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Abstract. Randomized search heuristics like simulated annealing and
evolutionary algorithms are applied successfully in many different situ-
ations. However, the theory on these algorithms is still in its infancy.
Here it is discussed how and why such a theory should be developed.
Afterwards, some fundamental results on evolutionary algorithms are
presented in order to show how theoretical results on randomized search
heuristics can be proved and how they contribute to the understanding
of evolutionary algorithms.

1 Introduction

Research on the design and analysis of efficient algorithms was quite successful
during the last decades. The very first successful algorithms (Dantzig’s simplex
algorithm for linear programming and Ford and Fulkerson’s network flow al-
gorithm) have no good performance guarantee. Later, research was focused on
polynomial-time algorithms (see Cormen, Leiserson, and Rivest (1990)) and this
type of research has been extended to approximation algorithms (see Hochbaum
(1997)) and randomized algorithms (see Motwani and Raghavan (1995)). Indeed,
designing and implementing an efficient algorithm with a proven performance
guarantee is the best we can hope for when considering an algorithmic prob-
lem. This research has led to a long list of efficient problem-specific algorithms.
Moreover, several paradigms of algorithms have been developed, among them
divide-and-conquer, dynamic programming, and branch-and-bound. There are
general techniques to design and analyze algorithms. However, these paradigms
are successful only if they are realized with problem-specific modules.

Besides these algorithms also paradigms for the design of heuristic algorithms
have been developed like randomized local search, simulated annealing, and all
types of evolutionary algorithms, among them genetic algorithms and evolution
strategies. These are general classes of search heuristics with many free modules
and parameters. We should distinguish problem-specific applications where we
are able to choose the modules and parameters knowing properties of the con-
sidered problem and problem-independent realizations where we design a search
heuristic to solve all problems of a large class of problems. We have to argue why
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one should investigate such a general scenario. One main point is that we obtain
the frame of a general search heuristic where some details may be changed in
problem-specific applications. Moreover, there are at least two situations where
problem-independent algorithms are of particular interest. First, in many appli-
cations, one has not enough resources (time, money, specialists,...) to design a
problem-specific algorithm or problem-specific modules. Second, often we have
to deal with “unknown” functions which have to be maximized. This scenario is
called black box optimization. It is appropriate for technical systems with free
parameters where the behavior of the system cannot be described analytically.
Then we obtain knowledge about the unknown function only by “sampling”.
The t-th search point can be chosen according to some probability distribution
which may depend on the first t — 1 search points z1, ..., x;_1 and their function
values f(x1),..., f(x4—1). One main idea of all randomized search heuristics is to
“forget” much of the known information and to make the choice of the probabil-
ity distribution only dependent on the “non-forgotten” search points and their
f-values.

Our focus is the maximization of pseudo-boolean functions f : {0,1}" — R
which covers the problems from combinatorial optimization. We investigate and
analyze randomized search heuristics which are designed to behave well on
“many” of the “important and interesting” pseudo-boolean functions. Obviously,
they cannot beat problem-specific algorithms and, also obviously, each random-
ized search heuristic is inefficient for most of the functions. The problem is to
identify for a given randomized search heuristic classes of functions which are op-
timized efficiently and to identify typical functions where the heuristic fails. Such
theoretical results will support the selection of an appropriate search heuristic
in applications. One may also assume (or hope) that the search heuristic be-
haves well on a function which is “similar” to a function from a class where it
is proved that the heuristic is efficient. Moreover, the proposed results lead to
a better understanding of search heuristics. This again leads to the design of
improved search heuristics and gives hints for a better choice of the parame-
ters of the search heuristic. Finally, analytical results support the teaching of
randomized search heuristics.

In black box optimization the black box (or oracle) answers queries x with
f(z) where f : {0,1}" — R is the function to be maximized. Since queries
are expensive, the search cost is defined as the number of queries. For a fixed
search heuristic let X; be the random number of queries until “some good event”
happens. The good event in this paper is that a query point is f-maximal. Then
we are interested in the expected optimization time E(Xy) and the success
probability function s(¢) := Prob(X; < ¢). This is an abstraction from the real
problem, since obtaining the f-value of some optimal x does not imply that
we know that = is optimal. In applications, we additionally need good stopping
rules.

Our focus is on evolutionary algorithms which have been developed in the
sixties of the last century and which have found many applications during the
last ten years. Evolutionary algorithms are described in many monographs (Fogel



(1995), Goldberg (1989), Holland (1975), Schwefel (1995)) and in a more recent
handbook (Béck, Fogel, and Michalewicz (1997)). The experimental knowledge
is immense, but the theory on evolutionary algorithms is still in its infancy. One
can find several results on the one-step behavior of evolutionary algorithms, but
these results most often have no implications on the expected optimization time
or the success probability function. The famous schema theorem belongs to this
category. There are even more results using simplifying or even unrealistic as-
sumptions. The building-block hypothesis is such an idealized hypothesis which
has turned out to be wrong in many realistic scenarios. Another idealized anal-
ysis works with “infinite populations”. This makes it possible to apply methods
from statistical dynamics. We claim that it is necessary to develop results on the
expected optimization time and the success probability function which are not
based on any assumptions, in particular, for generic variants of evolutionary al-
gorithms and for “interesting” subclasses of functions. This does not exclude the
investigation of fundamental problems without direct implications for concrete
algorithms. The paper of Rabani, Rabinovich, and Sinclair (1995) is exemplary
for such an approach.

In the rest of the paper, we elucidate our approach with some results. In
Section 2, we introduce the simplest variant of an evolutionary algorithm, the
so-called (14 1)EA, and in the following three sections we present results on the
behavior of the (1 4+ 1)EA. In Section 3, we investigate monotone polynomials
of bounded degree and, in Section 4, the special classes of affine functions and
royal road functions. Section 5 contains an overview of further results on the
(14 1)EA and some of its generalizations. In Section 6, we introduce a generic
genetic algorithm which applies a crossover operator and discuss why it is more
difficult to analyze evolutionary algorithms with crossover than evolutionary
algorithms based solely on mutation and selection. Section 7 contains the first
proof that crossover reduces the expected optimization time for some specific
function from exponential to polynomial. We finish with some conclusions.

2 A simple evolutionary algorithm

We describe the simplest variant of an evolutionary algorithm which works with
population size 1 and is based solely on selection and mutation.

Algorithm 1 ((1 + 1)EA).

1.) Initialization: The current string = € {0,1}" is chosen randomly using the
uniform distribution.

2.) Selection for mutation: The current string x is chosen.

3.) Mutation: The offspring 2’ of z is created in the following way. The bits ]
are independent and Prob(z; = 1 — x;) = pm(n) (this parameter is called
mutation probability).

4.) Selection of the next generation: The new current string equals /, if f(z') >
f(z), and z, otherwise.

5.) Continue at Step 2 (until some stopping criterion is fulfilled).



The generic value of p,,,(n) equals 1/n implying that, on average, one bit is
flipped. Then the number of flipping bits is asymptotically Poisson distributed
(with parameter 1). The algorithm can easily be generalized to larger population
size . Then Step 2 is not trivial. The number of offsprings can be generalized to
A. There are many selection schemes for Step 4. The most prominent are (p+ \)-
selection (the best u of the p parents and the A offsprings are chosen) and (i, A)-
selection (the best u of the A offsprings are chosen). These two selection schemes
lead to the class of so-called evolution strategies (which have been developed for
continuous search spaces R™). This explains the notion (1 + 1)EA for Algorithm
1 which can be interpreted as evolution strategy with population size 1. Another
possibility is to interpret Algorithm 1 as a randomized hill climber, since it does
not accept an offspring with a smaller f-value (fitness). A crucial point is that
each 2’ € {0,1}™ has a positive probability of being created as an offspring of
x. Hence, the (1 4+ 1)EA cannot get stuck forever in a non-optimal region. The
analysis of the (1 + 1)EA is interesting, since

— the (1 4+ 1)EA is for many functions surprisingly efficient,

— the analysis of the (1 + 1)EA reveals many analytical tools for the analysis
of more general evolutionary algorithms, and

— the (14 1)EA can be interpreted as evolutionary algorithm and as random-
ized hill climber.

The reason for larger populations is that a single search point may randomly
choose “the wrong way” and may reach a region which makes it difficult to find
the optimum. Working with a larger population one hopes that not all indi-
viduals of the current population go into a wrong direction and that some of
them find the optimum efficiently. However, the individuals are not considered
independently. If the individuals “on the wrong way” have during the following
steps a larger fitness, they may drive out all individuals “on the right way” by
selection. Hence, it is crucial to have a selection scheme which supports “enough”
diversity in the population and which nevertheless eliminates bad individuals.
Multi-start variants of the (1 + 1)EA cope in many situations with these prob-
lems, since the different runs of the (14 1)EA are independent. Performing m(n)
runs, each for t(n) steps, leads to a success probability of 1 — (1 — s(t(n)))™™),
if s(t(n)) is the success probability of a single run of the (1 + 1)EA.

3 The (1 4+ 1)EA on monotone polynomials

Pseudo-boolean functions f : {0,1}™ — R have a unique representation as poly-

nomials, i.e.,
flz) = Z wa - H X4

AC{1,...,n} icA

The degree of f is the largest size of a set A where wa # 0. It is well known
that the maximization of pseudo-boolean polynomials of degree 2 is NP-hard
and Wegener and Witt (2001) have explicitly defined a degree-2 polynomial



where not only the expected optimization time of the (1 4+ 1)EA is exponential
but also multi-start variants fail, since for some ¢ > 0 the success probability
after 2¢71987 steps is 27 (™). Such a function is almost a worst case function
for the (14 1)EA, since the expected optimization time for each pseudo-boolean
function is bounded above by n™ = 271°8"  This follows, since the probability
to produce an optimal string within one step is always lower bounded by n™".
We investigate monotone polynomials, i.e., polynomials where all weights w4,
A # (), are non-negative. The (1 + 1)EA treats zeros and ones in the same
way. Therefore, our results also hold for polynomials which are obtained from
monotone polynomials by replacing some variables x; with 7; = 1 — z;. This
includes all affine, i.e., degree-1 functions.

Knowing that a pseudo-boolean function is a monotone polynomial, the max-
imization is trivial. The all-one string always is optimal. However our motivation
is black box optimization and we like to investigate the behavior of the (1+1)EA
on monotone polynomials. This subclass of functions is interesting, since we can
investigate the expected run time with respect to natural parameters, namely
the input length n, the degree d, and the number N of terms with non-zero
weight. Moreover, improvements are not always possible by the mutation of a
small number of bits and strings with a large Hamming distance from the opti-
mum may have much larger f-values than strings close to the optimum. It is easy
to see that the degree is a crucial parameter. Garnier, Kallel, and Schoenauer
(1999) have proved that the (1 + 1)EA has an expected optimization time of
©(2™) on the n-degree polynomial zqx3 - - - x,,. For this function we are search-
ing for a needle, the all-one string 1", in a big haystack, namely {0,1}". It is
obvious that such functions are difficult for black box optimization. The cited
result can be extended to the general case of N = 1.

Lemma 1. The expected optimization time of the (1 4+ 1)EA on a polynomial
with N =1 and degree d equals ©(n2/d).

Sketch of Proof. W.l.o.g. the polynomial equals zizs - - - x4. The probability
that at least one of the d essential bits flips in one step equals 1 — (1 — %)d =
O(d/n). Hence, the expected optimization time is by a factor of ©(n/d) larger
than the expected number of so-called active steps where one of the essential
bits flips. As long as we have not found an optimal string, each new string is
accepted and we have to analyze a simple Markoff chain. This can be done
by standard arguments following Garnier, Kallel, and Schoenauer (1999). The
expected number of active steps equals ©(2%) and the upper bound O(2%) holds
for each initial string. O

This lemma proves that the (1 4+ 1)EA is efficient in the following black box
scenario. We know that the function f is one of the functions which equals 1
if 1 = a1,...,mq = aq for some (ai,...,aq) € {0,1} and 0 otherwise. No
sampling algorithm can generate a smaller average optimization time than (2¢+
1)/2. We have an additional factor of ©(n/d) for the so-called passive steps and
only an additional factor of @(1) for active steps visiting some d-prefix which has



been visited before. Moreover, for d = w(logn) we cannot hope for randomized
search heuristics with an expected polynomial optimization time.

The following analysis of the (14 1)EA on low-degree monotone polynomials
shows its efficiency on a large class of interesting functions. Moreover, the proof
presents typical analytical tools.

Theorem 1. The expected optimization time of the (1 + 1)EA on a monotone
polynomial with N non-vanishing terms and degree d < logn is bounded by
O(Nn2¢/d), i.e., by O(Nn) for constant d and by O(Nn?/logn) for all d <
logn.

Sketch of Proof. Let A(1l),...,A(N) be the N sets such that the weights
wa(;) are non-vanishing, i.e., w4(;) > 0, since the polynomial f is monotone. To
simplify the notation we set w; = wa(;) and assume w.l.o.g. that wq > -+ >
wy > 0. A weight w; is called active with respect to the string a, if a; =1 for
all j € A(i), and w; is called passive otherwise. The (1+ 1)EA can be described
by a Markoff chain on {0,1}" and we have to estimate the expected time until
we reach a string a such that all weights wy,...,wy are active with respect to
a. The f-value of the current string is not decreasing during the search process.

A quite general technique is to partition {0,1}" into “fitness layers” and to
estimate the expected time to leave a non-optimal layer. The choice of the layers
is crucial. Here we choose N + 1 layers Lo, ..., Ly where

Li = {alwi + - +w; < f(a) <wi+ - +wip1},

if i < N, and Ly := {a|f(a) = wy + -+ + wn} consists of all optimal strings.
The search process leaves each layer at most once. If T; is an upper bound for
the expected time of leaving L; from an arbitrary a € L;, then Ty + -+ + Tn_1
is an upper bound for the expected optimization time of the (1+1)EA on f. We
prove the theorem by proving that T; = O(n2?/d).

Let a € L;. Then, by definition, there exists some j < i 4 1 such that w; is
passive with respect to a. Moreover, if w; gets active while no active w,, gets
passive, we leave L;. We assume w.l.o.g. that the monomial belonging to w;
equals x1xso - -z, k < d. The idea is to compare the “complicated” Markoff
chain M; which describes the (14 1)EA on f starting with a and stopping when
it leaves L; with the “simple” Markoff chain My which describes the (1 + 1)EA
on g(x) := x1x2 - - -z starting with a and stopping when it reaches a g-optimal
string.

The analysis of My (see Lemma 1) is simple, since each string is accepted
until the process stops. M; is more complicated, since it is influenced by the other
monomials. Some new strings are not accepted, since some of the active weights
are deactivated. This can even happen for steps increasing the number of ones
in the k-prefix of the string and in the (n — k)-suffix of the string. Nevertheless,
since all weights are non-negative, we do not believe that this will be significant.
In order to simplify the analysis we choose for each m € {0,...,k} a string

= (b™,c¢™) among the strings in L; with m ones in the k-prefix b™ such
that the expected time of M; to leave L; when starting in a™ is maximal. Let



M be the Markoff chain obtained from M; by replacing each string in L; with
m ones in the k-prefix with a™. Let M4 be the Markoff chain obtained from
My by replacing each string with m ones in the k-prefix with a™. The expected
stopping time of M} is by definition of g equal to the expected stopping time
of Ms. The advantage is that M| and M} are Markoff chains on the small state
space {0,...,k} representing the number of ones in the prefix.

It is sufficient to prove that for some constant ¢’ > 0 the success probability of
M within ¢/ n2¢ /d steps is bounded below by ¢ > 0, since the expected number
of such phases then is bounded above by £~!. We analyze one phase of M| and
estimate the failure probability, namely the probability of not leaving L;.

If w; gets active, it may happen that other weights get passive and we do
not leave L;. However, if w; gets active, exactly all zeros in the k-prefix flip. The
behavior of the bits in the (n — k)-suffix is independent of this event. Hence,
with a probability of (1 — 1)"=% > e~ none of these bits flips implying that
no active weight gets passive and we leave L;. If one suffix bit flips in the step
where w; gets active, this is considered as a failure. If such a failure happens,
the next phase can be handled in the same way, perhaps with another selected
weight wy, instead of w;. This failure event decreases the success probability of
one phase at most by a factor of e~ .

We want to compare M/ with M}. In particular, we want to show that M
has a larger tendency to increase the number of ones in the k-prefix. However,
this is not necessarily true if at least three bits of the k-prefix flip. Replacing
110 with 001 may increase the f-value while the inverse step decreases the f-
value. Therefore, a step with at least three flipping prefix bits is considered as
a failure. The failure probability for one step equals (g)n_3 < d3n2 and the
failure probability for one phase is bounded above by

dn2%d " d3n =3 < dd*n~! = o(1),

since d < logn.

Let M7 and M} be the Markoff chains M| and M}, respectively, under the
assumption that within one phase there is no step with at least three flipping
prefix bits. The success probability of M{ and M} compared with the success
probability of M and M), respectively, is decreased at most by a factor of
1—0(1). Let p1(m,m+d),d € {—2,—1,0,+1, 42}, be the transition probabilities
of M{ on the state space {0,...,k} and p2(m, m + d) the corresponding values
of MY. Then

(1). pi(m,m+d) < ps(m,m+d), ifd#0
The reason is that MY accepts each new string. Moreover,
(2). p2(m,m+d)e™! < pi(m,m+d), ifd >0

This can be proved in the following way. Since at most two prefix bits are flipping,
the number of ones in the prefix increases only if all flipping prefix bits flip from
0 to 1. If furthermore no suffix bit flips (probability at least 1), the new string



is accepted by M7'. Finally, we have to prove a tendency of M7 of increasing the
ones in the prefix (in comparison to M4). We claim that

p1(m,m + d) - p1(m,m — d)
pa(m,m+d) = pa(m,m —d)’

(3) fo<m-d<m+d<k

Let us consider a™ = (b™,¢™),m < k. Let ¢" be any suffix. If M; accepts the
mutated string (b™,¢") where b™ is obtained from ™ by flipping one (or two)
ones into zeros, then M; accepts also (b7',¢™) where b7 is obtained from b™
by flipping one (or two) zeros into ones. Inequality (3) follows, since My accepts
(b7, e™) and (b™,¢™).

The Markoff chain M} can be easily analyzed using the methods of Garnier,
Kallel, and Schoenauer (1999) and its generalization in the proof of Lemma 1.
The Markoff chain M|’ has the same asymptotic behavior. Inequality (1) shows
that M{ may stay longer in some state than MJ. However, Inequality (2) shows
that the probabilities of going to a larger state are for M{" at most by a constant
factor smaller than for M4 . Hence, the effect of staying longer in the same state
has not a big influence. Inequality (3) is the most important one. It shows that
the probability of increasing the state from m to m + d within one step may be
decreased for M/ compared to M}. However, then the probability of decreasing
the state from m to m—d within one step has been decreased at least by the same
factor. This implies that the expected number of active steps (changing the state)
is for M{ smaller than for MJ. However, the proof of this claim needs a careful
analysis of the Markoff chain M{" which is omitted here. By Markoff’s inequality,
we can choose a constant ¢’ such that the success probability of M{" within one
phase of length ¢/n2%/d is at least 1/2. This implies by our considerations that
the success probability of M; within such a phase is at least 1/(2¢) — o(1) which
proves the theorem. O

We emphasize one main difference between the analysis of general randomized
search heuristics and problem-specific algorithms. Most of the problem-specific
algorithms are designed with respect to efficiency and also with respect to the
aim of analyzing the algorithm. For monotone polynomials the randomized hill-
climber flipping in each step exactly one random bit is not less efficient but much
easier to analyze than the (1+1)EA. However, this hillclimber has disadvantages
for other functions. It gets stuck in each local maxima while the (1 + 1)EA can
escape efficiently from a local maximum if a string with at least the same f-value
and short Hamming distance to the local maximum exists.

4 The (1 + 1)EA on affine functions and royal road
functions

Theorem 1 cannot be improved with respect to d, see Lemma 1 for the case
N = 1. However, our analysis seems to be not optimal for large V. In order to
leave the fitness layer L; we have waited until one specific passive weight is turned
into active. We also may leave L;, since other weights get active. Moreover,



monomials can be correlated positively, e.g., f(z) = 2z122 -+ - xg + Tax3 -+ - Tay1.
It takes some time to leave Lg, since we have to activate the first monomial.
Afterwards, no step flipping one of the first d bits which all are 1 is accepted.
Hence, the expected time to activate the second monomial is only O(n). Because
of the monotonicity of the polynomials different monomials cannot be correlated
negatively. One may think that the case of independent monomials is the worst
case.

Let n = dm. We consider monotone polynomials with m monomials with
non-vanishing weights. All monomials are of degree d and depend on disjoint
sets of variables. The special case of weights 1 is known as royal road function
(Mitchell, Forrest, and Holland (1992)), since it has been assumed that these
functions are difficult for all evolutionary algorithms without crossover and easy
for genetic algorithms (which are based on crossover).

Theorem 2. The expected optimization time of the (1 + 1)EA on royal road
functions of degree d is bounded by O(n(logn)24/d).

Sketch of Proof. First, we consider m independent functions each consisting of
one of the monomials of the royal road function with degree d. By Lemma 1 and
Markoff’s inequality, there is a constant ¢ such that the success probability for a
single monomial within cn2?/d steps is at least 1/2. The success probability after
[logn] + 1 of such phases is at least 1 — 1/(2n) and, therefore, the probability
that all monomials are optimized is at least 1/2. This leads to the proposed
upper bound in the scenario of m independent monomials. However, the (1 +
1)EA considers the m monomials in parallel. This causes only small differences.
Steps where more active monomials are deactivated than passive monomials
are activated are not accepted and monomials may be deactivated if enough
passive monomials are activated. It is not difficult to prove that this increases
the expected optimization time at most by a constant factor. O

A different proof method for Theorem 2 has been presented by Mitchell,
Holland, and Forrest (1994). The result shows that for royal road functions there
is not much room for improvements by crossover. We have seen in Section 3 that
problem-independent search heuristics cannot be successful on the average with
less than (24 +1)/2 steps. In particular, the improvement by any general search
heuristic is bounded by a polynomial factor of O(n(logn)/d). The situation gets
more difficult in the case of different weights. Then it is possible that more
monomials get deactivated than activated. In a certain sense we may move far
away from the optimum. This situation has been handled only in the case of
affine functions, i.e., polynomials of degree 1. In this case it is not necessary to
assume non-negative weights, since x; can be replaced with 1 — x;.

Theorem 3. The expected optimization time of the (1+1)EA on affine functions
is bounded by O(nlogn). It equals O(nlogn) if all n degree-1 weights are non-
zero.

Idea of Proof. The full proof by Droste, Jansen, and Wegener (2001) is involved
and long. W.lo.g. wy = 0 and wy > ---w, > 0 where w; := Wgy- The main idea



is to measure the progress of the (1 + 1)EA with respect to the “generic” affine

function
g(x1,.. ., 2p) =2 Z T + Z T;.
1<i<n/2 n/2<i<n

This function plays the role of a potential function in the analysis of data struc-
tures and algorithms. Then successful steps (z' # z and f(z') > f(z) for the
given affine function f) are distinguished from unsuccessful steps. The main step
is to prove an upper bound of O(1) on the expected number of successful steps
to increase the g-value (not the f-value) of the current string. The bound on the
number of unsuccessful steps follows then easily. Since the (1 + 1)EA accepts a
string according to its f-value, it is possible that the g-value decreases. The idea
is to design a slower Markoff chain where the g-value increases in one step by not
more than 1 and where the expected gain of the g-value within one successful
step is bounded below by a positive constant. Then a generalization of Wald’s
identity on stopping times can be proved and applied.

The lower bound is an easy application of the coupon collector’s theorem. O

Up to now we were not successful to generalize this bound to monotone
degree-2 polynomials. Nevertheless, we state the following conjecture.

Conjecture 1. The expected optimization time of the (1 + 1)EA on monotone
polynomials of degree d is bounded by O(n(logn)2¢/d).

5 Further results on the (14 1)EA and its generalizations

In Sections 3 and 4, we have tried to present typical methods for the analysis of
the (1 + 1)EA by investigating and analyzing monotone polynomials. Wegener
(2000) presents an overview on more methods. Here we mention shortly fur-
ther directions of the research on the (1 + 1)EA and its generalizations. Droste,
Jansen, and Wegener (1998) have investigated the behavior of the (1 + 1)EA
on so-called unimodal functions, where each non-optimal string has a better
Hamming neighbor. In particular, they have disproved that the (1 + 1)EA has
a polynomial expected optimization time on unimodal functions. Wegener and
Witt (2001) have shown for some special degree-2 polynomials and all squares of
affine functions that they are easy for the multi-start variant of the (1 + 1)EA,
although some of them are difficult for the (1 4+ 1)EA. When optimizing a single
monomial x1x5 - - - x4 we are exploring for a long time the plateau of strings of
fitness 0 and it would be less efficient to accept only strict improvements. Jansen
and Wegener (2000b) investigate the problem of exploring plateaus more gen-
erally. They also show that it is sometimes much better to accept only strict
improvements. It has been conjectured that the mutation probability 1/n is at
least almost optimal for the (1 + 1)EA and each f. This has been disproved by
Jansen and Wegener (2000a) who also have shown that it can be even better to
work with a dynamic (1+1)EA which changes its mutation probability following
a fixed schedule. This dynamic variant is analyzed for many functions by Jansen
and Wegener (2001b). Further strategies to change the mutation probability are
discussed by Béck (1998).



6 A generic genetic algorithm

Evolutionary algorithms based on selection and mutation only are surprisingly
successful. Genetic algorithms are based on selection, mutation, and crossover
and there is a community believing that crossover is the essential operator. The
main variants of crossover for (a,b) € {0,1}" x {0,1}" are

— one-point crossover (choose i € {1,...,n — 1} randomly and create the off-
spring (a1,...,a;,biy1,...,b,)) and

— uniform crossover (choose ¢ € {0,1}"™ randomly and create the offspring
d=(dy,...,d,) where d; = a;, if ¢; =0 and d; = b;, if ¢; = 1).

In order to apply crossover we need a population of size larger than 1. The
main problem is to combine fitness-based selection with the preservation of
enough diversity such that crossover has a chance to create strings different from
those in the population. In the following it is sufficient to require that selection
chooses = with at least the same probability as 2’ if f(z) > f(2). This implies
the same selection probabilities for z and «’ if f(z) = f(2’). Many genetic al-
gorithms replace a population within one step with a possibly totally different
new population. It is easier to analyze so-called steady-state genetic algorithms
where in each step only one offspring is created and perhaps exchanged with one
member from the current population.

Algorithm 2 (Steady-state GA).

1) Initialization: The s(n) members of the current population are chosen ran-
domly and independently.

2) Branching: With probability p.(n), the new offspring is created with cross-
over (Steps 3.1, 3.2, 3.3) and with the remaining probability, the new off-
spring is created without crossover (Steps 4.1, 4.2).

3.1) Selection for crossover and mutation: A pair of strings (z,y) from the current
population is chosen.

Crossover: 2z’ is the result of crossover on (z,y).

Mutation: z is the result of mutation of z’. Go to Step 5.

Selection for mutation: A string x from the current population is chosen.
Mutation: z is the result of mutation of .

Selection of the next generation: Add z to the current population and let W
be the multi-set of strings in the enlarged population which have the minimal
f-value and let W’ be the set of strings in W which have the largest number
of copies in W. Eliminate randomly one string from W’ from the population
to obtain the new population.

6) Continue at Step 2 (until some stopping criterion is fulfilled).

3.2
3.3
4.1
4.2

)

—

The analysis of genetic algorithms is even more difficult than the analysis of
evolutionary algorithms without crossover. Although the crossover operator is
in the focus of research since fourty years, there was no example known where
crossover decreases the expected optimization time from exponential to poly-
nomial. Experiments (Forrest and Mitchell (1993)) show that the (1 4+ 1)EA is



for the royal road functions even faster than genetic algorithms. Watson (2000)
presents a function where crossover probably helps. This is established by ex-
periments and by a proof under some assumptions but not by a rigorous proof.

7 Real royal road functions and the crossover operator

Jansen and Wegener (2001a) present the first example where crossover prov-
ably decreases the expected optimization time from exponential to polynomial.
Because of the history and the many discussions on the royal road functions
they have called their functions real royal road functions. For a € {0,1}" let
la| = a1+ -+a, and let b(a) be the block size of a, i.e. the length of the longest
block consisting of ones only (the largest [ such that a; = a;41 =+ = a;4-1 =1
for some ¢). Then

2n? ifa=(1,1,...,1)
R, m(a) =< nla|+ba) if|a]<n-m
0 otherwise.

For a proof of the following lemma see Jansen and Wegener (2001a).

Lemma 2. FEvolutionary algorithms without crossover need with a probability
exponentially close to 1 exponentially many steps to optimize the real royal road
function R, ry,/31 and with a probability of 1 —n~200871) syperpolynomially many
steps to optimize Ry, [1ogn]-

Theorem 4. Let s(n) = n, m = [n/3] and p. a positive constant less than
1. Then the expected optimization time of the steady-state GA with one-point
crossover on Ry, m is bounded by O(n*).

Sketch of Proof. Here we use the proof technique to describe intermediate
aims and to estimate the expected time until the aim is reached. The advantage
is that we can use afterwards the assumption that the last aim has been reached.
Aim 1: All strings of the population have exactly n — m ones or we have found
the optimum.

This aim is reached in an expected number of O(n?) steps. It is very unlikely
to start with strings with more than n — m and less than n ones. The expected
time to eliminate all these strings is O(1). If we then do not find the optimum, we
only have an expected waiting time of O(n/m) = O(1) to increase the number
of ones in the population. This is due to steps with mutation only. If the selected
string has less than n — m ones, there is a good chance to increase the number
of ones by a 1-bit mutation. If the selected string has exactly n — m ones, there
is a good chance to produce a replica.

Aim 2: All strings of the population have exactly n —m ones and a block size of
n —m or we have found the optimum.

This aim is reached in an expected number of O(n® logn) steps. If we do not

find the optimum, we only have to increase the sum of the block lengths of the



strings of the current population. If not all strings have the same block length,
it is sufficient to produce a replica of a string with a non-minimal block length.
Otherwise, certain 2-bit mutations increase the block length.

Aim 3: All strings of the population have exactly n — m ones, a block size of
n —m, and each of the m + 1 different strings with this property is contained in
the population or we have found the optimum.

This aim is reached in an expected number of O(n*) steps. If we do not find
the optimum, there is always at least one string in the current population such
that a 2-bit mutation creates a string with n — m ones and block size n — m
which was not in the population before.

Aim 4: The optimum is found.

This aim is reached in an expected number of O(n?) steps. This is the
only phase where crossover is essential. With a probability of at least p.(n)/n?
crossover is chosen as search operator and 1”~™0™ and 0"1"~™ are selected.
Then, with a probability of at least 1/3, one-point crossover creates 1" and fi-
nally, with a probability of at least e™!, mutation preserves 1™ and we have
found the optimum. O

Uniform crossover is less efficient for these functions. The probability of cre-
ating 1™ from 1"~™0™ and 0™1™ ™ is only 272™. This leads to a polynomial
expected optimization time only if m = O(logn). Hence, crossover reduces the
expected optimization time for some functions only from superpolynomial to
polynomial. Jansen and Wegener (2001a) have presented a more complicated
function where uniform crossover decreases the expected optimization time from
exponential to polynomial.

One may ask what happens if we replace in the definition of R,, ,,, the value
of b(a) by 0. Then the size of the plateau of the second-best strings increases
from m + 1 to (:fl) and it is much harder to generate enough diversity. Jansen
and Wegener (1999) have investigated this function. With uniform crossover
and the very small crossover probability p.(n) = 1/(nlog®n) they could prove a
polynomial expected optimization time for m = O(logn). This proof is techni-
cally much more involved than the proof of Theorem 4 and its counterpart for
uniform crossover. Altogether, we have only made the first steps of analyzing
genetic algorithms with crossover.

Conclusions

We have argued why one should investigate and analyze different forms of ran-
domized search heuristics, among them evolutionary algorithms. The differences
in the analysis of problem-specific algorithms and general search heuristics for
black box optimization have been discussed. Then our approach has been pre-
sented by analyzing some evolutionary algorithms on subclasses of the class of
monotone polynomials and by proving for the first time that crossover can de-
crease the expected optimization time significantly.
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