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Theoretical studies on charge ordering phenomena in quarter-filled molecular (organic) con-
ductors are reviewed. Extended Hubbard models including not only the on-site but also the
inter-site Coulomb repulsion are constructed in a straightforward way from the crystal struc-
tures, which serve for individual study on each material as well as for their systematic under-
standings. In general the inter-site Coulomb interaction stabilizes Wigner crystal-type charge
ordered states, where the charge localizes in an arranged manner avoiding each other, and can
drive the system insulating. The variety in the lattice structures, represented by anisotropic
networks in not only the electron hopping but also in the inter-site Coulomb repulsion, brings
about diverse problems in low-dimensional strongly correlated systems. Competitions and/or
co-existences between the charge ordered state and other states are discussed, such as metal,
superconductor, and the dimer-type Mott insulating state which is another typical insulating
state in molecular conductors. Interplay with magnetism, e.g., antiferromagnetic state and spin
gapped state for example due to the spin-Peierls transition, is considered as well. Distinct sit-
uations are pointed out: influences of the coupling to the lattice degree of freedom and effects
of geometrical frustration which exists in many molecular crystals. Some related topics, such
as charge order in transition metal oxides and its role in new molecular conductors, are briefly
remarked.

KEYWORDS: molecular conductors, charge ordering, strongly correlated electron system, low-dimensional

systems, metal-insulator transition, superconductivity, magnetism, electron-lattice coupling,

geometrical frustration

1. Introduction

The charge ordering (CO) phenomenon is actively
studied in the research field of charge transfer type
molecular conductors,1 since it plays a key role in their
physical properties. Following its clear observation in
DI-DCNQI2Ag,2 metal-insulator transitions in many of
these materials are now understood as due to CO. It has
been found not only in newly synthesized compounds but
also in systems which have been well known for years,
where, however, its existence has been veiled until re-
cently. Typical examples are two representative families
of this field, the Bechgaard salts TM2X

3 (TM = TMTSF
or TMTTF) and ET2X

4 (ET = BEDT-TTF) where X
takes different atoms or molecules, both being studied for
more than 20 years. The CO transition was revealed re-
cently and now became one of the most important issues
in these systems.

These materials are members of the so-called 2:1 salts
expressed as A2B, to which interest of this field has been
conducted. Numerous compounds with such a 2:1 com-
position have been synthesized and found to exhibit a
rich variety of properties.5–7 Many of them show elec-
tron conduction at room temperature, where the car-
riers are due to a charge transfer from cations B+ or
anions B−, resulting in an average valence of −1/2 or
+1/2 for A molecules, respectively. The B ion has closed
shell in most cases then the valence band near the Fermi
energy is composed of the frontier orbital, LUMO or
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HOMO, of the A molecule, which is quarter-filled as
a whole in terms of electrons or holes. The variety in
their properties has been revealed to be originated from
the diversity of anisotropic lattices resulting in differ-
ent non-interacting band structures, together with strong
correlation effects experienced by electrons among this
HOMO/LUMO band determining the low energy prop-
erties.8 CO is a typical consequence of such strong cor-
relation, namely, large electron-electron Coulomb repul-
sion compared to the kinegic energy, especially due to
the long-range nature of this Coulomb force. In fact, it is
now ubiqitously found in A2B compounds as well as in
other strongly correlated electron systems such as tran-
sition metal oxides.

In this article, we review theoretical aspects of CO
mainly aiming at following points: In what kind of situ-
ation are they formed? In what situation do they melt?
How does the spin degree of freedom act? Are there any
superconducting (SC) state near the CO phase?

Such theoretical works on CO have been done from
early days, motivated by experiments. For example, the
metal-insulator transition in a classical transition metal
oxide Fe3O4, the magnetite, was proposed to be due to
CO by Verwey,9 although its existence is still contro-
versial to date.10 Another trigger was an early molec-
ular conductor TTF-TCNQ, where an incommensurate
4kF charge-density-wave (CDW) is observed, but only
in a diffusive manner therefore long ranged order is not
achieved.11, 12 Here we refer to the term CO as the phe-
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nomenon due to strong Coulomb interaction, sometimes
called as “Wigner crystal on lattice”.13 This should be
distinguished with other transitions resulting in peri-
odic modulations of the charge density, such as the 2kF

CDW (the Peierls-Frölich state) driven by the nesting
of the Fermi surface together with the electron-lattice
coupling,12 which is essentially a phenomenon at weak
correlation.

The observations of CO transition in A2B molecular
systems have stimulated many theoretical studies ad-
hered to these compounds. Experiments have fortunately
appeared around when researchers in this field started
to realize that effects of electron correlation could be
modeled in a straightforward way and that rather simple
models would successfully describe their physical prop-
erties.14 That is, each constituent A molecule is repre-
sented by a “site” and only the frontier orbital is con-
sidered. The non-interacting band structures near the
Fermi level are well reproduced by the extended Hückel
tight-binding scheme.15, 16 Then, the Coulomb interac-
tion between electrons in this orbital is taken into ac-
count.17, 18 We call such model as the extended Hubbard
model (EHM), written as follows:

HEHM = −
∑

〈ij〉σ

(

tijc
†
iσcjσ + h.c.

)

+
∑

i

Uni↑ni↓ +
∑

〈ij〉

Vijninj . (1)

Here, 〈ij〉 denotes pairs of the lattice sites (i.e.,
molecules) i and j, σ is the spin index which takes ↑
and ↓, niσ and c†iσ (ciσ) denote the number operator and
the creation (annihilation) operator for the electron of
spin σ at the ith site, respectively, and ni = ni↑ + ni↓.
The transfer integrals, tij , reflect the anisotropy resulting
from the particular spatial extent of the frontier orbital,
calculated, e.g., by the extended Hückel method or from
tight-binding fitting of first principle calculations. The
Coulomb interactions of not only on-site U but also inter-
site Vij are considered, the latter being crucial for the CO
as we will see later explicitly. In the [A2]

−B+ ([A2]
+B−)

systems the non-interacting band as a whole is quarter-
filled in terms of electrons (holes), namely, there exists
one electron (hole) per two sites on average.

Because of this clear way of constructing microscopic
models from crystal structures, results of theoretical
works could be checked back in the experiments, and such
interplay has greatly accelerated the research. Through-
out these we have learned that, although the basic pic-
ture of CO is rather classical and essentially known from
the early days, the physics therein is rich and diverse.
The main reason for such diversity is the variety in the
geometry of lattice structures of the materials where it
is realized. More specifically, relative positions between
molecules not only reflect directly on the anisotropy in
tij controlling the band structure, but also affect drasti-
cally the nature of the CO state itself through Vij . This
is in contrast with the case of the Mott insulating state in
half-filled systems where the driving force is the on-site
term U , which is a character of the atom/molecule itself;
in the case of the dimer-type Mott insulator in A2B sys-

tems (see later), it is the “on-dimer” Coulomb repulsion,
Udimer.

17, 19, 20

The research of CO is still continuing and rather
rapidly growing. New phenomena are uncovered, even in
the above mentioned compounds, and now under exten-
sive investigations. For example a pressure-temperature
phase diagram of DI-DCNQI2Ag has been explored
where an anomalous temperature dependence of metal-
lic resistivity ρ ∝ T 3 is found just beyond the border of
the CO phase.21 A peculiar interplay between CO and
magnetic properties found in TMTTF2X compounds un-
der pressure22 requires a reformulation of the generic
phase diagram of TM2X .23 Problems of CO system on
anisotropic triangular lattice structures characteristic of
ET2X compounds have many new aspects.4, 24 We can-
not offer comprehensive explanation for each of these
cases here as many are still not yet resolved theoreti-
cally, but we hope that this review, by explaining the
present status, would provide a base for tackling such
new physics and lead the readers toward challenges.

The organization of this paper is as follows. Since most
of the A2B compounds have low-dimensional structures,
we will devide this review into one-dimensional (1D) and
two-dimensional (2D) problems, while in reality there
exist finite interchain/interlayer interactions; they are
quasi-1D and quasi-2D systems. Theoretical results de-
voted for the quasi-1D compounds are described in § 2.
This starts with studies on purely 1D electronic models
and then additional effects, such as interchain interac-
tion and coupling to the lattice degree of freedom, are
considered. The 1D case can be studied in more con-
trolled ways, analytically and numerically, than in the
study of the quasi-2D compounds, which we discuss in
§ 3. There, theoretical works on 2D electronic models
are still in progress and influence of additional effects,
e.g., coupling to the lattice, is not fully understood yet.
Studies aimed at SC states near the CO phase in 2D
models, motivated by its observations, are reviewed as
well. A problem of CO systems under geometrical frus-
tration which is expected to be relevant to many molec-
ular conductors will be pointed out in § 2 and 3. In § 4
related topics will be mentioned, such as analogous CO
states observed in transition metal oxides. Possible roles
of CO in other molecular systems will be added as well,
as perspectives. A summary is given in § 5.

Some of the experimental studies on CO are mentioned
in this review but many references including important
ones are left out; we refer to other reviews from exper-
imental standpoints1, 25 which would be complementary
to this article. One can find many review articles on the
properties of molecular compounds in general,1, 5–7 espe-
cially we refer to refs. 8 and 18 for papers from theoreti-
cal but more systematic point of views including the CO
systems as well.

2. Quasi-One-dimensional Systems

Early theoretical works on CO in 1D models have been
performed motivated by the observation of 4kF CDW
in TTF-TCNQ as mentioned in § 1, where the impor-
tance of the long-range Coulomb interaction was empha-
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sized.13, 26–30 However for the quasi-1D A2B systems, be-
fore CO was found, analyses were mainly concentrated
on the Hubbard-type models only considering the on-site
Coulomb energy U , but some did discuss the relevance
of the inter-site Vij .

31–33 For example, Mila33 estimated
that the nearest-neighbor Coulomb repulsion is appre-
ciable in TM2X , such as more than one third of U , by
comparing calculations on the dimerized version of 1D
EHM (see eq. (2)) with optical measurements.34 After
CO was found, many further works devoted to the 1D
EHM and its variants have been carried out, which we
will review in this section.

2.1 Charge ordering in quasi-one-dimensional systems

When the first observation of CO in DI-DCNQI2Ag
was made by 13C-NMR,2 in an independent theoreti-
cal work based on mean-field (MF) approximation, Seo
and Fukuyama35 proposed that CO due to the nearest-
neighbor Coulomb repulsion might exist in TMTTF2X .
This was based on a comparison between self-consistent
solutions at zero temperature obtained by the standard
MF treatment applied to the appropriate dimerized 1D
EHM and the spin structure in the antiferromagnetic
phase suggested by a 1H-NMR measurement.36 Soon af-
ter, it was found that members of TMTTF2X indeed
show CO, directly seen in a 13C-NMR measurement.3

Moreover a divergence of the dielectric constant at the
CO transition temperature is observed, suggesting a fer-
roelectric state.37 This is a consequence of CO, which we
will mention later in this section.

These systems are members of DCNQI2X (X : mono-
valent metal cation X+, e.g., Ag and Li)38, 39 and TM2X
(X : monovalent anion X−, e.g., PF6, AsF6, SCN, and
Br),23 respectively, both having quasi-1D structures. DC-
NQI stands for the R1R2-DCNQI molecule where R1, R2

are sustituents such as CH3, Br, I, etc. Here, quasi-
1D “structure” implies twofold meanings: in their crys-
tal structures the DCNQI/TM molecules assemble in a
stacking manner, and, in their electronic structures the
transfer integrals in the interchain direction, tinter, are
one order of magnitude smaller than those in the intra-
chain direction, tintra.

The networks of DCNQI/TM molecules are schemati-
cally shown in Fig. 1. In DCNQI2X the interchain cou-
plings are three-dimensional (3D) and uniform, while
TM2X they are quasi-2D and the TM molecules are con-
nected in a rather complicated way (the β-type structure;
see § 3.1). For DCNQI2X systems, |tintra| ≃ 0.15 ∼ 0.25
eV, |tinter| ≃ 0.01 ∼ 0.03 eV,40, 41 while for TM2X sys-
tems: in TMTSF compounds |tintra| ≃ 0.2 ∼ 0.4 eV,
|tinter| ≃ 0.01 ∼ 0.05 eV and in TMTTF compounds
|tintra| ≃ 0.1 ∼ 0.25 eV, |tinter| ≃ 0.01 ∼ 0.03 eV.16, 42–44

These values depend on the actual salts and different
methods of calculation also provide varied estimations.

We note that the distances between molecules does
not simply correspond to the degree of anisotropy in
tij , since the anisotropic shape of the frontier orbitals
makes the dependence of tij to the relative configuration
of molecules rather complicated in general.16, 45 In con-
trast, Vij obeys more or less a monotonic function of the

a2

a1
b

p1

p2

c 

ac

a~
b
~

(b) TM2X

a

b

(a) DCNQI2X

Fig. 1. (Color online) Schematic representation of the molecular
networks in (a) DCNQI2X and (b) TM2X. The crystallographic
axes are shown; in (a) we take ã = a + b, b̃ = a − b where a and
b are the axes in the tetragonal cell. The interchain interactions
are three-dimensional in (a), whereas it is two-dimensional in (b)
since interlayer couplings are one order of magnitude smaller due
to the anion layers. The indices (for TM2X, taken from ref. 16)
are not only for tij but also for different values of Vij , although
the degree of anisotropy can be different (see text).

distance because it is the Coulomb interaction. There-
fore the interchain part of Vij is not necessarily small
compared to the intrachain one even in these quasi-1D
systems.46, 47 However, let us neglect the interchain in-
teractions first and discuss this issue later in § 2.4 and
2.6.

Estimations of the Coulomb energies in these molecu-
lar systems are difficult at present. Quantum chemistry
calculations are performed for an isolated molecule or
clusters of them, which provide unrealisticly large values
since the screening effect in solids is left out, while such
estimations from the first principle in these molecular
solids are still yet to be done. However it is believed to
be of the order of U ≃ 1 eV from different measurements
and estimates, which gives U/|tintra| ≃ 5 for DCNQI2X
and TMTTF2X , while for TMTSF2X smaller values of
U/|tintra| ≃ 3. The estimated values for the intrachain
Coulomb energy Vintra are again ambiguous but many
provide rather large values: the ratio Vintra/U in a range
about 0.2 ∼ 0.6.33, 46–48

A crucial difference between these two families is that
the stacking of DCNQI molecules is uniform while that
of TM moluecules is slightly dimerized, as seen in Fig. 1.
Thus a minimal effective model to investigate the occu-
rance of CO in these compounds is the 1D dimerized
EHM, represented as,

H1D = −t
∑

iσ

(1 + (−1)iδd)(c†i+1σciσ + h.c.)

+U
∑

i

ni↑ni↓ + V
∑

i

nini+1, (2)

where i is the site index along the chain. Here, the trans-
fer integrals allow dimerization as alternating t(1 + δd)
and t(1−δd); in the DCNQI compounds δd = 0, while for
the TM compounds values of ta1 and ta2

16, 42–44 (for the
indices see Fig. 1) read δd . 0.1. The inter-site Coulomb
repulsion between neighboring sites is set to be uniform
as V , which is an approximation for TM2X . Again, the
value of δd does not directly result in a similar value of
dimerization in Vintra. In fact, quantum chemistry calcu-
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(a)

(b)

V

U

t (1+δd) t (1-δd)
J

J
Fig. 2. (Color online) Two limiting cases of strongly correlated

insulators in quarter-filled system8, 18 : (a) the charge ordered
insulating state and (b) the dimer Mott insulating state. Black
dots and colored area represent the lattice sites and the localized
carriers, respectively, while the thickness of the bonds show the
difference in the transfer integrals. The arrows show the param-
agnetic localized spins.

lations for TM2X
46, 47 provide the dimerization parame-

ters in Va1 and Va2 to be less than 1 %. For the DCNQI
compounds the electron filling is one quarter while it is
three quarter for the TM compounds, but in this 1D
model the two situations are equivalent since electron-
hole symmetry holds. Note that other effects may break
this symmetry then we should treat the two cases sepa-
rately.

It is useful to describe two limiting cases for the insu-
lating states in this model at quarter-filling due to strong
Coulomb interaction,8, 18 which are shown in Fig. 2.
These states, in a broad sense, are realized in a wide
range of A2B compounds, not only in quasi-1D but also
in quasi-2D systems discussed in § 3. One is the Wigner
crystal-type CO state stabilized by V in the presence
of strong U , and the other is the Mott insulating state
stabilized by U in the presence of strong dimerization
δd: a dimer Mott insulator. The spin degree of freedom
in such insulating states would behave as an S = 1/2
localized spin chain, where the spins are located on ev-
ery other site for the CO state whereas on every dimer
for the dimer Mott insulating state. Roughly speaking,
charge localization is determined by large energy scales
such as U and V , while spin properties are determined
by a smaller energy scale of the order of the Heisenberg
coupling, J , acting between these localized spins. We will
discuss their detailed properties in the following subsec-
tions.

The MF solutions mentioned above are consistent with
such two limiting cases. This is seen in the obtained
spin and charge patterns for the two cases, schematically
shown in Fig. 3, and actually many works have been
performed on H1D based on such MF results.49 How-
ever we should keep in mind that this MF treatment
cannot correctly describe such insulators at strongly cor-
related regime in general, for example the paramagnetic
insulating phase at temperatures above the magnetically
ordered phases observed in experiments cannot be repro-
duced. Moreover in purely 1D models the role of quantum
fluctuations which is left out in MF is crucial, and we will
see that it considerably modifies the MF results.

We note that the cations/anions are at crystallo-
graphically equivalent positions from the DCNQI/TM
molecules at high temperatures so that, essentially, they

(a)

(b)

Fig. 3. (Color online) Typical mean-field solutions in one-
dimensional dimerized extended Hubbard model at quarter-
filling,35 H1D in eq. (2): (a) the charge ordered antiferromag-
netic insulating state for δd = 0 and large U and V , and, (b) the
dimer-type antiferromagnetic insulating state for δd 6= 0, large
U , and V = 0. The size of the colored circles and the arrows
represents the charge density and the amount of spin moment

on each site. The charge densities are (a) disproportionated al-
ternatively as, 1/2 + δ, 1/2 − δ, 1/2 + δ, 1/2 − δ, where δ is the
amount of charge disproportionation, and (b) uniform at 1/2.

do not contribute to the electronic properties. However,
in the case of non-centrosymmetrical anions in TM2X ,
the anions show a disorder-to-order transition by lower-
ing temperature and generate a potential with longer pe-
riodicity than the original unit cell, resulting in modifica-
tions in the one-particle properties.50 We do not discuss
such cases in this paper since its relation with the CO
due to electron correlation is still obscure, but the fact
that the anion ordering produces charge density mod-
ulations suggests the importance of the anions in some
cases. Actually possible roles of the X unit in stabilizing
CO states through its coupling to the electron system
will be addressed in § 2.5.

2.2 One-dimensional extended Hubbard model

The quarter-filled 1D EHM, H1D in eq. (2) with δd=0,
was first considered by Ovchinnikov26 who discussed that
in the U/t = ∞ limit a CO insulating ground state is re-
alized for V > 2t (= Vcr), as in the following. In this limit,
double occupancy is strictly prohibited so that every site
is either occupied or unoccupied. Furthermore the spin
degree of freedom is frozen since the “order” of electrons
cannot be changed due to the 1D nature. Then the charge
degree of freedom is equivalent to a spinless fermion (SF)
model at half-filling with the nearest neighbor Coulomb
interaction V , i.e., the interacting SF model, and the spin
degree of freedom acts freely as Curie spins.

This SF model, by identifying occupied site as up spin
and unoccupied site as down spin, can be mapped onto a
1D S = 1/2 (pseudo-)spin model through Jordan-Wigner
transformation. Quarter-filling in the original electronic
system corresponds to half-filling in the SF model where
half of the sites would be occupied, and to total magnetic
moment of zero in the effective spin model. The inter-site
Coulomb interaction between SF transforms to an anti-
ferromagnetic interaction, JzS

z
i Sz

j with Jz = V , while
the kinetic enery term becomes as Jxy(Sx

i Sx
j +Sy

i Sy
j ) with

Jxy = 2t. This is an XXZ model, where a T = 0 phase
transition from a gapless “XY” state (Jz < Jxy) to an
antiferromagnetic “Ising” state (Jz > Jxy) is known.51

Transforming back to the SF model, these correspond
to a metallic Tomonaga-Luttinger liquid (TLL) and the
CO insulating state, repectively; the critical point is the
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Heisenberg point Jxy = Jz, i.e., V = Vcr.
It is noteworthy that this is in fact a rigorous demon-

stration of a “classical” picture of CO discussed in sys-
tems regardless of the dimension.52 In general, the CO
problem, in the condition of kinetic energy set to 0
(tij = 0) in addition to infinite U with no double oc-
cupancy discussed above, can be described by SF’s in-
teracting only by the inter-site Coulomb repulsion Vij .
This can be mapped onto Ising models, Jijσiσj , with
Jij = Vij , similarly to the Jz-term in the 1D case above.
Therefore, analogies between spin systems and CO sys-
tems can be generally expected in the presence of strong
correlation, although the mapping is only approximate
for 2D and 3D systems with finite tij and U , and even
for 1D systems with finite U .

Since the charge and spin degrees of freedoms are com-
pletely decoupled in the U/t = ∞ limit, the ground state
wave function has the form |Φ〉 = |φSF〉|χσ〉, where |φSF〉
is the ground state of SF’s and |χσ〉 denotes the spin
configuration. On the other hand, at finite U/t, these
spins interact with each other. In the large-U region,
recently Tanaka and Ogata53 analytically discussed the
V -dependence of the magnetic susceptibility χ. This is
done by extending the large-U studies of the 1D Hub-
bard model based on the Bethe ansatz,54, 55 where the
charge degree of freedom can be represented by SF’s,
and the spin degree of freedom is described by Heisen-
berg spin chains with an effective exchange coupling Jeff .
For the 1D EHM, according to the degenerate perturba-
tion theory,55 the degeneracy of the spin system is lifted
by a term proportional to J = 4t2/U . However, because
of the presence of the charge degree of freedom, Jeff is
not just equal to J , but also depends on the probabil-
ity of finding two SF’s on nearest-neighbor sites, namely,
〈nini+1〉SF ≡ 〈φSF|nini+1|φSF〉. (There is another con-
tribution to Jeff discussed in ref. 53.) This value de-
creases as V increases and its derivative with respect
to V is continuous even at Vcr/t,51 where the CO tran-
sition occurs. This is because the phase transition is a
Berezinskii-Kosterlitz-Thouless (BKT) type,56, 57 which
is essentially different from either first or second order
transition. The divergence of the correlation length is
more rapid than any power law, and then the gap in-
creases very slowly near the critical point: the charge
gap behaves as ∆c ≃ 4π exp(−π2/2(2(ρ−1))

1

2 ),53, 58 with
ρ = V/2t ≥ 1. Reflecting these, χ increases as a mono-
tonic function of V since χ is proportional to 1/Jeff ,54, 55

continiously through the CO transition point (see also
Fig. 5). This indicates that the fluctuation is large near
the phase boundary even in the CO states, and conse-
quently CO has small effect on the spin degree of free-
dom.

For whole finite values of U and V , Mila and Zotos31

first provided the ground state phase diagram on the
plane of U/t and V/t, using numerical Lanczos exact di-
agonalization (ED) method59 for finite size systems up to
L = 16 sites. They have judged the metal-insulator phase
boundary by calculating the charge gap for finite sys-
tems as ∆c = [E0(L/2+1)+E0(L/2−1)−2E0(L/2)]/2,
where E0(n) is the ground state energy for n electron
system (n = L/2 for quarter-filling), and extrapolating

Fig. 4. Ground state phase diagram of the one-dimensional ex-
tended Hubbard model at quarter-filling on the plane of U/t
and V/t.63 CO stands for charge order and TLL for Tomonaga-
Luttinger liquid. SC represents the superconducting phase. Con-
tour map for the Tomonaga-Luttinger parameter Kρ is shown.
The bold line represents the boundary for the metal-insulator
transition. The shaded area is the region with an exponentially
small gap. [By courtesy of S. Ejima.]

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

χ

V

U=10
U=8
U=6

Fig. 5. Spin susceptibility χ calculated by exact diagonalization
as a function of V for several values of U at quarter filling (t =
1).53 Solid squares represent exact results in the one-dimensional
Hubbard model and arrows indicate the points above which the
charge gap opens. [After ref. 53.]

the results to the thermodynamic limit. Later, differ-
ent numerical methods have been applied by different
authors32, 60–63 and the main features are confirmed;
the phase diagram by Ejima et al.63 is shown in Fig. 4,
which is determined by the density matrix renormaliza-
tion group (DMRG) method treating system sizes up to
more than L = 100 sites. The CO insulating state is
in the large (U/t, V/t) region, while the metallic state
in the rest is the TLL. The TLL parameter Kρ, which
is the exponent characterizing the power of the correla-
tion function, becomes equal to Kρ = 1/4 at the phase
boundary (Kρ = 1 at U = V = 0). As U is increased,
this phase boundary approaches to (U/t = ∞, V/t = 2),
the exact value explained above.

The magnetic susceptibility χ has been discussed in
ref. 53 for such finite (U/t, V/t). This is done numeri-
cally by the Lanczos ED method up to L = 16 sites, as
shown in Fig. 5 where χ at T = 0 for several values of
U/t and V/t are plotted. The TLL property χ = 2/πuσ

is used with uσ being the velocity of the spin excita-
tion (i.e., the spin velocity).64 The critical values for the
metal-CO insulator transition are indicated by arrows in
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Fig. 6. (Color online) Coexistence of charge order and dimeriza-
tion in the one-dimensional dimerized extended Hubbard model

for TM2X. This is a schematic drawing of the mean-field solu-
tion, where antiferromagnetism also coexists.35 Charge dispro-
portionation exists as in the charge ordered state in Fig. 3 (a)
whereas the amount of spin moment, parallel whithin dimers
and antiparallel between them, are also disproportionated in a
similar way.

Fig. 5. One can see that χ increases with V , namely, Jeff

is suppressed as in the large-U case above. χ smoothly
varies as a function of V even through the CO phase tran-
sition, as in the exact calculation in the large-U case.53

The spin susceptibility is again not affected much by the
opening of a charge gap. This is consistent with field the-
oretical studies that we will see in § 2.3, indicating the
transition to be of the BKT type for finite (U/t, V/t) as
well.

In the presence of finite dimerization δd, it has been
well known for the V = 0 case, namely, the 1D dimer-
ized Hubbard model, that δd together with U always give
rise to the dimer Mott insulating state (Fig. 2(b)) for
quarter-filling. This is because δd opens an energy gap
at ±2kF in the non-interacting energy dispersion making
the lower band effectively half-filled. Then even for an in-
finitesimal repulsion the system becomes a Mott insula-
tor which is characteristic of 1D half-filled electronic sys-
tems. This situation have been theoretically investigated
extensively,65 from the large-U case66, 67 to the small-U
case.68 When finite V is added, there arises a competition
between two insulating states, this dimer Mott insulator
and the CO insulator.35 The CO state here can be con-
sidered as a coexistence of dimerization and CO as seen
in Fig. 6. Accurate numerical calculations are yet to be
done and now in progress,33, 69–71 so let us discuss such
competition in the next subsection.

2.3 Bosonization

The bosonization method is one of the most powerful
tools to treat 1D systems analytically.72 In this approach,
quantum fluctuation, which plays an essential role on the
electronic state in 1D systems, can be fully taken into
account, in contrast to the MF theory. Furthermore, the
analytical treatment enables us to capture insight of the
physics, e.g., found in numerical calculations discussed
in the previous subsection. It has been successfully ap-
plied to H1D in eq. (2) by Yoshioka et al.,73, 74 as in the
following, who clarified the relation between such lattice
models and the conventional “g-ology” picture.

In the ordinary bosonization procedure, only the one-
particle fermion states around the two Fermi wavenum-
ber, ±kF, are considered and the four body interaction in
the Hamiltonian is expressed in terms of these states. In
quarter-filled systems, the 8kF-Umklapp scattering ex-
ists75–78 because of kF = π/(4a) with a being the lat-
tice spacing and it is crucial for the appearance of the
insulating state. However, one can not obtain this Umk-
lapp scattering by the ordinary method above. This is
because it can only be expressed by the interaction pro-
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Fig. 7. (Color online) Diagrams representing the 8kF-Umklapp
scattering. Here p = +/− expresses the right/left-going one-
particle states and the solid and the dotted lines express the
electrons near ±kF and ±3kF, respectively.

cesses where four right-going electrons are scattered into
the left-going states and vice versa to gain (or loose) 8kF,
and then the scattering should include higher order in-
teraction processes through the one-particle state around
±3kF.

A systematic way to derive the 8kF-Umkpapp scatter-
ing has been developped73, 74 as follows. The one-particle
states are divided into two parts: the states near ±kF and
those near ±3kF. The effective Hamiltonian written in
terms of the former states near ±kF is obtained by inte-
grating out the one-particle states near ±3kF and treat-
ing the interaction processes including both the states
near ±kF and those near ±3kF perturbatively. The 8kF-
Umklapp scattering appear in the third order interaction
processes shown in Fig. 7.

Then we can express the effective phase Hamiltonian
for the 1D EHM with δd = 0, by using the bosonic phase
variables representing the charge and spin fluctuations.79

The Hamiltonian is divided into the charge part, Hρ,
and the spin part, Hσ, which is essentially the same as
that of the 1D isotropic Heisenberg model with a gapless
excitation. Hρ is given by the sine-Gordon model shown
below,

Hρ =
vρ

4π

∫

dx

{

1

Kρ
(∂xθρ)

2 + Kρ(∂xφρ)
2

}

+
g1/4

2(πα)2

∫

dx cos 4θρ, (3)

where [θρ(x),−∂x′φρ(x
′)/(2π)] = iδ(x − x′), and vρ and

Kρ are the velocity of the charge excitation and the TLL
parameter introduced in § 2.2, respectively. The quantity
α−1 is the ultraviolet cutoff of the order of a−1.

The coefficient of the non-linear term g1/4 express-
ing the 8kF-Umklapp scattering is written as, g1/4 =
(Ua)2(Ua − 4V a)/8(πtα)2. The order parameter of CO
at the i-th site, OCO(xi) is given by using the phase vari-
ables, as OCO(xi) ∝ cos(4kFxi + 2θρ) = (−1)i cos 2θρ,
where xi = ia. This indicates that CO is stabilized
for θρ = 0 and θρ = π/2, whereas it disappears for
θρ = π/4 and θρ = 3π/4. The former and the latter
can be realized in the case of g1/4 < 0 and g1/4 >
0, respectively. This shows explicitly the fact that the
inter-site Coulomb repulsion V stabilizes the CO state
through the decrease of g1/4 < 0 as V is increased.
We note that this condition g1/4 < 0 for the appear-
ance of CO, i.e., 4V > U , is also a necessary condition
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in the MF treatment. This is based on the charge sus-
ceptibility within random phase approximation (RPA) ,
χc(q) = χ0(q)/[1 + (U + 4V cos qa)χ0(q)], where χ0(q) is
the noninteracting charge susceptibility taking a positive
value; 4V > U is required for χc to diverge at qa = π,
i.e., for the realization of the CO state with q = 4kF.

The low energy property of the phase Hamiltonian Hρ

is determined by the renormalization group equations by
introducing l = ln(α′/α) with a new scale α′ (> α),

d

dl
Kρ(l) = −8G1/4(l)

2Kρ(l)
2, (4)

d

dl
G1/4(l) = (2 − 8Kρ(l))G1/4(l). (5)

The initial conditions are Kρ(0) = Kρ and G1/4(0) =
g1/4/(2πvρ). Whether the system is in the metallic TLL
state or in the CO insulating state is determined by
the l → ∞ solutions characterized by G1/4(∞) = 0 or
G1/4(∞) = −∞, respectively. The phase boundary de-
termined by the renormalization group equations, where
Kρ(∞) = 1/4, is shown by the dotted curve in Fig. 8
where α = 2a/π is used. This phase transition is of BKT
type since the sine-Gordon theory is equivalent to the
low-energy properties of the classical 2D XY model. The
phase diagram obtained by the present bosonization the-
ory is qualitatively the same as that shown in Fig. 4.

The bosonization theory above can be straightfor-
wardly extended to include the dimerization δd together
with finite V .80 As a result of the energy gap at ±2kF in
the non-interacting energy dispersion due to finite value
of δd, in addition to Hρ in eq. (3), the 4kF-Umklapp scat-
tering is generated.68 This is expressed in terms of the
phase variables as,

H1/2 = − g1/2

2(πα)2

∫

dx sin 2θρ, (6)

where g1/2 is proportional to δd for |δd| ≪ 1. The ground
state phase diagram in the presence of δd determined by
the renormalization group equations, on the plane of V/t
and U/t, is shown in Fig. 8. Due to the 4kF-Umklapp
scattering, the metallic TLL state changes to the dimer
Mott insulating state with uniform charge distribution
even for infinitesimal interactions, as expected from the
works for V = 0.65 The CO insulating state (Fig. 6) is
suppressed because the commensurability energies due to
the two kinds of Umklapp scattering compete with each
other for g1/4 < 0 and H1/2 has a larger scaling dimen-
sion. Nevertheless, importantly, the CO phase still exists
in the large (U/t, V/t) region. This model for the charge
sector having two non-linear terms is called the double
frequency sine-Gordon model and it is suggested that the
phase boundary between the dimer Mott insulator and
the CO insulator is an Ising type phase transition, where
the charge gap ∆c becomes 0 at the phase boundary.71, 81

2.4 Interchain coupling

In purely 1D systems, phase transitions do not occur at
finite temperatures because any ordered state collapses
due to thermal fluctuations. In this sense, the critical
temperature for CO, TCO in the 1D EHM that we have

0 5 10
0

5

V/t

U
/t δd=0.1

CO insulator

Mott insulator

δd=0.0

Fig. 8. Ground state phase diagram of the one-dimensional
dimerized extended Hubbard model at quarter-filling on the
plane of V/t and U/t, determined by the renormalization group
equations for the bosonized phase Hamiltonian. The solid curve
expresses the phase boundary between the charge ordered (CO)
insulator and the dimer-type Mott insulator for δd = 0.1,80 while
the dotted curve shows the boundary for δd = 0.0 where the Mott
insulating phase is replaced by the Tomonaga-Luttinger liquid73

(see Fig. 4).

discussed in § 2.2 and 2.3 is always absolute zero temper-
ature. However, quasi-1D materials such as DCNQI2X
and TM2X undergo phase transitions at finite tempera-
tures, which is a consequence of the three (or two) dimen-
sionality. In the electronic sector, there exist two kinds
of interchain couplings; one is the single particle hopping
between the chains (tinter) and the other is the mutual
Coulomb interaction between electrons in different chains
(Vinter). As mentioned in § 2.1, tintra/tinter is of the order
of 10 in the DCNQI and TM salts, while the interchain
Vinter may be of the same order with the intrachain Vintra.
There are quantum chemistry studies for TM2X actually
showing that it the case.46, 47

The interchain hopping tinter generates warping of the
Fermi surface in the non-interacting band structure. In
TMTSF2X compounds, because of this effect, together
with the weaker effect of Coulomb repulsion than in their
TMTTF analogs, the strongly correlated insulators such
as CO and dimer Mott insulators are not realized. Then
the Fermi surface persists down to low temperatures.
Such a dimensional crossover in half-filled models are the-
oretically discussed82 while that in the quarter-filled CO
systems remains to be investigated. This should be rele-
vant to the pressure-induced melting of CO observed in
DI-DCNQI2Ag,21 where the CO transition turns from a
second order to a first order phase transtition by applying
pressure, and a region with T 3-resistivity appears in the
metallic state at the verge of the CO phase. In TM2X , in
contrast, the system becomes unstable due to the nesting
of the Fermi surface toward a metal-insulator transition
to an incommensurate spin-density-wave (SDW) ground
state, which have also been studied intensively.6, 12, 23

Effects of the interchain Coulomb repulsion on the CO
state have been discussed recently by Yoshioka et al.83 by
using the bosonization method described in the previous
subsection. When one considers only one kind of uniform
coupling in the interchain direction, it is expressed as,

H⊥ = V⊥

∑

i,l

ni,lni,l+1, (7)

where l denotes the chain index. This may be applied
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to the DCNQI compounds as the interchain coupling is
uniform and isotropic while in TM2X the network is
more complicated as seen in Fig. 1 (we will consider
them in § 2.6). In the “interchain MF” treatment,84

the interchain part is treated within MF approximation
as, ni,lni,l+1 → 〈ni,l〉ni,l+1 + ni,l〈ni,l+1〉 − 〈ni,l〉〈ni,l+1〉,
while quantum fluctuation within the 1D chains is in-
corporated. When 〈ni〉 along the chains is written as
1/2+(−1)iδ where δ being the amplitude of CO, and an
antiphase pattern of the Wigner crystal-type CO is as-
sumed, the problem is reduced to an effective 1D model
where δ is determined self-consistently. If δ is finite, an
energy gap opens at ±2kF and as a result the 4kF-
Umklapp scattering, H̃1/2, is generated, similarly to the
case with finite dimerization discussed in § 2.3. However
this Umklapp scattering is written with a cosine function
of the phase variable but not with a sine function as in
eq. (6), as follows,

H̃1/2 =
g̃1/2

2(πα)2

∫

dx cos 2θρ, (8)

where g̃1/2 is proportinal to δ as long as |δ| ≪ 1. There-
fore, different from the case with dimerization the gener-
ated non-linear term does not compete but cooperate
with the cos 4θρ term when g1/4 < 0 in eq. (3). We
note that such term, which acts as an alternating on-site
potential upon the 1D chain, has been discussed from
another context.67 Thus, the interchain interaction sta-
bilizes the antiphase CO, and the critical temperature
TCO becomes finite. Renormalization group study on this
phase Hamiltonian83 indicates that an infinitesimal value
of V⊥ gives rise to finite TCO as long as Kρ < 1/2 in
the original 1D EHM model. This results in a sudden
enlargement of the CO insulating region in the U − V
phase diagram once V⊥ is considered, from the case of
the 1D EHM where the phase boundary is determined
by Kρ = 1/4, as in Fig. 4.

2.5 Coupling to the lattice

1D electron systems are unstable when there exist cou-
plings to the lattice degree of freedom. A well known case
is the 2kF CDW (Peierls) instability, where electron gas
becomes unstable at low temperatures toward a lattice
distortion of period 2kF when the nesting condition of
the Fermi surface is satisfied.12 In the purely 1D case
this condition is perfect so that any 1D electron system
is susceptible to the Peierls-Frölich state. Another case
is when the electrons are localized due to strong correla-
tion and the spin degree of freedom is described by a 1D
Heisenberg chain. There, the spin-lattice coupling makes
the system unstable toward a spin-singlet formation ac-
companied with a lattice distortion, i.e., the spin-Peierls
(SP) transition.85, 86 In fact, SP transition is frequently
observed in many quasi-1D A2B compounds, while its
interplay with the charge sector such as the CO and the
dimer Mott insulators is not obvious.

Let us first consider the so-called Peierls-type coupling
to the lattice degree of freedom, treated as classical vari-
ables here neglecting quantum fluctuations, in addition
to H1D in eq. (2) with δd = 0. This allows modulations
of the transfer integrals at the cost of the elastic energy,

i.e., t → t(1 + ui,i+1) + Ku2
i,i+1/2, where ui,i+1 is the di-

mensionless modulation of the lattice, controlled by the
actual movement of the molecules i and i + 1. K is the
renormalized lattice constant, which is taken to be uni-
form here but in general, as in the discussion in § 2.1 on
Vij , can be modulated; for example in the 1D model of
TM2X it would be dimerized as Ka1 and Ka2 (see Fig. 1).
Hereafter we write ui,i+1 = ui for simplicity. The “soft-
ness” of the lattice is indicated by 1/K; at K → ∞ the
system is in the “hard” limit so that the lattice does not
move and then the model reduces to the purely electronic
model, H1D.

One serious effect of this coupling is that it can gen-
erate the dimer Mott insulating state even without in-
trinsic dimerization (δd = 0). This is understood in the
U/t = ∞ limit discussed by Bernasconi et al.66 Extend-
ing the discussion in § 2.2, the charge degree of freedom
described by the half-filled interacting SF or equivalently
the S = 1/2 XXZ model is now coupled to the lattice. In
the latter model the Peierls coupling appears in the XY
term, Jxy; for Jxy = 2t ≥ Jz = V , infinitesimal spin lat-
tice coupling 1/K can drive the ground state toward SP
lattice dimerization.85 This is actually the dimer Mott
insulator when one transforms back to the original elec-
tron model. This state competes with the CO state at
large V/t, and the transition point Vcr/t increases with
increasing 1/K.87, 88

When U/t is finite, the spin degree of freedom
(in the original electronic model) becomes active. The
model have been treated by different numerical tech-
niques62, 89–91 as well as by the bosonization method.91, 92

As discussed in the previous subsections, the latter treat-
ment can clarify the physical origin of each state which
is realized. A phase Hamiltonian is derived following the
treatment in § 2.3, where nonlinear terms additional to
Hρ in eq. (3) and Hσ are generated in the presence of
the lattice dimerization ud and tetramization ut, with a
cost of lattice elastic energy Hel. These can be expressed
as

Hd = − g1/2ud

2(πα)2

∫

dx sin 2θρ, (9)

Ht = − gtut

2(πα)2

∫

dx sin(θρ − χt) cos θσ, (10)

when the lattice distortion is parametrized as ui =
ud cos (πxi/a)+ ut cos (πxi/2a + χt) where χt is a phase
factor. The term in eq. (9) is the 4kF-Umplapp term hav-
ing the form identical to eq. (6) except the presence of ud.
Therefore provided ud 6= 0 it can actually produce the
dimer Mott insulator. On the other hand, in eq. (10),
gt ∝ t couples the two phase variables for charge (θρ)
and spin (θσ). In the weakly correlated regime this term
shows the instability of the system toward the 2kF CDW
state.79

In the strongly correlated regime, on the other hand,
the competition between the CO insulator (θρ = 0 or
π/2) and the dimer Mott insulator (θρ = π/4) arises due
to the 8kF-Umklapp term in Hρ and the 4kF-Umklapp
term eq. (9), respectively. This is similar to the case in
§ 2.3 for H1D in eq. (2) with δd 6= 0, although here,
ud, and consequently the presence of the 4kF-Umklapp
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Fig. 9. Ground state phase diagram of the one-dimensional ex-
tended Peierls-Hubbard model at quarter-filling calculated by
the density matrix renormalization group method,91 on the plane
of U/t and V/t for fixed values of 1/K = 0 (dotted line, equiv-
alent to Fig. 4) and 1/K = 1 (filled line). CO-SP, DM-SP, and
CDW phases denote the coexistent state of charge order and
spin-Peierls lattice tetramization, that of dimer Mott insulator
and spin-Peierls lattice tetramization, and the weak coupling
Peierls-Frölich state. [After ref. 91.]

term itself, should be determined self-consistently. The
spin degree of freedom in these two states is derived
to be described by the same phase Hamiltonian H′

σ =
Hσ − gtut

∫

dx cos θσ + Hel, which is identical to that
of the SP model.86 Therefore the two insulating states
above are both unstable toward the non-magnetic SP
state with lattice tetramization, ut 6= 0, resulting in co-
existent states.

These symmetry broken states are in fact reproduced
in the numerical calculations. Let us show a ground state
phase diagram by Kuwabara et al.91 determined by the
numerical DMRG method in Fig. 9. The spatial mod-
ulation of the lattice distortion at each site is deter-
mined self-consistently and system sizes up to L = 36
are needed to diminish the finite-size effect. One can see
that all the states predicted in the phase Hamiltonian
appear in different regions of parameters (U/t, V/t). For
the actual pattern of charge density and lattice distortion
in each state, see ref. 91.

There is another type of coupling to the lattice de-
gree of freedom from the Peierls coupling above: the Hol-
stein coupling, which describes modulation of the one-
particle on-site energy at the cost of elastic energy. The
origin of this coupling can be the electron-molecular vi-
bration (e-mv) coupling frequently discussed in molec-
ular systems.93 This coupling is usually not large such
that the nature of phenomena due to strong correla-
tion discussed in this review is qualitatively modified.
However, recently, exceptionally large deformation of
molecules themselves coupled to charge disproportiona-
tion in (EDO-TTF)2PF6 is observed,94 suggesting large
e-mv coupling in this material.95 Another source for the
Holstein-type coupling recently considered affecting the
CO state is the influece of the X− unit implied by experi-
ments in TM2X .22, 37 The ferroelectricity observed below
the CO temperature is interpreted as the combination of
CO state in the dimerized stack of TM molecules (see
Fig. 6) and the q = 0 motion of the anions, producing
large electrical polarization.

(a)

(b)

Fig. 10. (Color online) (a) Zigzag ladder and (b) one-dimensional
chain with next nearest neighbor interactions. These two are
equivalent with each other as seen in the figure.

Numerical ED calculations for small cluster sizes up
to about L = 16 sites including this Holstein coupling
as well as the Peierls coupling suggests that the former
type works toward stabilization of the CO state in gen-
eral.62, 96 We note that since the lattice is 3D in nature,
these couplings would result in finite temperature phase
transitions,92 which are not fully investigated yet. Fur-
thermore, the inclusion of intrinsic dimerization δd in the
model might modulate the results, such as a further sta-
bilization of the dimer Mott insulating state.92, 96 Still,
systematic works which would provide unified pictures of
the quasi-1D electron-lattice coupled quarter-filled sys-
tems, together with the interchain coupling discussed in
§ 2.4, are to be done.97

2.6 Geometrical frustration

As introduced in § 2.4, the interchain Coulomb inter-
action V⊥ added to the 1D EHM stabilizes the 2D or
the 3D CO state with an anti-phase pattern between
chains. However, in the actual molecular materials the
manner of coupling between chains is frequently more
anisotropic. For example, in TM2X , as shown in Fig. 1,
three kinds of interchain bonds are formed in a zigzag
way. Then the interchain Coulomb repulsion Vb favors
the CO pattern along the b-direction to be anti-phase be-
tween chains, while Vp1 and Vp2 favor the in-phase pat-
tern. (The observed ferroelectricity in ref. 37 points to
the latter.) Since these Coulomb energies are expected
to have similar values,46, 47 the two CO patterns com-
pete with each other. This is an example of geometrical
frustration.

Effects of the geometrical frustration are intensively
studied in localized spin systems98 defined on lattice
structures with odd number of sites when rounding along
the bonds of a cell, e.g., triangular forms as in the above
example of TM2X . It is known to drive the system to-
ward destabilization of the classical antiferromagnetic
state and sometimes even result in a total destruction
of it, namely, in a spin disordered state. The analogy
between the classical picture of CO and the spin sys-
tems noted in § 2.2 naturally leads us to the problem
of geometrical frustration in CO systems, where the CO
may be destabilized as well. This was first considered by
Anderson52 in the context of the “classical” 3D CO sys-
tem, magnetite Fe3O4, described as an Ising model on
the phyloclore lattice which is a typical frustrated lattice
structure.

Treating the zigzag coupling in the 2D model for
TM2X with full anisotropy is a problem yet to be
solved. A similar situation will be discussed in § 3.3, re-
lated to the CO in quasi-2D θ-ET2X . Instead, here we
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consider a more simple system but having many com-
mon aspects: a double-chain system with zigzag cou-
plings between them, i.e., a zigzag ladder, shown in
Fig. 10. As seen in Fig. 10, it is equivalent to a 1D
model with next-nearest-neighbor interactions. Then the
EHM on this chain structure can be written as H1D

in eq. (2) with δd = 0 added by next-nearest terms,

t2
∑

iσ(c†iσci+2σ + h.c.) + V2

∑

i nini+2. In the following
we write the nearest neighbor terms as t1 and V1.

This model at quarter-filling has been studied as an
effective model for two different material systems. One
is for TMTSF2X , with t2 = 0, extending the range of
Coulomb interaction terms from the previous works.74, 99

Another is for the Cu-O subunit of a transition metal ox-
ide PrBa2Cu4O8, where the effective model for the Cu
sites has a zigzag ladder structure with t1 ≪ t2, and
V1 ≃

√
2V2 suggested by the Cu-Cu distances.100, 101

For t1 = 0 or t2 = 0, the model at U = ∞ is exactly
mapped onto XXZ models when one follows the mapping
of Ovchinnikov explained in § 2.2, therefore the analogy
between the frustrated localized spin system and the CO
system is straightforward here again.

For the t2 = 0 case, Emery and Noguera102 actually
studied the 1D XXZ model with next nearest Jz term,
while Yoshioka et al.74 studied the finite-U case by the
method described in § 2.3. In these studies the interaction
terms are treated perpurbatively from the weak-coupling
regime. They have discussed the competition between
two different CO patterns favored respectively by V1 and
V2. The one favored by V2 having wave vector 2kF (kF

defined for t2 = 0) shows 2kF SDW correlation devel-
opped. The co-existent state of 2kF SDW and 2kF CDW
was first proposed based on the MF approximation,99

to discuss such state observed in TMTSF2X .50 We note
that this “2kF” CDW is different from the Peierls-Frölich
state due to electron-lattice coupling, but it is originated
from the strong correlation, V2, i.e., it is indeed a CO
state. A possible insulating bond ordered wave phase is
also found in the above weak-coupling approaches, in the
competing region.

Numerical studies on such models on the zigzag ladder
have found a different aspect at large Vij ’s where the
weak coupling approaches above may break down: a wide
region of the metallic TLL phase between the two CO
phases.100 A phase diagram by the numerical DMRG
method is shown in Fig. 11,103 where TLL phase is widely
realized in the V1 ≃ 2V2 region, with Kρ close to 1/4
suggesting the closeness to CO. This is a consequence of
the geometrical frustration, and in such metallic phase
with both V1 and V2 having large values, the existence
of large fluctuations of both CO states is expected.104

Recently, it is pointed out that the CO state in DI-
DCNQI2Ag is affected by similar geometrical frustra-
tion. This is due to a peculiar situation where the inter-
chain configuration along each plaquette in the a-b plane
(see Fig. 1) has a spiral symmetry which is not com-
patible with the twofold periodicity generated by CO.105

Such frustration due to the spiral symmetry is also found
to exist in the process of the metal-insulator transition
in DMe-DCNQI2Cu,106 where the π-electron couples to
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Fig. 11. Ground state phase diagram of the extended Hubbard
model at quarter-filling on the zigzag ladder, determined by the
density matrix renormalization method.103 U/t1 is fixed at 10
while t2 is set to 0. Sandwitched by the two insulating CO
phases with different charge patterns, the Tomonaga-Luttinger
liquid (TLL) metallic phase is extended toward the frustrated
line V1 = 2V2. The contour lines indicate the TLL parameter
Kρ. [Reprinted figure with permission from S. Ejima et al., Phys.
Rev. B 72 (2005) 033101. Copyright (2005) by the American
Physical Society.]

the Cu d-electron producing a three-fold periodic struc-
ture107 again not compatible with the spiral symmetry,
which is beyond the scope of this review.

3. Quasi-Two-Dimensional Systems

Many theoretical works on CO states in 2D models
near half-filling have been performed, such as in the
Hubbard model and in the t-J model on the square lat-
tice, mainly devoted to the high-Tc SC cuprates and re-
lated transition metal oxides.108 However, studies on the
quarter-filled case are mostly triggered by the recent ex-
perimental findings of CO in quasi-2D molecular conduc-
tors. To the authors’ knowledge, only a few have been
done beforehand. Ohta et al.109 studied the 2D EHM
on the square lattice for different fillings including one
quarter, in fact motivated by the cuprates, while a more
specific case was studied110 to explain the CO transition
in NaV2O5 (see § 4).

Since CO has been found in many quasi-2D A2B sys-
tems such as in ET2X , theoretical works have been per-
formed on the 2D EHM adopting the full anisotropy (or
a part of it) of the materials. On the other hand, the
quarter-filled EHM on the square lattice has been studied
as well from a rather general viewpoint. Such 2D models
are difficult to analyze theoretically in a controlled way,
and intensive efforts are now in progress. We will review
the present status in this section.

3.1 Charge ordering in quasi-two-dimensional systems

Direct observation of the CO transition in quasi-2D
A2B compounds was first in θ-ET2RbZn(SCN)4,

4, 111

and next in α-ET2I3,
112 both found in 13C-NMR exper-

iments. Now many quasi-2D A2B materials, including
non-ET based compounds, are recognized to show CO.25

Their crystal structures are composed of alternating lay-
ers of A molecules and B units, and quasi-2D electronic
states are realized; tij along the interlayer direction are
small due to the insulating B layers. These materials
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Fig. 12. (Color online) Schematic representation of the 2D layers
in different polytypes of quasi-2D A2B materials. The indices
are not only for tij but also for different values of Vij , although
the degree of anisotropy can be different (see text). In the κ-
type and the λ-type structures the thick A bonds are those with
the transfer integral tA considerably larger than the others, i.e.,
dimers. [By courtesy of C. Hotta.]

have a variety in their 2D arrangements of A molecules,
sometimes even for the same chemical formula, i.e., poly-
types, classified by greek characters, α, β, κ, θ, λ, and so
on.45 Some representative examples are shown in Fig. 12,
for which the actual values of transfer integrals calculated
by the extended Hückel method we refer to, e.g. refs. 8
and 45. Because of such anisotropy in the lattice struc-
tures, the EHM we should treat, HEHM in eq. (1), would
be complicated. As was mentioned in § 1, we emphasize
that such diversity of lattice structures here is one of the
important characteristics producing the rich variety of
properties in molecular conductors. CO is in fact very
much affected by such geometry of the lattice as we will
see in the following subsections.

A theoretical approach to handle this diversity was
pursued by Kino and Fukuyama,17 who considered Hub-
bard models (Vij = 0) for ET2X , taking into account the
full anisotropy in tij for each polytype, and applied MF
approximation to the on-site Coulomb interaction term
U . By this they have provided a way to search for rela-
tions between the crystal structure and electronic prop-
erties, and also for generic understandings even among
different polytypes.113 Since the polytypes show a va-
riety, different ways of such systematic views have been
discussed by different authors since then.8, 45, 114 One way
is to consider an anisotropic triangular lattice,19, 115 re-
fined by Hotta114 as follows.

In Fig. 12, one can see that θ, α, and β-type struc-
tures have the triangular lattice as basis, “colored”
with anisotropy. Since the charge transfer is realized as
[ET2]

+X−, the one-particle HOMO bands as a whole are
quarter-filled in terms of holes. Effective models for the

materials with these symmetries would be the quarter-
filled EHM on an anisotropic triangular lattice, with Vij

having the same anisotropy as tij . For example, for the
θ-type structure with highest symmetry among the poly-
types,

Hθ = − tp
∑

〈ij〉p,σ

(c†iσcjσ + h.c.) − tc
∑

〈ij〉c,σ

(c†iσcjσ + h.c.)

+ U
∑

i

ni↑ni↓ + Vp

∑

〈ij〉p

ninj + Vc

∑

〈ij〉c

ninj, (11)

where 〈ij〉p and 〈ij〉c denotes the site pairs i and j along
the p bonds and the c bonds, respectively. In contrast,
κ and λ-type stuctures consist of dimers, i.e., pairs of
molecules connected by tij considerably larger than the
others, indicated as the A bonds in Fig. 12; if one consid-
ers the dimers as units, these structures are topologically
equivalent to θ and β-type structures, respectively. Half-
filled models on the anisotropic triangular lattice can be
effective models for such systems with large dimeriza-
tion. Then the on-dimer Coulomb repulsion Udimer can
lead the system toward the dimer Mott insulator (see
refs. 8, 17-20).

The CO states are stabilized in the former quarter-
filled models. In Kino and Fukuyama’s work on the Hub-
bard model for α-ET2I3,

116 an insulating state accompa-
nied with charge disproportionation between stacks (the
vertical stripe type CO pattern; see § 3.3) is found. How-
ever, the charge pattern there is not consistent with later
experiments. Moreover in a MF study on the Hubbard
model for the other CO material θ-ET2RbZn(SCN)4, CO
state is not even stabilized.117 Following these works, Vij

added to the Hubbard model retaining the full anisotropy
in tij , i.e., the EHM for ET2X on the anisotropic triangu-
lar lattice, has been introduced by Seo,118 who discussed
the CO states there based on the MF approximation. As
in the quasi-1D systems discussed in § 2, the intersite
Coulomb interaction is also crucial for CO in the quasi-
2D materials.

The values of Vij are in fact estimated to be appre-
ciable compared to U . As in the quasi-1D compounds in
§ 2, U is believed to be of the order of 1 eV in the ET
compounds as well, while, again, the actual values for
Vij/U estimated as 0.2 ∼ 0.7119–121 are too ambiguous
for quantitative arguments. Typical values for |tij | in the
ET materials estimated by the extended Hückel method
range around 0.1 ∼ 0.25 eV.8, 45 Therefore these ma-
terials are indeed strongly correlated systems. We note
again that the degree of anisotropy in tij and that in Vij

does not correspond in a one-to-one manner. For example
in many members of θ-ET2X described by eq. (11), |tc|
is much smaller than |tp|,24 despite of their close inter-
molecular distance resulting in Vc ≃ Vp.

121

The anisotropic triangular lattice is somewhat com-
plicated and therefore it is not only tough to handle it
theoretically but also sometimes difficult to extract ex-
plicit key parameters for the physics therein. One natu-
ral way of thinking, as was pointed out by McKenzie et

al.,122 is to study the quarter-filled EHM on the square
lattice, which is much simpler but would still show essen-
tial features of the CO transition in 2D, and even of the
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expected SC state123 (§ 3.4). In this model, there is one
kind of transfer integral t and also inter-site Coulomb
repulsion V , along nearest-neighbor sites both in x and
y directions. Such studies on the square lattice can shed
light on the properties of the anisotropic triangular lat-
tice EHM, as the former is one of the limiting cases of
the latter. For example, in the θ-type structure if we set
tc = 0, Vc = 0 and t = tp, V = Vp, Hθ in eq. (11) be-
comes equivalent to the square lattice EHM. Neglecting
tc is in fact a good approximation for θ-ET2X whereas
Vc cannot be neglected, as mentioned above, while this
square lattice case might be applied to some β′′-type
compounds.123 Note that electron-hole symmetry holds
in the square lattice EHM while tc breaks it, so relative
signs between tij become distinct. We will explain stud-
ies on the square lattice EHM first (§ 3.2) and then the
anisotropic triangular lattice case next (§ 3.3), although
the research has been developped more or less in a par-
allel way.

3.2 Extended Hubbard model on square lattice

The existence of a checkerboard type CO with wave
vector q=(π/a, π/a) on the quarter-filled square lattice
EHM, as shown in Fig. 13, has been first demonstrated
by Ohta et al.,109 for U = 8t and V = 3t. It is based on
calculations of the equal-time charge correlation function
C(q) = L−1

∑

ij〈ninj〉eiq·Rij , where L is the total num-
ber of sites in the square shaped clusters and Rij is the
vector connecting site i and j, by use of the Lanczos ED
technique with cluster sizes up to L = 16. This pattern
can be understood naturally as the extention of the 1D
case (Fig. 2(a)) from the idea of “Wigner crystal on lat-
tice”.

They have also derived an effective spin model in such
CO state by the fourth order perturbative expansion
from strong coupling, t ≪ (U, V ). It is an antiferromag-
netic Heisenberg model on the square lattice, rotated 45
degrees from the original lattice (see Fig. 13), with a
nearest neighbor exchange coupling,

J =
4t4

9V 2

(

4

U
+

1

V
+

4

U + 4V

)

. (12)

Note that even at U/t = ∞, novel ring exchange pro-
cesses break the zeroth order spin degeneracy resulting in
a finite J = 4t4/9V 3.122 Since the next-nearest-neighbor
coupling J ′ is estimated to be much smaller, an antifer-
romagnetic spin order as shown in Fig. 13 is expected
at the ground state since the square lattice Heisenberg
model shows Néel order.124

A systematic numerical Lanczos ED study was demon-
strated by Calandra et al.,125 for cluster sizes up to
L = 20. In this case, a powerful method to determine
from small systems whether the bulk system is metallic
or insulating is to evaluate the Drude weight D.126–128

It is given by

D

2πe2
= −〈0|K|0〉

4L
− 1

L

∑

n6=0

|〈n|jx|0〉|2
En − E0

, (13)

where E0 and En denote the ground state (|0〉) and ex-
cited state (|n〉) energies of the system, respectively.59 K

J

V

Fig. 13. (Color online) Checkerboard charge ordered insulating
ground state of the square lattice extended Hubbard model at
quarter filling in large U/t and V/t. An antiferromagnetic inter-
action J occurs between spins along the diagonals shown in the
figure.
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Fig. 14. The Drude weight, D, for the quarter-filled square lattice
extended Hubbard model as a function of V/t, for L = 16 and
various values of U/t (continous and dotted lines), and for L =
20 and U = 10t (dashed line).125 The arrow in the horizontal
axis marks the onset of checkerboard charge ordering for U =
10t. The inset shows the finite-size scaling of D as a function
of 1/Lx for different values of V/t with U = 10t. The metal-
insulator transition occurs at V MI

cr ≃ 2.2t. [Reprinted figure with
permission from M. Calandra et al., Phys. Rev. B 66 (2002)
195102. Copyright (2002) by the American Physical Society.]

is the kinetic energy operator and jx is the current oper-
ator in the x direction at zero wavevector (q = 0). The
occurrence of an insulating phase is marked by the expo-
nential vanishing of D with the linear size of the system
Lx =

√
L.126, 128 In Fig. 14 the results are shown, where

D is plotted as a function of V/t for different U/t. As
V/t is increased, D decreases until it eventually vanishes.
For U/t = 10 the critical value for the metal-insulator
transition is estimated as V MI

cr /t ≃ 2.2. We should note
that this might not be conclusive as an accurate value
as the finite size scaling shown in the inset of Fig. 14
is only for the three clusters L=8, 16, and 20, due to
computorwise limit. Nevertheless, for V > V MI

cr , D dis-
plays an exponential dependence with 1/Lx as expected
for an insulator,126, 128 while for V < V MI

cr , in contrast,
it weakly depends on 1/Lx extrapolated to a finite value
in the thermodynamic limit, consistent with a metallic
state. On the other hand, the occurrence of CO has been
investigated by computing C(q) systematically. The ex-
trapolation suggests V CO

cr /t ≃ 1.6, where C(π/a, π/a)
starts to show a peak as V is increased, which possibly
overestimate its value due to finite size effects. When U
decreases the critical value V CO

cr increases, similarly as in
the 1D case (see Fig. 4).
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Since the estimates above provide V MI
cr > V CO

cr , a pos-
sible CO metallic phase, not found in the 1D EHM, is
suggested. In fact, a recent variational Monte-Carlo cal-
culation129 (see next subsection) have confirmed its ex-
istence, with a CO metallic phase realized between the
uniform metallic and the CO insulating phases, i.e., at
V CO

cr < V < V MI
cr . We note that another work using

projector correlated method130 shows that such feature
is also seen at finite temperatures. This is in clear con-
trast with the purely 1D EHM discussed in § 2, where
the quantum fluctuation destroys the finite-T CO phase
transition. More theoretical efforts are needed, to explore
the overall phase diagram for this model, in the (U, V, T )
parameter space, for the critical values of CO, metal-
insulator, and antiferromagnetic phase transitions.

Although the analysis above is restricted to numerics,
the U/t = ∞ limit has been investigated analytically by
McKenzie et al.122 In this limit the square lattice EHM
reads after projecting out the doubly occupied sites as

HtV = −t
∑

〈ij〉σ

P
(

c†iσcjσ + h.c.
)

P + V
∑

〈ij〉

ninj, (14)

where P projects out the doubly occupied configurations
due to their prohibition at U/t = ∞. We refer to this
model as the t-V model; this is the generalization of the
U/t = ∞ limit of the 1D case discussed in § 2.2, whereas
the charge and spin degree of freedoms cannot be decou-
pled in 2D.

They have introduced an SU(N) generalization of this
model in which the spin index runs from 1 to N , and
carried out a slave boson theory, which have been ap-
plied to various models for strongly correlated electron
systems by different authors.131 The electron creation
operator is replaced by c†iσ = f †

iσbi, where the spinless
charged boson operator bi is introduced to keep track of
the empty sites, and f †

iσ is a fermion operator carrying
spin. In order to preserve the anticommutation relation
for the electrons the new operators must satisfy the local
constraint f †

iσfiσ + b†ibi = N/2. Hereafter, whenever a
repeated σ index appears a sum from 1 to N is assumed.
Note that the original EHM has N = 2.

In the coherent state path integral formulation132 the
Lagrangian at imaginary time τ is given by

L(τ) =
∑

i

(

f †
iσ(∂τ − µ)fiσ + b†i∂τ bi

)

− t

N

∑

〈ij〉

(f †
iσfjσb†jbi + h.c.) +

V

N

∑

〈ij〉

f †
iσfiσf †

jσ′fjσ′

+
∑

i

iλi(f
†
iσfiσ + b†i bi − N/2), (15)

where µ is the chemical potential and λi is a static La-
grange multiplier enforcing the local constraint above.
We have used the fact that c†iσciσ = f †

iσfiσ.
Following Kotiar and Liu’s work on the square lattice

Hubbard model,132 it is convenient to choose the radial
gauge to avoid possible infrared divergences where the
boson amplitude becomes a real number, ri = |bi|, and
λi becomes a dynamical bosonic field: λi(τ). By using the

relation f †
iσfiσ = N/2−b†ibi to replace one pair of fermion

operators in the V term and integrating out the other
fermionic degree of freedoms, we are left with an effective
Lagrangian which is quadratic in the boson fields.

The MF solution of the effective bosonic model is
obtained by assuming that the boson fields are spa-
tially homogeneous and time independent: ri(τ) = b and
iλi(τ) = λ. This treatment is exact in the N → ∞
limit, therefore is a base for the expansion in powers of
1/N .131, 132 The resulting MF free energy is

FMF(b, λ) = −N

β

∑

k,ωn

ln(ǫk − iωn) + λ(b2 − N

2
), (16)

where β = 1/(kBT ) and ωn is the fermion Matsub-
ara frequency. The MF eigenenergy is given by ǫk =
−2tb2(cos kx +cosky)/N +λ−µ+4V n/N . Minimization
of FMF with respect to b and λ leads to b2 = N/2−n, λ =
2t

∑

k f(ǫk)(cos kx + cos ky + 4V ). and µ is adjusted to
give the correct electron filling. This form, eq. (16), indi-
cates that the MF solution for the large-N generalized t-
V model describes just a renormalized Fermi liquid, anal-
ogous to the case of the Hubbard model.132 In the case of
quarter-filling and N = 2 (which is somewhat artificial
as one implicitly consider N to be large), the bandwidth
is reduced to half its bare value as b2 = 1/2 and the band
is shifted from its bare position by λ. Namely, the mass is
enhanced as twice the bare value, i.e., m∗/m = 1/b2 = 2.
The overall effect of the nearest-neighbour Coulomb in-
teraction, V , reduces to a constant shift in the chemical
potential.

The leading 1/N corrections modify the MF solution
so that when V/t is increased the Fermi liquid phase re-
sults in an instability toward the checkerboard type CO
state. This is seen when writing the boson fields in terms
of the static MF solution (b, λ) and the dynamic fluctu-
ating parts: ri(τ) = b+bδri(τ), and iλi(τ) = λ+ iδλi(τ).
The resulting effective action, to the second order in the
boson fields, is S = FMF + S(2), where the second term
due to the fluctuations in the boson fields is written in
the form as

S(2) =
1

2β

∑

q,νn

[

δr(−q,−νn) δλ(−q,−νn)
]

×

(

Γrr Γrλ

Γλr Γλλ

) (

δr(q, νn)
δλ(q, νn)

)

, (17)

where νn is the boson Matsubara frequency; for the
explicit form of the elements in Γ̂(q, νn) see ref. 122.
We note that Γλλ is the Lindhard function describ-
ing density-density fluctuations in the renormalized
band. The propagators of the boson fields D̂(q, νn) =
Γ̂−1(q, νn) are of the order O(1/N), as they should. The
condition for an instability of the Fermi liquid phase is
when the quadratic form (17) becomes negative at some
q for ν = 0, so that fluctuations in the charge den-
sity will decrease the free energy. This is determined by
detΓ̂ < 0 at q = (π/a, π/a) for quarter filling, which pro-
vides (V/t)cr = 0.69 for the critical value from the Fermi
liquid to the CO state for this large-N t-V model. We
note that the inclusion of diagonal hopping t′ (equivalent
to tc in eq. (11)) is easily incorporated in this scheme,
which does not modify the results qualitatively.122
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(a) (b)

(c) (d)

Fig. 15. (Color online) Charge ordered states in the quarter-filled
extended Hubbard models on anisotropic triangular lattices: (a)
vertical, (b) diagonal, and (c) horizontal stripe type states, and
(d) the threefold state. Sites with/without colored circle rep-
resent the charge rich/poor sites. The solid and dotted bonds
represent the “p” (p1 ∼ p4) and “c” (c1 ∼ c3) bonds in the θ(or
θd)-type and the α-type structures in Fig. 12.

3.3 Extended Hubbard model on anisotropic triangular

lattice

As we have seen in the previous subsection, the inter-
site Coulomb repulsion can drive the system toward CO
in 2D systems as well. In the strongly correlated regime,
the spins are described by an effective 2D Heisenberg
model with spins located on the charge rich sites. Such
aspects are common with the 1D cases discussed in § 2,
where CO results in magnetic properties of 1D Heisen-
berg chains. These knowledges are very useful in treating
the more anisotropic cases introduced in § 3.1, with full
anisotropy taken into account. There, calculations be-
yond MF are still in progress, but if we deduce from the
MF results together with the picture above, qualitative
understandings of the experiments can be obtained18 as
follows.

MF calculations on the anisotropic triangular lattice
EHM were first performed by Seo118 for different mate-
rials with θ and α-type structures. The U and the Vij

terms are treated within the standard MF treatment as
niσnjσ′ → niσ〈njσ′ 〉 + 〈niσ〉njσ′ − 〈niσ〉〈njσ′ 〉, by allow-
ing large unit cell sizes to consider various CO states
with several possible spin orders for each of them. In
fact many self-consistent MF solutions are obtained and
their ground state energies are compared. It is found that
CO states with lowest energy show a variety as shown in
Fig. 15 depending on the parameters, which is in con-
trast to the square lattice case where the checkerboard
pattern is stable. Mainly the “stripe” type CO states are
discussed in ref. 118, shown in Fig. 15(a) ∼ (c), where
the carrier densities on the charge rich and the charge
poor sites are (in some cases approximately) 1/2+ δ and
1/2 − δ, respectively. These can be considered as exten-
sions of the Wigner crystal-type CO, which can lead to
insulators in the strongly correlated regime. In general,
the vertical stripe type pattern is favored by the Coulomb
repulsion along the solid bonds in Fig. 15, while that
along the dotted bonds stabilizes the diagonal and hori-
zontal patterns.

Let us start with the MF results for the θ-type struc-

(a) θd-ET2RbZn(SCN)4 (b) α-ET2I3 

Fig. 16. (Color online) Schematic drawing of mean-field solu-
tions118 for the horizontal stripe-type charge ordered states in
extended Hubbard model on anisotropic triangular lattices for
(a) θd-ET2RbZn(SCN)4 and (b) α-ET3I3. Different “p” bonds
are represented by different lines following Fig. 12.

ture, eq. (11), which has the highest symmetry among
the polytypes. As noted in § 3.1, nearly isotropic Vc ≃ Vp

is expected,121 which gives rise to close competition be-
tween the different CO patterns. MF calculations118 for
eq. (11) at T = 0 considering the stripe type CO patterns
as in Fig. 15(a) ∼ (c), have been performed for tp = −0.1
eV, tc = 0.01 eV, taken from typical extended Hückel
parameters for θ-ET2MM ′(SCN)4 (M : Rb, Cs, Tl, etc.,
and M ′: Zn, Co, etc.),24 and U = 0.7 eV, while varying
Vp and Vc near 0.3 eV. The results show that either ver-
tical or diagonal stripe type CO solution is stabilized for
Vc . Vp and Vc & Vp, respectively, whereas the horizon-
tal pattern has rather higher MF energies. In the actual
θ-type compounds which sustain this structure down to
low temperatures, either vertical133 or diagonal134 pat-
tern of CO is indicated by optical measurements, consis-
tent with the MF results. We note that the vertical stripe
CO state here is equivalent to the checkerboard pattern
in the tc = 0 and Vc = 0 square lattice EHM discussed
in § 3.2.

In the region of Vc ≃ Vp, first in a study setting
tij = 0135 and recently in a MF study,136 a solution
with a larger periodicity called as the “threefold” state
(Fig. 15 (d)), which was not considered in ref. 118, is
found to have lower energy than the stripe-type CO
states. In this state, the carrier densities on the charge
rich and the charge poor sites are 1/2 + 2δ and 1/2 − δ,
respectively (the tij = 0 study135 provides the extreme
case of δ = 1/4, namely, carrier densities of 1 and 1/4). In
this state, the carriers can avoid the occupancy in both
neighboring pairs, Vc and Vp, therefore it is stabilized
at Vc ≃ Vp, compared with the stripe-type CO states
which cost loss in either one of these Coulomb repul-
sion terms. Such a long period state in fact appears as a
short range order as found in X-ray scattering measure-
ments137, 138 as diffusive rods (no interlayer coherence),
in the conductive states of several members of θ-ET2X .
However these are observed at different 2D wave vectors
than in the studies above, which may be resolved by in-
troducing longer range of Coulomb interactions in the
EHM.139 In any case this threefold state is metallic since
it is incompatible with the periodicity for quarter-filling,
in contrast with the stripe-type CO states which is insu-
lating in the strongly correlated regime, therefore these
instabilites should be distinguished.

Many θ-type compounds exhibiting CO undergo a
first order phase transition accompanying a structural
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transformation to a slightly dimerized structure, typi-
cally seen in several members of θ-ET2MM ′(SCN)4:

24

the θd-type structure, with a modulated molecular net-
work as shown in Fig. 12. MF calculations118, 136 under
such structure with full anisotropy of tij taken into ac-
count, but approximating Vij to be two kinds, Vp and
Vc, as in the calculation for the θ-type structure, have
been performed. The results suggest that a horizontal
stripe-type solution as shown in Fig. 16(a) can have the
lowest energy for Vc & Vp. This is the pattern observed
in these compounds, such as in θ-ET2RbZn(SCN)4 below
the metal-insluator transition temperature TMI.

138 Such
calculations have been performed by directly adopting
the low temperature structure for simplicity, while the
importance of the coupling to the lattice have been im-
plied.4, 118, 140 It is interesting to start from the high tem-
perature θ-type structure and see whether the structural
phase transition to θd-type together with the CO transi-
tion could be reproduced, which awaits future studies.

As for the α-type structure adopting the values of tij
for α-ET2I3, MF calculations118 show that a horizontal
stripe solution (Fig. 16(b)) is more stable than the other
solutions in the Vc & Vp region, in contrast to the verti-
cal stripe type solution found by Kino and Fukuyama116

stabilized in the small Vij region. This horizontal stripe
pattern is in fact in accordance with the experiments be-
low the metal-insulator CO phase transition temperature
in this material.141 It is noteworthy that, in both this salt
and in the θd-type ET2X above, the MF calculations and
the experiments agree with each other to a degree of the
actual molecules having rich and poor carrier density in
their rather complicated unit cells.

Recently, Kobayashi et al.142, 143 have extended such
MF calculations on this compound, α-ET2I3, to param-
eters under pressure, where a so-called narrow-gap semi-
conducting state is found by experiments.144, 145 The re-
sults show successive transitions from the CO insulat-
ing to the CO metallic phase, and then to a phase with
a peculiar “zero-gap” state, as a function of pressure.
This zero-gap state is characterized by a dispersion of
anisotropic Dirac fermions at a wave vector k0, which
crosses at the Fermi energy. It is noteworthy that k0 is an
incommensurate wave vector due to an “accidential de-
generacy”146 naturally emerging in the band structure of
this compound, but not related with the symmetry of the
lattice structure. There are attempts143 to explain the
anomalous transport properties observed at high pres-
sures144, 145 based on such framework.

The magnetic properties under the stripe-type CO
states can be deduced from such MF results together
with the picture mentioned above that we have learned
from the 1D cases and the 2D square lattice case. The
spin degree of freedom is expected to be described
by (quasi-) 1D Heisenberg systems with spins on the
charge rich sites along the stripes, then quantum fluc-
tuation may destroy the antiferromagnetic spin order
found in MF solutions (see Fig. 16). In fact, such be-
havior is typically observed in the measurements on θ-
ET2RbZn(SCN)4 and α-ET2I3 at ambient pressure, both
showing horizontal stripe type CO but absolutely differ-
ent magnetic behavior. In the former, the CO is real-

ized in the θd-type structure, where the MF results show
that the bonds between charge rich sites are all equiv-
alent along one kind of bond, p4 in Fig. 12 (the double
solid bonds in Fig. 16(a)), resulting in a uniform Heisen-
berg coupling Jp4 between spins along these stripes. On
the other hand, in the latter compound, the horizontal
stripe pattern results in an alternation of bonds along
the charge rich sites, p2 and p3 in Fig. 12 (the thick
solid and long dashed bonds in Fig. 16(b)), therefore
spin singlet formation due to alternating Jp2 and Jp3

can be expected. These explain the difference seen in
the magnetic susceptibility data: a Bonner-Fischer like
low-dimensional localized spin behavior in the former24

and a prominent spin-gap behavior in the latter.147 We
note that in θ-ET2RbZn(SCN)4, at lower temperature
another phase transition takes place: a spin singlet for-
mation due to the spin-Peierls mechanism along the
stripes.24 This is another experimental fact indicating
the validity of describing the magnetic properties under
stripe-type CO states as 1D Heisenberg models.

Although such procedure above is helpful in qualita-
tively understand the experiments, MF calculations can-
not accurately describe situations where quantum fluc-
tuations play crucial roles as mentioned in § 2. This is
indeed the case for the θ-type structure near Vc ≃ Vp,
as this is a situation under geometrical frustration intro-
duced in § 2.6. In fact, computations including quantum
fluctuation by Merino et al.148 showed that the competi-
tion between different CO patterns can lead to a “quan-
tum melting” of CO, which is analogous to the case of
the zigzag ladder model mentioned in § 2.6. The ground
state phase diagram on the Vc-Vp plane for fixed U = 10t
is shown in Fig. 17, which is based on the Drude weight
calculations on a L = 16 site cluster within the Lanc-
zos ED technique explained in the previous subsection.
There, a large metallic phase is stabilized in the region
of Vc ≃ Vp, as in the 1D case we have seen in Fig. 11.
The two different stripe-type CO states are stabilized in
the less frustrated regions Vc ≫ Vp and Vc ≪ Vp, which
are, in contrast, consistent with the MF studies explained
above.118

Recently another study for this EHM on the θ-type
structure using the variational Monte Carlo method
has been performed for much larger systems.129 In this
method, variational states with CO patterns together
with correlation effects are assumed and the variational
energy is calculated numerically by Monte Carlo sam-
pling.149 The features in the ED calculations above are
reproduced, such as the robust metallic phase along the
Vp ≃ Vc line. In this metallic phase, the threefold pe-
riodic modulation of charge density is found as in the
MF study136 noted above, which, however, did not fit
the L = 16 cluster used in the ED study.148 In the large
Vp ≃ Vc region, the threefold modulation is rather strong,
which becomes weaker for small Vp ≃ Vc. There, different
metallic states with stripe-type modulation, i.e., stripe-
type CO metallic states, have very close variational en-
ergies. This indicates that there is large charge fluctua-
tion104, 148 including the threefold state due to the geo-
metrical frustration.

Combining the above results of different theoretical
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Fig. 17. Lanczos exact diagonalization ground state phase dia-
gram of the quarter-filled extended Hubbard model on the θ-type
lattice structure for U = 10t.148 The figure is based on “square
lattice” representation: V and V ′ is respectively equavalent to
Vp and Vc in eq. (11), and tp = t, tc = 0. The boundaries are
extracted from the Drude weight calculation on a L = 16 site
cluster. The label M stands for metal, and COI for charge or-
dered insulator. [Reprinted figure with permission from J. Merino
et al: Phys. Rev. B 71 (2005) 125111. Copyright (2005) by the
American Physical Society.]

methods, one can consider that the horizontal stripe
CO states found in the actual θ-ET2X salts are real-
ized by relaxing the frustration effect through the struc-
tural phase transition. In clear contrast, experiments
show that members of θ-ET2X which does not show
such structural phase transition are rather conductive,
but show a gradual increase of resistivity at low temper-
atures.24 There are indications of a glassy CO state in
13C-NMR measurements,105 which seems to be related
with such large charge fluctuation. The additional disor-
der effect may be responsible for such behavior, which
awaits to be understood.

3.4 Superconductivity

Molecular conductors exhibit a variety of SC states
as found in quasi-1D Bechgaard salts and quasi-2D ET
salts.6 The issue of their mechanism, particularly the role
of spin and charge fluctuations has attracted much atten-
tion.150 When an SDW or an antiferromagnetic phase
is located next to the SC phase, it has been often as-
serted that the spin fluctuation is its origin. As an ex-
ample, κ-ET2X shows SC next to an antiferromagnetic
Mott insulating phase due to the dimerization.20 Theo-
retical calculations for the half-filled Hubbard model on
the anisotropic triangular lattice for the κ-type structure
show that the SC state here has the dx2−y2 symmetry me-
diated by antiferromagnetic spin fluctuation.151–153 Sim-
ilarity to the high-Tc cuprates has been discussed,115 and
in fact the d-wave state is stable when the lattice struc-
ture is continuously varied from the triangular lattice to
the square lattice.154, 155

On the other hand, recent experiments on 2D A2B
salts suggest the existence of a SC phase in the vicinity
of the CO phase, such as in the unified phase diagram
of θ-type compounds24 and SC is actually observed in
θ-(DIETS)2Au(CN)4 under uniaxial pressure.156 In α-
ET2I3 under uniaxial pressure, SC is even implied to
show up in the presence of CO.157 These motivated the-
oretical studies to investigate possibilities of charge fluc-

tuation as an origin of the SC state, based on the 2D
EHM on the square lattice as well as on the anisotropic
triangular lattice, which we will review in this subsection.

SC mediated by charge fluctuation was discussed first
by Scalapino et al.158 for the 3D EHM on the cu-
bic lattice. Relevance of this mechanism to the molec-
ular conductors was pointed out first by Merino and
McKenzie,123 in the quarter-filled square lattice EHM
by extending the slave-boson theory for the large-N t-V
model122 introduced in § 3.2. Later several authors159, 160

have extended the weak coupling approach by Scalapino
et al. (see below) to the square lattice case as well. Their
results all show that in the 2D case charge fluctuation
due to the nearest-neighbor Coulomb repulsion V can
induce a singlet SC state with dxy-wave symmetry.

In the slave-boson theory for the large-N t-V model,
the effective interaction Veff(q = k− k′), acting between
two quasiparticles with momentum k and −k which scat-
ter to k′ and −k′, can be calculated from the 1/N fluctu-
ations around the MF solution at N → ∞.123, 161 As the
ratio V/t is increased, the potential varies its shape devel-
oping singularities at (±π/a,±π/a) toward the critical
value (V/t)cr for the occurance of checkerboard CO, at
zero temperature (see § 3.2). This leads to an attraction
in the channel with dxy-symmetry, and the SC instabil-
ity is estimated by the coupling averaged over the Fermi
surface turning from positive to negative by decreasing
temperature.162 We note that the Fermi surface here has
poor nesting, then the pairing mechanism is induced by
the intersite Coulomb repulsion V .

The resulting T -V phase diagram is shown in Fig. 18,
where the dxy-wave SC state is next to the CO phase dis-
cussed in § 3.2, near the critical point (V/t)cr. We note
that a re-entrant behaviour for the CO phase transition
temperature is found, which is also seen in the EHM
in infinite dimension using the dynamical MF theory.163

From the strong coupling viewpoint, the spin fluctua-
tion associated with the fourth order exchange process
in eq. (12) couples the next-nearest neighbor sites anti-
ferromagnetically (see Fig. 13). This spin interaction, in
turn, cooperates with the charge fluctuation in stabiliz-
ing the dxy-wave SC state close to the CO transition.162

Search for a SC state near CO in the anisotropic tri-
angular lattice EHM has been pursued by Tanaka et

al.164 They used the RPA treatment adopting tij for
θ-(DIETS)2[Au(CN)4] as tc/tp = 0.4, and assumed an
isotropic inter-site Coulomb repulsion Vc = Vp = V , in
eq. (11). In this approximation, the ladder-type diagrams
containing V are neglected, but a recent numerical calcu-
lation in the fluctuation exchange approximation retain-
ing them160 showed that the these terms do not change
the results qualitatively. The pairing interactions for the
singlet and triplet channels are given by

V s(q, ωl) = U + V (q) +
3

2
U2χs(q, ωl)

− (
1

2
U2 + 2UV (q) + 2V (q)2)χc(q, ωl), (18)

V t(q, ωl) = V (q) − 1

2
U2χs(q, ωl)
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Fig. 18. Phase diagram of the large-N t-V model in the (T/t,V/t)
plane showing competition between metallic, superconducting
(SC), and charge ordered phases.123 The symmetry of the
Cooper pairs in the superconducting phase is dxy, which is found
near the quantum critical point (V/t)cr separating the metallic
and charge ordered phases. [Reprinted figure with permission
from J. Merino and R. H. McKenzie: Phys. Rev. Lett. 87 (2001)
237002. Copyright (2001) by the American Physical Society.]

− (
1

2
U2 + 2UV (q) + 2V (q)2)χc(q, ωl), (19)

respectively, where V (q) = 2V (cos qx + cos qy + cos(qx +
qy)) and ωl is the Matsubara frequency (x and y-
directions are taken along the p bonds in Fig. 12). χs

and χc are the spin and charge susceptibilities, respec-
tively. They are calculated within RPA as, χs(q, ωl) =
χ0(q, ωl)/(1−Uχ0(q, ωl)), χc(q, ωl) = χ0(q, ωl)/(1+(U+
2V (q))χ0(q, ωl)), where χ0 is the bare susceptibility. We
note that the terms proportional to χc in eqs. (18) and
(19) represent effective pairing potentials due to charge
fluctuation. This charge fluctuation contributes equally
to V s and to V t since it comes from the charge degrees
of freedom.

To determine the onset of the SC state, the linearized
Éliashberg’s equation in the weak coupling theory is
solved. The obtained phase diagram on the (U, V ) plane
is shown in Fig. 19 at a fixed temperature T = 0.01.
A1g(s

∗) represents the spin-singlet SC state with A1g

symmetry, which is stabilized in the vicinity of both SDW
(due to the nesting of Fermi surface) and CO (the three-
fold state discussed in § 3.3) instabilities. When V ≃ 0,
the momentum dependence of the SC order parameter,
∆(k), becomes dxy-like, similarly to the square lattice
case.123, 159, 160

Near the CO instability, on the other hand, a spin-
triplet SC with B3u symmetry is stabilized in addition to
the spin-singlet state, although the eigenvalue is slightly
smaller than that of the singlet pairing. The momen-
tum dependence of the order parameter ∆(k) shows
that it is an f -wave pairing state since it changes the
sign six times on the Fermi surface, which is similar to
the isotropic triangular lattice case.165 This SC state is
stable because the momentum dependence of V t gives
large attractive interactions at the wave vectors such as
Q = (2π/(3a), 2π/(3a)). Actually χc has a peak at Q

when (U = 3tp, V = 1.5tp) leading to a peak in V t(q).
We note that, similarly to the square lattice case, this
momentum Q is not due to the nesting instability of the
noninteracting Fermi surface: χ0(q) has no notable peak,

0

1

2

3 4 5 6

V

U

A1g(s*)

B3u(f)
CO

SDW

Fig. 19. A weak coupling phase diagram for the quarter-filled ex-
tended Hubbard model for the θ-type structure, on the (U, V )
plane at T = 0.01 (tp is set as unity and tc = 0.4).164 The
dashed lines correspond to the CO and SDW instabilities. The
superconducting order parameter with B3u symmetry is stabi-
lized near the CO instability, although its eigenvalue is slightly
smaller than that of the A1g symmetry.

and Q is determined by the momentum dependence of
V (q). A recent variational Monte-Carlo calculation129

have also found the f -wave SC state to be stabilized,
which suggests that the SC phase is near but not next
to the CO phase.

The stabilities of the dxy-wave pairing in the square
lattice and the f -wave pairing in the anisotropic trian-
gular lattice can also be understood from a naive real
space picture. The nearest neighbor inter-site Coulomb
repulsion repels electrons from the nearest-neighbor sites.
The amplitude of the order parameter in real space be-
comes larger at the four next-nearest-neighbor sites in
the square lattice, while in the anisotropic triangular lat-
tice there are six next-nearest-neighbor sites with large
amplitude. These corresponds respectively to the dxy and
the f -wave pairings.

Let us briefly mention about SC found in α-(ET)2I3
under uniaxial pressure which appears inside the CO
phase; the SC phase transition takes place at a tempera-
ture below an upturn of the resistivity is observed, which
is probably due to CO.157 RPA calculations have been
performed by Kobayashi et al.,142 based on the recon-
structed Fermi surface under the the horizontal stripe-
type CO in the metallic phase obtained in the MF re-
sults mentioned in 3.3. The results indicate that the SC
phase can appear inside the middle CO metallic phase,
in which small hole-pockets and electron-pockets both
exist.142 The suggested symmetry of this SC state is s-
wave, of which the pairing interaction is mainly given by
the spin fluctuation. This implies that in this case the
charge fluctuation is suppressed due to the actual exis-
tence of CO, and the pairing instability arises from the
newly formed Fermi surface.

4. Related Topics

In this section we briefly mention several issues re-
lated to CO in A2B systems that we have discussed.
There are many transition metal oxides showing CO
whose patterns can be identified as the Wigner-crystal
type one. Well known examples are the perovskite type
compounds,166 such as 3D AMO3 or quasi-2D A2MO4
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with M being a transition metal. When A is half substi-
tuted by another ion with different valence, as A1/2A

′
1/2,

M can become mixed valent of half integer, namely, a
“quarter”-filled situation is realized. In such cases, an
“NaCl”-type CO for the 3D, or the checkerboard-type
CO for the quasi-2D compounds is frequently observed.
This CO state is actually behind the scene for the well-
known collosal magnetoresistance effect (CMR) in per-
ovskite manganites.167 However, whereas the charge pat-
terns reminds us of the CO states in the molecular sys-
tems, the driving force in these systems is usually rather
involved. Orbital degeneracy in the d-electron under cu-
bic/tetragonal crystal field, leading to the Jahn-Teller
effect which is especially strong for the eg electron, fre-
quently results in orbital ordering and makes the elec-
tronic state highly anisotropic. This together with strong
electron correlation give rise to interesting, but at the
same time complicated phase diagrams.

Another transition metal oxide compound has been
discussed to show a similar CO transition as in the molec-
ular conductors: NaV2O5, which has been intensively
studied both theoretically as well as experimentally.168

The transition first found in the magnetic susceptibil-
ity,169 from a behavior of paramagnetic 1D localized spin
systems to a spin-gapped state at 35 K, was revealed to
be due to the CO transtion.170 The average valence of
the vanadium V4.5+ produces a quarter-filled dxy-band,
which leads to an effective 2D quarter-filled model. It is
the EHM, HEHM in eq. (1), on the so-called trestle lat-
tice, where two-leg ladders along the a-axis are coupled in
a zigzag way along the b-axis. A MF study110 predicted
a CO state with a “zigzag” pattern, which is now con-
firmed experimentally.171 As discussed in § 3, such a 2D
model is difficult to study in a controlled way, and some
authors studied the quarter-filled EHM on a two-leg lad-
der system.168, 172 In fact, ladders are also found to be
realized in molecular systems,173 which is an interesting
target for future studies.

Recently, a triangular lattice system NaxCoO2 is at-
tracting interest due to a SC state appearing when in-
tercalated by water, H2O.174 At x = 0.5, a stripe-type
CO state is stabilized, which is discussed to be coupled
to the ordering of Na+ ions.175 This reminds us of the
CO state in θ-ET2RbZn(SCN)4 where the CO transition
couples to the lattice degree of freedom and relaxes the
geometrical frustration by lowering the symmetry of the
lattice. Similar theoretical approaches to those discussed
in this review have been applied to the EHM176 and the
“t-V ” model177 appropriate for this compound.

In the research field of molecular A2B materials, one
important direction of evolution is the inclusion of d-
electron spin introduced in the B unit coupled to the
organic π-electron on A, the so-called π-d systems.178

The role of CO here is not clear as it seems that most
of such materials are realized in effective half-filled sys-
tems such as in the κ- and λ-type structures. It is desired
that π-d systems with a quarter-filled π-band would be
investigated. It is to be noted that a theoretical work on
slightly different molecular system TPP[FePcCN2]2 (Pc:
pentacene), where the S = 1/2 Fe3+ ion is implanted
in the donor π molecule itself, showed that the interac-

tion between localized spins would highly stabilize the
CO state and predicted a novel ferromagnetic ground
state.179

Many different kinds of molecular conductors are con-
tinuously and constantly synthesized. We expect that CO
states will appear ubiquitously in the new materials as
well. Sometimes the effects of CO may be secondary; one
recent example is the case of ABx with x being an incom-
mensurate value close to 1/2, i.e., with an off quarter-
filled band. An “incommensurate Mott insulator” has
been theoretically proposed,180 possibly realized in re-
cently synthesized (MDT-TS)(AuI2)0.441,

181 where the
CO instability at quarter-filling indirectly controls the
peculiar Mott transition of the system.

5. Summary

To summarize, we have reviewed theoretical studies
on charge ordering and related phenomena in the 2:1
charge transfer molecular conductors expressed as A2B.
The charge ordered states are successfully described by
extended Hubbard models which starts from the tight-
binding model treating the anisotropy carefully enough
and consider the electronic correlation, i.e., not only
the on-site but also the inter-site Coulomb repulsion,
and in some cases with the coupling to the lattice.
The physics therein is rich, revealed by considerably nu-
merous amount of studies, but still many issues arise
from extensive experiments which anticipate future in-
vestigations. Encouraged by this success of understand-
ing the apparently complex system based on construct-
ing microscopic models and treating them by different
theoretical techniques, frontiers of research in this field
are just about to expand. For example, recent activi-
ties on the photo-induced phase transitions in A2B sys-
tems145, 182 requires theoretical efforts with new methods
to explore their nonequilibrium dynamics from the mi-
croscopic models. Furthermore, there is ambitious pro-
posals183 to apply our knowledge to even more complex
molecular assemblies such as bio-related materials.
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