AliA22 q- A12*A21* = 1 

and since 

we have 

*+ b--•n A• = 0 

(•) I (53) 
A22 

Evaluating the residue contributions of the 

int• •p•nt•tion• •o• (w•(•)), (p•(V)), 
{p.l(D)), {w. 2(D)), {p•.a(D)), and {p.a(D)} by 
using (27) and (31), we find that 

{w•(•)}• = (a•)•alpo}• 

{p•(v)}• = (•)•{p0}• 

{p•(v) }• = 

• p•o(v) a•(•)•* {po}• 

{w•(•)}• = {w•(v)}• 

{p.(v)}• = {p.(v)}• 

{p•(v)}• = {p•(v)}• 

and thus there is no discontinuity across the 

source plane, z: D, for the residue contribu- 
tions. From (55) we see that 

{ Wm(Z) }Ai •: ---- [mm(z)l•2* {Po}.4i 

Po 

{PPm(Z)}Ai = [mm(Z)122{Po}Ai 

L Po 

{pm(Z)}• {[•(Z)]•+ pmO½)am [•m½)11• } 

L Po 

is true for all m above and below the source, 
where 

Am(e) = (•m(Z)(•m-X ''' (• 

and 6•m(Z) is the layer matrix for a sublayer in 

layer m of thickness dm(z) = z -- Zm-1. 

Rewriting (51), using (52), (53) and the 
definitions in (56), we obtain for the residue 

contribution for excess pressure at the surface 

of a horizontally stratified atmosphere 

aspas e (x•-x•)a• 
{Po}•i = 2•r p•) 

Po 2.i Ho<2)(kir)e i•(t-t•') (57) 

L Po Ju 

where 

L Po 
Approximate curvature correction. It has 

been shown by Weston [1961] •ha• a good ap- 

proximation •o the equation for excess pressure 

in an isothermal gravitating spherical layer, 

assuming •hat the radial dimension of the at- 

mosphere is small in comparison with the earth's 

radius, a, can be given for longitudinal s•- 

metry by 

10( sin000 sin 0 +•(•+ 1)pm = 0 (58) 
and 

OZ 2a m Oz + -- hmk2 Pm = 0 (59) 
where z is the radial coordinate, 0 is •he colati- 

•ude, and 

k2a, • = •(• + 1) (60) 

To •his approximation •he 0 dependence of p• 

is given by the Legendre functions P•(cos 0) 

and Q•(cos 0), and the radial dependence is de- 

termined by •he same differential equation as 

(15), which governed •he vertical dependence of 

p• for •he horizontal layer. Also, the approxi- 

mate radial boundary conditions across spherical 

layers are •he same as for •t•e horizontal layers. 

Thus we have •he same relation for •he spheri- 

cally layered a•mosphere as (42), wi•h •he &(kr) 

dependence of $w, replaced by some linear com- 
bination of P•(cos 0) and Q•(cos 0). 

Now, near the source, the residue contribution 

(57) should be valid for k• large, i.e., small hori- 

zontal wavelengths. Thus for an approximate 

curvature correction to (57), valid for large 
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kj as, we use an asymptotic expansion, valid for 
large v, of the Legendre functions which reduces 

to Ho(•)(kjr) near the source, i.e., 0 small. Such 
an expansion was given by Szeg5 [1933]. 

P•(cos 0) + i(2f•r) Q•(cos 0) 

• (0/sin 0)1/2Ho(2)[(/2 + «) 0] 

For v large, k• ae • r + •/• and (61) yields 

(61) 

P•(cos 0) + i(2/•r) Q•(cos 0) 

• (r/a, sin O)•/2Ho (2)(kir) 

where r is the distance from the source measured 

on the surface of the earth; i.e., r -- O/at. 
Furthermore, since we are interested in waves 

at large r from the source, we now make use of 

the asymptotic expansion for large arguments of 
Ho(•)(k• r). Therefore, including the above ap- 
proximation for curvature, our solution is 

(Xs--Xs)as 

{Po}A• = 2wa• Pa.• e po(o) + 

ß [p•(D)/po],,• ( r )•/• [p,•-•/po]u(OFA/Ok)•.•. a• sin 0 

iw ( t--tas--kr/w • + w/4w) 
ß e 2 

From this form of the solution we see that our 

curvature correction factor 

(r/ac sin 0 

alters the amplitude in order to compensate for 
the effect of energy spreading over a spherical 
surface instead of a fiat surface. 

Barograph response and calibration. The 

type of microbarograph at Donnelley Seismo- 

logical Laboratory has previously been described 

in the literature by Ewing and Press [1953] and 

Donnet al. [1954]. The frequency response of 
this instrument is given by 
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where (R(w)e -• • is the barograph frequency 
response. The instrument constants are such 

that the galvanometer and float systems are 

critically damped, e• - e• - 1, and the coupling 
factor is negligible, a - 0. 

Barogram synthesis. For spherical boundary 

value problems with harmonic time dependence, 

the requirement that the solutions be periodic 

in 0 causes • to be an integer. This requirement 
by (60) restricts k• to particular values, reducing 
our continuous (w, k•) phase spectrums for 

Fa = 0 to discrete points. For this problem, we 

use the continuous (w, ki) or (w, c•) curves when 
we integrate our solution over w to obtain 

theoretical barograms. Using the continuous 

(w, ki) curves has been shown by Weston [1961] 

to be equivalent to keeping in the spherical 
solution only the terms which represent waves 
that have arrived at the detector without 

encircling the earth. 

The fiat-earth result given by (62) is obviously 
the wave which has come directly to the detector 

by way of the shortest route without passing the 
antipode. For reference purposes and to be 

consistent with other authors, we designate this 
arrival in the time domain as A•. This solution 

is very similar in form to the result given by 

Weston [1961] for the spherical problem, assuming 

a fiat-earth approximation. In fact, the 0 or r 

dependence for spectral amplitude and phase are 
identical. The solution differs from ours in the 

manner of calculating the homogeneous solu- 

tions, the mode excitation, the source normaliza- 

tion, and the detail in modeling the atmosphere 
realistically. Moreover, he showed that for the 

A•. arrival, which had traveled by way of the 

antipodal route, the spectral amplitude was the 

same as for the shorter route and had a phase 

corresponding to the longer route with a positive 

phase shift of •r/2. 
Since the derivation used here is for a hori- 

zontally stratified atmosphere with an approxi- 

mate curvature correction, our solution cannot 

possibly give A•.. Therefore, using Weston's 

(6a) 
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result as a justification, we obtain the A•. arrival 

by replacing r in the phase of (62) by r,. and by 
adding a positive phase shift of •r/2, where r,. is 
given by 

r,.- ae(2•r- 0) -- 2•rae--r (64) 

Leaving the spectral amplitude the same for 
A2 as for A•, after A•. has traveled a longer route, 

can be physically interpreted as a refocusing of 
the spectral energy at the antipode with a re- 
sultant shift in phase of ,r/2, which often occurs 

in problems involving a focus. 

Integrating over •o so that the source used in 

the derivation of (62) has the observed pressure 

variation in the time domain, we have for A.., 

from (62), 

1/2 1 e 

= (a• sin O) •/2 ø(D) a•pa•(I•-Jr- 12) P• 

where 

I• = 5.•(•)(w)e i•(t-•) dw 

-1- 5:a(•)(w)e i•(t-'•) dw 

--ax iw (t--rA ') -[- • a ( 2 ) (w) e dw 

•Ai(•) ]k i •1/2•Ps( D) • 5A(X)(W) = eX•a• (bs • + •) L po 
• eX•a•A(2)(•) (66) 

Aai(w) = {[p•_•fpo]•i(OFafOk)•.i}-• 

k•/w = 1/ci 

0• = tan -• (w/b•) 

TA t • T A • T X 

= -- 

and where the phase velocity, c•, and [p•(D)/ 

po]• A•(m) are even functions of •. Thus from 

DAVID G. I-IARKRIDER 

the criteria of (8) and the fact that •(t -- •) is 

odd about • - 0, we can calculate/• •nd I• from 

(as/as) (•--•)•/• 
ß e cos wit -- ra] dw (67) 

and 

ß cos •[t - (• + •)] 

For A• the shove equations remsin •he same 

with the exception thst • is now given by 

• = •a• + •/• -- S•/• [• + •/• 

where r• is given 5y (64). 

For the A• snd A• bsrogm•, we include •he 

instrument response a(•) snd •/• given 5y (63). 
Computational method. The 

grams sre cslculsted by mesns of two Fortran 

programs written for the IB• 7090 computer. 
The firs• is s modificsfion of the sir wsve 

dispersion program described by Press a•d 

Harkrider [1962]. Its purpose is 

the qusnfifies in (67) which depend on lsyering 

alone. •hese qusntities sre Aa•, k•, snd the 

group velocity, U• = 
As in the originsl progrsm, the i•fisl step is 

to find the root, k•, which ssfisfies F• 

given input phsse veiocity, ci. Once the root is 

detersned by the computer• the homogeneous 

psrticle velocity snd pressure rstios given •y 
(56) sre cslculsted st the •dpoint in esch lsyer. 

Next, the root vslues of A• snd Ui 
computed. To cslcuiste Aa•, we need the vslue 
o• (0•/0•)•.•. we define s lsyer derivsfive 
rotfix (Oam/O•)•, where 

[(Oam/O•)•]• = [O(am)•/O•]. (69) 

is •he definition of the lr•h ms, fix element. From 

(69) and •he definition of matrix multiplicstion, 

we see •hat the matrix (OA./Ok). csn be given 

by the matrix products 

Therefore, using (70) and analytic expressions 

for (69) in each layer, sta•ing from the surface 

lsyer, we csn cslculs•e •he mstrix 
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With the elements from this matrix, we compute 

(OF•/Ok)• from (41). Similiarly we calculate 

(0F•/O•),, and form the group velocity U• by 
the relation 

As a check, we calculate a rough group veloc- 
ity in two ways. The first is by numerical differ- 

entiation of the phase velocity. Ac/Ak is ob- 
tained by perturbing c slightly and then finding 

a new k root. The second method is by numerical 

differentiation of F• and using (71). 

The purpose of the second program is to take 
the quantities calculated by the dispersion pro- 

gram and synthesize the pressure and barogram 
time variations at some surface detector. This is 

accomplished by applying the Aki [1960] ap- 

proximation with linear amplitude intervals, an 
extension of an approximate evaluation of the 
integral 

h(t) = 2 A(w) cosw[t- •(w)] dw (72) 

where A(o•) is res1 in the frequency intervaI 
< •o• and zero outside the interval. In Aki's 

evaIuation it was also assumed that A(•o) was 
constant in this interval. 

The first step in the evaIuation is to divide the 
integration interval o• to o• into subintervals 

over which phase and amplitude are approxi- 
mately linear in •o. With this approximation, 

(72) takes the form 

where 

ß cos ½(w) dw (73) 

A(w) = A, + (w --ooi)(dA/doo)c 

-- A, + (w- 

with the i subscripted variables evaluated at the 
midpoint of the ith frequency interval A•. 

Defining Is by Is -- r + o• (dr/do•), we see 
that 

(d½/dw), = {t- [r + w(dr/dw)]},----t-- to, 

Thus, expanding cos • in terms of these quanti- 
ties and evaluating the resultant integral, we 

•150 
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obtain the expression used in the Fourier syn- 

thesis program: 

h(t) = 2 •(AiAw• cos oo,( t - ;'3 

sin [(Aw•/2)(t -- t•)] 
ß 

(Aw,/2)(t- t•) 

- 75- ,aoo, (t- 

-- 

Discusdon of frequencv domain. The vertical 
•empera•ure s•rue•ure used •o model 6he ear6h's 

a6mosphere is •he ARDC s•sndard a•mosphere 
(Figures 1 and 4) used by Pre88 and Harkrider 
[1962]. This model was chosen because i• was 
shown [o explain adequa•ely all •he signifiean• 

group-frequency arrivals in •he observed bar- 
ogmms from •he Sovie• nuclear •es•s (Figures 
2 •d3). 

The ARDC s•sndard model of •he a•mosphere 

has •wo •empers•ure minimums, one a• 18 km 
and [he o•her a• 85 km. For computation i• is 



5306 DAVID G. HARKRIDER 

I A I FOR SOVIET AIR BLASTS 
I MODELS [] N. DELH•-$•--•T I•-- ;'•.•-EL•R-•-•5 0CTI961 
I ½•-•-•L © PAS. 6OCT 1961 0 PAS. 10 SEPT 1961 
/ ARCTIC WINTER e PAS. 230CT 1961 ß PAS. 4 OCT 1961 
/----ARDC 0 MERCURY 50 OCT1961 v CLAREMONT 23 OCT1961 

•320/ I I_ = o I I I I I I I • 

J I I 

• h ill •i •1 •X_!? ....... •:•W',•tF: • !l II II Z 

PERIOD IN MINUTES 

Fig. 2. Comparison of experimental group velocities for A• waves from Novaya Zemlya 
explosions with standard and extreme ARDC models. Data curves 1-8 from Donn and Ewing 
[1962]. 

Fig. 3. 

ø520 

5OO 

o 

-J280 

o 260 

240 

TROPICAL A z & A$ FOR 
MODELS ARCTIC WINTER 

ARDC SOVIET AIR BLASTS 1961 

-- 2 

- _ .............. i ;. ,,•__•----- ,,, •j 
• I• RENO A 2 OCT. 51 :: IIJ 

jl •1 ' 2 • TERCEREIRA A 2 OCT. 51 • JJJ 
,I ,,• • 5• FOULNESS A 5 NOV I • J •i• 

-- b CLAREMONT A 2 OCT. 50 •I •JJ -- 
•l J I v CLAREMONT A 2 OCT. 24 Jl IIJ -- 

= ill o MERCURY A 2 OCT. 30 :• II1 - 
• J! e PASADENA A 2 OCT. 24 JJ / - 

• o ,,s•;•,, ,• s•. •o • ! - Z, • : - I I I I I I I I I I 1• 
0 2 4 6 8 I0 12 14 

PERIOD IN MINUTES 

Comparison of experimental and theoretical curves for A• and A.• waves from Novaya 
Zemlya explosions. Data curves 1-4 from Don, •nd Ewing [1962]. 

represented by a digital model with 39 layers 
and is terminated with an isothermal Mlf-space 

beginning at an elevation of 220 km. 

The dispersion curves for this model are 
shown in Figures 5 and 6. A number of perturba- 
tions of this model were used by Press and 

Harkrider [1962] to determine the effect on dis- 

persion due to digitization, the termina.tion of 

the atmosphere, and the various parts of the 
atmospheric wave guide. 

Press and Harkrider found that certain fea- 

tures of the dispersion curves were sensitive to 
particular regions of the vertical temperature 
and velocity structure. Their results concerning 
these dispersion effects may be summarized as 
follows: (1) The sequence of maximums or 
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Fig. 4. Standard and extreme ARDC atmospheres. 

plateaus in group velocity is sensitive to the 

properties of the lower 50 km of the atmosphere. 

In fact, recent work by Pfeifer and Zarichny 

[1963] indicates that the sequence of plateaus 

for the higher acoustic modes approaches the 

sound velocity of the lower wave guide. (2) The 

phase and group velocities of the acoustic modes 

approach the lowest velocity in the atmosphere 

at the high frequency limit. In our model this 

is the upper wave guide at 85 kin; therefore the 

group velocity minimums are sensitive to the at- 

mosphere above 50 km. 

With the source theory presented in this 

paper it is possible to extend our investigation 

to the effect on amplitude. The effect of lower 

parts of the wave guide on spectral amplitude 

can best be seen in the following. From previous 

sections we know that the response of the medium 

to a surface source and receiver is given by A.• 

(o•). The responses for S•, S,, S,o, GRo, and GR, 
for the ARDC standard and arctic winter 

models are illustrated in Figure 7. The most 

striking feature is the similarity in shape be- 

tween group velocity and amplitude. The simi- 

larity in shape demonstrates that the early-ar- 

riving waves are more efficiently excited by 

near-ground disturbances recorded by ground- 
based detectors than later arrivals which corre- 

spond to the group velocity minimums. This ef- 

fect was predicted by Press and Harkrider [ 1962] 
on the grounds that early arrivals corresponding 

to the group velocity plateaus were controlled 

by the atmosphere structure below 50 km, 
whereas the group velocity minimums were 

sensitive to the atmosphere above 50 kin. 

Another interesting feature of the response 
curves is the secondary plateaus of S2 and S, 

(shown as A and B in Figure 7) at frequencies 

corresponding to later long-period group ar- 

rivals. The secondary plateaus of S2 and S• ex- 

tend from a period of 2 and 3 minutes, respec- 

tively, to the long-period cutoff of each mode. 

For the S• mode this plateau for the late-arriv- 

ing 2- to 3«-min wave yields an excitation 

equivalent to the earlier-arriving 1- to l•/•-min 

wave. The effect of terminating the model with 

a free surface instead of a half-space is to elimi- 

nate the hole in the spectrum near 14 min with 

a continuation of GRo at an amplitude equal to 
that shown for GR•. A similar effect was shown 

for the group velocity plateau [Press and Hark- 

rider, 1962]. Superimposed on the mode response 

curves is the amplitude response of the micro- 

barograph with a peak amplitude of 0.0533 

cm//•bar at a period of 1.6 min. 

The effect of source and receiver height on 

spectral amplitude can be determined by the 

vertical distribution of the homogeneous pres- 
sure ratios. The distribution of this ratio as a 

function of period for two altitudes is given in 
Figure 8 for the ARDC standard model. The 

spectral amplitude is given by the product of A• 

and the homogeneous pressure ratios at the 
source and receiver elevation. Thus a horizontal 

line in Figure 8 with a constant value less than 1 

would indicate a uniform reduction in amplitude 

over surface amplitudes. 

In Figure 8 we display the ratio for an alti- 

tude of 18.5 km, corresponding to the midpoint 
of the lower-velocity channel. In addition to an 

over-all reduction in amplitude relative to that 

of surface excitation, this ratio shows the follow- 

ing effects on amplitude. (1) There is very little 

change in the gen. eral shape of GRo and GR•. 
The late-arriving waves for GR• are decreased 

slightly. The late-arriving GRo are increased 

slightly, especially at the short-period end. (2) 
The early-arriving waves for the acoustic modes 

corresponding to the group velocity plateaus 
show an increase in amplitude relative to the 
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Fig. 5. Phase and group velocity dispersion curves for So,•.• and GRo,• modes of AR•C 
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;Fig. 6. Same as ;Figure 5 with different scale. 

gravity modes. With either the source or detec- 
tor at this altitude, the peak amplitudes of the 

S2, S•, and So modes are equal to the peak ampli- 
tudes of the GRo and GR• modes. With both 

source and detector at this altitude (Figure 9), 

the peak amplitudes of the acoustic modes are 
greater than the gravity modes in the following 
order: S2 > S• > So. (3) The secondary plateaus 

of S• and S• are reduced relative to. the plateaus 

of early-arriving waves of all the modes. (4) 
The high-frequency late-arriving waves for the 

acoustic modes show an increase in excitation, 
and the long-period late-arriving waves for S• 
and S• show a decrease. 

A detailed discussion of the amplitude or exci- 
tation effects of placing the source and receiver 

in the more interesting parts of the atmosphere 
is beyond the scope of this paper, partly because 
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Fig. 7. Spectral amplitude of A•(•) for the ARDC standard and arctic winter atmospheres. 
Spectral amplitude of the barograph is superimposed. 
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Itomogeneous pressure ratios at an altitude of 18.5 and 50 km for 
So,•,_. and GRo,• modes 

the observed barograms used in this paper were 

produced by nuclear explosions at an altitude of 
less than 4 kin. 

The resultant spectral amplitudes displaying 
these effects are given in Figures 9, 10, ll, and 
12 and can be summarized as follows: (1) In 

the lower velocity minimum, the gravity medes 

are comparatively unaffected as to shape. The 

excitation of the early-arriving waves for the 

acoustic modes are increased relative to early- 

arriving gravity waves. (2) In the relative veloc- 

ity maximum between the minimums, the early- 

arriving acoustic waves are less excited than the 

corresponding gravity waves. (3) The effect of 

increasing altitude is to increase the excitation of 

the late-arriving waves relative to the early- 

arriving waves for each mode. For the short- 

period acoustic waves which travel near the 

acoustic velocity of the upper minimum, the 
relative increase in excitation is maximum in this 

channel, and the excitation of the long-period 
late arrivals continues to increase with altitude. 

The increase in relative excitation of the late- 

arriving portions of the GR modes with altitude 

is especially evident in Figure 12. At this alti- 
tude (125 kin) the excitation plateaus for GR• 
and GR• have reversed their near-surface excita- 

tion roles; GR• now forms the short-period seg- 
ment of the GR modes. 

The majority of these results were postulated 

by Press and Harkrider [1962] from the manner 

in which different parts of the atmosphere af- 
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Fig. 9. Spectral amplitudes oœ So,•,.o and GRo,• 
modes for a source and receiver at an altitude of 
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Fig. 11. Spectral amplitudes of So,•,.o and GRo,• 
modes for a source and receiver at an altitude of 

85 km. 

fected the dispersion results. Also, it must be re- 
membered that these results hold for a 'white' 

source only. The effect of the scaling laws for 

nuclear weapons is such that some of these 

effects will not be apparent for theoretical bar- 

ograms in the time domain. This effect will be 

discussed in greater detail later. 

Discussion of time domain. To study the 

effect of source yield and altitude in the time 

domain under realistic bomb test conditions, we 

constructed theoretical barograms using the 

amplitude and dispersion results for the ARDC 

model, terminated by a half-space at 220 km. As 
a check on the conclusions drawn in the follow- 

ing paragraphs, selected barograms were made 
for an ARDC arctic winter model. 

From seismic evidence, the approximate loca- 

tion of the Soviet tests gives a path of 8000 km 

for A• and an antipodal path of 3200 km for A• 

to the microbarograph at Donnelley Seismologi- 

cal Laboratory, Pasadena, California. The con- 
stants used for the bomb characteristics of a 

1-kT explosion [Glasstone, 1962] are as follows: 

a peak excess pressure of 34.45 mb at a range of 

1.61 km and a positive phase duration of 0.48 
see. 

All theoretical barograms given in this section 
are on the same horizontal time scale and have a 

common fiducial time plotted at the left-hand 

margin of the figure. Since the plotting scale is 

determined internally by the program, the scales 

for various traces may differ even in the same 

figure. Therefore, in order to facilitate amplitude 

comparisons, we have indicated certain vertical 

amplitudes in the figures by means of numbers, 

arrows, and a horizontal dash at a peak and 

trough. The vertical scale for pressure waves is 

given in micro- or millibars of pressure and the 

vertical scale for barograms is given in centi- 

meters of barograph recording. 
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Fig. 10. Spectral amplitudes of So,•,_o and GRo,• 
modes for a source and receiver at an all,itude of 

50 kin. 
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Fig. 12. Spectral amplitudes of So,•,.o and GRo,• 
modes for a, source and receiver at an altitude of 

125 kin. 
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The fifth trace is the resultant wave for GRo q- So q- S, q- S.o. 

The most significant features of the theoretical 

barogram for the ARDC standard and arctic 

winter models are given by the summation of 

five modes, S•, S, So, GRo, and GR•. Of these, 

the least significant contribution was that of 

GR•. In Figure 13 we show the theoretical pres- 
sure variation of A• for a 4-MT nuclear explo- 
sion at 2.13-km elevation. The first four traces 

are the individual modes GRo, So, S•, and S2. The 
fifth trace is the summation of all the modes. it 

also contains GR•, whose contribution is negli- 
gible. In Figure 14, we have the corresponding 

A• theoretical barograms for the same explosion. 

Comparison of Figures 13 and 14 demonstrates 

the response of the barograph to the pressure 

wave arriving at the detector. This response is 

seen in the relative increase in amplitude of the 

higher-frequency modes S2, S•, and So to GRo. In 
both figures we see that mode interference in 

the time domain significantly changes the char- 
acter of the composite barogram. This is espe- 

cially evident in the pressure variation, where 

the superposition of modes results in arrivals 

with spurious periods. 
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Fig. 16. The effect of yield on theoretical barograros of A, waves for the single mode GRo. 
For determining the effect of yield with source 

altitude constant, five barograms were synthe
sized for the following yields at an altitude of 
2.13 krn: 1,5, 10,30, and 60 MT (Figure 15). 
The most striking qualitative effect of increasing 
yield at the same source altitude, other than the 
obvious increase in amplitude, is the increase in 
the long-period part of the wave train relative 
to the shorter-period arrivals. This is especially 
noticeable in the extremes of the chosen yields. 
For I-MT blasts the S. mode is the major mode, 
with S, and GR. almost equal to each other and 
somewhat less than s.. For the 60-MT explosion 
the GR. mode is by far the largest, wherea.s S. is 

almost nonexistent and the S1 contribution, al
though small, gives all of the high frequencies 
seen in the wave. This effect occurs despite the 
instrument response which accentuates the 
higher-frequency modes, S. and especially 8,. 

From (68) we see that the only terms which 
could emphasize this mode with yield changes 
are the source terms in the spectral amplitude 

for the long-period modes and (b." + {jJ"t' for 
the short-period modes, where <1, is the acoustic 
cutoff for the medium surrounding the source. 
Since <11 = As as is independent of the yield, and 
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since by (12) and (13) a, increases with yield, 
it is evident that the exponential term increases 

the relative excitation of the longer periods rela- 
tive to the short periods with a yield increase. 

Similarly, b, decreases with increasing yield and 

thus increases the spectral amplitude at long 
periods while decreasing the short periods. From 

these factors we see that the scaling laws induce 

a 'pseudo' nonlinearity to the problem. This is 
especially true for the time scale of the initial 

pressure variation as the bomb size increases. 

Figure 16 shows the increase in amplitude and 

fundamental period with increasing yield for 
A1 barograms of a single mode, GRo. 

The effect of altitude for a constant yield is 

illustrated in Figure 17. For this purpose, we 

constructed three A1 barograms for 5-MT ex- 

plosions at altitudes of 1.07, 2.13, and 4.27 km. 

We made three additional A, barograms for 30- 

MT explosions at altitudes oœ 2.13, 8.53, and 
17.07 km. With an increase of altitude from 1.07 

to 4.27 km for a 5-MT bomb the barograms 

show an increase in amplitude oœ almost 50% in 

the part of the wave train corresponding to 

group arrival of GRo. For a group arrival corre- 
sponding to S1, the amplitude change is negli- 

gible. Both the over-all amplitude increase and 

the increase of the long waves relative to the 
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short waves with increasing altitude are due to 

the scaling laws used. This phenomenon is simi- 
lar to the effect, discussed previously, of increas- 

ing the yield at constant altitude, since a8 in- 
creases and b8 decreases with an increase in 

either yield or altitude. 

For the early-arriving short-period modes, 
such as S•, the decrease in short period due to 
decreasing b, is compensated in this altitude 

range by the inverse effect of the wave guide it- 

self. In the discussion of frequency domain it 
was pointed out that in the part of the wave 
guide between the surface and the low-velocity 
channel the effect of increasing altitude is to in- 
crease the relative excitation of the acoustic 

modes relative to the longer-period GR modes. 

For the 30-MT bombs, the increase in altitude 
shows an increase in the long-period arrivals and 

a decrease in the short-period arrivals. From an 

altitude of 8.53 to 17.07 km the short-period 

part of the train is negligible in amplitude. To 

demonstrate the effect of distance on the shape 
of the wave train in Figure 18, we calculated 

three barograms at distances of 7000, 8000, and 
9000 km for a 5-MT bomb exploded at an alti- 
tude of 2.13 kin. The wave train remains essen- 

tially the same for all three distances because 

the most predominant frequencies excited for a 
near-surface source and detector are the fre- 

quencies with almost constant phase and group 
velocity (Figures 7 and 5). The one noticeable 

difference is the migration of the S• mode 
through the wave train. This mode can be iden- 

tified as a group or pocket of waves. of about 

1.2-min period which move toward the end of 

the wave train with increasing distance. The 
variation of amplitude with distance is discussed 
later. 

Figure 19 shows A• barograms for an ARDC 

arctic winter atmosphere under various condi- 

tions of yield and bomb altitude. A comparison 

with theoretical barograms for the ARDC 

standard atmosphere yields the following ob- 

servations: (1) The arctic winter wave train ar- 
rives at a later time than the ARDC standard 

corresponding to its lower group velocity pla- 

teaus. (2) The qualitative effects of varying 
yield and source altitude are the same as the 

ARDC standard model. (3) The major differ- 

ence in the wave trains of the two atmospheres 

is caused by mode interference. This is due to 

the shift in phase for each mode caused by dif- 

ferent phase velocities for the two models. (4) 

The amplitudes are essentially the same for the 

two models. Quantitative estimates of ampli- 
tudes for the composite barograms are compli- 
cated by mode interference. 

Because of mode interference and the 'pseudo' 
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nonlinearity induced by scaling laws, it is diffi- 

cult to recover bomb yield and altitude from 

measurements on an observed or experimental 

barogram. Another method of attack is to com- 

pare observed barograms with theoretical bar- 

ograms constructed from estimates of approxi- 

mate yield and altitude. 

Comparison o[ theoretical and observed bar- 
ograms. In this section theoretical barograms 

are compared with observed barograms produced 
at various stations by the Soviet nuclear explo- 

sions in Novaya Zemlya during the fall of 1961. 

The yields of the explosions are taken from the 

reported seismic estimations given by Bdth 

[1962]. The altitudes for the 60-MT explosion 

on October 30 and the 25-MT explosion on 

October 23 were reported in the newspapers as 

being at 12,000 feet or 3.66 km. B&th classified 
the altitudes as low, intermediate, and high for 

the 1961 explosions, the October 23 and 30 ex- 

plosion being classified as high. With this in 

mind I have arbitrarily assigned the following 

altitudes to B&th's qualitative estimates: 3.66 

km for high-altitude explosions, 2.44 km for in- 
termediate-altitude explosions, and 1.22 km for 

low-altitude explosions. 

In Figures 20 to 26 the theoretical and experi- 

mental records have been aligned on the time 
scale for the best fit. The arrows indicate where 

a fiducial time would fall on each record. 

In Figure 20 the first two traces are the the- 

oretical and observed recordings of A• waves 

from a 9-MT explosion at 2.44 km on Septem- 
ber 10. In comparing. the records we see that 
there is good agreement in phase, group, and 

amplitude except iff"t.he region corresponding to 

the So group arrival. In this region, between the 
numbers 2.03 and 2.16 on the theoretical trace, 

we have a slight phas e shift, and mode interfer- 
ence causes a spurious long period. On the ob- 
served trace the 3«-min So arrival is well de- 
veloped. In this figure and in Figures 21 and 22, 

the So arrival is distorted, whereas on the ob- 

served records the arrival is well developed. The 

relative excitation between early group arrivals 
is consistent on both traces. 

The last two traces are the observed and the- 

oretical recordings of A• waves from an 8-•IT 

explosion at 2.44 km on October 4. The over-all 

amplitudes agree fairly well. There is a disagree- 
ment in the relative excitation of the early group 

arrivals. On comparing the observed barogram 
with the theoretical recording of A• for 5 MT 

at 2.134 km, the third trace in this figure, a 
much better fit in relative excitation can be seen. 

In Figure 21 the first two traces are the the- 

oretical and observed recordings of A• for 11 MT 
at 2.44 km on October 6. The third and fourth 

traces are the theoretical and observed record- 

ings respectively for 5 MT at 1.22 km on Oc- 
tober 20. The theoretical and observed records 

for both explosions show reasonably good agree- 
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ment in over-all amplitude of the early part of 
the wave train. The fifth trace is a theoretical 

recording of A• for an explosion of 1 MT at 2.13 
kin. The bomb yield and elevation were chosen 
so as to match the S• amplitude with the re- 

corded amplitude for the October 20 explosion. 
This change in yield and altitude reduces the 
amplitude of the long-period component at the 
beginning of the wave train relative to $•. 

In the previous comparisons of theoretical and 
observed Ax recordings, there is a major discrep- 

ancy. The observed recording shows a late-ar- 
riving wave train of an almost constant period 

of from 1 to 2 min. This train is not found on 

the theoretical barograms. From the dispersion 
curves in Figure 5 this arrival could well be the 
steep part of the group velocity curves of S2 and 
S, which coincide at about 1¬. The part at the 
far right of the record might correspond to the 
relative maximum in group velocity of 268 m/ 

sec at a period of 2 min for the S2 mode. This 
late arrival would correspond to the secondary 

plateau in amplitude for S•. 
There were no complete A, recordings at 

Pasadena for the large explosions of October 23 
and 30. In Figure 22 the first two traces are the 
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theoretical and the incomplete part of the ob- 

served A, recording for the 25-MT explosion at 
3.66 km on October 23. The last two traces are 

the incomplete observed A, and the theoretical 

barograms for October 30. If the assumed align- 

ment is correct, we see that the theoretical am- 

plitudes are down by a factor of about 2 for the 

predominant long-period arrival and by a fac- 
tor of at least 10 for the later-arriving high fre- 

quencies. 

For a more complete study of the A• record- 
ings on October 23 and 30, 1961, we use some 

barograms recorded at two meteorological sta- 

tions [Wexler and Hass, 1962]. In Figure 23, 
theoretical pressure waves for the large explo- 
sions are compared with the observed A• records 
for Washington, D.C. The absolute amplitudes 

are in fair agreement; the shape agreement is 

poor. This is especially true for the long-period 
arrivals at the onset of the wave. The difference 
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in shape appears to be due to the recording 

instrument response, which, for Washington, 

was assumed to be fiat and without phase distor- 

tion. Evidence supporting this argument can be 

seen by comparing Figures 24 and 23. The mid- 

dle trace in Figure 24 and the last trace in Fig- 

ure 23 are the A• recordings of the same event 

on October 30 at the New Orleans and Washing- 

ton stations, respectively. Although the record- 

ing instruments are similar and the source dis- 

tances comparable, their shapes are very dis- 

similar. In fact there is good agreement in shape 
and character for the observed A• at New 

Orleans and the theoretical pressure arrival 

shown as the top trace in Figure 24. If the the- 

oretical pressure wave is recorded by an instru- 

ment with the same response as the Pasadena 

microbarograph, we obtain the theoretical A• 

barogram given by the bottom trace in Figure 

24. The resultant agreement in phase, group, and 

relative amplitude between the observed and 
theoretical arrivals is outstanding. The poor 

theoretical agreement in absolute amplitude at 

New Orleans and the fair agreement at Wash- 

ington are misleading, as we shall see. 

Figure 25 shows the A• meteorological data 

collected by Wexler and Hass [1962] for the 

October 30 explosion. Maximum amplitudes 

from the weather stations were averaged for 10 ø 

intervals, measured from the source. From (66), 

the amplitudes should primarily vary with co- 

latitude as (sin •)-•/•. The effect of dispersion on 
amplitude is slight because of the almost con- 

stant group velocity for GRo, the dominant 

mode. That the effect of dispersion is indeed 

negligible can be seen in the plotted maximum 

amplitudes obtained from theoretical pressure 

time records for a bomb of 58 MT. Fitting a 

(sin 9)-•/• curve to the observed data, we obtain 
an excellent fit out to 45 ø, a distance of 5000 kin. 
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Comparing this curve with that of the theoreti- 

cal pressure waves indicates that the scaling law 
for the large explosions yields a result that is 
50% less than observed values. 

The deviation of the averaged observed values 
from the geometric factor at angles greater than 
45 ø is probably due to the internal friction of 

the atmosphere. Also shown in the figure are the 
maximum amplitudes for the individual stations 

of Washington a•d New Orleans. Their depar- 
ture from the exponential distance function for 

the averaged observations beyond 45 ø can be 
traced to the meteorological conditions along the 
individual travel paths, such as high-altitude 
winds [Wexler and Hass, 1962]. This scaling- 
law-induced discrepancy for large explosions is 
also evident in the theoretical and observed com- 

parisons for the A, arrivals. Donn and Ewing 
[1962] observed that the ,4, arrival is down 50% 
from the A• arrival at distances comparable to 
that to Pasadena for the October 30 event. 

Theoretical barograms for A• and A2 yield essen- 
tially the same amplitudes because of the slight 
dispersion for the dominant mode and because 

internal friction in the equations of motion is 

neglected. Therefore the effect of not considering 
internal friction over the long travel path of ,4,. 
is compensated by the 50% underscaling of the 
theoretical barograms, and a close amplitude 

agreement for the theoretical and observed A2 

arrivals at Pasadena is obtained. 

Theoretical and observed recordings for A2 are 
shown in Figure 26. These records are for the 

large explosions on October 23 and 30. For the 

25-MT explosion shown in the two top traces 
the agreement in phase, group, and amplitude is 
excellent for the early-arriving waves. For the 
60-MT explosion shown in the third and fourth 

traces the agreement is still good. The distortion 
in period between the numbers 1.30 and 6.86 on 

the observed record appears to be due to some 
sort of interference. 

The differences in arrival times between the 

theoretical and observed J• and A2 records leads, 
at most, to discrepancies in times of 3%. The 
discrepancy in relative excitation between the 

acoustic modes and gravity modes for large 
yields and altitudes is also felt to be due to the 

scaling laws, which are probably not valid for 
large yields and high altitudes. 

Conclusions. 1. The major features on the 

barogram can be explained by the superposition 
of four modes, So, S•, S2, and GRo. 

2. Different parts of the vertical temperature 
structure of the atmosphere control the excita- 

tion of these modes. The zone with a velocity 
minimum near 20 km controls the early-arriving 
acoustic modes. The region with a velocity maxi- 
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mum at about 50 km controls the early-arriving 

gravity modes. The minimum velocity region at 

about 85 km controls the short-period acoustic 

modes which travel at a group velocity equal to 

the acoustic velocity of this channel. The upper 

atmosphere controls the late-arriving long-period 
waves of each mode. 

3. A scaled point source is sufficient to model 
thermonuclear explosions. 

4. The observed shift in dominance of cer- 

tain frequencies with yield and altitude can gen- 

erally be explained by means of the empirical 

scaling laws derived from the direct wave near 

the explosion. 
5. Mode interference in the time domain and 

the 'pseudo' nonlinearity induced by scaling laws 

make it difficult to determine bomb yield and 

altitude from observed barograms. If elevation 

is known, rough estimates of yield can be ob- 

tained with this theory. 

6. The internal friction of the atmosphere is 

negligible for polar path lengths up to 50 ø . Even 

for path lengths up to 80 ø the frictional effect 

can be masked by meteorological conditions en- 

countered along individual great-circle paths. 

7. For large yields and high altitudes the 

scaling laws seem to overemphasize the long- 

period gravity arrivals relative to the short- 

period acoustic arrivals. Also the scaling laws 

appear to underestimate the peak amplitude of 
the large explosions by as much as 50%. Some 
changes in scaling laws are thus indicated for 
these large events, a result which does not sur- 

prise us in view of the use of low-yield data in 

deriving these laws. 

Acknowledgments. I am grateful to Professor 
Frank Press for his support and encouragement 
throughout this study. Many valuable discussions 
were held with Drs. D. L. Anderson and C. B. 

Archambeau. Their cooperation and support are 
acknowledged with gratitude. 

This research was supported by contract AF-49 
(638)-1337 of the Air Force Office of Scientific Re- 

search as part of the Advanced Research Projects 
Agency project Vela. 

t•EFERENCES 

Aki, K., Study of earthquake mechanism by a 
method of phase equalization applied to Ray- 
leigh and Love waves, J. Geophys. Res., 65, 729- 
740, 1960. 

Bf•th, M., Seismic records of explosions--especially 
nuclear explosions, 3, Forsvarets Forskningsan- 
stalt Avdel., 4, A4270-4721, 1962. 

Carpenter, E. W., G. Harwood, and T. Whiteside, 
Microbarograph records from the Russian large 
nuclear explosions, Nature, 189(4805), 847, 1961. 

Donn, W. L., and M. Ewing, Atmospheric waves 
from nuclear explosions, J. Geophys. Res., 67, 
1855-1866, 1962a. 

Donn, W. L., and M. Ewing, Atmospheric waves 
from nuclear explosions, 2, The Soviet test of 
October 30, 1961, J. Atmospheric $ci., 19, 264- 
273, 1962b. 

Donn, W., R. Rommer, F. Press, and M. Ewing, 
Atmospheric oscillations and related synoptic 
patterns, Bull. Am. Meteorol. $oc., 35, 301-309, 
1954. 

Erdelyi, A., W. Magnus, F. Oberhettinger, and F. 
Tricomi, Tables o/ Integral Transforms, 2, 9, 
1954. 

Ewing, M., and F. Press, Further study of atmos- 
pheric pressure fluctuations recorded on seismo- 

graphs, Trans. Am. Geophys. Union, 34, 95-100, 
1953. 

Glasstone, S., The Effects o/ Nuclear Weapons, 
U.S. Government Printing Office, Washington 
25, D.C., 1962. 

Haskell, N. A., The dispersion of surface waves on 
multilayered media, Bull. $eismol. $oc. Am., 43, 
17-34, 1953. 

Hunt, J. N., R. Palmer, and Sir William Penney, 
Atmospheric waves caused by large explosions, 
Phil. Trans. Roy. $oc. London, A., 252, 275-315, 
1960. 

Lamb, H., Hydrodynamics, Dover Publications, 
New York, 1945. 

Pekeris, C. L., The propagation of a pulse in the 
atmosphere, 2, Phys. Rev., 73, 145-154, 1948. 

Pfeifer, R. L., and J. Zarichny, Acoustic gravity 
wave propagation from nuclear explosions in the 
earth's atmosphere, J. Atmospheric $ci., 19, 256- 
263, 1962. 

Pfeifer, R. L., and J. Zarichny, Acoustic gravity 
wave propagation in an atmosphere with two 
sound channels, Geofis. Pura Appl., 55, 175-199, 
1963. 

Press, F., and D. Harkrider, Propagation of 
acoustic-gravity waves in the atmosphere, J. 
Geophys. Res., 67, 3889-3908, 1962. 

Rose, G., J. Oksman, and E. Kataja, Round-the- 
world sound waves produced by the nuclear ex- 
plosion on October 30, 1961, and their effect on 
the ionosphere at Sodankyl•i, Nature, 192(4808), 
1173-1174, 1961. 

Scorer, R. S., The dispersion of a pressure pulse in 
the atmosphere, Proc. Roy. $oc. London, A, 
201, 137-157, 1950. 

SzegS, G., •Jber einige asymptotische entwicklungen 
der Legendreschen funktionen, Proc. London 
Math. $oc., 36, 427-450, 1933. 

Wares, G. W., K. W. Champion, H. L. Pond, and 
A. E. Cole, Model atmospheres, in Handbook o/ 
Geophysics, 1-1-1-37, The Macmillan Company, 
New York, 1960. 

Weston, V. H., Pressure pulse received due to an 
explosion in the atmosphere at an arbitrary alti- 



ACOUSTIC-GRAVITY WAVES IN THE ATMOSPHERE 5321 

rude, 1, Univ. Mich. Radiation Lab. Rept. 2886 
-I-T, 1960. 

Weston, V./•., The pressure pulse produced by a 
large explosion in the atmosphere, Can. J. Phys., 
39, 993, 1009, 1961a. 

Weston, V. H., The pressure pulse produced by a 
large explosion in the atmosphere, 2, Univ. Mich. 
Radiation Lab. Contract Rept. AF 19 (60A) 
5470, 1961b. 

Weston, V. H., Intermediate results for thermo- 
sphere model, Univ. Mich. Radiation Lab. Mere. 
2886-521-M, 1961c. 

Wexler, H., and W. A. Hass, Global atmospheric 

pressure effects of the October 30, 1961, explo- 
sion, J. Geophys. Res., 67, 3875-3887, 1962. 

¾amomoto, R., The microbarographic oscillations 
produced by the explosions of hydrogen bombs 
in the Marshall Islands, Bull. Am. MeteoroI. 
$oc., 37, 406-409, 1956. 

¾amomoto, R., A dynamical theory of the micro- 
barographic oscillations produced by the explo- 
sions of hydrogen bombs, J. Meteorol. $oc. 
Japan, 35, 32-40, 1957. 

(Manuscript received August 14, 1964.) 


