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ABSTRACT

THEORETICAL AND PHENOMENOLOGICAL VIABILITY OF

SCALAR FIELD THEORIES
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Justin Khoury

The objective of this Thesis is to explore several related questions with regards to

criteria for viability in scalar field theories. Roughly the first half is devoted to

theoretical criteria, while the second half focuses on phenomenological ones. We be-

gin with an overview of theories that violate the null energy condition, highlighting

the pathologies that inevitably appear. We then present a theory that violates the

null energy condition while remaining free of the problems that plagued previous

attempts. Next we explore a global condition for classical stability in scalar field

theories, namely, the requirement that the total energy of the space-time be positive.

This property is guaranteed if the theory admits a positive energy theorem. After

reviewing existing proofs of positive energy for canonical scalar fields, we then ex-

tend those proofs to theories with derivative interactions, proving a positive energy

theorem for a wide class of P (X) theories. The second half of this Thesis considers

experimental constraints on scalar field theories. We focus on what may be learned

from atom interferometry experiments, which have been a powerful probe of funda-

mental physics for over two decades but only recently gained the ability to constrain

screened scalar field theories. We present a general analytic and numerical framework

for precise predictions of scalar field theories in atom interferometry experiments, and

use those techniques to derive new limits on chameleon and symmetron field theories.
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Preface

This thesis is based on work I have done at Penn over the past four years with

Prof. Justin Khoury at Penn. I owe him, as well as my collaborators, a huge debt of

gratitude, without whom this work certainly would not have been possible.

Chapter 1 contains introductory background material and lays the groundwork for

the rest of the theory. Many of the topics which are common across multiple Chapters

are introduced here.

In Chapter 2 I consider the problem of violating the Null Energy Condition (NEC)

with a healthy scalar field theory. All previous examples of NEC violation have come

with some sort of pathological instability in the theory, leading some to wonder if

healthy NEC violation is possible. In this Chapter I provide a counterexample by

constructing a theory which, for the first time, can smoothly interpolate between

a Poincarè invariant vacuum and a NEC violating solution while remaining stable

throughout. The work in this Chapter first appeared in [1].

Chapter 3 presents a positive energy theorem for derivatively-coupled P (X) theories.

Positive energy is a necessary requirement for the vacuum of a theory to be classically

stable. This proof builds on earlier proofs for canonical field theories, extending them

to P (X) theories. At the end I briefly consider the extension to galileons, and describe

the obstruction one faces in proving a positive energy theorem for them. This chapter

is based on work that appeared in [2].

Chapters 4 and 5 are concerned with constraints on chameleon and symmetron theo-

ries from atom interferometry (AI) tests. Recent AI experiments have recently become

enormously more sensitive to scalar forces by miniaturizing the interferometer and

including a small metal object inside the vacuum chamber a few millimeters away.

xiii



Their precise measurements of the interaction between the atoms and the metal object

necessitates detailed predictions of scalar forces in such environments. These Chap-

ters present the theoretical groundwork for such predictions and develop a numerical

scheme that accurately accounts for the highly irregular geometry of the experimental

setup. This work was published in [3, 4].
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Chapter 1

Introduction

The past two decades have seen a great deal of activity on theories that modify

Einstein’s General Relativity. There are many reasons to modify our theory of gravity:

to model the effects of cosmic acceleration, dark matter, or the early universe, or

perhaps the modification is merely a side effect of some other theory. Massive gravity,

string theory, and higher dimensional constructions of gravity are all examples of

theories that modify general relativity (GR).

Whatever the motivation may be, it is important to take care: GR is an incredi-

bly precise and well-developed theory, and even the slightest modification may have

far-reaching and unintended consequences. It is therefore crucial to have a solid un-

derstanding of baseline viability in the theory — is the theory stable? Does it have

the desired phenomenology? Does it conflict with existing tests of gravity?

This thesis will explore each of these questions in turn. Since Einstein gravity is the

unique interacting massless spin-2 theory [5], modifications generically introduce new

degrees of freedom. We therefore focus on scalar-tensor theories, in which there is

a new degree of freedom in the form of a scalar field. Furthermore, we adopt the

viewpoint of effective field theory (EFT), where we focus on the low-energy dynamics

only. Beyond a certain energy scale (the cutoff), the theory is no longer predictive

and a more complete theory (termed the UV completion) is needed.

There exists a dizzying number of theories which modify GR [6, 7]. We will be

1



as general as possible, making sweeping statements about broad classes of theories

whenever we can. There are three main classes of theories to consider, distinguished

by the form of their kinetic term.

The first, known as canonical field theories, have a kinetic form of the typical form

X = −1
2
(∂φ)2, where φ is the scalar field and Lorentz contraction is implied. Such

theories have a long history — even the Klein-Gordon field is canonical. One of the

most historically significant theories of modified gravity, Brans-Dicke theory [8], also

takes this form.

The second class, termed P (X) theories, involves higher powers of X in the La-

grangian. Without a potential the field is invariant under a shift symmetry φ→ φ+a.

The first example of a P (X) theory was a version of electrodynamics due to Born and

Infeld [9]. The Dirac-Born-Infeld (DBI) action for the fluctuations of a brane in string

theory also belongs to this class [10, 11]. Another significant theory in this class is

the Ghost Condensate, which has been used to violate the null energy condition [12].

Models have also been introduced that can drive cosmic acceleration [13, 14], and

exhibit that screening [15, 16]. One of the primary motivations for studying P (X)

theories is that they describe the low energy dynamics of a superfluid [17], a fact that

has been utilized recently to describe superfluid dark matter [18–21].

The third and final class, called galileons, involves terms in the Lagrangian with more

than one derivative per field. Galileons first attracted interest via their appearance

in the decoupling limit of DGP gravity [22], where our universe is embedded as a

3-brane in a 5-dimensional space-time. It was noted that the action was invariant

under a Galilean transformation,

φ→ φ+ a+ bµx
µ , (1.1)

2



for constants a, bµ, which is inherited from higher-dimensional Poincaré symmetry

[23]. The most general possible scalar field invariant under Eq. (1.1) while retaining

second order equations of motion was constructed in [24]. Any theory that has this

property is known as a galileon.

The requirement that the equations of motion be second order is a non-trivial one.

Many of the terms that are invariant under Eq. (1.1) involve two derivatives per field,

which generally leads to third derivatives in the equation of motion. This presents

a challenge, since equations of motion with higher than second order derivatives are

unstable [25]. Galileons avoid this issue by carefully balancing the coefficients of

terms so that the terms with higher-order derivatives cancel each other out.

There exists a finite number of terms that simultaneously exhibit the galilean symme-

try and retain second order equations of motion. To be exact, in n dimensions there

are n+1 unique galileon terms. Each successive term is just (∂φ)2 times the equation

of motion of the previous term’s equation of motion [26], a structure known as an

Euler hierarchy [27–30]. The galileon terms may also be understood as Wess-Zumino

terms for spontaneously broken space-time symmetries [31].

Galileons have been used as a model for inflation [32–44] and its alternatives [45–54],

as well as late time acceleration of the universe [55–71]. They are also notable for their

appearance in the decoupling limit of massive gravity [72], and have been generalized

to other theories such as supersymmetry and supergravity [73–77]. One important

generalization is Horndeski theory, which constructs galileons in arbitrarily curved

space-times [78, 79].

Extra care must be taken with higher derivative theories (i.e. P (X) and galileons),

as they are susceptible to various instabilities and other similar problems. The ques-
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tion of pathologies is a powerful one, as we may immediately deem a pathologically

unstable theory to be unpredictive. Section 1.2 details a number of criteria, which

we summarize here.

Instabilities manifest in some (or all) of the Fourier modes growing without bound.

Furthermore, demanding that the UV completion be a local quantum field theory

allows us to rule out theories with superluminal propagation or a non-analytic S-

matrix. Finally, there may be barriers preventing access to certain solutions — if it

is impossible for the field to evolve from a vacuum state to a given solution without

becoming strong coupled, then such solutions should be regarded as inaccessible.

Pathologies often go hand in hand with energy conditions, which are covariant state-

ments about the energy content of the theory. They are demands that the stress-

energy tensor be sufficiently positive for all observers, or that energy not flow faster

than the speed of light. The four most common energy conditions (weak, strong,

dominant, and null) are detailed in the introduction to Chapter 2.

Since the stress-energy tensor dictates the curvature of space-time, energy conditions

are often assumed or required when constructing particular solutions to the Einstein

Field Equations. For example, a universe going from a contracting phase (ȧ < 0)

to an expanding one (ȧ > 0) requires violating the null energy condition which,

incidentally, is the only energy condition that can not be violated with a canonical

scalar field without encountering an instability. In Chapter 2 we review previous

attempts to violate the null energy condition, and show that all have encountered

some kind of pathology. We go on to give an example of a galileon field theory which

can do so while avoiding all of the above issues.

Another concern is that the vacuum of the theory should be stable in the presence
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of gravity. This is equivalent to asking whether the theory admits a positive energy

theorem, which states that the total energy of the space-time should be positive,

and should be zero only for Minkowski space-time. The quantity of interest here

is the Arnowitt, Deser, and Misner (ADM) mass [80], which combines the energy

contributions from the space-time and the energy sources in it. It is well defined

for asymptotically flat space-times, and is computed by the deviation of the metric

tensor from flatness at spatial infinity in a manner similar to Gauss’ Law in Newtonian

gravity.

If the ADM mass is positive, then the space-time is guaranteed to have positive

energy. This theorem was originally proven provided that the energy content of the

space-time obeys the Dominant Energy Condition (DEC) [81–83]. The requirement

that the fields satisfy the DEC was later relaxed; it was shown that canonical scalars

with a certain type of potential would have positive energy [84–86]. Until recently it

was unknown whether a similar proof held for derivatively coupled scalar fields. A

proof of the positive energy theorem for P (X) theories, which originally appeared in

[2], is detailed in Chapter 3.

Finally, it is important to note that if scalar fields are currently present in the uni-

verse, then their effects should be consistent with existing tests of gravity. The main

motivation for introducing scalar fields comes from the empirical discovery of late-

time cosmic acceleration (dark energy). If dark energy is shown to be varying in time,

then by Lorentz invariance it can also vary in space, and is therefore a scalar field.

This general idea for minimally-coupled scalars goes under the the name quintessence

[87, 88].

A more theoretical motivation for introducing scalar fields in the late universe is the

problem of the cosmological constant (CC). There is strong evidence that the universe
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is undergoing a period of accelerated expansion, and that expansion is consistent

with a cosmological constant of size Λ ∼ meV4 ∼ 10−120M4
Pl. This is far smaller

than the value we might have guessed, since MPl ∼ 1030 meV is the typical scale for

gravitational phenomena [89]. A related problem is that the ground state energy of

standard model matter fields should also contribute a cosmological constant of at least

ΛSM ∼ 10−60M4
Pl. A full solution of the cosmological constant problem would explain

why the CC is so small when measured in Planck units, and would also explain how

the large contribution from standard model fields gets neutralized to a scale of order

∼ meV4 without fine-tuning.

Scalar fields provide one possible avenue to solving the CC problem. For example,

a uniformly varying scalar field φ = φ(t) is a perfect fluid with an equation of state

P = wφρ, where

wφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.2)

If the scalar field is slowly rolling φ̇2 ≪ V (φ), then w ≈ −1 and the fluid behaves like

a cosmological constant. The idea is that perhaps the scalar field can dynamically

relax to the present day’s value of the CC. Unfortunately, this particular approach

is a dead end — Weinberg’s no-go theorem shows that scalar fields under certain

assumptions (namely, a finite number of scalar fields with constant solutions) cannot

accomplish this without fine-tuning the potential to the same degree as an ordinary

CC [89].

We will not directly address the CC problem here, but instead study the general effect

of introducing a scalar field in the present universe. If that field is coupled to matter,

it implies a “fifth force.”1 The staggering experimental success of Einstein’s general

relativity up to solar system scales [90] would seem to rule out any such force, or at

1Since the charges of any two objects have the same sign, this force is always attractive.
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least require fine tuning such that the coupling is extremely weak.

However, there is a second possibility, where the modification to gravity is O(1)

typically, but dynamically weakens in or near massive bodies and dense environments.

Such forces would go undetected in conventional tests of gravity, while still having

significant long-range effects in the Universe. Theories that have this property are

said to contain a screening mechanism.

Screening mechanisms fall into two types. The first type, called potential screening,

involves theories that develop non-linear equations of motion based on the local value

of the scalar field φ. This phenomenon is due to the particular form of the scalar

field’s self-interaction potential V (φ), hence their name. Theories exhibiting potential

screening couple not to the entire mass of an object but to just a thin shell of matter

near the surface. Large, dense objects like planets or stars have such thin shells that

the scalar force is negligible compared to ordinary gravity.

The second type, called derivative screening, involves screening due to derivative

couplings in the Lagrangian. Derivative screening is exhibited in some P (X) theories

and in galileons. In this case, the scalar force is comparable to gravity at large

distances, but as one gets closer there is a point (the Vainshtein radius) at which

non-linear terms in the field’s equation of motion begin to dominate, suppressing the

scalar force. In this scenario, we do not experience the scalar force from an object

like the Sun because we are well inside its Vainshtein radius.

Active searches are ongoing to detect the effects of screened scalar field theories.

Historically, the strongest constraints have come from solar system tests of gravity and

torsion balance experiments. Recently, two promising new techniques have entered

the mix. Gravity Resonance Spectroscopy [91–93] measures the quantum states of
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cold neutrons in Earth’s gravitational potential, determining Earth’s acceleration

from the energy levels of the eigenstates. Atom Interferometry [3, 4, 94–96] splits a

wavepacket of cold atoms into two parts, with one part on a trajectory to pass near a

dense sphere, while the other remains distant. The groups are then recombined, and

the degree of interference in the final packet is proportional to the force felt by the

atoms near the sphere.

These new techniques are ideal for measuring theories with potential screening —

since neutrons and atoms are so small, they are much more likely to be unscreened,

making them far more sensitive probes of gravity. Chapters 4 and 5 are devoted

to translating the results of atom interferometry, which is described in Section 1.3,

into constraints on chameleon and symmetron theories, two examples of screened

canonical field theories. They are based on work that appeared in [3, 4] .

1.1 Scalar fields: kinetic classification

In this Section we introduce the mathematical formalism underlying all three classes

of field theories, and provide a few examples of specific theories in each classes.

Canonical scalar fields can be written in the general form

S =

∫

d4x
√−g

(

M2
Pl

2
R− 1

2
(∂φ)2 − V (φ)

)

+ Sm[A
2(φ)gµν ;ψ] , (1.3)

where R is the Ricci scalar in the Einstein frame, φ is a scalar field, and Sm is the

action for the matter fields, generically denoted by ψ.2

2Throughout this Thesis we adopt a mostly-plus metric signature, the reduced Planck mass is
defined as MPl = (8πG)−1/2, and the Ricci scalar is a contraction of the Ricci tensor R = Rµ

µ,

which is a contraction of the Riemann tensor Rµν = Rα
µαν . Dots refer to time derivatives φ̇ = ∂tφ,

primes refer to radial derivatives φ′ = ∂rφ, and commas indicate derivatives with respect to the field
following the comma A,φ = ∂φA. Furthermore, indices will be suppressed where there structure may
be inferred, as in the above action where (∂φ)2 = ∂µφ∂

µφ .
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Brans-Dicke theory [8] is perhaps the most historically significant modification to

gravity, originally arising from the idea that Newton’s constant GN might vary

from one point to the next. It corresponds to choosing V (φ) = 0 and A2(φ) =

exp[−φ/(MPl

√

ω + 3/2)], where ω is the Brans-Dicke parameter. In the limit ω → ∞

the field decouples from matter (A(φ) → 1) and GR is recovered.

f(R) gravity [97, 98] is a theory which can be written without a scalar field but

instead includes higher powers of the Ricci scalar. This theory, with f(R) = R + R2

was the first model of inflation [99] as well as cosmic acceleration in the late universe

[100–102] Under a conformal rescaling it may be rewritten as the ordinary Einstein-

Hilbert action plus a canonical scalar [103, 104], in fact, the theory is exactly that of

Brans and Dicke with ω = 0 and a potential V (φ) that depends on the form of f(R).

The matter fields are coupled to the Jordan frame metric g̃µν = A2(φ)gµν . Point

particles still follow geodesics, but with respect to the Jordan frame:

S =

∫

√

−A2(φ)gµνdxµdxν . (1.4)

In the non-relativistic limit with static matter fields, the above action tells us that

test particles accelerate as

~a = −~∇Φ− d lnA(φ)

dφ
~∇φ . (1.5)

The first term is the standard acceleration due to the Newtonian potential Φ (com-

puted in the Einstein frame), while the second term represents an anomalous “fifth

force” due to the scalar field φ.

Note that if A(φ) = 1 (i.e. minimal coupling), the fifth force vanishes. In this
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scenario matter fields are only able to interact with the scalar field through the

metric. However, it is certainly worthwhile to study the rich phenomenology possible

when A(φ) 6= 1 .

Extensive tests of gravity, in a wide range of scenarios, are consistent with the scalar

field acceleration being zero, i.e. standard GR. Unscreened theories like that of Brans

and Dicke are therefore strongly constrained by existing measurements. For example,

the Brans-Dicke parameter is constrained by the Cassini spacecraft to be ω ∼> 104

[90].

However, screened theories evade these constraints because the local environment

where the tests are performed is very dense, causing the scalar force to weaken.

Potential screening may be accomplished by suitably choosing V (φ) and A(φ). The

scalar field’s equation of motion responds not just to its own potential, but is also

influenced by the matter fields. The scalar field sees an effective potential which

dynamically varies with the local environmental density:

✷φ = Veff ,φ (φ) ,

Veff(φ) = V (φ) + A(φ)ρ , (1.6)

where we have assumed that the matter is non-relativistic (T̃ = −ρ̃) and have ex-

pressed the density in a form which is conserved in the Einstein frame (ρ = A−1ρ̃) .

One particular example of potential screening is the chameleon mechanism, which

relies on a scalar particle mass that increases with the matter density of the local

environment. A prototypical potential and coupling function that accomplishes this

is :

V (φ) = Λ4

(

1 +
Λ

φ

)

, A(φ) = 1 +
φ

M
. (1.7)
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These choices yield an effective potential

Veff(φ) = Λ4

(

1 +
Λ

φ

)

+
ρ

M
φ , (1.8)

resulting in a variable scalar particle mass m2
φ = Veff ,φφ which increases with ρ. Inside

a dense extended object like a star or planet, the effective mass is large and the force

is short-ranged. Only within a thin shell of matter near the surface of the object is

the field sufficiently long-ranged to be able to reach the surface; it is this matter only

(and not the entire mass) that contributes to the scalar force. Effectively the “scalar

charge” carried by an object is not αm, the mass and coupling strength of the object

(as it is for GR) but instead is λmαm, where λm is a screening factor between 0 and

1. For chameleons this is given by the size and density of the object and the ambient

field value, λm =Mφbg/(ρobjR
2). For a very small or light object, the thin shell may

be comparable to the size of the object and the entire mass is able to contribute to

the external field and the object is unscreened. If M ∼MPl, the force on unscreened

objects is comparable to gravity.

Another scenario is the symmetron mechanism, which relies on a coupling to mat-

ter that becomes small in regions of large environmental matter density. A simple

potential and coupling that achieve this are

V (φ) = −1

2
µ2φ2 +

λ

4
φ4 , A2(φ) = 1 +

φ2

2M2
, (1.9)

resulting in an effective potential

Veff(φ) =
1

2

( ρ

M2
− µ2

)

φ2 +
λ

4
φ4 . (1.10)
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Veff(φ)

φ

V (φ)

A(φ)ρ

Figure 1.1: Schematic of the effective potential felt by a chameleon field (solid line),
given by the sum of the bare potential of runaway form, V (φ) (dashed line), and a density-
dependent piece, from coupling to matter (dotted line). As the density ρ increases, so does
the effective mass of the chameleon m2

φ = Veff ,φφ, which depends on the second derivative
of the effective potential about the minimum.

In regions of low density, the effective potential has a non-zero minimum at φ0 ≡

µ/
√
λ, and the scalar mediates an O(1) modification to general relativity. However,

in dense regions, the sign of the quadratic term flips and the minimum of the potential

becomes 0. In this limit the coupling term in Eq. (1.5), d lnA(φ)
dφ

= φ
M2 , switches off.

The symmetron effectively decouples from matter deep inside dense environments

such as planets and stars, making the symmetron force between such objects very

weak. Once again, the scalar charge is some fraction of the mass λmm, for λm =

M2/(6M2
PlΦ), where Φ is the surface Newtonian potential of the object.

P (X) theories are a generalization of Eq. (1.3) that add to or replace the ordinary

kinetic term X = −1
2
(∂φ)2 with a function of X, often denoted P (X) (hence their

name). A simple example of a P (X) theory is

Lφ = X +
α

Λ4
X2 , A(φ) = 1 +

φ

M
, (1.11)
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Figure 1.2: Schematic of the effective potential felt by a symmetron field. At low densities,
the quadratic term in the effective potential is negative and the field rolls to a local minimum
at a nonzero value of φ (green line). At high densities the sign of the quadratic term flips
and the minimum of the effective potential is at φ = 0.

where Λ ≪ MPl is the strong-coupling scale of the theory and α = ±1. This theory

has been used to violate the Null Energy Condition [12], and the α = −1 case is

interesting in that it admits a positive energy theorem despite having superluminal

perturbations and violating the standard S-matrix analyticity properties (a fact that

will be shown in Chapter 3). It also provides a simple example of derivative screening,

which we illustrate here [7, 105].

We will solve for the static, spherically symmetric solutions φ = φ(r) around some

stationary point mass, so that T = −mδ(3)(~x) . The static equation of motion

following from Eq. (1.11) is

~∇ ·
(

~∇φ− α

Λ4
(~∇φ)2~∇φ

)

=
1

M
mδ(3)(~x) . (1.12)

This equation is readily integrated once, yielding

φ′ − α

Λ4
φ′3 =

1

4πr2
m

M
. (1.13)

13



Note that the above equation only has real solutions for φ′ if α = −1, so we are

restricted to this choice. (Although we will not show this here, this choice of α

implies that perturbations around a spherically-symmetric and static background

propagate superluminally along radial directions. Furthermore, this choice violates

the standard S-matrix analyticity criteria, suggesting that the UV completion of the

theory is non-standard [7].)

This equation, being cubic in φ′, may be solved algebraically. It is instructive to

consider two limits depending on the size of φ′. When φ′ is small the linear term

dominates, and when φ′ is large the non-linear term dominates. Their corresponding

solutions are

φ′(r) ∼















Λ2

(4π)1/3
( r∗
r
)2/3 r ≪ r∗ ,

Λ2

4π
( r∗
r
)2 r ≫ r∗ .

(1.14)

We have introduced a crossover scale r∗ =
1
Λ

(

m
M

)1/2
, which represents the closest point

at which non-linearities begin to dominate. This is the Vainshtein radius, although

the term is sometimes reserved for galileon theories despite the mechanism being the

same.

Note that the acceleration on a test particle from the Newtonian gravitational force

is

aN =
Gm

r2
=

m

8πM2
Plr

2
. (1.15)

At distances r > r∗, the scalar field’s force law is similar:

aφ =
m

4πM2r2
, (1.16)

where we have used Eq. (1.5) and A,φ≈ 1
M

for φ≪M . If M ≈MPl, the scalar force
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Figure 1.3: Acceleration of an unscreened test particle towards a massive body in P (X)
and Galileon theories, divided by the Newtonian gravitational force. We have arbitrarily
chosen Λ = MPl, and both forces have been normalized such that Fφ/FN → 1 at large
radii. For P (X), this corresponds to M =

√
2MPl, while for the cubic galileon the choice

is M = MPl/
√
3. In both cases the scalar force is strongly suppressed relative to gravity

for r < r∗, and P (X) screening is actually more efficient due to the greater degree of non-
linearity in its equation of motion. Note also that the expression for r∗ is slightly different
in the two theories.

is approximately gravitational strength at large distances.

At small distances r ≪ r∗, the non-linear term dominates and the force grows only as

r−2/3 , so the force grows much more slowly than a standard 1/r2 force. This behavior

is typical of derivative screening, and is illustrated in Fig. 1.3.

Galileons are a further generalization of Eq. (1.3) to terms that involve more than

one derivative per field in the Lagrangian. The simplest example is the cubic galileon,

which has a Lagrangian

Lφ = −1

2
c2(∂φ)

2 − c3
Λ3

1

2
(∂φ)2✷φ , A2(φ) = 1 +

φ

M
, (1.17)
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where the ci and g are dimensionless parameters. DGP gravity [22] corresponds to

choosing c2 = 6, c3 = 2, and M = MPl. Adopting those ci, the static and spherically

symmetric equation of motion following from Eq. (1.17) is

~∇ ·
(

6~∇φ+ r̂
4

Λ3

(~∇φ)2
r

)

=
m

M
δ(3)(~x) . (1.18)

Note that this equation is second order, despite the ✷φ appearing in Eq. (1.17)!

Integrating the equation of motion once gives an algebraic equation for φ′:

6φ′ +
4

Λ3

φ′2

r
=

m

4πr2M
. (1.19)

This time the Vainshtein radius appears as r∗ =
1
Λ

(

m
M

)1/3
. As in the P (X) example,

we find the solution to this equation in two limits [7, 23]

φ′ ∼















Λ2

4
√
π

(

m
M

)1/3
( r∗
r
)1/2 r ≪ r∗ ,

Λ2

24π

(

m
M

)1/3
( r∗
r
)2 r ≫ r∗ ,

(1.20)

Again we see the Vainshtein mechanism at work: near the source, the non-linear

terms dominate the equation of motion leading to a scalar force that grows much

more slowly than 1/r2. This behavior is also demonstrated in Fig. 1.3. We find that

the force law for P (X) falls off faster for r < r∗, this is because Eq. (1.13) is cubic in

φ′ while Eq. (1.19) is only quadratic. Note also that for a given massive object, the

Vainshtein radius for the P (X) theory is larger than for the cubic galileon, again due

to the increased non-linearity.
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1.2 Effective field theory pathologies

Derivatively coupled field theories have generated a great deal of interest in recent

years, in part because their kinetic structure affords them a much greater degree

of flexibility in their phenomenology. However, along with this flexibility comes a

danger: instabilities can more easily appear in the theory, and care must be taken

to ensure that a particular solution is stable. A good first step3 is to look at the

quadratic Lagrangian for fluctuations about some background solution: φ → φ̄ + ϕ.

The general form of the quadratic action for ϕ is

Lφ =
1

2
f0(φ̄, ∂φ̄)ϕ̇

2 − 1

2
fij(φ̄, ∂φ̄)∂iϕ∂jϕ− 1

2
fm(φ̄, ∂φ̄)m

2
ϕϕ

2 , (1.21)

where the partial derivatives within the fJ (for J = 0 − 3,m) collectively denote

space and time derivatives and there is an implied sum over i = 1, 2, 3. The functions

fJ can be arbitrary functions of the background solution, except that they must be

positive for the theory to be stable.

If f0(φ̄) < 0, the mode is a ghost, signifying that the field carries negative energy.

If the scalar is coupled to ordinary matter fields, the decay rate for the vacuum to

produce two φ particles and two healthy particles is infinite [106, 107]. The vacuum

therefore immediately decays into an infinite number of ghostly and healthy particles,

making the theory lose all predictive power. A ghostly mode is only acceptable if its

mass lies above the cutoff of the EFT, signifying that the field is non-dynamical at

the energy scales of interest.

If fi(φ̄) < 0, the theory contains a gradient instability. This is a disaster for the

theory, since all Fourier modes allowed in the EFT grow like φk ∼ ekt. The fastest-

3See Appendix D of [7] for a more detailed discussion these pathologies and their resolutions.
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growing mode is the largest value of k allowed within the EFT, k ∼ Λ, so the EFT

is unstable on timescales τ ∼ Λ−1. But any dynamics on timescales faster than this

would involve k > Λ, and therefore lie outside the regime of validity of the EFT.

Theories with gradient instabilities are non-predictive at all scales [7].

If f3(φ̄) < 0, the field is tachyonic, indicating that the mass is negative. This is a

much milder form of instability, as a tachyon’s instability only manifests on timescales

longer than m−1
ϕ . As long as this is longer than the timescales of interest, the theory

will be stable for all practical purposes. Physically, a tachyonic instability indicates

that the solution being perturbed around is unstable and will evolve to a different

(hopefully stable) state. This behavior is exhibited in the symmetron model Eq.

(1.9): if the quadratic term in the effective potential is negative and we try to expand

around φ = 0, the perturbations appear tachyonic. But if we perturb around the true

vacuum φ0 = µ/
√
λ, the instability disappears.

We must also be careful that the propagation speed of the perturbations is subluminal.

This requirement expresses a prejudice that the EFT has a Lorentz invariant UV

completion. A Lorentz invariant theory has operators that commute outside the light

cone [7, 108]:

[O1(x), O2(y)] = 0 if (x− y)2 > 0 . (1.22)

A superluminally propagating signal, even within a low energy limit (such as the

EFT), violates this criterion.

The speed of perturbations along the ith direction is c2i = fii/f0, so we must have

fii/f1 < 0 . Although this is a simple check on the theory, superluminal propagation

does not necessarily break causaulity. The quantity cs is the phase velocity, which

can be superluminal without breaking causality as long as the front velocity is less
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than or equal to the speed of light [109]. Nonetheless, in the present work we will

be conservative and demand cs ≤ 1. Canonical scalars always exhibit subluminal

perturbations, while P (X) and galileon theories can have superluminal perturbations

around certain backgrounds. We have already encountered this behavior: recall that

perturbations in the P (X) theory Eq. (1.11) are superluminal if α = −1.

A related concern is that an EFT that appears to be locally Lorentz-invariant secretly

exhibits macroscopic non-locality. This situation may be avoided if the S-matrix

for perturbations satisfies standard analyticity requirements. This is essentially a

requirement that is inherited from the demand that the EFT descends from a Lorentz

invariant UV completion. In many theories this amounts to requiring that the overall

signs of certain higher dimensional operators are positive [7, 110].

Something else to watch out for is that quantum corrections can introduce new opera-

tors in the effective field theory. Such terms could easily ruin the screening mechanism,

so we must be sure that quantum corrections are under control, that is, that the EFT

is technically natural.

For instance, the one-loop correction to a canonical scalar field goes as ∆V ∼

m4
eff ln(m

2
eff/µ

2) for some mass scale µ [111]. Screening mechanisms in canonical scalar

field theories generally rely on meff becoming large, but this is precisely the limit in

which the effective field theory breaks down. As shown in [112], the one-loop correc-

tion is sub-leading so long as meff . (αρ)1/3 , where α is the strength of the matter

coupling and ρ is the density of the surrounding matter. For gravitational-strength

couplings and laboratory densities, this is roughly ∼meV. This is safely above the

present experimental bounds on meff [113], so there is still enough room for these

theories to screen and remain predictive.
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Derivatively coupled field theories have a similar issue [23, 114, 115] — quantum

corrections introduce new operators which would, at first glance, seem to get large

whenever screening occurs. In P (X) theories, there are two types of terms to worry

about: higher powers of X, and operators involving derivatives of X. Since screening

occurs when X becomes large, one would expect that in this limit all higher powers

of X would become large as well, signaling a breakdown of the theory.

The resolution relies on the fact that that P (X) theories have two important

scales [114]. The first is the strong coupling scale Λ, which is when loop effects

become important and tree-level unitarity breaks down. In this regime, unitarity can

be restored by re-summing loop effects, so the theory is still predictive. The second

scale is the cutoff Λc ≥ Λ, where unitarity completely breaks down and new high

energy physics must be accounted for. Since there can be a hierarchy between Λ and

Λc, there is a window in which it is possible for the field to acquire classical non-

linearities (which can screen macroscopic objects) while still remaining safely below

the cutoff of the theory.

The story for galileons is very similar, although galileons fare much better than P (X)

theories when it comes to quantum corrections. Surprisingly, the tree level galileon

terms do not receive any quantum corrections at all. Only terms with at least two

derivatives per field are generated by quantum corrections [7, 23], so the galileon

coefficients remain unchanged to all loop orders. This is because the galileon terms

are only invariant under galilean transformations up to a total derivative, so the

transformations are a symmetry of the action but not of the Lagrangian. The quan-

tum terms do not share that luxury, and must be strictly invariant under galilean

transformations [23, 26, 115, 116].

The higher order terms are still a concern, though, because we wish for them to
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remain small compared to tree level terms. It would seem that once again we are

doomed: screening occurs when, say, the (∂φ)2✷φ term becomes large compared to

the ordinary (∂φ)2 term, but this is exactly the limit in which one might expect all

the higher order terms become important as well. It turns out that this is not the

case, as there are in fact two expansion parameters at work. The first is a classical

expansion parameter, αcl = ∂2φ/Λ3, which quantifies the strength of non-linearities,

and a quantum expansion parameter, αq = ∂2/Λ2, which measures the strength of

the higher-order quantum mechanically generated terms. Galileon screening relies on

αcl becoming large, to enable screening, while αq is still small, so that higher order

terms are sub-leading and the classical EFT can be trusted [7, 23].

1.3 Atom Interferometry

So far we have been mainly concerned with the theoretical properties of scalar field

theories. We now turn to their experimental predictions. For theories with potential

screening in particular, atom interferometry has emerged as a powerful experimental

probe. The experiment used for the constraints computed in Sections 4 and 5 is

the result of an effort by Prof. Holger Müller’s group at UC Berkeley [3, 4, 96] as a

follow-up to a proposal to use atom interferometry to measure the scalar-mediated

force, introduced by the theory papers of Burrage et al [94, 95].

Interferometry is a standard technique used in many areas of physics, and gravitation

is no exception. Indeed, the celebrated Michelson-Morley interferometer measured

the relative speed of light in directions parallel and orthogonal to the motion of

the Earth, dispelling the aether myth and paving the way towards relativity. More

recently, interferometers have been used to detect gravitational waves by detecting

the expansion and contraction of the two arms of the interferometer [117].
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The first interferometers were based on light: an incoming light wave would be split

into two parts with a half-silvered mirror, and each part is sent on a separate path.

The paths are then recombined and the amplitude of the output wave is measured.

If the two paths are identical then the output amplitude of the wave is unchanged.

However, if the paths are different then a phase difference is accumulated between the

two paths and the two waves will interfere destructively at the output. For instance,

one path being slightly longer, or passing through a material with a different index

of refraction, generally results in a phase difference between the two waves. This

fact may be exploited to make extremely precise measurements of, for instance, the

relative difference in path lengths, as a difference of order the wavelength of light will

result in measurable interference pattern.

As is well known, interference is not a phenomenon restricted to classical waves like

light. As was conclusively demonstrated by the famous two-slit experiment, matter

particles may interfere as well due to quantum-mechanical effects under the right

circumstances.

Atom interferometry [118] exploits the quantum-mechanical wave nature of atoms for

a similar purpose. A cloud of atoms may be manipulated via laser pulses to split

their matter-wave packets to travel along two different paths. The partial matter-

wave packets may then be recombined, and any relative phase between the two paths

results in destructive interference at the time of measurement. Atom interferometry

has developed into a powerful tool for testing fundamental physics, and provides

competitive measurements of GN and the fine-structure constant, as well as tests of

the equivalence principle [119]. Atom interferometry is also well equipped to deliver

measurements on quantities crucial for an accurate determination of the anomalous

magnetic moment of the muon [120].
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Atom interferometry has been used to look for anomalous gravitational interactions

before [121], however, such experiments were unable to directly constrain screened

scalar fields. In the case of potential screening, this is because the atmosphere and

vacuum chamber walls cause the scalar particle to become very massive. The scalar

field quickly goes to a constant the value that minimizes its effective potential, effec-

tively shielding the atoms from scalar forces sourced outside the vacuum chamber.

What sets the Berkeley experiment apart is the inclusion of a small, dense source

mass inside the vacuum chamber in the immediate vicinity of the atoms. Inside the

vacuum chamber the chameleon force is much longer-range, of order the size of the

vacuum chamber. The scalar force between the source mass and the atoms is therefore

much larger than in atmosphere, allowing one to place much stronger constraints on

the theory.

The Berkeley experiment, illustrated in Fig. 1.4, consists of an atom interferometer

inside a vacuum chamber. A fountain of cold 133Cs atoms are launched vertically, pass-

ing near a small metal source mass at their apex. Two vertical counter-propagating

laser beams are used to induce photon absorption and then stimulated emission in the

opposite direction, resulting in a net change in the quantum state and momentum

of |a, p0〉 → |b, p0 + 2~k〉 , where k = k1 + k2 is the sum of the individual lasers’

wavenumbers.

The first laser pulse is tuned such that the atoms undergo the transition with 50%

probability, so the wave function of each atom splits into two pieces, one along each

path. A second pulse T seconds later is tuned for nearly 100% probability, so that

the excited atoms drop back to the ground state and vice versa, so that the two paths

begin to converge. Finally, a third pulse another T seconds later is timed for 50%

probability, recombining the partial matter waves.
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Figure 1.4: Left: Experimental setup. The acceleration acyl of cesium atoms towards
a source mass suspended in ultra-high vacuum is measured. Making a differential
measurement isolates the effect of any interactions due to the source mass. Note
that the source mass is depicted here as a cylinder, while an earlier version of the
experiment used a spherical source mass. This is why much of the analysis in this
Section is for a spherical source mass. Right: Mach-Zehnder interferometer based
on Raman transitions in an optical cavity. Three laser pulses manipulate the cesium
atoms during free-fall. The pulses 1) split the atomic wave packet along two different
trajectories, 2) reflect the two trajectories near their apex, and 3) recombine and
interfere the matter waves to measure the phase difference accumulated between the
two paths during the interferometer time of 2T = 110 ms.
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The probability of observing any given atom at the output is [118]

P = cos2
(

∆φ

2

)

, (1.23)

where ∆φ is the phase difference accumulated along the two different paths

∆φ = kaT 2 . (1.24)

The variable a represents the total acceleration experienced by the atoms during the

measurement. The experiment is repeated with the source mass removed, so that

any change in ∆φ must be due to the force between the atoms and the source mass.

After subtracting out the Newtonian gravitational forces from a, anything left over

may be interpreted as an anomalous “fifth force.”

The strongest bound at the time of writing of this Thesis was a < 50 nm/s2 at the

95% confidence level, a number that was derived using the techniques developed

in this Thesis [4]. This result is consistent with no scalar force at all. Placing

the strongest possible constraints on chameleon field theories from this measurement

requires accurately accounting for the experimental setup when computing the scalar

field. The geometry of the experiment is described in Fig. 4.5, and the densities of the

materials are in Table 4.1 . Chapters 4 and 5 detail a numerical method that allows

us to include the exact setup in the calculation of the chameleon force, yielding the

most precise prediction of the chameleon scalar force in atom interferometry to date.
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Chapter 2

Violating the Null Energy Condi-

tion

In this Chapter we describe energy conditions in general relativity and their rela-

tionship with well-behaved quantum field theories. We show that violating the null

energy condition, which is the most robust of the four standard energy conditions,

generally comes hand-in-hand with pathologies in the field theory. We then con-

struct a galileon field theory that violates the null energy condition while remaining

well-behaved. This Chapter is based on work that originally appeared in [1].

The Einstein field equations relate the curvature of space-time (the Ricci tensor Rµν)

to the energy content of gravitational sources (the energy-momentum tensor Tµν).

The metric does not appear to discriminate between sources: for any given metric,

one can use the field equations to calculate what Tµν needs to be to give rise to that

metric. However, this does not necessarily mean that Tµν comes from a well-behaved

source. For instance, the matter could be flowing faster than light, or the energy

density could be negative for some observer on a timelike path. Such pathologies are

avoided by imposing energy conditions, which place restrictions on Tµν .

Energy conditions are central to our understanding of the physics of matter in rela-

tivistic space-times yet, perplexingly, are not known to come directly from the axioms

of general relativity. Rather than deriving these conditions, they are imposed directly

on Tµν , based entirely on notions about what we deem to be physically reasonable
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matter-energy sources. Since any new theory must contribute to Tµν , energy condi-

tions have consequences for any physical theory which gravitates.

The most historically significant application of energy conditions is in the singular-

ity theorems of Penrose, Hawking, Ellis, and others. Singularity theorems are are

statements the inevitability of singularities appearing in a space-time under certain

assumptions. For instance, the famous 1965 theorem of Penrose [122] shows that there

are null geodesics inside a black hole that are incomplete, i.e. even null geodesics en-

counter a singularity, provided that the Ricci tensor satisfies the null convergence

condition Rµνn
µnν ≥ 0 for null nµ.

The null convergence condition, which constrains the geometry, may be interpreted

via the Einstein field equations to be a requirement on the stress-energy tensor Tµν .

In this context, it becomes the Null Energy Condition (NEC) Tµνn
µnν ≥ 0 for null nµ.

Interestingly, the proof of this singularity theorem (and many others) is independent

of the field equations, only making statements about the geometry, such as the above

null convergence condition. Einstein’s equations are only invoked when interpreting

the geometric requirements, which then take on the guise of an energy condition. This

suggests that energy conditions are logically independent from Einstein’s equation,

and amount to “reasonable” statements about gravitational sources as well as space-

time geometry [123].

There are a number of different energy conditions (see [123, 124] for reviews), but here

we quickly mention the four most common ones. The weak energy condition requires

that the energy density be non-negative for all observers on timelike geodesics. A

timelike observer with 4-velocity vµ therefore measures

Tµνv
µvν ≥ 0 . (2.1)
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The dominant energy condition states that, in addition to the weak energy condition

being true, energy can never be seen flowing faster than light. An observer with

timelike 4-velocity vµ sees a 4-current of energy density −T µν vν . The dominant energy

condition requires this 4-current to be causal (timelike or null).

The strong energy condition requires that a timelike observer measure an energy

density that is sufficiently larger than the trace of the stress tensor. It is equivalent

to demanding

Tµνv
µvν ≥ −1

2
T , (2.2)

for a timelike 4-velocity vµ.

The null energy condition states that an observer on a null path measures a positive

energy density. It is similar to the weak energy condition, except with a null 4-velocity

vector nµn
µ = 0:

Tµνn
µnν ≥ 0 . (2.3)

For a more intuitive picture, the above formal statements may be translated into

requirements on a perfect fluid, which has a rest-frame energy-momentum tensor

Tµν = diag(ρ, P, P, P ):

• Weak ρ+ P ≥ 0 and ρ ≥ 0, ,

• Dominant ρ ≥ |P | ,

• Strong ρ+ P ≥ 0 and ρ+ 3P ≥ 0 ,

• Null ρ+ P ≥ 0 .

A simple cosmological constant, which has an equation of state P = −ρ and can also

have ρ < 0, violates all of these conditions except the null energy condition. In the
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same way, a healthy canonical scalar field with a suitable constant in its potential

may violate all of these conditions except the NEC. In Section 2.1 we will see that a

canonical scalar field that violates the NEC is necessarily ghostlike.

Violating the NEC with a healthy scalar field is the focus of this Chapter. The

primary motivation is to better understand the relationship between the NEC and

well-behaved relativistic quantum field theories. In [125] it was shown that any the-

ory with at most one derivative per field that violates the NEC necessarily has an

instability, such as a ghost, gradient instability, superluminality, absence of a Lorentz-

invariant vacuum, etc.4 These pathologies are described in Section 1.2. Progress has

been made in avoiding some of these shortcomings [45, 51–53, 127, 128], as reviewed

in Section 2.1 (see also Table 2.1 for a summary), though a fully satisfactory exam-

ple remains elusive. It is important to push this program further, to sharpen the

connection between the NEC and the standard assumptions of quantum field theory.

A secondary motivation is that the NEC precludes a non-singular cosmological

bounce. Assuming spatial flatness, Einstein’s equations imply that the Hubble pa-

rameter satisfies

M2
PlḢ = −1

2
(ρ+ P ) . (2.4)

For a perfect fluid, the NEC implies ρ + P ≥ 0, and thus Ḣ ≤ 0. Contraction

(H < 0) cannot evolve to expansion (H > 0). Violating (2.3) is therefore central to

any alternative to inflation relying on a contracting phase before the big bang [46,

50, 75, 129–175], or an expanding phase from an asymptotically static past [45, 47–

49, 51–53, 127, 176–178].

The DBI Genesis scenario [52], based on the DBI conformal galileons [179], is the

4For example, the Hamiltonian of theories which violate the NEC was argued to be unbounded
from below in [126].
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closest any theory has come to achieving NEC violation while satisfying the standard

properties of a local quantum field theory, and is reviewed in the following paragraphs

and in Section 2.1. Specifically, as shown in [52], the coefficients of the five DBI

galileon terms can be chosen such that:

1. The theory admits a stable, Poincaré-invariant vacuum. Further, the Lorentz-

invariant S-matrix about this vacuum obeys the simplest dispersion relations

for 2 → 2 scattering coming from analyticity constraints.

2. The theory admits a time-dependent, homogeneous and isotropic solution which

violates the NEC in a stable manner. In fact, this NEC-violating back-

ground is an exact solution of the effective theory, including all possible higher-

dimensional operators consistent with the assumed symmetries.

3. Perturbations around the NEC-violating background, and around small defor-

mations thereof, propagate subluminally.

4. This solution is stable against radiative corrections and the effective theory for

perturbations about this solution is well-defined.

This represents a significant improvement over ghost condensation [12] (which fails to

satisfy 1) and the ordinary conformal galileons [45, 116] (which fail to satisfy 1 and 3),

as will be reviewed in detail in Section 2.1.5 Additionally, consistency with black hole

thermodynamics is desirable [180]. This remains an open issue which deserves further

study. It is worth pointing out that the non-minimal couplings to gravity inherent in

the theory will modify the usual link between NEC violation and the black hole area

law [181, 182].

5Note that the conformal galileon Lagrangian can be deformed in a straightforward way to remove
superluminal propagation about the NEC-violating background [53].
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Unfortunately, the DBI Genesis theory itself suffers from two drawbacks. Similar

to the conformal galileons, one can find weak deformations of the Poincaré-invariant

solution around which perturbations propagate superluminally. As pointed out re-

cently [183, 184], however, galileon theories that admit superluminality can sometimes

be mapped through field redefinitions to healthy galileon theories, indicating that the

apparent superluminalty may be unphysical.6 So in this sense superluminality may

not offer a clear-cut criterion. But it would certainly be preferable to have an example

where superluminality is manifestly absent.

A less ambiguous drawback was pointed out by Rubakov [128]: although the theory

admits both Poincaré-invariant and NEC-violating solutions, any solution that at-

tempts to interpolate between the two vacua inevitably hits a strong coupling point.

In other words, the kinetic term of fluctuations around any interpolating solution goes

to zero somewhere. In particular, it is impossible to create a NEC-violating region in

the laboratory.7 The argument, which we review in Sec. 2.2, is quite general — it only

assumes that the theory describes a single field which is dilation-invariant, and that

both Poincaré and NEC-violating solutions preserve this symmetry. Rubakov showed

that the conclusions can be evaded by introducing additional scalar fields [128].

Since this work was written there have been further examples of well-behaved NEC

violation. The approach described here was generalized to include quartic galileons

[185] and a procedure for a graceful exit back to a NEC-satisfying phase [186]. Another

approach, in which the galileon becomes a massless scalar field driving the expansion

of the universe at later times is given in [187]. This problem has also been studied

within the framework of the effective field theory of cosmological perturbations [188].

6We thank Claudia de Rham and Andrew Tolley for a discussion on this point.
7Although [128] focused on solutions which interpolate in a radial direction (a ‘bubble’ of NEC

violation), the argument applies equally well to interpolation in the temporal direction.

31



In this Chapter, we stick to a single-field theory but relax the assumption of dilation

invariance in order to construct a theory which admits a solution that obeys the null

energy condition at early times but at late times crosses into a phase of NEC-violation.

The theory of interest is a deformation of the Galilean Genesis Lagrangian,

L = Z(π)e2π(∂π)2 +
f 3
0

Λ3
(∂π)2✷π +

1

J (π)

f 3
0

2Λ3
(∂π)4 , (2.5)

where the functions Z(π) and J (π) are constrained to allow a smooth interpolation

between a NEC-satisfying phase at early times and a NEC-violating phase at late

times. Specifically, at early times (π → π∞) the cubic term is negligible, and the

theory reduces to

Learly ≃ − f 2
∞e

2π∞

(eπ−π∞ − 1)4
(∂π)2 +

1

J0

f 3
0

2Λ3

(∂π)4

(1− e−(π−π∞))
8

= −f 2
∞e

2π∞(∂φ)2 +
f 3
0

8J0Λ3
(∂φ)4 , (2.6)

where the second line follows after a field redefinition to the (almost) canonically-

normalized variable φ. The quartic term has the correct sign demanded by local-

ity [110], hence the S-matrix of this theory obeys the standard dispersion relations

coming from analyticity.

At late times (π → ∞), on the other hand, Z and J both tend to constants, Z(π) →

f 2
0 ≫ Λ2, J (π) → J0 ∼ O(1), such that (2.5) reduces to the Galilean Genesis action

Llate ≃ f 2
0 e

2π(∂π)2 +
f 3
0

Λ3
(∂π)2✷π +

1

J0

f 3
0

2Λ3
(∂π)4 . (2.7)

This gives rise to the usual, genesis NEC-violating solution. For suitable values of
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J0, perturbations around this solution are comfortably subluminal, as in [53].8 Note

that Z(π) has the correct sign at early times, and the wrong (i.e., ghost-like) sign at

late times. Nevertheless, the kinetic term of fluctuations around the time-dependent

interpolating solution is healthy during the entire evolution.

Of course, the presence of arbitrary functions in the Lagrangian makes it unlikely that

the theory is radiatively stable. However, we will argue that quantum effects in the

theory are under control both at early and late times. We imagine that, given this,

the existence of a healthy interpolating solution is not extremely sensitive to quantum

corrections, even though the functions Z and J , and hence the explicit form of the

solution itself, might be. In this sense, our explicit construction is designed to be a

proof-of-principle.

2.1 Attempts to violate the NEC

We begin with a brief overview of the different theories that can violate the NEC,

highlighting their successes and failures. For a more comprehensive review of the

null energy condition and attempts to violate it, see [190]. In Table 2.1 we provide a

scorecard for the different theories. A natural place to search for matter which can

violate the NEC is in the context of scalar field theories, since scalars can develop

nontrivial background profiles that preserve homogeneity and isotropy.

• 2-derivative theories: Consider a non-linear sigma model with dynamical

variables φI : R3,1 → M, where M is an arbitrary, N -dimensional real target

space. At 2-derivative order, the action is given by

S =

∫

d4x

(

−1

2
GIJ(φ)∂µφ

I∂µφJ − V (φIφI)

)

, (2.8)

8It was recently argued that including a matter component can reintroduce superluminality in
some part of the cosmological phase space [189].
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where GIJ is the target-space metric. The stress-energy tensor for this field is

readily computed, and the quantity relevant for the NEC is

Tµνn
µnν = GIJ(φ)n

µnν∂µφ
I∂νφ

J . (2.9)

In the language of perfect fluids, focusing on time-dependent profiles, φI(t), this

becomes

ρ+ P = GIJ(φ)φ̇
I φ̇J . (2.10)

Now, the target-space metric GIJ can be diagonalized, since it is symmetric and

invertible. Therefore, in order to violate the NEC (ρ+ P ≤ 0), GIJ must have

at least one negative eigenvalue, that is, one of the φI ’s must be a ghost. At

the 2-derivative level, violating the NEC comes hand in hand with ghosts.

• P (X) theories: The obvious generalization is to consider higher-derivative

theories. In order to avoid ghost instabilities, the equation of motion should

remain 2nd-order. A general class of such models is

S =M4

∫

d4xP (X) , (2.11)

where X ≡ − 1
2M4 (∂φ)

2, and M is an arbitrary mass scale. The justification

for considering theories of this type is effective field theory reasoning — we

anticipate that at low enough energies, terms with more derivatives per field

will be sub-leading. However, even in these theories, NEC violation generically

introduces pathologies, albeit of a more subtle nature.
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To see this, note that the combination ρ+ P , assuming φ = φ(t), is given by

ρ+ P = 2XP,X . (2.12)

In order to violate the NEC, we therefore need P,X < 0. Meanwhile, expand-

ing (2.11) about the background φ = φ̄(t) + ϕ, the action for quadratic fluctu-

ations is [12]

Sϕ =
1

2

∫

d4x
(

(P,X +2XP,XX ) ϕ̇2 − P,X (~∇ϕ)2
)

. (2.13)

A violation of the NEC (P,X < 0) results in either gradient instabilities (wrong-

sign spatial gradient term) or ghost instabilities (if we choose P,X +2XP,XX <

0). More generally, it was shown in [125, 191] that violating the NEC in the-

ories of the form L(φI , ∂φI) (i.e., involving at most one derivative per field),

implies either the presence of ghost or gradient instabilities or superluminal

propagation.

• Ghost condensation: This general theorem about instabilities in such a wide

class of theories would seem to preclude any sensible violations of the NEC.

There is, however, a rather compelling loophole to the general logic. The theo-

rem of [125] relies heavily on the standard organization of effective field theory,

i.e., the sub-dominance of terms of the form ∂2φ. There exist two well-studied

situations where such terms can become important and, indeed, both lead to

violations of the NEC free of the obvious pathologies.

The first is ghost condensation [12]. This relies on an action of the P (X)

form (2.11), but chosen so that there exists a solution with P,X = 0. Notice

from (2.13) that this precisely corresponds to the vanishing of the spatial gra-
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dient term in the quadratic Lagrangian about this background. This allows a

higher-derivative term of the form (∇2ϕ)2 to become important in the quadratic

Lagrangian without the effective field theory expansion breaking down. Since

ρ + P = 0 on the background, this acts as a vacuum energy contribution. De-

forming the background as φ = φ̄(t) + π(t), one finds

ρ+ P ∼ π̇ . (2.14)

This is linear in π, and hence can have either sign. Violating the NEC once again

will push the kinetic term of fluctuations slightly negative, but the dispersion

relation is stabilized at high k by the (∇2ϕ)2 term [127]. The no-go theorem

of [125] is thus evaded by relying on higher-derivative spatial gradient terms.

The main drawback of the ghost condensate is the absence of a Lorentz-invariant

vacuum. Indeed, from (2.13) the absence of ghosts about the condensate P,X =

0 solution requires P,XX > 0, i.e., the condensate is at a minimum of P (X).

As a result, the theory cannot be connected to a Lorentz-invariant vacuum

(P,X |X=0 > 0) without encountering pathologies in between. The theory is only

well-defined in the neighborhood of the ghost condensate point.

A NEC-violating ghost condensate phase has been used in alternative cos-

mological models, including a universe starting from an asymptotically static

past [127], the New Ekpyrotic Universe [150, 153], and the matter-bounce sce-

nario [166].

• Galileons: A second class of theories which can violate the NEC without

instabilities is given by the conformal galileons [24, 116].9 These are conformally-

9For another construction which violates the NEC based on Kinetic Gravity Braiding [178], a
cousin of the galileons, see [192].
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invariant scalar field theories with derivative interactions. The simplest example

is

L = f 2e2π(∂π)2 +
f 3

Λ3
�π(∂π)2 +

f 3

2Λ3
(∂π)4 . (2.15)

Each term is manifestly dilation invariant. The relative 1/2 coefficient between

the �π(∂π)2 and (∂π)4 ensures full conformal invariance.10 Choosing the kinetic

term to have the wrong sign, as in (2.15), the theory admits a time-dependent

solution

eπ =
1

H0(−t)
; H2

0 =
2

3

Λ3

f
, (2.17)

where −∞ < t < 0. For consistency of the effective field theory, the scale H0

should lie below the strong coupling scale Λ, which requires

f ≫ Λ . (2.18)

This background spontaneously breaks the original SO(4, 2) symmetry down

to its SO(4, 1) subgroup. The stress-energy violates the NEC [45, 53, 116]:

ρ + P = − 2f2

H2
0 t

2 . Perturbations around this solution are stable, and propagate

exactly luminally by SO(4, 1) invariance. However, the sound speed can be

pushed to superluminal values on slight deformations of this background.11 A

cure to this pathology [53] is to reduce the symmetry by detuning the relative

coefficient of the cubic and quartic terms

L = f 2e2π(∂π)2 +
f 3

Λ3
�π(∂π)2 +

f 3

2Λ3
(1 + α)(∂π)4 , (2.19)

10Under the dilation and conformal symmetries, the field π transforms as:

δDπ = −1− xµ∂µπ ; δKµπ = −2xµ − (2xµxν∂ν − x2∂µ)π . (2.16)

11It was shown in [189] that such deformations must break homogeneity/isotropy.
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where α is a constant. For α 6= 0, this explicitly breaks the special conformal

symmetry, leaving dilation and Poincaré transformations as the only symme-

tries (which conveniently close to form a subgroup). This still allows a 1/t

background of the form (2.17), with H0 = 2
3

1
(1+α)

Λ3

f
depending on α. For

−1 < α < 3, this background violates the NEC and has stable perturbations.

As a result of the fewer residual symmetries, perturbations propagate with a

sound speed different from unity:

c2s =
3− α

3(1 + α)
. (2.20)

This is subluminal for α > 0. In other words, for the range

0 < α < 3 , (2.21)

the system violates the NEC, is stable against small perturbations, and these

perturbations propagate at subluminal speeds. Moreover, the theory is stable

against quantum corrections.

The main drawback of the galileon NEC violation is — just like the ghost

condensate — the absence of a Lorentz-invariant vacuum. Indeed, the existence

and stability of a 1/t background requires a wrong-sign kinetic term, as in (2.15)

and (2.19). As shown in [53], including the higher-order conformal galileon

terms does not help: only the kinetic term contributes to ρ + P for the 1/t

solution, and it must have the wrong sign to violate NEC. An improvement

over the ghost condensate, however, is that perturbations are stable on all scales,

whereas perturbations of the ghost condensate in the NEC-violating phase are

unstable on large scales (but are stabilized on small scales, thanks to the higher-
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derivative contribution to the dispersion relation).

A NEC-violating galileon phase is the hallmark of the Galilean Genesis sce-

nario [45, 53], in which the universe expands from an asymptotically static

past. Because of the residual dilation symmetry, nearly massless fields acquire

a scale invariant spectrum. The SO(4, 2) → SO(4, 1) spontaneous breaking is

also used in the NEC-satisfying rolling scenario of [46, 167, 168]. More generally,

this symmetry breaking pattern arises whenever a number of scalar operators

OI with weight ∆I in a conformal field theory acquire a time-dependent profile

OI(t) ∼ (−t)−∆I . The general effective action was constructed in [50] utilizing

the coset construction, and the consistency relations were derived in [193].

• DBI Galileons: An alternative way to avoid superluminality while preserving

the full SO(4, 2) symmetry is to consider the DBI conformal galileons [179].

These are the “relativistic” extension of the ordinary conformal galileons, and

describe the motion of a 3-brane in an AdS5 geometry. The DBI conformal

galileon action is a sum of five geometric invariants, with 5 free coefficients

c1, . . . , c5:

L = c1L1 + c2L2 + c3L3 + c4L4 + c5L5 , (2.22)

where the Li’s are built out of the induced metric

ḡµν = GAB∂µX
A∂νX

B = φ2

(

ηµν +
∂µφ∂νφ

φ4

)

, (2.23)

the Ricci tensor R̄µν and scalar R̄, and the extrinsic curvature tensor

Kµν = γφ2

(

ηµν −
∂µ∂νφ

φ3
+ 3

∂µφ∂νφ

φ4

)

. (2.24)
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Each Li is invariant up to a total derivative under SO(4, 2) transformations,

inherited from the isometries of AdS5. The relevant terms come from consider-

ing brane Lovelock invariants [194] and the boundary terms associated to bulk

Lovelock invariants:

L1 = −1

4
φ4 ;

L2 = −√−ḡ = −φ
4

γ
;

L3 =
√−ḡK = −6φ4 + φ[Φ] +

γ2

φ3

(

− [φ3] + 2φ7
)

;

L4 = −√−ḡR̄

= 12
φ4

γ
+

γ

φ2

(

[Φ2]−
(

[Φ]− 6φ3
) (

[Φ]− 4φ3
)

)

+ 2
γ3

φ6

(

− [φ4] + [φ3]
(

[Φ]− 5φ3
)

− 2[Φ]φ7 + 6φ10
)

;

L5 =
3

2

√−ḡ
(

−K
3

3
+K2

µνK − 2

3
K3
µν − 2

(

R̄µν −
1

2
R̄ḡµν

)

Kµν

)

= 54φ4 − 9φ[Φ]

+
γ2

φ5

(

9[φ3]φ2 + 2[Φ3]− 3[Φ2][Φ] + 12[Φ2]φ3

+ [Φ]3 − 12[Φ]2φ3 + 42[Φ]φ6 − 78φ4

)

+ 3
γ4

φ9

(

− 2[φ5] + 2[φ4]
(

[Φ]− 4φ3
)

+ [φ3]
(

[Φ2]− [Φ]2 + 8[Φ]φ3 − 14φ6
)

+ 2φ7
(

[Φ]2 − [Φ2]
)

− 8[Φ]φ10 + 12φ13

)

,

where γ ≡ 1/
√

1 + (∂φ)2/φ4 is the Lorentz factor for the brane motion, L1

measures the proper 5-volume between the brane and some fixed reference brane

L2 is the world-volume action [195], i.e., the brane tension, and the higher-order

terms L3, L4 and L5 are various functions of curvature. Moreover, Φ denotes

the matrix of second derivatives ∂µ∂νφ, [Φ
n] ≡ Tr(Φn), and [φn] ≡ ∂φ ·Φn−2 ·∂φ,
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with indices raised by ηµν . The motivation for considering Lovelock terms is

that they lead to second-order equations of motion for the scalar field φ [179].

For suitable choices of the coefficients c1, . . . , c5, the theory admits a 1/t solu-

tion of the form (2.17), which violates the NEC in a stable manner [52]. This

was dubbed the DBI Genesis phase in [52]. Analogous to DBI inflation [196],

the sound speed of fluctuations for relativistic brane motion γ ≫ 1 is highly

subluminal. This is an improvement over the galileon examples, since sublu-

minality is achieved while keeping the full conformal symmetries. Moreover,

this solution is stable against radiative corrections: terms not of the conformal

DBI form are generated radiatively but with coefficients suppressed by inverse

powers of γ.

More importantly, the theory also admits a stable, Poincaré-invariant vacuum.

As such, DBI Genesis is the first example of a theory possessing both sta-

ble NEC-violating and stable Poincaré-invariant vacua. In [52] it was shown

that the 2 → 2 scattering amplitude satisfies the known analyticity properties

required by locality. Unfortunately, like ordinary galileons weak-field defor-

mations of the Poincaré-invariant vacuum allow superluminal propagation of

perturbations. Hence we naively do not expect the full scattering S-matrix

to be analytic, though as mentioned earlier it is not clear to what extent the

apparent superluminality is truly a pathology [183, 184].

Additionally, one would like the theory to be consistent with the second law of black

hole thermodynamics. There appears to be great tension between this and the NEC,

for instance in the ghost condensate violation of the NEC allows for the formation of

perpertuum mobile [180].12 The story is potentially more subtle for DBI galileons,

12For a contrary viewpoint, see [197].
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Ghost condensate Galilean Genesis DBI Genesis This theory

✘
✘
✘NEC vacuum ✓ ✓ ✓ ✓

No ghosts ✓ ✓ ✓ ✓

Sub-luminality ✓ ✓ ✓ ✓

Poincaré vacuum ✗ ✗ ✓ ✓

No ghosts ✓ ✓

S-Matrix analyticity (2 → 2) ✓ ✓

Sub-luminality ✗ ✓

Interpolating solution ✗ ✓

Radiative stability ✓ ✓ ✓ ✗

BH Thermodynamics ✗ ? ? ?

Table 2.1: Checklist of properties of various theories which possess null energy condition-
violating solutions. See Section 1.2 for a discussion of the pathologies in this Table.

thanks to the non-minimal terms required for their covariantization [79, 179].

Ideally, one would like to be able to start from the Poincaré-invariant vacuum and

evolve smoothly into the NEC-violating phase. As pointed out recently [128], how-

ever, this is impossible in any single-field theory with dilation invariance. This is

particularly constraining because many of the attempts to violate the NEC utilize

dilation-invariant theories (for example the Galilean Genesis scenarios and the DBI

conformal galileons). The argument, reviewed below, shows that any solution that

attempts to interpolate between the two vacua inevitably hits a strong coupling point.

One way out is to invoke multiple scalar fields. Another way out, which we will ex-

plore here, is to break the dilation symmetry explicitly. In doing so, we will be able

to construct a theory with the following properties:

• A Poincaré-invariant vacuum with stable and sub-luminal fluctuations about

this vacuum.

• A solution which interpolates between a non-NEC-violating phase and a phase

of NEC violation with stability and sub-luminality for perturbations about this

solution.
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2.2 A no-go argument for interpolating solutions

In this Section we review the no-go argument of Rubakov [128], which forbids the

existence of a well-behaved solution interpolating between dilation-invariant vacua.

The argument is very general and applies to any single scalar field theory that en-

joys (at the classical level) dilation invariance, and admits both a Poincaré invariant

solution and a dilation-preserving, NEC-violating background.

First note that conservation of the energy-momentum tensor is equivalent to the

equation of motion via

∂µT
µ
ν = −δS

δπ
∂νπ , (2.25)

where δS/δπ is the Euler–Lagrange derivative. Specializing to π = π(t), it follows

the equation of motion is equivalent to energy conservation:

ρ̇ = −π̇ δS
δπ

. (2.26)

Now we assume that the equation of motion is second-order, that is, δS/δπ contains

at most π̈ but no higher-derivatives.13 It then follows that ρ must be a function only

of π and π̇, for otherwise ρ̇ would contribute higher-derivative terms in (2.26). Since

the theory is dilation invariant, we can deduce the form of ρ:14

ρ = e4πZ
(

e−2ππ̇2
)

, (2.27)

where Z is a theory-dependent function.

13Note that violating this assumption would lead to Ostrogradski-type instabilities [25, 198].
14Under a finite dilation, xµ 7→ λxµ, the field π transforms as π(x) 7→ π(λx) + log λ. One can

then check that (2.27) is the most general object depending only on π and π̇ invariant under this
symmetry.
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Y

Z(e−2π
π̇
2)

e
−2π

π̇
2

Figure 2.1: In a dilation invariant theory, we must have Z = 0 at both e−2ππ̇2 = 0 and
e−2ππ̇2 = Y , as well as Z ′ > 0 at both of these points. It is impossible to connect these two
solutions without having a region where Z ′ < 0, as is clear from the plot.

If the theory admits a Poincaré-invariant solution, π = constant, it will have vanishing

energy density:

Z(0) = 0 . (2.28)

Additionally, if the theory admits a NEC-violating background which preserves homo-

geneity and isotropy, then π can only depend on time. If this background is also dila-

tion invariant, then it must take the form eπ ∼ t−1, and hence e−2π̄ ˙̄π2 ≡ Y = constant

on this solution. Moreover, the assumed symmetries imply ρ = βt−4 on the time-

dependent solution, while energy conservation requires ρ̇ = 0, and thus β = 0. It

follows that

Z(Y ) = 0 . (2.29)

In other words, the energy density vanishes on any background that preserves ho-

mogeneity, isotropy and dilation symmetry. This of course includes the Poincaré-

invariant vacuum and (by assumption) the NEC-violating background.

Next consider the stability of these solutions. We can expand (2.26) about some

time-dependent background, π = π̄(t) +ϕ, and use the form (2.27) for ρ to derive an

equation of motion for ϕ. For the diagnosis of ghost instabilities, we only explicitly
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need the ϕ̈ term:

− 2e2π̄Z̄ ′ϕ̈+ · · · = 0 . (2.30)

This clearly derives from the quadratic Lagrangian L = e2π̄Z̄ ′ϕ̇2 + · · · . In order for

ϕ to be healthy, we must have

Z̄ ′ > 0 . (2.31)

The problem is now clear: we have two backgrounds, each with Z = 0. In order for

them to both be healthy, we must have Z ′ > 0 around each solution. It is impossible

to connect these two solutions without having Z ′ < 0 — and hence developing a

ghost — somewhere in between. More physically, in trying to connect these solutions

one must inevitably hit Z = 0, which corresponds to strong coupling. It is therefore

impossible to connect the two backgrounds with a solution which is perturbative. See

Fig. 2.1 for a graphical representation of this result.

This no-go argument is very general, but we can get some inspiration for how to

avoid it by examining its assumptions. The most natural ones to consider breaking

are the assumption of a single degree of freedom and that of dilation invariance.

Indeed, Rubakov considers a model which introduces additional degrees of freedom

to construct an interpolating solution [128]. Here, we will focus on theories that are

not dilation invariant.

2.3 Construction of the theory

To circumvent the no-go argument of Sec. 2.2, we stick to a single-field theory but

relax the assumption of dilation invariance. We consider a deformation of the con-

formal galileon lagranagian (2.15) (used in Galilean Genesis [45, 116]) by introducing
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functions Z(π),J (π) which explicitly break scale invariance:

L = Z(π)e2π(∂π)2 +
f 3
0

Λ3
(∂π)2✷π +

1

J (π)

f 3
0

2Λ3
(∂π)4 . (2.32)

Our goal is to find suitable functional forms for Z(π) and J (π) such that the theory

admits a smooth solution which is NEC-satisfying at early times (t≪ t∗), and NEC-

violating at late times (t≫ t∗). The transition time will be denoted by t∗.

Late time behavior

To achieve NEC violation with strictly subluminal propagation of perturbations at

late times (t≫ t∗), the theory should approximate the form (2.19), used in subluminal

genesis [53]. This requires

Z(π) → f 2
0 ; J (π) → J0 for t≫ t∗ , (2.33)

where f0 ≫ Λ and J0 is an O(1) constant. Thus, the theory reduces at late times to

Llate ≃ f 2
0 e

2π(∂π)2 +
f 3
0

Λ3
(∂π)2✷π +

1

J0

f 3
0

2Λ3
(∂π)4 . (2.34)

Comparison with (2.19) gives the translation

J0 =
1

1 + α
, (2.35)

hence we anticipate that we will need J0 ∼< O(1) to have subluminality [53]. At late

times, the solution should therefore asymptote to the Genesis background

eπ =
1

H0(−t)
; H2

0 =
2J0

3

Λ3

f0
for t≫ t∗ . (2.36)
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The energy scale of this solution is H0. We demand that it lie below the strong

coupling scale of the effective theory, H0 ≪ Λ, which will be the case if

f0 ≫ Λ . (2.37)

The background (2.36) is a solution on flat, Minkowski space. With gravity turned

on, it remains an approximate solution at early enough times in the Genesis phase.

Gravity eventually becomes important at a time tend, which will be computed in

Sec. 2.5.

Early time behavior

At early times (t≪ t∗), the solution should asymptote to a constant field profile:

π ≃ π∞ for t≪ t∗ . (2.38)

In order for this constant background to be ghost-free, the sign of the kinetic term

should be the usual (negative) one:

Z(π) < 0 for t≪ t∗ . (2.39)

We will see that this gives rise to a NEC-satisfying phase, with ρ ∼ P . In this regime,

clearly gravity cannot be ignored arbitrarily far in the past, since the universe must

emerge from a big bang singularity. We will come back to this point in Sec. 2.5 and

show that the time tbeg where gravity becomes important is parametrically larger in

magnitude than t∗. In other words, there is a parametrically large window tbeg ≪

t ≪ t∗ within which gravity is negligible and the early-time expressions above hold.

In particular, π can be approximated as constant over this regime, in the sense that
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it varies slowly compared to the Hubble parameter at the transition.

From (2.33) and (2.39), note that Z(π) has the correct sign at early times, and the

wrong (i.e., ghost-like) sign at late times (as required for the Genesis solution). Nev-

ertheless, we will see that the kinetic term of fluctuations around the time-dependent

solution is healthy during the entire evolution. This does imply, however, that stable,

Lorentz-invariant vacua only exist for a finite range in field space.

Interpolating functions

We engineer the desired Z(π) and J (π) by demanding that they give rise to a suitable

time-dependent background solution, which interpolates between π ≃ π∞ at early

times and eπ ∼ 1/t at late times. A simple ansatz for the background which satisfies

these asymptotic conditions is

eπ̄(t) = eπ∞
(

1 +
t∗
t

)

, (2.40)

where t∗ sets the transition time.

Assuming spatial homogeneity, the equation of motion for π = π̄(t) following

from (2.32) is

¨̄π

(

−Z(π̄)e2π̄ +
3

J (π̄)

f 3
0

Λ3
˙̄π2

)

=
˙̄π2

2

(

(2Z(π̄) + Z ′(π̄)) e2π̄ +
3J ′(π̄)

2J 2(π̄)

f 3
0

Λ3
˙̄π2

)

. (2.41)

This admits a first integral of motion enforcing energy conservation:

ρ = −Z(π̄)e2π̄ ˙̄π2 +
3

2J (π̄)

f 3
0

Λ3
˙̄π4

= −Z(t)e2π∞
t2∗
t4

+
3

2J (t)

f 3
0

Λ3

t4∗
t4(t+ t∗)4

= constant , (2.42)
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where in the second line we have substituted in the background solution (2.40). At

early times (t≪ t∗), the two contributions scale differently: ∼ t−4 for the first term;

∼ t−8 for the second. The simplest option is for each term to be separately constant,

from which we can deduce the scaling Z(t) ≈ t4 and J (t) ≈ t−8 for t ≪ t∗. A nice

choice for J (t) with this property (and satisfying J ≃ J0 for t≪ t∗) is

J (t) =
J0

(1 + t
t∗
)8
. (2.43)

Equivalently, using (2.40),

J (π) =
(

1− e−(π−π∞)
)8 J0 . (2.44)

Substituting J (t) into the integrated equation of motion (2.42) yields

Z(t) = −
(

f 2
∞ + f 2

0

) t4

t4∗
+

(

1 +
t

t∗

)4

f 2
0 , (2.45)

where f∞, introduced for reasons that will soon become obvious, is related to the

energy density by

ρ =
3

2t4∗

(

1 +
f 2
∞
f 2
0

)

f 3
0

J0Λ3
. (2.46)

Moreover, we can obtain an expression for π∞ and the transition time:

eπ∞ =

√

3f0
2J0Λ3

1

|t∗|
. (2.47)

In terms of π, the function Z can be expressed as

Z(π) =
f 2
0

(eπ−π∞ − 1)4

(

e4(π−π∞) −
(

1 +
f 2
∞
f 2
0

)

)

. (2.48)
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Hence we have 5 parameters defining the theory: f0, f∞, Λ, J0 and π∞. The transition

time t∗ is not a free parameter, as it is set by the other parameters in the Lagrangian.

By construction, the Lagrangian (2.32) with the functions (2.44) and (2.48) admits

the interpolating solution (2.40) as a solution to its equations of motion.

Early times revisited

With the expressions above for Z(π) and J (π), we can investigate the action at

large, constant field values, where it takes the approximate form (note that this limit

is essentially the early time limit on the solution (2.40)):

Learly ≃ − f 2
∞e

2π∞

(eπ−π∞ − 1)4
(∂π)2 +

1

J0

f 3
0

2Λ3

(∂π)4

(1− e−(π−π∞))
8 , (2.49)

It is convenient to define the almost-canonically-normalized variable,

φ =
1

1− e−(π−π∞)
. (2.50)

The virtue of this redefinition is that in terms of φ, the background solution (2.40)

reduces to a linear form

φ̄(t) = 1 +
t

t∗
. (2.51)

Another benefit is that the functions Z(π) and J (π) simplify to

Z(φ) = f 2
0φ

4 −
(

f 2
0 + f 2

∞
)

(φ− 1)4 ;

J (φ) =
J0

φ8
. (2.52)
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Furthermore, the early-time action in terms of φ reduces to

Learly ≃ −f 2
∞e

2π∞(∂φ)2 +
f 3
0

2J0Λ3
(∂φ)4 . (2.53)

The kinetic term is healthy, as it should be, hence the theory admits Poincaré-

invariant solutions. Further, the quartic term is manifestly positive: this ensures

both a lack of superluminality about these Poincaré-invariant vacua and that the

simplest dispersion relations following from S-matrix analyticity [110] are satisfied.

2.4 Radiative stability

The reduced symmetry of the action due to the presence of the arbitrary functions

Z(π) and J (π) makes it unlikely that the theory will be stable under quantum cor-

rections. However, all is not lost. Recall that for large constant field values the

action (2.32) can be cast as

Learly ≃ f 2
∞

(

−e2π∞(∂φ)2 +
f 3
0

2f 2
∞J0Λ3

(∂φ)4
)

. (2.54)

In this way, f 2
∞ plays a role analogous to 1/~; for sufficiently large f∞, quantum

effects can be made negligible and the theory will be radiatively stable [116].15

Similarly, at late times (or, as π → ∞), the theory can be cast as

Llate ≃ f 2
0 e

2π(∂π)2 +
f 3
0

Λ3
(∂π)2✷π +

1

J0

f 3
0

2Λ3
(∂π)4 , (2.55)

which is precisely of the form considered in [53], where it was shown to be radiatively

stable. Therefore, we see that the functional forms of Z(π) and J (π) are stable at

15Another way of saying this is that terms radiatively generated in the Lagrangian (2.54) will be
suppressed by powers of f∞, and can be ignored for sufficiently large values of f∞.
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both ends of the evolution. In between, most likely they will be greatly affected by

quantum corrections. However, the fact that their asymptotic forms are preserved

makes it plausible that a solution which interpolates between NEC-violating and

NEC-satisfying regions will continue to exist. Although the detailed form of the so-

lution will surely be modified, we do not expect its stability properties to be greatly

affected, as we are able to satisfy the stability requirements for a wide range of pa-

rameters. In this sense the explicit interpolating form for Z(π) and J (π) constructed

above is a proof of principle.

2.5 NEC violation and neglecting gravity

It is straightforward to calculate the stress-energy tensor for the Lagrangian (2.32), in

the approximation that the gravitational background is Minkowski space. The energy

density is constant and has already been given in (2.42) and (2.46). The pressure is

given by

P = −Z(π̄)e2π̄ ˙̄π2 +
1

2J (π̄)

f 3
0

Λ3
˙̄π4 − 2

f 3
0

Λ3
˙̄π2 ¨̄π . (2.56)

On the solution (2.40), at late times this reduces to16

Plate ≃ −
(

1

J0

+ 2

)

f 3
0

Λ3

1

t4
. (2.57)

Since the late-time pressure grows as 1/t4 while the energy density remains constant,

the NEC will violated at late times if Plate < 0. This requires

1

J0

> −2 (NEC violation) . (2.58)

This is the NEC-violating genesis phase.

16As a check, translating to the α parameter of Subluminal Genesis via (2.35), this matches the
pressure computed in [53].
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NEC-Satisfying

NEC-Violating

NEC-Violating
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Φ
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Φ¢

Figure 2.2: NEC-satisfying and NEC-violating regions in the (φ, φ′) phase space, for the
parameter values f∞

f0
= 10 and J0 = 0.75. The solution of interest, φ = 1 + t/t∗, corre-

sponding to φ′ = 1, is plotted as a black dashed line. It first obeys the NEC for a period of
time, and then crosses into the NEC-violating regime.

At early times, meanwhile, the pressure is constant and positive:

Pearly ≃
1

2t4∗

(

1 + 3
f 2
∞
f 2
0

)

f 3
0

J0Λ3
. (2.59)

Hence the early-time regime is NEC-satisfying.

More generally, by combining (2.42) and (2.56) we see that the NEC is violated

whenever

ρ+ P = 2

(

−Z(π)e2ππ̇2 +
1

J (π)

f 3
0

Λ3
π̇4 − f 3

0

Λ3
π̇2π̈

)

< 0 . (2.60)

where we have dropped the bars for simplicity. This condition can be studied numer-

ically. For this purpose, we will focus on “on-shell” solutions, that is, on profiles π̄(t)

that are solutions to the equation of motion (2.41). This allows us to rewrite π̈ as a

function of π and π̇. Moreover, it is convenient to express the result in terms of the

φ variable introduced in (2.50), since its background evolution is particularly simple.
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The NEC-violating region in phase space corresponds to

0 > −3

2

1

f 2
0J0

Z(φ)φ4 +

(

1

J (φ)
− 2φ+ 1

)

φ′2 − 2
φ′2(φ′2 − 1)

1− 2φ′2 −
(

1 + f2
∞

f20

)

(1− φ−1)4
,

where we have defined φ′ ≡ t∗φ̇. The result is plotted in the (φ, φ′) plane in Fig. 2.2

for a fiducial choice of parameters.

All of the results up to this point have been derived under the approximation that

gravitational backreaction can be neglected. We will now quantify the time interval

over which this assumption is justified. Consider first the early-time regime. Since

pressure and energy density are comparable (and constant) in this epoch, gravitational

backreaction can only be neglected for at most a Hubble time H−1 =
√

3M2
Pl/ρ. Our

approximation is therefore justified for t≫ tbeg, where (ignoring O(1) coefficients)

tbeg
t∗

∼ 1
√

1 + f2
∞

f20

√

Λ3

f 3
0

|t∗|MPl . (2.61)

For consistency, we must have |tbeg| ≫ |t∗|, that is,

|t∗| ≫
1

MPl

√

1 +
f 2
∞
f 2
0

√

f 3
0

Λ3
. (2.62)

Determining the evolution before tbeg, including gravity, would require a detailed

calculation. But since the NEC is preserved, the answer is qualitatively simple:

within a time of order tbeg, the evolution must trace back to a big bang singularity.

During the Genesis phase, on the other hand, the gravitational dynamics are domi-
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Figure 2.3: Timeline for the evolution. Our approximation of neglecting gravity is valid for
the range tbeg ≤ t ≤ tend. For t < tbeg, the universe asymptotes to a big bang singularity
(since the NEC is satisfied in this regime). At approximately t∗, the universe transitions
from a NEC-satisfying phase to a NEC-violating one. For t > tend, cosmological expansion
is important, and the universe must transition from the NEC-violating phase to a standard,
radiation-dominated phase.

nated by the pressure (2.57). Integrating M2
PlḢ ≃ −1

2
P , we have

Hlate ≃
1

6M2
Pl|t|3

(1 + 2J0)
f 3
0

J0Λ3
, (2.63)

corresponding to a time-dependent contribution to the energy density:

ρlate =
1

12M2
Plt

6
(1 + 2J0)

2

(

f 3
0

J0Λ3

)2

. (2.64)

This dominates over the constant piece (2.46). Gravitational backreaction can be

neglected as long as Plate ≫ ρlate. This breaks down at a time tend obtained by setting

Plate ∼ ρlate:

|tend| ∼
1

MPl

√

f 3
0

Λ3
. (2.65)

The condition f0 ≫ Λ mentioned in (2.37) ensures that |tend| ≫M−1
Pl . Moreover, the

condition (2.62) automatically implies that |tend| ≪ |t∗|, which is obviously required

for consistency.

To summarize, our approximation of neglecting gravity is valid over the interval

tbeg ≪ t≪ tend . (2.66)
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In order for the transition time to lie within this interval, t∗ must satisfy the condi-

tion (2.62). The time-line for the entire evolution is sketched in Fig. 2.3.

2.6 Cosmological Evolution

With expressions for P , ρ, tbeg, and tend, it is possible to show how the scale factor

may smoothly transition from a decreasing phase to and increasing one. Recall that

the Hubble parameter obeys (2.4):

M2
PlḢ = −1

2
(ρ+ P ) . (2.67)

Combined with the expressions for (ρ + P ) (2.60) and eπ(t) (2.40), we obtain the

following expression for Ḣ(t):

Ḣ(t) =
−f 3

0

M2
PlJ0Λ

3t4∗

(

3

2

(

1 +
f 2
∞
f 2
0

)

− 1

2

(

1 +
t∗
t

)4

− J0
t4∗
t4

2 t
t∗
+ 1

(1 + t
t∗
)4

)

. (2.68)

This expression is valid in the range tend ≪ t≪ tbeg. It may be integrated to give H

in this range:

H(t) =
−f 3

0

M2
PlJ0Λ

3t3∗

(

3

2

(

1 +
f 2
∞
f 2
0

)

t

t∗
+

t3∗
6t3

+
t2∗
t2

+
3t∗
t

− 2 log
t

t∗
− t

2t∗
+
J0
3

t3∗
t3

1

(1 + t
t∗
)3

)

+ C +Hi , (2.69)

where C and Hi are both integration constants, but C is chosen to ensure that

H(tbeg) = Hi. This is plotted over the range of validity in Fig. 2.4 for two different

values of Hi. The dashed line solution represents an expanding universe that orig-

inated in a big bang, and the solid line is a contracting universe that might have

originated from Minkowski space or a big bang singularity in the asymptotic past.
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NEC-Satisfying NEC-

Violating

tbeg tendt
*

t

H

Figure 2.4: The Hubble parameter is plotted for two values of Hi with the fiducial param-
eters J0 = 0.75, f∞/f0 = 10, Λ = 0.1, t∗ = −1, and C = −6.3 × 10−4MPl. The vertical
dashed line marks the boundary between the NEC-satisfying and NEC-violating phases.
As we would expect, Ḣ < 0 when the NEC holds, and Ḣ > 0 when it is violated. The
dashed solution (corresponding to Hi = 0.001MPl) always has H > 0. It represents an
initially expanding universe with decelerating expansion, and could match onto a big-bang
type solution for t < tbeg. The solid line (with Hi = −0.001MPl) represents an initially
contracting universe (H < 0) which enters the phase of NEC-violation and undergoes a
cosmological bounce to an accelerating phase (H > 0), all within the regime of validity of
our effective theory.

Although both solutions demonstrate the transition from Ḣ < 0 to Ḣ > 0, the solid

line also shows that a solution can smoothly go from H < 0 to H > 0 — i.e., a

bounce. Notice that this bounce occurs before tend, our estimate for when gravita-

tional back-reaction can no longer be ignored in the solution for π. This indicates

that we can trust the existence of the bounce within our effective theory.

2.7 Stability of perturbations

We now turn to the study of perturbations around background solutions. Expanding

the Lagrangian (2.32) to quadratic order in perturbations ϕ = π − π̄, we find

Lquad = Zϕ(t)ϕ̇
2 −Kϕ(t)(∇ϕ)2 , (2.70)

57



where we have defined the functions

Zϕ(t) ≡
(

−Z(π̄)e2π̄ +
3

J (π̄)

f 3
0

Λ3
˙̄π2

)

;

Kϕ(t) ≡
(

−Z(π̄)e2π̄ + 2
f 3
0

Λ3
¨̄π +

1

J (π̄)

f 3
0

Λ3
˙̄π2

)

. (2.71)

The constraints on the quadratic theory are the following:

• Absence of ghosts: To avoid ghosts, the kinetic term should be positive:

Zϕ > 0. It is straightforward to show that will be the case if

J0 > 0 (No ghosts) . (2.72)

In particular, the NEC-violating condition (2.58) follows automatically.

• Absence of gradient instabilities: Similarly, the spatial gradient term

should be positive: Kϕ > 0. Expressing this condition in terms of φ, and

dropping the bars for simplicity, we obtain

0 < −3

2

1

f 2
0J0

Z(φ)φ4 +

(

2(2φ− 1) +
1

J (φ)

)

φ′2

+ 4
φ′2(φ′2 − 1)

1− 2φ′2 −
(

1 + f2
∞

f20

)

(1− φ−1)4
, (2.73)

where we recall that φ′ ≡ φ̇t∗.

• Subluminality: The final constraint at the quadratic level is to demand sub-

luminal propagation: Kϕ/Zϕ < 1. Assuming that both (2.72) and (2.73) are

satisfied, subluminality follows by definition if the kinetic term is larger than
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(a) Gradient Instability
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(c) Strong Coupling

Figure 2.5: The shaded regions represent parts of the (φ, φ′) phase space where perturba-
tions (a) suffer from gradient instabilities; (b) propagate superluminally; (c) are strongly
coupled. The parameter values are f∞

f0
= 10 and J0 = 0.75. The solution of interest,

φ = 1 + t/t∗, corresponding to φ′ = 1, is plotted as a black dashed line. It avoids all
pathological regions.
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the gradient term. It is straightforward to show that this will be the case if

(

1

J (φ)
− 2φ+ 1

)

φ′2 − 2
φ′2(φ′2 − 1)

1− 2φ′2 −
(

1 + f2
∞

f20

)

(1− φ−1)4
> 0 . (2.74)

In the genesis regime (corresponding to φ → 1 and φ′ → 1), in particular, this

gives a constraint on the constant J0:

J0 < 1 . (2.75)

Beyond the quadratic theory, we should also check that the interactions are pertur-

bative. Consider the cubic vertex for the perturbations:

L3 =
f 3
0

Λ3
(∂ϕ)2✷ϕ , (2.76)

After canonical normalization of the kinetic term, ϕc ≡ Z1/2
ϕ ϕ, the cubic term becomes

suppressed by the effective strong coupling scale

Λeff =
Λ

f0
Z1/2
ϕ . (2.77)

For consistency of the effective field theory, the characteristic frequency of the back-

ground, namely ˙̄π, should lie below this cutoff:

˙̄π ≪ Λeff . (2.78)

In the Genesis phase, in particular, ˙̄π ≃ 1/t sets the scale at which perturbations freeze

out. Hence (2.78) is necessary to consistently describe the generation of perturbations

within the effective theory. A straightforward calculation shows that this condition
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implies:

2φ̄′2
( J0Λ

3f0φ̄8
− 1

)

≪
(

1 +
f 2
∞
f 2
0

)

(

1− φ̄−1
)4 − 1 (weak coupling) . (2.79)

Note that the left-hand side is negative-definite within the range 0 < J0 < 1 allowed

by (2.72) and (2.75). As a check, note that in the genesis regime, (2.79) reduces to

J0Λ
f0

≪ 3
2
, which is another way to confirm the condition f0 ≫ Λ mentioned in (2.37).

In summary, the allowed range of J0 values is

0 < J0 < 1 . (2.80)

The remaining constraints — no gradient instabilities (2.73), subluminality (2.75),

and weak coupling (2.79) — are plotted in the (φ, φ′) phase space in Fig. 2.5 for a

fiducial choice of parameters.

These constraints are overlaid in Fig. 2.6 with a range of solutions to the equation

of motion. On these plots, the background solution (2.51) of interest corresponds to

φ′ = 1. Other background solutions, corresponding to different initial conditions, are

also plotted as solid lines. This shows that there is a wide range of trajectories that

interpolate between a constant field profile at early times and the Genesis solutions

at late times, while avoiding the pathological region at all times. Furthermore, it is

clear that the background solution φ′ = 1 is an attractor at late times.

2.8 Conclusions

It has proven surprisingly difficult to violate the null energy condition with a well-

behaved relativistic quantum field theory. In the simplest attempts, violating the

NEC generally introduces ghost instabilities, gradient instabilities, superluminality,
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Figure 2.6: Phase portrait with all constraints overlaid, again for the fiducial choice of
parameters f∞

f0
= 10 and J0 = 0.75. The shaded region represents the union of all patho-

logical regions shown in Fig. 2.5. The green long-dashed line separates the NEC-satisfying
and NEC-violating regions. The black short-dashed line corresponds to the background
solution of interest, given by (2.51). The solid lines represent other background solutions
(with different initial conditions).

or absence of a Lorentz-invariant vacuum. Progress has been made in avoiding some

of these shortcomings, but a fully satisfactory example remains to be found. The

null energy condition appears to be connected to some fundamental physics prin-

ciples, such as black hole thermodynamics and the (non)-existence of cosmological

bounces. Therefore, if it turns out that violating the NEC is impossible, pinpointing

which of the aforementioned pathologies is the real roadblock will tell us something

fundamental.

The recently-proposed DBI Genesis scenario is the first example of a theory admit-

ting both a Poincaré-invariant vacuum and NEC-violating solutions. As argued by

Rubakov, however, these two backgrounds lie on different branches of solutions and

cannot be connected by a smooth solution without strong coupling occurring. This

is an immediate consequence of dilation invariance.

Here, we have abandoned dilation symmetry in order to circumvent Rubakov’s no-go
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argument. We have constructed a theory which admits a time-dependent solution

that smoothly interpolates between a NEC-satisfying phase at early times and a

NEC-violating phase at late times. There exists a wide range of parameters for which

perturbations around the background are stable, comfortably subluminal and weakly-

coupled at all times.

The main drawback of the construction is the presence of suitably-engineered inter-

polating functions in the action. It is highly unlikely that the detailed form of these

functions will be preserved by quantum corrections. However, we argued that their

asymptotic forms both in the past and in the future are radiatively stable. Moreover,

our analysis did not depend sensitively on the details of the interpolation. Therefore,

all we need is for the quantum-corrected action to still allow an interpolation between

NEC-satisfying and NEC-violating solutions. We leave a detailed analysis of radiative

stability to future work.

Another drawback of the explicit example presented here is that the kinetic term

flips sign as we adiabatically vary φ. It is healthy at early times, consistent with

Poincaré invariance, but becomes ghost-like at late times, which is necessary to ob-

tain a NEC-violating solution with the cubic Galilean Genesis action. Of course, as

mentioned earlier, perturbations around the time-dependent background are always

healthy. However, it would be aesthetically desirable if the perturbations around

φ = constant backgrounds were also healthy for all field values of interest. This

should be achievable by deforming the DBI Genesis Lagrangian, since this theory

precisely satisfies this property while allowing a NEC-violating background. We plan

to study the DBI Genesis generalization in the future. It is also possible that the DBI

extension will alleviate the quantum stability issues discussed above.
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Chapter 3

A Positive Energy Theorem for

P (X) Theories

In the previous Chapter we were concerned with energy conditions, which are local

statements about the energy of a theory. In particular, we showed that scalar field

theories may violate the null energy condition while still avoiding pathologies. In this

Chapter we ask if there are any other desirable properties for a well-behaved theory

to have.

One property we might demand from a theory is is that the vacuum be classically

stable in the presence of gravity. This will be the case if the total energy of the system

(matter energy plus gravitational energy) is bounded from below, and is minimized

only by empty Minkowski space. This property is known as positive energy. Unlike

the energy conditions of the previous Chapter, which were local requirements on Tµν

at each point in space-time, positive energy is a global condition that constraints the

total mass/energy of the spacetime.

Positive energy was first proved for matter that obeyed the dominant energy con-

dition [81, 82], and then more generally for canonical scalar fields [85, 86], as will

be reviewed in Section 3.2. In this Chapter we present a further generalization of

these arguments to derivatively-coupled scalar fields, culminating in a positive energy

theorem for P (X) theories. It is based on work that originally appeared in [2].
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Energy can be a difficult quantity to define in general relativity. First of all, energy

is the conserved quantity associated with time translation symmetry, so it will only

be conserved if the space-time admits a timelike Killing vector kµ.

Let us assume for the moment that a space-time does have a timelike Killing vector.

Then perhaps the most straightforward way to define the total energy is first define the

current [199] Jµ ≡ kνT
µν . This current is covariantly conserved by the conservation

of Tµν and the facts that Tµν is symmetric while ∇µkν is antisymmetric by the Killing

equation. We might then identify the integral of Jµ over a spacelike surface and

identify this with the total energy:

E =

∫

Σ

d3x
√
γnµJ

µ , (3.1)

where Σ is a spacelike hypersurface, γ is the induced metric on the surface, and nµ is

a unit vector normal to Σ.

However, this approach is somewhat lacking. For example, consider a cloud of gas

with energy/mass m that collapses to a singularity. After the collapse, Tµν vanishes

everywhere except (perhaps) the singularity, making the above integral difficult to

evaluate. We expect that the total energy should be unchanged, yet after the gravi-

tational collapse the situation has become unclear.

We can improve matters by using a different conserved current in Eq. (3.1). Consider

instead [199, 200]

Jµ = kνR
µν . (3.2)

This current is still covariantly conserved: ∇µkνR
µν = 0 by the symme-

try/antisymmetry of its components, and kν∇µR
µν = 1

2
kν∇νR = 0 by the Killing

equation and the Bianchi identity.
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This definition carries a significant advantage in that it may be cast as a total deriva-

tive: kνRµν = ∇µ∇νk
µ, allowing us to rewrite the above volume integral as a surface

integral at spatial infinity:

EKomar =

∮

∂Σ

d2x
√

γ(2)nµσν∇µkν , (3.3)

where we integrate over the boundary of the spacelike hypersurface ∂Σ which has

an induced metric γ(2) and normal vector σν . This expression known as the Komar

energy, and it gives the total energy for a space-time with a timelike Killing vector

kµ. Since it is evaluated at spacelike infinity, where fields are presumably very weak,

it avoids one having to compute integrals over singularities.

A second approach, due to Abbott, Deser, and Misner [80], is to identify the total

energy with the Hamiltonian of the system. The first step is to foliate space-time into

spacelike hypersurfaces with metric hij:

ds2 = −N2dt2 + hij
(

dxi +N idt
) (

dxj +N jdt
)

, (3.4)

We have introduced the lapse function N , which measures the passage of proper time

orthogonal to the spatial slices, and the shift vector N i, which measures movement

tangential to the spatial slices with the passage of coordinate time.

The conjugate momentum to the spatial metric hij is

πij =
√
h
(

Kij −Khij
)

, (3.5)

where the extrinsic curvature of the spatial slices is Kij =
1
2N

(

ḣij −DiNj −DjNi

)

,

where Di is the derivative associated with hij.
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The Hamiltonian following from the Einstein-Hilbert action is then

H =
M2

Pl

2

∫

d3xNµHµ , (3.6)

where we have defined Nµ = (N,N i) and the Hamiltonian density

H0 = −
√
hR(3) +

1√
h

(

πijπij −
1

2
(πii)

2

)

,

Hi = −2hijDkπ
jk . (3.7)

Assuming the space-time is asymptotically flat, so that gµν = ηµν + hµν for small h

at spatial infinity, this Hamiltonian simplifies considerably and may be written as a

boundary integral at spatial infinity. This quantity is henceforth referred to as the

ADM mass:

MADM =
M2

Pl

2

∮

∂Σ

d2x
√

γ(2)σi
(

∂jhij − ∂ih
)

. (3.8)

The ADM mass is the generator of time translations in asymptotically flat space-

times, while the Komar energy is the total energy of a stationary space-time. If hµν

is time independent at spatial infinity, then the two quantities are the same.

We may now formulate the positive energy theorem in a more precise way: a theory

has positive energy for asymptotically flat solutions if the ADM mass is non-negative

and is zero for Minkowski space only.17

It was originally shown [81] that Einstein gravity plus matter has positive energy

if the matter obeys the dominant energy condition (DEC)18. This proof was later

17Note that we are focusing on flat (or AdS) asymptotics, where the matter fields (in our case, a
scalar field) become constant at spatial infinity. This immediately rules out time-dependent asymp-
totics, which may be more realistic for cosmology.

18The DEC states that: i) for any time-like u, Tµνu
µuν ≥ 0; and ii) for any future-pointing and

causal u, −Tµ
ν u

ν is also future-pointing and causal. Roughly, these correspond respectively to the
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simplified using a spinor technique due to Witten [82–84]. (Similar proofs exist for

asymptotically anti-de Sitter [201–204] and de Sitter [205, 206] space-times.) The

result was extended by Boucher and Townsend, who showed that the DEC is not

necessary to ensure positive energy [85, 86]. See also [207]. This proof will be reviewed

in Sec. 3.2. For a nonlinear σ-model with N scalars,

L = −1

2
fIJ(φ)∂µφ

I∂µφJ − V (φI) , (3.9)

where fIJ is positive-definite, positive energy is guaranteed so long as V (φI) is deriv-

able from a “superpotential” W (φI) obeying the equation19:

V (φI) = 8f IJW,φIW,φJ − 12W 2 , (3.10)

assuming that V (φI) admits a minimum with V (φ̄I) ≤ 0.

In this Chapter, we further extend this result and derive a positive energy theorem

for scalar theories of the form

L = P (X,φ) , (3.11)

by similarly constraining the functional form that P (X,φ) can take. Here X is the

canonical kinetic term: X = −1
2
(∂φ)2. This class of theories has a long history,

especially in cosmology. As mentioned earlier, they can be used for inflation [13,

208, 209], dark energy [14, 210], bouncing cosmologies [150, 153, 166], and display

screening around heavy sources [15, 16, 105, 114, 211]. Furthermore, P (X) theories

describe the low energy dynamics of superfluids [17].

We establish the positive energy result in two different ways. First, at the classical

statements that the energy density is positive, and the energy-momentum flow is subluminal.
19In fact, V (φI) must only satisfy the weaker inequality V (φI) ≥ 8f IJW,φIW,φJ − 12W 2.
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level we map (3.11) to an equivalent two-derivative theory via an auxiliary field [212].

Turning on a small kinetic term for this second field, the action takes the form (3.9).

We can then apply the result (3.10), which is translated to a statement about P (X,φ)

upon integrating out the auxiliary field.

Second, we will reproduce this result directly at the P (X,φ) level using Witten’s

spinor arguments [82]. This approach was taken in [213], although we will see that

their result was too restrictive. We will show that relaxing a small technical assump-

tion in their argument allows for greater flexibility in choosing the functional form of

P (X,φ).

This broader assortment of P (X,φ) theories consistent with positive energy allows

for interesting phenomena. In particular, consider P (X) = X + αX2, arguably the

simplest P (X,φ) example. With α > 0, this theory obeys the DEC and hence has

positive energy. Even with α < 0, however, we will show that the theory allows

positive energy, as long as we restrict to the region P,X > 0. This is remarkable since

this theory with α < 0 both exhibits a screening mechanism and violates some of the

S-matrix analyticity requirements for a local theory [110].

3.1 Two-Field Description

A P (X,φ) theory can be mapped to a 2-derivative action by introducing an auxiliary

field χ [212] so that the Lagrangian takes the form

L = −1

2
P,χ(∂φ)

2 − χP,χ + P , (3.12)

where P = P (χ, φ). Indeed, the equation of motion for χ is P,χχ(X − χ) = 0,

which sets χ = X, as long as P,χχ 6= 0. Substituting χ = X in (3.12) gives L =
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P (X,φ), establishing the classical equivalence of the two descriptions. To put it in

the form (3.9), we simply turn on a small kinetic term for χ:

L = −1

2
P,χ(∂φ)

2 − 1

2
Z2(∂χ)2 − χP,χ + P . (3.13)

At this level, this is just a technical trick — at the end we will take Z → 0. Upon

making the identifications

fχχ = Z2 ; fφφ = P,χ ; V (χ, φ) = χP,χ − P , (3.14)

this is of form (3.9). Note fIJ must be positive-definite, imposing P,χ > 0. After

integrating out χ, this translates to P,X > 0, which is equivalent to the NEC 20.

In some cases this will restrict the range of X, but this is acceptable because it is a

Lorentz-invariant restriction on the space of allowed solutions. The condition P,X > 0

is required for the validity of the single-field EFT which is partially UV completed

by the two-field system (3.13) [212].

Substituting (3.14), the condition (3.10) yields

χP,χ − P = 8
W 2
,φ

P,χ
+ 8

W 2
,χ

Z2
− 12W 2 . (3.15)

To have a smooth Z → 0 limit, the superpotential must take the form W (χ, φ) =

W(φ) + Z
2
√
2
G(χ, φ) +O(Z2) , where the factor of 2

√
2 is introduced to simplify later

expressions. Substituting this into (3.15) and taking χ → X, the positive energy

20The stress tensor for P (X,φ) is Tµν = P,X∂µφ∂νφ + gµνP . Contracting with a null vector nµ,
the NEC boils down to 0 ≤ Tµνn

µnν = P,X(nµ∂µφ)
2, which requires P,X > 0.
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condition becomes

P −XP,X + 8
W2

,φ

P,X
+ G2

,X − 12W2 = 0 . (3.16)

This is our main result. It is the analogue of (3.10) for theories of the P (φ,X) type.

Positivity of the energy requires the existence of two functions, W(φ) and G(φ,X),

related to P (φ,X) through (3.16). Asymptotically, we assume X → 0 and φ → φ0

such that P,φ(φ0) = 0.

The proof generalizes to N scalar fields with P (XIJ , φK), where following [213] we

have defined the tensor XIJ = −1
2
∂µφ

I∂µφJ . This generalization is particularly in-

teresting because the EFT of fluids [214] is a theory of this type (to be precise, fluids

are described by pure P (XIJ), with no φK terms appearing without derivatives). We

introduce a matrix of scalar fields χIJ , and the generalization of (3.13) becomes

L = −1

2
PMN∂

µφM∂νφ
N − 1

2
Z2PKMPLN∂µχ

KL∂νχ
MN

+ P − χMNPMN , (3.17)

where PIJ ≡ ∂P/∂χIJ is positive definite and invertible. Again, integrating out χ

and setting Z → 0 gives XIJ = χIJ . Following the same steps as before, we find

that the superpotential must take the form W = W(φI) + Z
2
√
2
G(φI , χMN) +O(Z2) .

Writing the inverse of PIJ as P IJ , we arrive at the positivity condition

P − XMNPMN + 8PMNW,φMW,φN

+ PKMPLNGKLGMN − 12W2 = 0 . (3.18)
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3.2 Direct derivation

We now re-derive the positive energy condition (3.16) directly at the level of P (X,φ).

This method generally follows the presentation of Witten’s proof of the positive energy

theorem in [82, 84–86], but with a crucial difference. We begin with a review of the

proof for canonical scalar fields, and then generalize this approach to P (X,φ) theories.

The starting point is the Nester 2-form [82, 84]:

Nµν = −i
(

ǭγµνρ∇̂ρǫ− ∇̂ρǫγ
µνρǫ

)

. (3.19)

where we have defined the super-covariant derivative

∇̂µǫ = (∇µ +Aµ) ǫ . (3.20)

Some words on notation: ǫ is a commuting Dirac spinor [85], with conjugate ǭ = iǫ†γ0;

the Dirac matrices obey the Clifford algebra {γµ, γν} = 2gµν , and we have defined the

anti-symmetric product γµνρ ≡ γ[µγνγρ].

The virtue of Nµν is that its integral is simply related to the energy of a gravitating

system [82, 84, 85]

E =

∫

∂Σ

dΣµνN
µν =

∫

Σ

dΣν∇µN
µν , (3.21)

where Σ is an arbitrary space-like surface, with dΣν denoting the normal-pointing

volume form. The divergence of Nµν is given by [86]

∇νN
µν = 2i∇̂νǫγ

µνρ∇̂ρǫ−
T µν
M2

Pl

iǭγνǫ− iǭγµνρFνρǫ , (3.22)

where Fνρ = ∇νAρ −∇ρAν + [Aν ,Aρ] is the curvature of the connection Aµ.
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The term 2i∇̂νǫγ
µνρ∇̂ρǫ gives a positive contribution to the energy after imposing the

Witten condition γi∇̂iǫ = 0 [82]. The other two terms are not manifestly positive.

Let us briefly consider the special case Aµ = 0, so that the third term of Eq. (3.22)

then vanishes. This is the case originally considered by Witten. The second term is

guaranteed positive if the stress-energy tensor obeys the dominant energy condition.

This was the bottom line of the proof of Witten: positive energy is guaranteed if the

matter fields obey the DEC [82].

We can relax this condition by including Aµ 6= 0. The stress tensor for (3.11) is

Tµν = P,X∂µφ∂νφ+ Pgµν . (3.23)

Following [85, 86], we will temporarily specialize to a canonical scalar field, P (X,φ) =

X − V (φ).

To proceed, we make the ansatz [86]

Aµ = W(φ)γµ , (3.24)

for some W(φ). The last term in (3.22) becomes

− iǭγµνρFνρǫ = −4iǭγµνǫW,φ∂νφ+ 12iǭγµǫW2 . (3.25)

Our goal is to write this as a sum of squares of spinors, plus a remainder piece. To

do this, we define

δλ =
1√
2
(γµ∂µφ− 4W,φ) ǫ , (3.26)
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so that

− iǭγµνρFνρǫ = iδλγµδλ+ iǭγνǫP,X∂
µφ∂νφ

+ iǭγµǫ

(

V (φ)− 8W2
,φ + 12W2

)

. (3.27)

Combining (3.22), (3.23) and (3.31), we obtain

∇νN
µν = 2i∇̂νǫγ

µνρ∇̂ρǫ+ iδλγµδλ

+ iǭγµǫ

(

V (φ)− 8W2
,φ + 12W2

)

. (3.28)

The first line is positive-definite, whereas the second line is not. To ensure positivity

of E, it is sufficient to set the second line to zero. The theory is therefore guaranteed

to have positive energy if the potential can be be written in terms of W(φ):

V (φ) = 8W2
,φ − 12W2 . (3.29)

Now we return to the full P (X,φ) case. This time we define two spinor fields

δλ1 =
1√
2

(

√

P,Xγ
µ∂µφ− 4

W,φ
√

P,X

)

ǫ ;

δλ2 = G,Xǫ , (3.30)

so that

− iǭγµνρFνρǫ = i
2
∑

i=1

δλiγ
µδλi + iǭγνǫP,X∂

µφ∂νφ

+ iǭγµǫ

(

XP,X − P − 8
W2

,φ

P,X
− G2

,X + 12W2

)

. (3.31)
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This is the key difference from the derivation in [213]. In that calculation, the authors

only used one δλ spinor field, which led to a restricted class of solutions. Instead

we expressed −iǭγµνρFνρǫ as the sum of two squares of spinors. The second spinor

introduces a new function G = G(X,φ), which allows us to derive a more general

positivity constraint than [213].

Combining (3.22), (3.23) and (3.31), we obtain

∇νN
µν = 2i∇̂νǫγ

µνρ∇̂ρǫ+ i

2
∑

i=1

δλiγ
µδλi

+ iǭγµǫ

(

XP,X − P − 8
W2

,φ

P,X
− G,2X +12W2

)

. (3.32)

Once again we ensure positivity of E by setting the second line to zero. This

yields (3.16), which is precisely the energy condition obtained from the 2-field ap-

proach. The mass vanishes for ∇̂µǫ = δλa = 0, which implies Minkowski or AdS

space-time [85]. Having derived this constraint on the functional form of P , we now

turn to solving this equation in a few situations of interest21.

3.3 Special Cases

We now examine some special cases of P (X,φ) theories which have unique properties.

Pure P (X): One simple but nontrivial case to consider is P = P (X), i.e., a field

with purely derivative couplings and no potential. We simply assume that W ≡ W0

is constant, and take G = G(X). In this case, the positive energy condition (3.16)

21An alternative route to (3.16) is to not introduce G,X through (3.30), but demand that the
second line of (3.32) (with G,X = 0) be positive definite. This yields the inequality XP,X − P −
8W2

,φ/P,X +12W2 ≥ 0. Since this is positive-definite, we can write is as the square of some function.
Calling this function G,X yields (3.16).
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reduces to an ordinary differential equation for G, which can be integrated:

G(X) =

∫

dX
(

XP,X − P + 12W2
0

)1/2
. (3.33)

In order for this integral to be real-valued, we must have XP,X − P ≥ −12W2
0 . Note

that this condition is weaker than the dominant energy condition: XP,X − P ≥ 0.

As a simple example, consider the function

P (X) = X − βX2 ; β ≥ 0 . (3.34)

This theory violates the DEC for all X: XP,X − P = −βX2 < 0. Recall that

our derivation requires P,X ≥ 0, so we must restrict ourselves to the range |X| ≤

1/
√
2β. In this case, (3.33) can be integrated, ensuring the existence of a suitable

superpotential, and guaranteeing that the theory has positive energy in the allowed

X range.

This theory with “wrong-sign” X2 term is well-known to violate the standard dis-

persion relations following from local S-matrix theory [110], at least at tree level.

Nevertheless, we have shown that the theory does allow positive energy, at least over

the range of X where the NEC is satisfied. This may seem paradoxical from the per-

spective of the 2-field action discussed earlier; after all, (3.13) describes two healthy

scalars with some potential, and therefore should have an analytic S-matrix. The

resolution is that the vacuum state X = 0 or, equivalently, χ = 0, is tachyonic in the

two-field language, hence its S-matrix is ill-defined.

Separable P (X,φ): A slightly more complicated case is where P is a separable func-
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tion:

P (X,φ) = K(φ)P̃ (X)− V (φ) , (3.35)

with K(φ) ≥ 0 without loss of generality. This form has been widely-studied in the

context of k-essence [13, 14].

It will prove convenient to redefine the arbitary function G(X,φ) via

G2
,X = H(X,φ) + 8

W2
,φ

K(φ)

(

1− 1

P̃,X

)

. (3.36)

Inserting this into (3.16), we find that P must satisfy

P̃ −XP̃,X +
H(X,φ)

K(φ)
=

1

K(φ)

(

12W2 − 8
W ,2φ
K

+ V (φ)

)

.

For this to be separable, H must factorize as H(X,φ) = K(φ)H(X). The above then

implies two equations

H(X) = XP̃,X − P̃ (X)− E ;

V (φ) = 8
W ,2φ
K(φ)

− 12W2 + EK(φ) . (3.37)

We must ensure that through all these redefinitions we maintain G,2X ≥ 0. Combin-

ing (3.36)–(3.37), we find

XP̃,X − P̃ (X) ≥ E − 8
W2

,φ

K2(φ)

(

1− 1

P̃,X

)

. (3.38)

This allows for DEC-violation through the kinetic part of the action whenever the

right-hand side is negative.
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A few limiting cases of these results:

• If P̃ = X, corresponding to the two-derivative lagrangian L = K(φ)X − V (φ),

we can set E = 0 and G = 0. The second of (3.37) reduces to the standard

result (3.10) for a single scalar field

V (φ) = 8
W ,2φ
K(φ)

− 12W2 . (3.39)

• For the pure P (X) case, corresponding to K(φ) = 1 and V (φ) = 0, the second

of (3.37) allows us to choose W = W0 = constant, with E = 12W2
0 . The first

of (3.37), combined with (3.36), then implies

G2
,X = H(X) = XP,X − P + 12W2

0 , (3.40)

whose integral reproduces (3.33).

3.4 Conclusions

In this Chapter we derived, following two different methods, an extension of the

positive energy theorem of General Relativity to the class of P (X,φ) scalar field the-

ories. We found that as long as it is possible to write P in terms of two arbitrary

superpotential-like functions, positive energy is guaranteed. This derivation general-

izes the result of [85, 86] for two-derivative scalar theories with arbitrary potential,

and reduces to the known condition as a particular case. This result allows for more

general P than the recent result of [213], and we highlighted the technical step where

our derivation deviates from theirs.

By examining a few special classes of P we showed that in the P (X) context it is
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possible to have positive energy while violating the DEC. The derivation does however

require that the NEC to be satisfied. More interestingly, it is possible to have positive

energy in cases where the S-matrix fails to satisfy the usual analyticity requirements

for a local theory.

It is worth noting that we have spent some effort to find a similar method for proving

a positive energy theorem for galileons, but to no avail. Here we summarize the

obstruction.

We look for positive energy in theories that have the general form

L = P (π,X,✷π) . (3.41)

For example, the cubic galileon (Eq. (1.17)) corresponds to L = c2X + c3X✷π. As in

Section 3.1, we define an equivalent three-field action:

L = P (π, χ, ψ) + P,χ (X − χ) + P,ψ (✷π − ψ) . (3.42)

Varying with respect to χ and ψ gives χ = X and ψ = ✷π, respectively. Substituting

these equations of motion back into the Lagrangian gives Eq. (3.41).

Our next step is to temporarily include kinetic terms for χ, ψ. We also integrate the

✷π term by parts. Furthermore, we specialize to the action P = F (π, χ) +ψG(π, χ).

The Lagrangian now fits the form of Eq. (3.9), with

φI =













π

χ

ψ













, fIJ =













P,χ+2G,π G,χ 0

G,χ Z2
χ 0

0 0 Z2
ψ













. (3.43)
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The problem is now clear: for the positive energy proof to work, the matrix fIJ must

be positive definite in the limit Zi → 0 (see the comment directly following Eq. (3.9)).

But this not the case — one of the eigenvalues is negative, indicating that one of the

degrees of freedom is ghostlike.

Several ways forward have been attempted. The first approach was to introduce extra

spinor fields, hoping to cancel the negative pieces, but this led to the unusual field

space restriction ✷π < −1 for positive energy. Another approach was to consider

the proof in 1+1 dimensions. This led to another unusual field space restriction:

π′′ < (1 + π′2)−1.

Neither answer is fully satisfactory. One might imagine that positive energy should

be a given, at least for certain galileon terms, because a even free scalar field theory

(which admits a positive energy theorem) is dual to a galileon [184]. Nevertheless, no

way around the complications from the ghostlike degree of freedom have been found

to date.
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Chapter 4

Constraints on Chameleon Field

Theories

The past two chapters have investigated questions of theoretical viability in scalar-

tensor theories. Of course, much may also be learned from experimental efforts as

well. In this Chapter we derive constraints on chameleon field theories from atom in-

terferometry, a powerful new test of short-range gravitational interactions. It contains

work that appeared in [3].

Ordinary scalar-tensor theories are subject to tight experimental bounds from a vari-

ety of tests, including cosmology, astrophysics, and laboratory measurements [90, 215].

Theories that include a screening mechanism are much more weakly constrained by

virtue of their dynamical suppression of the scalar force. Regions where experimental

measurements are performed, such as the solar system or laboratory, are usually quite

dense, leading to an effective decoupling and correspondingly weak force.

Theories within the same class of screening (canonical vs. derivative) all lead to

similar phenomenology, even though their Lagrangians may look quite different [7].

Theories with potential screening yield the richest phenomenology on small scales,

including in the laboratory and in the solar system. On the other hand, the range of

the scalar-mediated force can be at most ∼ Mpc cosmologically [216, 217]. Theories

with derivative screening have the largest impact on scales larger than ∼ Mpc, but

presently lead to unmeasurably small effects in the laboratory [218].
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Theories with a screening mechanism result in a fifth force that depends on its environ-

ment, an idea which has spurred a great deal of activity. Astrophysically, chameleon

scalars affect the internal dynamics [219, 220] and stellar evolution [221–223] of dwarf

galaxies residing in voids or mildly overdense regions. In the laboratory, chameleons

have motivated multiple experimental efforts aimed at searching for their signatures,

including torsion-balance experiments [224, 225], Bose-Einstein condensates [226],

gravity resonance spectroscopy [92, 227] and neutron interferometry [228–231]. As-

suming an additional coupling between photons and chameleons, the CHameleon

Afterglow SEarch (CHASE) experiment [232, 233] has looked for an afterglow from

trapped chameleons converting into photons. Similarly, the Axion Dark Matter eX-

periment (ADMX) resonant microwave cavity was used to search for chameleons [234].

Photon-chameleon mixing can occur deep inside the Sun [235] and affect the spectrum

of distant astrophysical objects [236]. For a recent review of chameleon constraints,

see [215].

In this Chapter we focus on chameleon scalar field theories, though our methods

and results can be generalized to other theories with potential screening (indeed, the

next Chapter will focus on similar constraints in symmetron theories). In chameleon

theories, the mass of chameleon particles depends on the local environmental matter

density, which is the result of an interplay between their self-interaction potential and

their coupling to ordinary matter. In dense regions, such as in the laboratory, the

mass of the chameleon is large, and the resulting force mediated by the chameleon is

short-ranged, shielding the chameleon interaction from detection. In regions of low

density, such as in space, the mass of chameleon particles can be much smaller, and

the resulting force mediated by the chameleon is long-ranged.
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The simplest Lagrangian for a chameleon theory is

Lcham = −1

2
(∂φ)2 − V (φ)− φ

M
ρm , (4.1)

where ρm is the matter density, assumed to be non-relativistic. The chameleon mech-

anism is achieved for various different potentials. For concreteness, in this Chapter

we will focus on the inverse power-law form [237, 238]

V (φ) = Λ4

(

1 +
Λn

φn

)

; n > 0 . (4.2)

The inverse power-law form, considered in the original chameleon papers [239, 240],

is motivated by earlier studies of tracker quintessence models [241, 242] and arises

generically from non-perturbative effects in supergravity/string theories, e.g., [243–

245]. (Potentials with positive powers, V (φ) ∼ φ2s with s an integer ≥ 2, can also

realize the chameleon mechanism [246].) The constant piece can drive cosmic accel-

eration at the present time for Λ = Λ0 ≃ 2.4 meV. The 1/φn term is responsible

for the non-linear scalar interactions required for the chameleon mechanism to be

operational.

Our primary interest is atom interferometry, as described in Section 1.3. Following

the initial theory papers promoting this method [94, 95], an experiment was carried

out by collaborators at UC Berkeley to search and constrain the chameleon parame-

ter space [3, 4, 96]. The experiment measures the force between a metal sphere (the

“source” mass) and 133Cs atoms (the “test” mass). Because the experiment is per-

formed in vacuum, the chameleon Compton wavelength is comparable to the size of

the vacuum chamber and hence relatively long-ranged on the scale of the experiment.

Moreover, due to their microscopic size, the Cs atoms are unscreened and hence act

83



as test particles. The chameleon force they experience is still suppressed by the fact

that the source mass is screened, but less so than the force between two macroscopic

objects. This set-up places a bound on the anomalous contribution to the accelera-

tion: a < 5.5 µm/s2 at the 95% confidence level [96], while an updated version of the

experiment reported a < 50 nm/s2 [4].

To translate this into a constraint on the chameleon parameter space, the authors

of [96] used a number of analytical approximations. Specifically, they treated the

vacuum chamber as a sphere and ignored the details of chamber walls. The as-

sumption of spherical symmetry reduces the static equation of motion, which is a

three-dimensional partial differential equation (PDE), to a one-dimensional ordinary

differential equation (ODE) that can easily be integrated numerically. They then

calculated the force between source mass and atoms using approximate analytical ex-

pressions derived in the early chameleon papers [239, 240]. In the past these methods

have proven to do a fairly good job at estimating the chameleon profile in various

situations. But if we are to rigorously exclude part of the chameleon theory space, a

more accurate treatment is warranted.

In this Chapter we present a scheme to solve the full three-dimensional PDE for the

chameleon profile in the vacuum chamber, making it possible to calculate the force due

to the chameleon field at any point and along any direction. This allows us to relax the

assumption of spherical symmetry, and to therefore accurately model the cylindrical

vacuum chamber used in [96]. Furthermore, we can exactly and consistently include

the effects of the chamber walls and the source mass, which is offset from the center,

without having to resort to approximate analytical expressions.

The motivations for this work are three-fold. Firstly, the exact approach followed

here allows us to quantify the validity of the approximations made in [96], as well to
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place rigorous constraints on chameleon theories from the experimental bound on a.

Secondly, it allows us to check claims in the literature that accounting for the chamber

walls leads to a significant effect on the field profile deep inside the chamber [247] or

that the thin-shell expression that goes back to [239, 240] gives a poor approximation

to the chameleon force [248]. We will see that these claims are wrong. A detailed

treatment of the walls has negligible effect inside the chamber, a conclusion that is

now shared by the authors of [247] in a revised version of their paper. We will also

find that the thin-shell approximation works remarkably well.

Our main findings are at once reassuring and disappointing! The analytical approxi-

mations made in [96] work remarkably well and unexpectedly well. Specifically, care-

fully simulating the vacuum chamber as a cylinder with dimensions matching those

of [96], taking into account the backreaction of the source mass, its offset from the

center, and the effects of the chamber walls, the acceleration on a test atomic particle

is found to differ by only 20% from the simplified analysis of [96]. A 20% difference

would be barely visible on the logarithmic exclusion plots, but the actual difference

is even smaller, thanks to a fortuitous cancellation. Namely, while the acceleration

in [96] is a slight overestimate (by ∼ 20%) of the actual answer, this is compensated

by an a slight underestimate of the vacuum chamber radius (5 cm instead of the actual

6 cm). These two “mistakes” interfere destructively, leaving us with almost identical

constraints on the chameleon parameters.

Looking ahead, our code can be used to determine the ideal source mass geometry

and position to optimize the sensitivity to scalar forces in future experiments. In

fact, it already has played a role in developing more sensitive atom interferometry

tests. Early analysis, briefly reported in Section 4.6, found in addition a number of

small improvements that a cylindrical source mass was superior to a spherical one for
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optimizing the signal from chameleon forces. These findings were used in an updated

version of the experiment which, combined with better control of systematic errors,

improved the sensitivity by two orders of magnitude [4].

Although our treatment is cast in the context of atom interferometry, the code is quite

versatile and can be applied to any experiment — atom interferometry, cold neutrons

or a torsion pendulum — aimed at constraining the chameleon field inside a vacuum

chamber. To illustrate the usefulness of the code, we will apply it in Sec. 4.6 to

forecast the signal in an improved version of our experiment, as well as for a proposed

interferometry experiment to take place in NASA’s Cold Atom Laboratory aboard

the International Space Station. The code is also versatile; in Chapter 5 we use it

to place similar constraints on symmetrons, which are an entirely separate class of

theories.

This Chapter is organized as follows. We give a brief review of the chameleon mech-

anism in Sec. 4.1, including a discussion of the thin-shell approximate treatment

used in [96]. We summarize existing experimental constraints and motivations for

the present work in Sec. 4.2. After a brief description of our numerical method in

Sec. 4.3, we present the results of 3D integration as a series of refinements, from the

crude “spherical cow” approximation made in [96] all the way to the actual experi-

mental set-up with cylindrical chamber and offset source mass in Sec. 4.4. In Sec. 4.5

we simulate the chameleon profile with the experimental set-up [96] for a range of

chameleon parameters, and derive realistic constraints on the space of chameleon

theories. In Sec. 4.6 we report results on ongoing and upcoming experiments. We

summarize our results and discuss future applications in Sec. 4.7. The work pre-

sented in this chapter originally appeared in [3], and since that time the experiment

has been updated slightly with correspondingly stronger constraints. The chameleon
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Veff(φ)

φ

V (φ)

A(φ)ρ

Figure 4.1: Schematic of the effective potential felt by a chameleon field (solid line),
given by the sum of the bare potential of runaway form, V (φ) (dashed line), and a density-
dependent piece, from coupling to matter (dotted line).

constraints described here are the latest available [4] at the time of the writing of this

Thesis.

4.1 Chameleons: A Brief Review

A chameleon scalar field has the defining property of coupling to matter in such a way

that its effective mass increases with increasing local matter density [239, 240, 246,

249–251]. The scalar-mediated force between matter particles can be of gravitational

strength (or even stronger), but its range is a decreasing function of ambient matter

density, and therefore avoids detection in regions of high density. Deep in space, where

the mass density is low, the scalar is light and mediates a fifth force of gravitational

strength, but near the Earth, where experiments are performed, and where the local

density is high, it acquires a large mass, making its effects short ranged and hence

unobservable.
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Theoretical set up

In the Newtonian limit where matter is non-relativistic, the Lagrangian for a proto-

typical chameleon theory is

Lcham = −1

2
(∂φ)2 − V (φ)− A(φ)ρm . (4.3)

This generalizes (4.1) to include a general coupling functionA(φ) to the matter density

ρm. For simplicity, we assume that the chameleon scalar field φ couples universally to

matter, i.e., via a single function A(φ). Generalizations involving different coupling

functions for different matter species are also possible, resulting in violations of the

weak equivalence principle. In the simpler case of interest, the theory is characterized

by two functions: the self-interaction potential V (φ) and the coupling function to

matter A(φ). The coupling function is assumed to be approximately linear,22

A(φ) ≃ 1 +
φ

M
. (4.4)

To compare with experiments we will be primarily interested in the range 10−5MPl .

M . MPl, where MPl = (8πGN)
−1/2 ≃ 2.4 × 1018 GeV is the reduced Planck mass.

This range of M is interesting because it has not yet been experimentally ruled out.

Over this range, the field excursion is much smaller thanM throughout the apparatus,

and hence the linear approximation (4.4) is justified.

For the self-interaction potential, as mentioned in the Introduction we specialize to

22In the symmetron [252–256] and varying-dilaton [257] mechanisms, on the other hand, a φ → −φ
symmetry precludes the linear term in A(φ). The appropriate form in those classes of theories

is A(φ) ≃ 1 + φ2

M2 . In practice, however, the phenomenology of symmetrons/varying-dilatons is
qualitatively similar to that of the chameleon.
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the Ratra–Peebles inverse power-law form [237, 238]

V (φ) = Λ4

(

1 +
Λn

φn

)

, (4.5)

with n > 0. The constant piece can drive cosmic acceleration at the present time for

Λ = 2.4 meV, whereas the 1/φn piece is responsible for the chameleon mechanism.

It is clear from the action (4.3) that the scalar field is governed by a density-dependent

effective potential

Veff(φ) = V (φ) + A(φ)ρm . (4.6)

This is sketched in Fig. 4.1. In an environment of homogeneous ρm, the effective

potential is minimized at

φeq =

(

nMΛ4+n

ρm

)
1

n+1

. (4.7)

The mass of chameleon particles around this state, defined as usual by m2(φeq) =

∂2Veff
∂φ2

∣

∣

∣

φ=φeq
, is

m2
eq =

n(n+ 1)Λ4+n

φn+2
eq

∼ ρ
n+2
n+1
m . (4.8)

As the value of ρm increases, we see that φeq decreases while meq increases, as desired.

This is sketched in Fig. 4.2.

More generally, to compute the chameleonic acceleration on a test particle due to an

arbitrary static distribution of matter, we begin by solving for the φ profile:

~∇2φ = Veff ,φ . (4.9)

For general ρm(~x), we must of course resort to numerical integration. Given the

resulting field profile φ(~x), the acceleration on a test particle due to the chameleon
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Figure 4.2: Effective potential for low ambient matter density (Left) and high ambient
density (Right). As the density increases, the minimum of the effective potential, φmin,
shifts to smaller values, while the mass of small fluctuations, mφ, increases.

interaction readily follows from (4.3):

~a =
1

M
~∇φ . (4.10)

For the parameters of interest, we will see that the atoms in the experiment behave as

test particles to an excellent approximation. Indeed, this is one of the virtues of using

atom-interferometry to test chameleons! More generally, the chameleon force on an

extended body can be computed borrowing a method developed by Einstein, Infeld

and Hoffmann [258] in the context of General Relativity, as nicely shown in [219] and

reviewed in Appendix A.

Thin-shell approximate treatment

Before solving the chameleon equation of motion exactly using numerical integration,

it is helpful to gain intuition on how the chameleon force is suppressed in the presence

of high ambient density by reviewing the approximate solution first presented in [239,

240]. One of the main goals of this Chapter is to assess to what extent the approximate

treatment works.
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Consider a static, spherical source with radius R and homogeneous density ρobj. For

the moment, we imagine that this object is immersed in a homogeneous medium with

density ρbg. (We will come back shortly to the case of the vacuum chamber, where

the ambient density is approximately zero.) We denote by φobj and φbg the minima

of the effective potential at the object and ambient density, respectively. The scalar

equation of motion reduces to

φ′′ +
2

r
φ′ = V,φ +

ρm(r)

M
; ρm(r) =











ρobj r < R

ρbg r > R
. (4.11)

The boundary conditions are φ′(r = 0) = 0, enforcing regularity at the origin; and

φ→ φbg as r → ∞, which minimizes the effective potential far from the source.

For a sufficiently large body — in a sense that will be made precise shortly — the

field approaches the minimum of its effective potential deep in its interior:

φ ≃ φobj ; r < R . (4.12)

Outside of the object, but still within an ambient Compton wavelength away (r <

m−1
bg ), the field profile goes approximately as 1/r: φ ≃ C

r
+ φbg. One integration

constant has already been set to fulfill the second boundary condition above. The

other constant C is fixed by matching the field value at r = R, with the result

φ ≃ −R
r
(φbg − φobj) + φbg . (4.13)

Further intuition on this solution follows from a nice analogy with electrostatics [259,

260]. Since ∇2φ ≃ 0 both inside and outside the source, the body acts as a chameleon
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analogue of a conducting sphere. Any chameleon “charge” is confined to a thin shell

of thickness ∆R near the surface. The surface “charge density”
ρobj∆R

M
must support

the discontinuity in field gradients:

dφ

dr

∣

∣

∣

∣

r=R+

=
ρobj∆R

M
. (4.14)

Substituting (4.13) fixes the shell thickness:

∆R =
Mφbg

ρobjR
, (4.15)

where we have assumed φbg ≫ φobj appropriate for large density contrast. For consis-

tency, we should have ∆R ≪ R, in other words
Mφbg
ρobjR2 ≪ 1. In that case the object is

said to be screened. The acceleration on a test particle located within r < m−1
bg away

is

a ≃ aN

(

MPl

M

)2
6∆R

R
(screened) , (4.16)

where aN is the Newtonian acceleration. If instead
Mφbg
ρobjR2 ≫ 1, the object is said to

be unscreened, and the exterior acceleration is unsuppressed:

a ≃ 2aN

(

MPl

M

)2

(unscreened) . (4.17)

In the case of a vacuum chamber, the background density is so small that the Comp-

ton wavelength m−1
bg is much larger than the radius of the chamber, hence the field

is unable to minimize its effective potential. Instead the scalar field approaches a

value about which the Compton wavelength is comparable to the size of the vacuum

chamber, m−1
vac ∼ Rvac. In other words, from (4.8) the background value is set by the

condition φvac ∼ (n(n+ 1)Λ4+nR2
vac)

1
n+2 . Following [96] it is convenient to introduce
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a “fudge” factor ξ, to turn the relation into an equality:

φbg = ξ
(

n(n+ 1)Λ4+nR2
vac

) 1
n+2

. (4.18)

In [96] it was found that ξ is largely insensitive to n, Λ and M , as well as to the

assumed chamber geometry. Specifically, for n = 1 and the dark energy value Λ =

2.4 meV, one finds ξ = 0.55 for a spherical vacuum chamber and ξ = 0.68 for an

infinite cylinder.

The field profile for a spherical source inside a spherical chamber follows identically

from the earlier derivation, with φbg now given by (4.18). In particular the expression

for the shell thickness (4.15) becomes ∆R = Mξ
ρobjR

(n(n+ 1)Λ4+nR2
vac)

1
n+2 . For the

parameter values considered here, it is easily seen that the source mass is always

screened, i.e., the resulting acceleration on a test particle is given by (4.16). Similarly,

the atoms are unscreened — they do not significantly perturb the chameleon field and

therefore behave as test particles to an excellent approximation.

4.2 Existing Constraints and Motivations for this Work

The class of chameleon theories described above are specified by three parameters:

the coupling scale M , with M ∼ MPl corresponding to gravitational strength fifth

force; the scale of the potential Λ, with Λ = Λ0 ≃ 2.4 meV corresponding to the

value needed to reproduce the observed cosmic acceleration; and the inverse power n

specifying the shape of the potential.

Figure 4.3a) shows current experimental constraints in the (Λ,M) plane for n = 1,

where the solid line indicates Λ = Λ0 ≃ 2.4 meV. The narrow light blue stripes on the

left panel show the influence of varying the fudge parameter over 0.55 ≤ ξ ≤ 0.68.
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(a) (b)

Figure 4.3: Current constraints due to atom interferometry and torsion pendulum
experiments. We are mainly concerned with Λ = Λ0, indicated by the black line on
the first plot, so that the chameleon field can drive the observed accelerated expansion
of the universe. The narrow light blue stripes on the left panel show the influence of
varying the fudge parameter over 0.55 ≤ ξ ≤ 0.68. The second plot shows MPl/M vs.
n, and also assumes Λ = Λ0. The “torsion pendulum” region shown in green has been
corrected from [96] to accurately reflect the constraints imposed by that experiment,
following [225].
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Meanwhile, Fig. 4.3b) plots the excluded region in the (M,n) plane, with Λ fixed

to the dark energy value 2.4 meV. Various experiments contribute to these plots.

These include measurements of the Casimir-Polder force using an oscillating 87Rb

Bose-Einstein condensate [226], gravity resonance spectroscopy using ultracold neu-

trons [92, 227] and neutron interferometry [228–231]. The Eöt-Wash torsion balance

experiment [224] constraint rules out M ∼> 10−2 MPl with Λ = Λ0 ≃ 2.4 meV, corre-

sponding to the lower region of Fig. 4.3b).23

In this Chapter we focus on the Berkeley atom interferometry experiment [96], which

rules out most of the parameter space shown in the figures. At the time the following

numerical techniques were developed, for Λ = Λ0 ≃ 2.4 meV and n = 1 (Fig. 4.3a))

atom interferometry excluded the range M ∼< 10−5 MPl. (Since that time, sensitivity

has improved by over two orders of magnitude, in part due to optimizations made

possible by the work developed in this Chapter [4].) The Berkeley experiment, moti-

vated by a theory paper of Burrage et al. [94], used atom interferometry to measure

the force between 133Cs atoms and an Al sphere. The original experiment constrained

an anomalous contribution to the free-fall acceleration as ∆a = (0.7 ± 3.7) µm/s2.

The excluded regions were then generated using a number of simplifying assumptions:

• The background chameleon field profile φbg was computed i) without the source

mass, ii) ignoring the thickness of the chamber walls, and iii) assuming a spher-

ical vacuum chamber.

• The chameleon acceleration acting on the atoms was calculated using the thin-

shell expression (4.16) described earlier.

The purpose of our Chapter is to check those assumptions. We do so by comput-

23As already mentioned in the Introduction, other experiments constrain the electromagnetic
coupling eβγφFµνF

µν , which induces photon/chameleon oscillations.
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ing the chameleon field profile numerically using a 3-dimensional PDE solver that

we developed for this purpose. Our numerical method will be described in detail in

Section 4.3. We solve for the chameleon field profile inside the source sphere, vacuum

chamber, and within the vacuum chamber walls. However, we neglect the backreac-

tion of the atoms, treating them as test particles that do not significantly influence

the chameleon field profile. This assumption is justified by the fact that the atoms

are small and light enough to be unscreened for the range of parameters considered

here. We will perform a battery of checks, described in detail in Sec. 4.4.

For the benefit of the anxious reader, we can summarize our findings succinctly as

follows: the simplifying assumptions made in [96] and listed above work remarkably

and surprisingly well. Specifically, carefully simulating the vacuum chamber as a

cylinder with dimensions matching those of [96], taking into account the backreaction

of the source mass, its offset from the center, and the effects of the chamber walls,

the acceleration on a test atomic particle is found to differ by only 20% from the

simplified analysis of [96]. A 20% difference would be barely visible on a logarithmic

scale such as in Fig. 4.3, but the actual difference is even smaller, thanks to a fortuitous

cancellation. Namely, while the acceleration [96] is a slight overestimate (by ∼ 20%)

of the actual answer, this is compensated by a slight underestimate of the vacuum

chamber radius (5 cm instead of the actual 6 cm). These two “mistakes” interfere

destructively, leaving us with an identical constraint: M ∼< 2.3 × 10−5MPl is ruled

out for Λ = Λ0. Applying the same methods to the latest experimental constraints

[4] gives us a new constraint of M ∼< 2.4× 10−3MPl .
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Material ρ (g/cm3)
source mass (aluminum) 2.7
vacuum (6× 10−10 Torr) 6.6× 10−17

vacuum chamber walls (steel) 7

Table 4.1: Densities of the materials in the experiment.

4.3 Numerical Method

We integrate the chameleon equation of motion (4.9) through successive under-

relaxation with intermediate steps calculated by the Gauss-Siedel scheme [261]. This

method is briefly reviewed in the Appendix. We demand that the first derivative of φ

vanish at the edge of the simulation box, which is justified so long as φ has minimized

its effective potential by that point. This assumption works because the Compton

wavelength of the chameleon particle is always much smaller than the width of the

vacuum chamber walls for the parameter range of interest.

The convergence time of this method is highly dependent upon the initial guess for

the field configuration. There is a delicate tradeoff — within dense regions (i.e.,

source sphere and chamber walls), the equation of motion is highly nonlinear, and

small steps are required to ensure convergence; within the vacuum region, on the

other hand, the equation is approximately linear but can take many steps to reach

the much larger field value. Steps small enough to ensure convergence in the dense

regions make the convergence time in the vacuum region intolerably large, while steps

large enough to converge inside the vacuum make the numerical scheme unstable in

dense regions.

To address this issue we begin with a course-grained simulation, where φ in the dense

areas is forced to minimize its effective potential as a boundary condition. This

is done only in regions where the Compton wavelength is more than an order of

97



magnitude smaller than the grid spacing, so the chameleon is expected to minimize

Veff everywhere in the region. The resulting course-grained output for φ is then

interpolated into an initial guess for a higher resolution run. This method allows φ to

quickly relax to its solution in the vacuum, while holding φ fixed in the numerically

unstable regions.

Numerical Algorithm

In this Section we offer some details on the numerical approach used to integrate the

chameleon equation of motion (4.9). This equation is a non-linear Poisson-Boltzmann

equation of the form:

∇2φ = ρ(x, φ) . (4.19)

Let us illustrate the method with the simplest case of one spatial dimension. In that

case the Laplacian operator on the left-hand side with a finite difference operator [261]

1

(∆x)2

(

φ(x+∆x)− 2φ(x) + φ(x−∆x)

)

= ρ(x, φ) . (4.20)

This approximation follows from the second-order Taylor expansion of φ, and becomes

exact as ∆x → 0 for smooth functions. Isolating φ(x) gives a relation that may be

used to iteratively solve for φ:

φ(x) =
1

2

(

φ(x+∆x) + φ(x−∆x)− (∆x)2ρ(x, φ)

)

. (4.21)

To use this equation, we begin with an initial guess for φ(x) and apply this equation

at each point successively from one edge of the integration to the other. This process

is repeated iteratively until φ(x) converges on a solution. If the neighboring φ values

on the right-hand side come from the previous iteration, this is known as the Jacobi
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method. Using the most recently computed value of φ on the right-hand side converges

more quickly and is known as the Gauss-Seidel method. We follow the latter method

in our numerical integration.

This process generalizes straightforwardly to three dimensions. Here the finite differ-

ence expression becomes

φ(x, y, z) =
1

6

(

φ(x+ h, y, z) + φ(x− h, y, z)

φ(x, y + h, z) + φ(x, y − h, z)

φ(x, y, z + h) + φ(x, y, z − h)− h2ρ(x, y, z, φ)

)

, (4.22)

where h is the grid spacing. Care must be taken at the edges. In this case we

replace any occurrence of the type φ(x,−h, z) with φ(x, h, z). This effectively imposes

the boundary condition that the normal derivative of φ vanish at the edge of the

simulation.

Depending on the form of ρ, this algorithm may converge very slowly, or it may not

converge at all. We can cure such speed/stability issues by introducing an over/under

correction scheme:

φ(n+1)(x) = φ(n) + α
(

φ∗ − φ(n)
)

. (4.23)

Here, φ(i) represents the i-th iteration of φ, and φ∗ is predicted by Gauss-Seidel based

on the previous iteration. Meanwhile, α is the relaxation parameter and can take

any value in the interval 0 < α < 2. For 0 < α < 1, the algorithm converges more

slowly than Gauss-Seidel, but allows for numerical instabilities to be tamed. For

α = 1 the right-hand side reduces to φ∗, hence the method reduces to Gauss-Seidel.

If 1 < α < 2, the method will converge more quickly, but is also more likely to be
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unstable. Due to the non-linear nature of the chameleon equation, we encountered

significant numerical instabilities, especially in the dense regions. This was cured by

taking α < 1.

4.4 Successive Steps Towards Realistic Set-Up

In this Section we describe the results of the numerical integration, presented as suc-

cessive steps towards the realistic experimental set-up. First, to make contact with

our earlier analysis, we use the 3D code to check the approximate analytical expres-

sion used in [96] to place constraints on the chameleon parameter space. Remarkably,

we find only a 20% difference. As our next step, we compare the realistic cylindrical

vacuum chamber to a spherical vacuum chamber of the same radius. This will de-

termine how sensitive the force calculation is to the “spherical cow” approximation.

Here, we find an 18% difference in the resulting acceleration at the interferometer

between these two cases. Next we examine the impact of offsetting the source mass

from the center of the vacuum chamber, as is done in the actual experiment. We find

the difference in acceleration at the location of the interferometer to be negligible.

As our final step, we examine the effect of accounting for a circular bore through the

source mass, as in the experiment. Again, we find the difference in acceleration to be

negligible. For all the checks performed in this Section (except Sec. 4.4), we assume

Λ = Λ0 = 2.4 meV, M = 10−3MPl, and focus on the power-law n = 1 following [96].

Comparison to analytic approximation

As a check on the code, we integrate the chameleon equation of motion under the

same conditions as those explored in [96]: a spherical vacuum chamber of radius

Rvac = 5 cm. (As already mentioned, the actual vacuum chamber is not a sphere,

and a better estimate for its effective radius is 6 cm, but for the purpose of comparing
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Figure 4.4: The chameleon field as a function of distance along the center of the
spherical vacuum chamber. The black horizontal line marks the central value of φ
predicted inside an empty chamber using (4.18). The red vertical line denotes the
location of the interferometer. We find essentially no difference between letting φ
minimize its potential in atmosphere vs in steel at the walls.

with earlier work we use the same parameters as [96]. This includes matching the

parameters24 Λ = 0.1 meV,M = 10−3MPl.) The field profile is calculated everywhere

inside the chamber for 3 separate cases:

1. Without source mass (i.e., empty vacuum chamber), and with boundary con-

dition φ→ φatm at r = Rvac.

2. Without source mass, and with boundary condition φ→ φsteel at r = Rvac.

3. Including a source mass of radius rs = 1 cm at the center of the chamber,

imposing the same boundary condition as in Case 2.

The density of the different parts of the experiment are listed in Table 4.1. (For Case

1, we use ρ = 10−3 g/cm3 for atmospheric density.)

24The Λ = 0.1 meV value is chosen solely for the purpose of comparison with the 1D numerical
results of [96]. For the rest of our analysis we will use the fiducial dark energy value Λ = Λ0 = 2.4
meV.
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hids

Spherical source radius rs 0.95 cm
Diameter of bore through source rbore 0.30 cm
Location of spherical source ds 2.55 cm
Location of interferometer hi 0.88 cm
Inner diameter of vacuum chamber dID 12.2 cm
Vacuum chamber height h 7.1 cm

Figure 4.5: Diagram and dimensions of experimental setup. The cross marks
the center of the vacuum chamber. The vacuum chamber walls are ∼ 2 cm thick, which
is much greater than the Compton wavelength of the chameleon inside steel in all cases
examined.

The results are shown in Fig. 4.4. The chameleon field profiles in Cases 1 and 2 (i.e.,

the cases without source mass), shown as the blue and green curves respectively, are

virtually identical, leading us to conclude that the boundary conditions imposed at

the vacuum chamber walls are unimportant to the dynamics near the center of the

vacuum chamber. The black horizontal line indicates the central φ value predicted

by (4.18) with ξ = 0.55, as found in [96]. We see that Cases 1 and 2 closely match

this approximate constant solution near the center, in particular at the location of

the interferometer (red vertical line), confirming that the code’s results are consistent

with [96].

Case 3, shown as the red curve, includes the source mass and allows us to calculate

the acceleration on a test atom exactly and directly using (4.10). The acceleration

is attractive (pointing towards the center) near the source mass, but is repulsive

(pointing away from the center, and towards the chamber walls) further out. At
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(a) Field profile (b) Acceleration

Figure 4.6: Spherical vs cylindrical vacuum chamber. Chameleon profile and
acceleration as a function of distance from the center of the spherical source mass, for a
spherical (blue curve) and cylindrical (green curve) vacuum chamber. The dimensions of
the cylindrical vacuum chamber are chosen to match that of the experiment in [96] and
are shown in Fig. 4.5. The radius of the sphere is chosen to match the inner radius of the
cylinder. At the location of the interferometer (red vertical line), the acceleration in the
spherical case is 18% larger than in the cylindrical chamber.

the location of the interferometer,25 the answer is a = 5.0 × 10−10 m/s2 towards

the source mass. The value calculated in [96] using the approximate “thin-shell”

expression (4.16) was 6.4 × 10−10 m/s2, an overestimate of approximately 20%. (As

already mentioned, however, this is compensated by a slight underestimate of the

vacuum chamber radius. The actual radius is 6 cm, resulting in a larger acceleration

at the location of the interferometer.)

Comparison: spherical vs cylindrical vacuum chamber

Next we examine the effect of approximating the cylindrical vacuum chamber as a

sphere. For this purpose we assume a cylindrical geometry that matches the actual

vacuum chamber used in the experiment [96]. As shown in Fig. 4.5 (except that the

source mass in the present case is centered rather than offset), the vacuum cham-

25The atoms actually traverse nearly 5 mm during the acceleration measurement. Following [96],
we approximate the atoms’ average distance from the source mass as 8.8 mm.
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(a) Field profile (b) Acceleration

Figure 4.7: Source mass centered vs offset. Same plot as the previous figure, now
comparing a source mass at the center (blue curve) and offset by 2.55 cm from the center
(green curve), as in the actual experiment. As in the previous figure, the dimensions of the
cylindrical chamber match those of the experiment. Although the field profile is altered by
the offset, the acceleration at the interferometer (red vertical line) changes by less than 1%.

ber is a short cylinder, with inner radius of 6.1 cm, turned so that the axis of the

cylinder is perpendicular to Earth’s gravity. For comparison, we choose a sphere of

the same radius, Rvac = 6.1 cm, such that the distance between the source mass and

the vacuum chamber wall is the same in the direction of the interferometer. This

makes for a fair comparison since, keeping the distance between the source mass and

interferometer fixed, the chameleon gradient at the location of the interferometer is

primarily influenced by its distance from the vacuum chamber wall [225]. Recall also

that we are now going back to the cosmologically-motivated value of Λ = Λ0 = 2.4

meV.

The results, shown in Fig. 4.6, demonstrate a minor departure between the cylinder

vs the sphere. In particular, the acceleration at the interferometer is 18% larger for

the sphere than for the cylinder.
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(a) Field profile (b) Acceleration

Figure 4.8: Source mass with vs without bore. Same as the previous two figures,
but now comparing a solid source mass (blue curve) against one with a 3 mm diameter
circular bore through the center (green curve), as in the experiment. All other dimensions
are chosen to match those of the experiment. The only significant difference is inside the
sphere, as the green line passes through the center of the bore, so it is still in vacuum. The
acceleration at the interferometer (red vertical line) again changes by less than 1%.

Comparison: source mass offset vs centered

We now examine the effect of moving the source mass away from the center of the

cylindrical vacuum chamber. For this purpose we once again assume a cylindrical

geometry that matches the actual vacuum chamber used in the experiment [96], with

dimensions listed in Fig. 4.5 (except with a solid source mass). We compare the

chameleon profile and acceleration between a source mass at the center and a source

mass located 2.55 cm below the center, as in the actual experiment. The distance

to the interferometer is kept fixed. The results, shown in Fig. 4.7, demonstrate

that although the acceleration profiles are different in certain regions of the vacuum

chamber, the difference at the interferometer is negligible. Had the interferometer

been located further away from the source, the difference in acceleration would have

been more significant.
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Comparison: solid source mass vs source mass with bore

As a final step towards the experimentally realistic setup, we examine the effect of

a vertical circular bore through the center of the spherical source mass. We use the

dimensions listed Fig. 4.5, only in one case without the bore. The results, shown

in Fig. 4.8, show that the difference in acceleration at the interferometer is again

negligible. The difference is, however, significant within the source mass. This is

because the plot shows the chameleon profile through the center of the bore, a path

which is in vacuum from wall to wall. Indeed, when inside the sphere the bore acts

as a miniature vacuum chamber, and the chameleon field reaches a value such that

the Compton wavelength is comparable to the radius of the bore.

4.5 Simulation of the Experiment

We are now in position to simulate the experiment [96] and derive realistic constraints

on chameleon parameters. Once again the dimensions of the vacuum chamber are

sketched and listed in Fig. 4.5. The material densities are listed in Table 4.1. Fol-

lowing [96] and as assumed in the previous Section, we focus on the power-law n = 1

and assume Λ = Λ0 = 2.4 meV.

The chameleon profiles are plotted in Fig. 4.9, for M ranging from 10−5MPl to MPl.

The first thing to note from Fig. 4.9 is that the field profile inside the vacuum region

is relatively insensitive toM . This can be understood as follows. On the one hand, in

the vacuum region the density is effectively zero. SinceM only appears in the equation

of motion as ρ/M , the chameleon equation of motion is essentially independent of M

in that region. The only dependence comes from the dense regions (source mass and

chamber walls). But even so, the chameleon is screened and minimizes its effective

potential at a very small field value in those dense regions, and for all intents and
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Figure 4.9: Simulation of the experimental configuration, for values of M ranging from
10−5MPl to MPl. We find that the profiles in vacuum are nearly identical, differing only in
the walls. The field values inside the metal of the source mass also scale with M , but we are
showing a path that passes through the center of the bore in the source mass. The bore acts
as a miniature vacuum chamber, so instead the chameleon field goes to an M -independent
value such that the Compton wavelength is of order the radius of the bore.

purposes φ ≃ 0 there relative to the much larger field value in the bulk of the chamber.

This is why the profile is quite insensitive toM inside the chamber. (For larger values

of M than considered here, the source mass and chamber walls eventually become

unscreened and this argument would no longer hold.)

The acceleration at the interferometer can be calculated using the gradient of the

chameleon profiles. Since ~∇φ at that position is essentially independent of M , the

only dependence on this parameter comes from the prefactor of 1/M in the expres-

sion (4.10) for the acceleration. We find the acceleration due to the chameleon field

at the interferometer to be

a =
~∇φ
M

= 1.2× 10−4 MPl

M
µm/s2 . (4.24)
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As a particular example, with M = 10−4 MPl this yields an acceleration at the

interferometer of 1.2 µm/s2. The thin-shell approximate method used in [95, 96]

yields an acceleration of 1.4 µm/s2, a difference of ∼ 20%.

The atom interferometry experiment [96] placed an upper limit of a < 5.5 µm/s2

(95% confidence level) on the chameleon acceleration. As can now be calculated

from (4.24), this corresponds to M ≤ 2.3 × 10−5MPl. Remarkably, this is the same

constraint as quoted in [96] using the approximations describe above. The reason for

this coincidence is that these authors slightly underestimated the radius of the vacuum

chamber (5 cm instead of the actual 6 cm), which just so happens to compensate the

overestimate inherent in the approximate thin-shell method.

The latest atom interferometry measurement, derived using the techniques developed

here, measured the anomalous acceleration to be a < 50 nm/s2 at the 95% confidence

level [4]. This rules out M ≤ 2.4 × 10−3MPl. Since M is not expected to be much

larger than MPl, the window for chameleon theories with n = 1 and Λ = 2.4 meV is

rapidly closing!

4.6 Forecasts for ongoing and upcoming experiments

In this Section we describe two upcoming experiments that will place even tighter

constraints on the chameleon theory’s parameters. The first is an improvement upon

the experiment [96], performed by the same authors, and is currently underway.

The second is a proposed experiment for NASA’s Cold Atom Laboratory aboard the

International Space Station.
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(a) Field profile (b) Acceleration

Figure 4.10: Spherical source mass vs cylindrical source. Comparison between
two experimental setups: that of [96] (blue line) and of an improved version of the experi-
ment that is currently underway (green line). The main difference is that the latter employs
a tungsten cylinder as the source mass, while the former used an aluminum sphere. The
cylinder has a wedge cut out of it, allowing for vastly improved control over systematics.
These show that the cutout comes at no cost to the chameleon signal, in fact, the cylinder
confers a 5% stronger chameleon force over the previous setup.

Laboratory experiment: cylindrical source with wedge

This experiment is similar to [96], except with greater sensitivity thanks to a variety

of technical improvements such as colder atoms, additional vibration isolation, and

the atoms are now launched upwards (rather than dropped) to allow them to spend

more time near the source mass. Another key difference is that the source mass is

now a tungsten hollow cylinder with a wedge cutout. This geometry was chosen so

that the source mass may be moved away from the interferometer without breaking

the atom/laser beam line, allowing for better control of the systematic errors.

To evaluate the sensitivity of this new setup, we perform a comparison against the

geometry described in the previous Section. As before, we assume Λ = 2.4 meV,

M = 10−3MPl, and n = 1. The source mass is a hollow cylinder with an outer

diameter of 2.54 cm, inner diameter 0.99 cm, and length 2.56 cm. It is made of
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Figure 4.11: Same plot as Fig. 4.9, but for the empty rectangular vacuum chamber of the
CAL experiment. The field profiles are taken along the long axis of the vacuum chamber.
Again, we find that the profiles in vacuum are nearly identical.

tungsten, which has a density of 19.25 g/cm3 . There is a wedge cut out of one side

with thickness 0.50 cm.

The results, plotted in Fig. 4.10, show that the new setup produces an acceleration

that is 5% larger than the previous one. This comes with a large improvement in

systematic errors as well, which will allow for much greater sensitivity. The new

setup, reported in [4], improved upon the limit from [96] by 2 orders of magnitude,

yielding a new experimental bound of M ≤ 2.4× 10−3MPl.

Space-based experiment: Cold Atom Laboratory

This experiment is proposed to take place inside NASA’s Cold Atom Laboratory

aboard the International Space Station, and is currently scheduled to be launched

in 2017. Ground-based experiments are limited in that Earth’s gravity causes the

atoms to only spend a limited amount of time near the source mass. Performing the
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experiment in space obviates this issue, allowing for greater sensitivity.26

The experiment consists of an empty rectangular vacuum chamber with 3 × 3 cm

cross section and length 10 cm. Interferometry is performed with atoms located on

an axis parallel, and close, to the central long axis of the vacuum chamber. The

atoms’ acceleration may be measured anywhere along this path (up to within ∼ 0.5

mm of the walls). The walls are made of glass, with a density of roughly 2.5 g/cm3.

We assume the same chameleon parameters as in the previous Section.

The resulting chameleon field profiles along the long axis of the vacuum chamber are

shown in Fig. 4.11. If the measurement is performed 2 mm from the vacuum chamber

walls, we find an acceleration

a = 2.7× 10−3 MPl

M
µm/s2 , (4.25)

towards the wall. This value is independent ofM (to within 5%) as long asM .MPl.

This demonstrates that, thanks to how close the atoms may get to the walls, the

magnitude of the chameleonic acceleration is similar to that of the ground-based ex-

periments. This result, combined with the much longer interaction times between the

source and the atoms, as well as common-mode rejection of the influence of vibra-

tions achieved by running two simultaneous atom interferometers with potassium and

rubidium atoms, respectively, gives hope for much tighter restrictions on chameleon

parameter space. An optimized version could in principle be designed to be sensitive

to the entire parameter space M .MPl.

26Long interaction times may also be achieved in ground-based experiments by dropping both the
source mass and the atoms, such as in an Einstein elevator or in a zero-gravity flight [262].
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4.7 Conclusions

In this Chapter we have, for the first time, solved the three-dimensional nonlinear

PDE governing the chameleon scalar field inside a vacuum chamber, for static con-

figurations. Along the way, through a series of increasingly realistic runs, we have

explored the impact of various approximations made in earlier work. In particular,

approximating the cylindrical vacuum chamber with a sphere while keeping the dis-

tance between the interferometer and the nearest chamber wall fixed, results in an

18% difference in acceleration at the location of the interferometer. Moving the source

mass away from the center while keeping the distance to the interferometer fixed, has

negligible effect on the measured acceleration. We then solved for the chameleon

field in an experimentally realistic setup for 10−5MPl ≤ M ≤ MPl, finding that the

chameleon profile is largely independent of M inside the vacuum chamber. We have

ruled outM < 2.4×10−3MPl at the 95% confidence level for n = 1 and Λ = Λ0, based

on the upper bound on the acceleration reported in [4]. Finally, we have performed

a preliminary analysis for upcoming experiments which can, in principle, sense the

entire parameter space M .MPl.

In the future it will be interesting to use the techniques described here to explore

the effects of different source mass geometries, as it may be possible to optimize

experiments for greater sensitivity. Additionally, as experimental results become

more precise, so too should the theoretical predictions. This may necessitate more

accurate modeling of the vacuum chamber geometry. Our method may also prove to

be an invaluable tool for such a purpose.
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Chapter 5

Constraints on Symmetron Field

Theories

The symmetron is another theory of modified gravity whose effects could potentially

be detected by atom interferometry. The symmetron mechanism [252] (see also the

earlier related models [253, 254]) relies on two key ingredients: a nonzero vacuum

expectation value (VEV) that depends on the local matter density, and a coupling to

matter that depends on the VEV. When the local matter density is small, the VEV

is non-zero and so is the matter coupling, so the scalar field mediates an attractive

force. When the local density is large, the VEV becomes zero and the coupling

vanishes, shutting off the scalar force. This allows the symmetron to mediate an O(1)

modification to gravity while going undetected in our solar system, because the local

density is enough to suppress the force.

Similar to the previous Chapter with chameleons, this Chapter will detail the the-

oretical and numerical methods for predicting the symmetron force inside atom in-

terferometry experiments. This is a critical step for accurately placing bounds on

symmetron theories. These methods originally appeared in [4].

Symmetrons have seen application to cosmology [255], inflation [263], and as a poten-

tial explanation for dark matter [264]. A version where the symmetron mechanism

arises from radiative corrections was studied in [265], and a supersymmetric sym-

metron was introduced in [266].
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Existing tests of symmetrons fall into three categories: cosmological, astrophysical,

and laboratory. One might imagine that we would need the Earth and Sun to be

screened, but it is sufficient (and more conservative) to require instead that the Milky

Way is screened [252]. Roughly speaking, doing so also satisfies cosmological tests

at linear scales [7]. Symmetron constraints from torsion balance experiments were

analyzed in [267]. Data from neutron bounce experiments can also be used to con-

strain symmetrons, but at the moment these limits are weaker than those derived

from atom interferometry [268]. Constraints on the symmetron parameters will be

presented briefly in Section 5.1.

We will be interested in what constraints atom interferometry may place on sym-

metron fields. This experiment used a setup very similar to that of the previous

chapter — the acceleration of atoms near a small, marble sized source mass is mea-

sured to high precision, allowing one to look for anomalous fifth forces between the

atoms and the source mass [4].

Once again, we wish for our constraints on symmetrons to be as precise as possible,

carefully accounting for the geometry of the source mass and the vacuum chamber.

To gain intuition, we begin with an analytic calculation that approximates the source

mass as a sphere. We highlight some important differences from the chameleon cal-

culation, including an effect in which the symmetron field becomes zero everywhere if

the size of the vacuum chamber is smaller than the symmetron Compton wavelength.

We then go on to repeat the calculation using a numerical strategy that solves for

the field on a uniform three-dimensional grid, allowing us to supply the exact exper-

imental setup. We find that the region of parameter space that is excluded by atom

interferometry is complementary to the constraints from torsion balance experiments.

This Chapter is based on work that first appeared in [4].
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5.1 Symmetrons: A Brief Review

A simple example of a theory that exhibits the symmetron mechanism has a self-

interaction potential and matter coupling

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 , A(φ) = 1 +

1

M2
φ2 . (5.1)

This potential consists of all renormalizable operators that are invariant under the Z2

symmetry φ→ −φ, and the coupling consists of the leading order term that respects

that symmetry. These choices yield an effective potential

Veff(φ) =
1

2

( ρ

M2
− µ2

)

φ2 +
1

4
λφ4 , (5.2)

with a corresponding equation of motion

✷φ =
( ρ

M2
− µ2

)

φ+ λφ3 . (5.3)

The matter coupling is quadratic in φ, so the fluctuations in the scalar field see a

matter coupling that is dependent on the local scalar field value. If we split the field

into background and fluctuations as φ = φ̄+δφ, then the fluctuations δφ see a matter

coupling φ̄
M2ρ.

In regions of low density, ρ
M2 ≪ µ2, the quadratic term in Eq. (5.2) is negative and

the field acquires a nonzero VEV: φ0 ≡ µ/
√
λ. However, in high density regions

where ρ
M2 ≫ µ2, the quadratic term becomes positive and the potential has a min-

imum φ = 0. Since the matter coupling is dependent on the local field value, the

symmetron decouples from matter in dense environments. This is the essence of the

symmetron screening mechanism: the matter coupling vanishes inside large, dense
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objects, causing the symmetron force sourced by such objects to be much weaker

than their ordinary gravitational pull.

The symmetron parameters are typically chosen such that the force on a test parti-

cle in vacuum is an O(1) modification to gravity, φ/M2 ∼ 1/MPl. The symmetry-

breaking density is also typically chosen to be approximately the mean cosmic density

today µ2M2 ∼ H2
0M

2
Pl [252, 268]. Current tests focus on the possibility µ ∼ meV, for

this choice the excluded region is approximately M ∼> 10 GeV and λ < 1 [267].

We will be interested in static, spherically symmetric solutions of Eq. (5.3). To this

end, we solve for the symmetron field profile around a sphere of density ρ ≫ M2µ2

and radius R in a vacuum.

Expanding the symmetron effective potential Eq. (5.2) to quadratic order around the

minima inside and outside the object, the linearized equation of motion may be solved

in the two regions separately:

φ(r < R) = A
R

r
sinh

(

r

√

ρ

M2
− µ2

)

,

φ(r > R) = B
R

r
e−

√
2µr + φ0 , (5.4)

where the constants A,B are determined by matching φ and φ′ at r = R. The exact

relationship form of A,B depends on the dimensionless parameter α ≡ ρR2

M2 = 6
M2

Pl

M2 Φ.

There are two limiting cases to consider:

B =















−φ0
α
3

α ≪ 1 (unscreened) ,

φ0

(

−1 + 1√
α

)

α ≫ 1 (screened) .

(5.5)

The acceleration of a test particle due to the symmetron force follows from Eq. (A.19)
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as

~aφ =
φ0

M2
~∇φ . (5.6)

Dividing the screened force by the unscreened one leads to the screening factor

λi = min

(

1

αi
, 1

)

(5.7)

for an object with a surface Newtonian potential Φi.

Note that Eq. (5.4) implies an exponential dropoff in the scalar acceleration beyond

µ−1. Beyond this point, the force is much harder to detect. For a given µ there is

therefore a maximum distance from the surface of the source mass to the atoms ∆

which will still result in a measurable force. So the experiment will only measure a

significant force if ∆ ∼< µ−1.

We must also consider the finite size of the vacuum chamber. For a given µ, there

is a minimum size vacuum chamber which can result in a nonzero symmetron field

[267]. To see this, consider a 1-dimensional gap of length d, where ρ = 0 inside the

gap, and the walls are infinitely dense so φwalls = 0. The symmetron field will reach

its VEV at roughly a distance m−1
vac = µ−1 from the walls. Approximating the field

as linear27, so ~∇φ ≈ µ2/
√
λ, the Hamiltonian simplifies as

H =

∫

dx

(

1

2
(~∇φ)2 + Veff(φ)

)

,

≈ µ4

λ
m−1

vac −
1

4

µ4

λ
d . (5.8)

The Hamiltonian is negative for d ∼> m−1
vac, that is, d ∼> µ−1. Therefore it is only

for gaps larger than this that a nontrivial field profile is energetically favorable to

27A more detailed calculation in [267], which integrated the solutions to the equation of motion,
differs in its final answer by a factor of π.
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remaining at φ = 0 everywhere, where H = 0.

This translates to a fairly narrow window of sensitivity in µ for atom interferometry

experiments. For a given experimental setup, a non-negligible symmetron force will

only exist for d−1 ∼< µ ∼< ∆−1. Since ∆/d ≈ 10 to 100, there is at most only 1-2 orders

of magnitude in µ which are testable. In the latest atom interferometry experiment

[4] the window is roughly 10−2 . µ . 10−1 meV.

5.2 Numerical analysis

Our goal is to solve the static symmetron equation of motion for an arbitrary matter

distribution ρ = ρ(~x):

~∇2φ =
( ρ

M2
− µ2

)

φ+ λφ3 . (5.9)

This equation appears to have three free parameters: µ,M, and λ. However, the

solutions’ dependence on λ turns out to be trivial, and is easily inferred by considering

the field redefinition φ̂ ≡
√
λφ. Under such a change the parameter λ drops out

completely, telling us that the combination
√
λφ is independent of λ.

Similarly, in vacuum ρ/M2 ≪ µ2, and for all practical purposes ρ ≈ 0, while in the

source mass or vacuum chamber walls the opposite is true, and ρ ≈ ∞. We therefore

expect the field profiles will be largely independent of M , since it only appears in the

combination ρ/M in Eq. 5.9. Of course, the symmetron force still depends sensitively

on M via Eq. (5.6).

These findings simplify matters considerably. Rather than scan a parameter space of

three independent parameters, we merely perform a single computation for each value

of µ we are interested in. Furthermore, the range of testable µ in atom interferometry

is only 1-2 orders of magnitude, allowing us to fully predict the symmetron force for
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a large range of M and all λ with a relatively small computational requirement.

We adopt the same technique used for chameleons, solving for the field on a uniform

grid with the Gauss-Seidel relaxation scheme detailed in Chapter 4. Once again, the

solution is highly unstable inside dense regions, so we provide boundary conditions

that set the field to minimize its effective potential there. This is justified so long as

the grid size is much less than the thin-shell width ∆R. Computing the thin-shell

width from the screening factor (Eq. (5.7), see also Appendix A) as λsource ∼ ∆R/R,

we find

∆R =
M2

M2
Pl

R

6Φ
. (5.10)

Another bit of relevant physics that cannot be captured by the simulation is the

screening of the atom. The radius of an atom is many orders of magnitude smaller

than the grid spacing (which is roughly 0.1 mm). This is not a problem if the atoms

are unscreened — in this limit, the atoms behave as ideal test particles, obeying

Eq. (1.5). The non-linear effects due to the source mass and the vacuum chamber

walls are fully captured in our solution of φ. We can account for atomic screening by

simply adding the screening factor to Eq. (1.5):

~a = λatom
φ

M2
~∇φ . (5.11)

The resulting field profile is shown in Fig. 5.1. We have plotted the combination

λφ~∇φ along the vertical axis of the experiment. This term is proportional to the

scalar acceleration and is independent of M and λ. We have plotted for two values

of µ, which are both within the allowed window which still yields measurable forces.

The larger value of µ results in a force that is stronger, yet shorter-ranged force since

the effective symmetron mass is ∼ µ. The smaller value of µ results in a force with
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Figure 5.1: Symmetron field profiles for M = 103 GeV, λ = 10−5, and µ = 10−1, 10−1.5

meV, plotted along the vertical axis of the vacuum chamber. The atoms follow a vertical
path that takes them near the source mass; the interferometry measurement occurs in the
red region near the apex of their trajectory. The combination λφ~∇φ is displayed because
it is independent of M and λ and is easily relatable to the scalar acceleration Eq. (5.11).
(Note that this is the λ that appears in the Lagrangian, not the thin-shell factor λatom.)
The two curves illustrate the window of measurable µ nicely: for larger µ, the overall force is
stronger, yet shorter-ranged, and much larger µ would result in a force that cannot reach to
the interferometer. For smaller µ, the force is weaker yet longer-ranged, suppressed because
the vacuum chamber is not large enough for the field to reach its VEV.

longer range, but it is is suppressed by the finite size of the vacuum chamber. Smaller

values of µ would result in a field that remains at φ = 0 everywhere inside the vacuum

chamber, causing the scalar force to vanish.

Finally, in light of the fact that the experiment measures the average acceleration felt

by the atoms during a measurement of finite time, we integrate the above acceleration

assuming that the atoms follow the classical path z(t) determined by their initial
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position and velocity:

aavg =
1

tf − ti

∫ tf

ti

a(z(t))dt , (5.12)

where ti and tf are the beginning and end of the measurement (the first and third

laser pulses, respectively).

The constraints on the parameters are plotted in Fig. 5.2. The symmetron force

gets stronger with decreasing M , hence the power-law seen in the figure. When

M . 1 GeV the atoms no longer behave as test particles and begin to be screened,

so the exclusion plot flattens. Finally, below M ∼ 10−4 GeV, the vacuum density is

large enough that the symmetry remains unbroken, so ρ/M2 > µ2 everywhere in the

experiment and the symmetron force vanishes.

We see that constraints from atom interferometry have rapidly sharpened since the

first study was published in 2015. Furthermore, they are somewhat complementary

to torsion balance experiments [113], providing two ways to test different regimes of

the theory.

5.3 Conclusion

We have examined symmetron fields within the context of atom interferometry ex-

periments. We began with an analytic derivation of the symmetron force, gaining

intuition for the problem by deriving the screening factors and thin-shell widths for

the atom and sphere, and carefully analyzing the behavior of the symmetron field in a

vacuum chamber of finite size. These findings were further supported by a numerical

calculation that more accurately accounts for the experimental setup. Finally, these

results were used to exclude regions of allowed parameter space for symmetron fields.
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Figure 5.2: Shaded areas are excluded regions of parameter space. The areas in blue are
constrained by the latest atom interferometry data [4]. For comparison we have included
older atom interferometry [96], as well as data from torsion balance experiments [225].

122



Chapter 6

Conclusions

This Thesis has explored several related questions concerning the viability of scalar

field theories. In Chapter 2 we constructed a healthy theory that violates the null

energy condition, providing a powerful counterexample to the notion that violating

the NEC always goes with an instability. This model, which was published several

years ago, has already helped inspire a new generation of NEC-violating theories,

which make several major improvements to our own. One major drawback of our

model was that at late times the scalar field becomes strongly coupled and the EFT

breaks down. Several of these new theories have fixed this issue [185, 187], providing

a graceful exit to the NEC-violating phase.

In Chapter 3 we presented a positive energy theorem for P (X) theories. Perhaps

one of the most surprising findings was that the Ghost Condensate model (Eq. 1.11)

with α = −1, which is known to be locally pathological, was discovered to have global

positive energy. This result highlights the distinction between local and global criteria

for a healthy field theory, with the latter likely being more difficult to violate. Looking

forward, it will be interesting to see if a positive energy theorem can be proven for

galileons.

Chapters 4 and 5 considered questions of phenomenological viability, focusing in

particular on what may be learned from atom interferometry experiments. Atom

interferometry is a relative newcomer to the ongoing search for evidence of scalar

fields, yet it is already competitive with, and complimentary to, many of the long-
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established experimental techniques. Time will only improve their sensitivity, and it

is entirely possible that some models (such as the simple n = 1 chameleon) are close to

being ruled out completely. The calculational tools we presented have already been

invaluable for understanding and interpreting experimental results and optimizing

sensitivity. In the future, these methods could be extended to a wider range of

theories (i.e. P (X) and galileons) as well as to other experimental setups, ranging

from torsion balance experiments to galaxy-wide measurements, possibly even to tests

and theories that have yet to be imagined.
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Appendix A

Screening Factors

In this Appendix we make precise the statements about screening in or near “suf-

ficiently” large or dense objects. As a model problem, we will calculate the force

between a large sphere of radius RA and a much smaller sphere of radius RB, both of

uniform density ρA,B. Both are surrounded by a background density ρ0.

A.1 The field from a single object

We begin by finding the scalar field due to A by itself. Inside and outside the object,

we expand the Lagrangian to quadratic order around the value that minimizes its

effective potential in that region: φ = φi + ϕi, where Veff ,φi = 0. The quadratic

Lagrangian for perturbations ϕ is

Lϕ = −1

2
(∂ϕ)2 − 1

2
Veff ,φφ (φi)ϕ

2 ,

= −1

2
(∂ϕ)2 − 1

2
m2

effϕ
2 , (A.1)

where we have defined the effective mass of the perturbations m2
eff = Veff ,φφ. The

resulting equation of motion is

ϕ′′ +
2

r
ϕ′ = m2

effϕ , (A.2)
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where we have specialized to static and spherically symmetric solutions. Assuming

the mass is constant, the solution is

ϕ =
C1e

−mr

r
+
C2e

mr

r
. (A.3)

In general m can vary with the local environmental density. We therefore solve for

the field piecewise inside and outside the sphere, and then matching φ and its first

derivative at the boundary.

Inside the sphere, we require φ′ to vanish at the origin, giving

φ(r < RA) = φin −
A sinh(minr)

r
. (A.4)

For the solution outside the sphere we demand that the field tend to a constant at

infinity, so

φ(r > RA) = φout +
Be−mout(r−R)

4πr
. (A.5)

The coefficients A,B are determined by matching φ, φ′ at the boundary RA. Only B

is of present interest:

B = 4π(φout − φin)R

(

minR− tanh(minR)

minR +moutR tanh(minR)

)

. (A.6)

This term is the “scalar charge” of the object.

We can gain some intuition by considering an alternate derivation of the scalar force

[219]. Consider the scalar equation of motion,

~∇2φ =
∂V

∂φ
+ αρ , (A.7)
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where α is an expansion of the coupling function A(φ). Our goal is to write the

exterior solution as

φ = φout −
λαM

4πr
. (A.8)

This is very similar to Eq. (A.5), except we have included only the monopole con-

tribution, and have expressed the total scalar charge as B = λαM , where M is the

mass of the object, α is the coupling strength, and λ is a screening factor which varies

between 0 and 1 based on how screened the object is.

Assuming that the field is able to minimize its effective potential inside the object, it

sits at a constant value φin everywhere inside, except for a thin shell near the surface.

The field only varies within the thin shell, where rises from the minimum to meet the

surface boundary condition.

To get a rough idea for the thickness ∆R of the thin shell, we approximate Eq. (A.7)

as

1

R

φout − φin

∆R
≈ αρ . (A.9)

Defining the mass of the object M = ρ4πR3/3, the thin shell thickness is

∆R

R
≈ φout

6αM2
PlΦ

, (A.10)

where we have assumed φout ≫ φin and have used the surface Newtonian potential of

the object Φ = GM/R. . Since only the matter inside the thin shell is relevant to the

external field, the screening factor λ must be the fraction of the volume inside the
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thin shell:

λ = 3
∆R

R
,

=
φout

2αM2
PlΦ

, (A.11)

This quantity expresses the fraction of the “bare charge” αM of the object that is felt

by external test particles. An unscreened object has λ ∼ 1, and a strongly screened

object has λ ∼ 0.

A.2 Motion of an extended object

In the previous Section we calculated the scalar field due to a spherical object. We

would now like to understand how an object moves in the presence of the scalar field.

A point particle feels an acceleration given by Eq. (1.5). An extended object, on the

other hand, may be screened, as seen in the previous Section. We follow an approach

originally introduced for GR by Einstein, Infeld, and Hoffman [258], and later applied

to scalar field theories in [219] .

The momentum of the object is

Pi =

∫

d3xT 0
i , (A.12)

where the energy-momentum tensor is a combination from the matter and the scalar

field: Tµν = Tm
µν+T

φ
µν . The volume is performed over a spherical volume that is large

enough encompass the entire object, so that Tm
µν vanishes at the surface. The sphere

should also be small enough that the matter dominates Tµν inside the sphere, so that

Eq. (A.12) is a good approximation for the motion of the object itself.
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The change in the momentum with time is

Ṗi =

∫

d3x∂0T
0
i ,

= −
∫

dSjT
φ j
i . (A.13)

where we have used conservation of the energy-momentum tensor ∂νT
µν = 0 and

Gauss’ Law to turn it into a surface integral. Finally, since the matter energy-

momentum tensor vanishes at the surface of the spherical volume, only the con-

tribution from the scalar field survives.

The scalar field is a sum of the background contribution, presumably sourced by some

object far away, and a piece sourced by the object itself:

φ = φ0(~x) + φ1(r) . (A.14)

The background field is assumed to be linear on the length scale of the object:

φ0 ≈ φ0(0) + ∂iφ0(0)x
i , (A.15)

where the origin of the coordinates xi is the center of the object. At the moment, all

we require of φ1(r) is that it is spherically symmetric.

We substitute our expression for the field into the scalar energy-momentum tensor:

T φµν = ∂µφ∂νφ− ηµν

(

1

2
(∂φ)2 + Veff(φ)

)

, (A.16)
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and plug in to Eq. (A.13). Remarkably, we find

Ṗi = −4πr2∂iφ0∂rφ1(r) . (A.17)

The simplicity of this final expression is due to a number of cancellations in the surface

integral. The term like ∂iφ0∂jφ0 is neglected because gradients of the background field

are small, the term like ∂iφ1∂jφ0 integrates to zero because it is a surface integral of a

uniform vector field, and the term like ∂iφ1∂jφ1 integrates to zero because both terms

are spherically symmetric. The second part of T φµν is sub-leading, because we have in

mind that the field is mainly sourced by the object itself rather than its potential.

If we assume φ1 is of the form in Eq. (A.5), then the scalar force on the object is

Fi = −∂iφ0(1 +moutR)λαM , (A.18)

where we have performed the integral at the surface of the object (so that r = R),

and have equated the change in momentum with a force acting on the center of mass

of the object.

Assuming that the field from A is also given by Eq. (A.5), we are now able to find

the scalar force between two objects A and B, separated by a distance r, where

MB ≪MA. It is:

Fφ = −(λAαMA)(λBαMB)(1 +moutr)(1 +moutRB)
e−mout(r−RA)

4πr2
. (A.19)

This expression gives the force between two extended objects (where A is much larger

than B) in any theory with potential screening. Of particular interest is the appear-

ance of two screening factors, one for each object, as well as a Yukawa-type force law.
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Taken together, we see that screening very efficiently suppresses the force between two

large, massive objects or over long distances. The force laws derived for chameleons

and symmetrons, in Chapters 4 and 5 respectively, are special cases of this expression.
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