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Abstract. We present theoretical studies of high-order harmonic generation in a rare-gas 

medium. The experimental results obtained at Saclay with a 1064 nm Nd-vnc laser in the 

IO" W cm-' intensity range are summarized. The harmonic emission strengths first decrease 

rather steeply far the first orders, then form a long plateau up to the Zlst harmonic in 

xenon, or up to the 33rd harmonic in argon, before decreasing again rather abruptly. The 
theoretical description of these experiments consists first in the calculation of the phato- 

emission spectra emitted by a single atom. The spectra are obtained by numerically 

integrating a time-dependent SchrBdinger equation for the laser-excited rare-gas atom. 

Second, one must account for collective effects in the medium, described by Maxwell's 
equations. A theoretical framework for describing the generation and propagation of 

harmonics in strong laser fields is developed. A numerical solution of the propagation 

equations for the harmonic fields in xenon at 1064nm provides results which agree well 
with experimental data. We discuss the role of phase matching in the high-order harmonic 

generation experiments. The main conclusion is that phase matching is determined not 

only by the variation of the phases of the interfering fields in the non-linear medium, but 

also by the variation of the amplitudes throughout the medium. We find orders of magnitude 

improvement in phase matching in a strong-field regime compared with the perturbative 

limit. 

1. Introduction ' 

An intense laser focused into a 10 Torr rare-gas vapour leads to the generation of very 

high-order odd harmonics of the pump field. Experiments performed at the University 

nf!!!inok e! Chicagn (Xtphersnn e! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!Os?, Xosman e! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa! 1988) shnwed !he generz!ion 

of up  to the 17th harmonic of a 248 nm KrF laser in a neon vapour. The 33rd harmonic 

in argon and the 21st harmonic in xenon have been observed at Saclay using a 1064 nm 

Nd-YAG laser (Ferray er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal 1988, Li er al 1989). This was recently extended to the 

25th harmonic of a KrF laser by Sarukura er al (1991) and to !he 53rd harmonic of a 

1 ps 1053 nm Nd-glass laser by L'Huillier ef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/ (1991a), both produced in a neon 

vapour. These experiments performed with short pulses and a! high laser intensities 

result in very short wavelength coherent radiation, 10 nm (125 eV) for the 25th harmonic 

of a 248 nm laser, 20 nm (62 eV) for the 53rd harmonic of a 1053 nm laser. Efficiencies 

are of the order of 10-l'-lO-q. These frequency conversion processes might lead to 

useful sources of short pulse, short wavelength coherent radiation. They seem to be 

much more promising than previous experimental investigations performed with longer 

p!se ir?frared ! Ism !Me!rhkov e! a! 1977, Groseva e! a! Wi!denauer !?U! or 
ultraviolet pump fields (Reintjes et nl 1978, 1981, Bokor er Q /  1983) which were limited 

by various effects such as the ionization of the medium, the absorption of the generated 

radiation in optically thick media and/or the breakdown of phase-matching conditions. 

The harmonic intensities in the strong-field regime exhibit a characteristic distribu- 

tion. After the expected rapid decrease for the first orders, there is a long plateau, 

0953-4075/91/153315+27%03.50 0 1991 IOP Publishing Ltd 3315 
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which ends up with a rather sharp cutoff. This behaviour is surprising for the following 

reasons. If generation of, for example, the 25th harmonic becomes as probable as 

fifth-order harmonic generation, as is the case for a Nd-YAG laser at an intensity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX lOI3 W cm-' in a 10 Torr argon vapour (Li et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/ 1989), it means that the weak-field 

picture (see e.g. Gontier and Trahin 1982, Gao and Starace 1989, Potvliege and 

Shakeshaft 1989a. Pan et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/ 1989, 19901, which has been successfully applied for 

describing (non-resonant) non-linear optical phenomena before, does not apply any- 

more. One has to go beyond lowest-order perturbation theory for providing a correct 

description of these non-linear optical phenomena where the field is no longer a weak 

perturbation of the atomic medium. Time-dependent approaches involving the numeri- 

cal solution of the Schrodinger equation (Kulander and Shore 1989, 1990, DeVries 

1990, LaGattuta 1990) and Floquet calculations (Potvliege and Shakeshaft 1989b) have 

been successfully employed. Classical methods (Bandarage e ta /  1990, Chu et a/ 1990), 

one-dimensional approximations (Eberly et a/  1989a, b, c) and many other model 

calculations (Shore and Knight 1987, Biedenharn et a/ 1989, Becker et a/ 1990, 

Sundaram and Milonni 1990) also provide some insight into the physics involved. The 

single-atom photoemission spectra from all these calculations generally reproduce 

qualitatively the experimental data. This is another interesting and surprising aspect 

of the problem. Phase-matching conditions are known to play an important role in the 

overall response of the medium and to be very sensitive to various parameters such 

as the atomic density, the focusing geometry, the laser frequency and the process order. 

On the basis of weak-field calculations of harmonic generation, one would expect 

phase matching to severely degrade with the order (Shore and Kulander 1989, 

L'Huillier et a/ 1990). In contrast, the comparison between experimental data and 

single-atom calculations seems to indicate that propagation effects either play no role 

or affect all the harmonics in the same way. 

Thus, the interpretation of the experimental results is not an easy task because it 

involves both the single-atom response to a strong laser interaction and the many-atom 

response, the capability of the medium to ensure proper phase matching between the 

(non-perturbative) non-linear polarization induced by the incident field and the propa- 

gating harmonic radiation. The purpose of the present paper is to discuss this double 

aspect (microscopic and macroscopic) of harmonic generation processes. The conver- 

sion efficiency depends both on the quantities which govern the interaction of a laser 

with a single atom, the atomic system, the laser wavelength and intensity, and also on 

the parameters which affect the propagation of the fields such as the atomic density 

or the interaction geometry. Our emphasis will be on this latter part (propagation), 

which has received little attention up  to now, whereas in contrast, a lot has been done 

concerning harmonic generation by a single atom (see the references mentioned above). 

Studies of harmonic generation in gases up to 1987 have been extremely well 

documented in reviews and textbooks (Hanna er a/ 1979, Reintjes 1984, Shen 1984, 

Arkhipkin and Popov 1987, Delone and Krainov 1988). The experimental and theoreti- 

cal results obtained more recently have been described by L'Huillier et a /  (1991b) and 

we refer the reader to this work for a comprehensive review. In the present paper, we 

chose to focus our attention on  fewer results which we analyse as thoroughly as possible. 

We present the theoretical method used for describing these harmonic conversion 

processes. It consists first in the calculation of the single-atom photoemission spectrum 

performed by numerically integrating a time-dependent Schrodinger equation 

(Kulander and Shore 1989, 1990). Then, we solve the paraxial propagation equation 

using as a source the non-linear polarization induced by the radiating atomic dipoles. 
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Our method is applied to the interpretation of one particular result, harmonicgeneration 

in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 Torr xenon vapour irradiated by a 1064 nm Nd-YAG laser at intensities of the 

order of 10’’ Wcm-2 (L‘Huillier et a/ 1991~).  

The paper is organized as follows. In section 2, we present in parallel experimental 

results and the single-atom calculations. Although the emphasis of this paper is 

essentially theoretical, we thought it useful to include a summary of the experimental 

method and of the main results. We describe in particular the results obtained in xenon 

(Li et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa /  1989, LomprC et a/  1990) which provide the basis for our theoretical analysis. 

We present the corresponding single-atom emission spectra. This is the first part of 

our theoretical analysis, which will allow us to separate the contribution of the 

single-atom response and that of phase matching, an essential step in the understanding 

of the experimental results. We also give some details about the method used for 

integrating the time-dependent Schrodinger equation (Kulander and Shore 1989,1990). 

In section 3, we develop a formalism for describing the generation and propagation 

of harmonics in a medium exposed to a strong laser field. We show how this can be 

applied to the analysis of the experiments performed in xenon at 1064 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnm. Our final 

results agree well with the experimental observations, reproducing in  particular the 

plateau behaviour. We try to unravel the role of phase matching in strong-field harmonic 

generation. 

2. Experimental results and single atom photoemission spectra 

2.1. Experimental siudies 

2.1.1. Method. A harmonic generation experiment consists of focusing an intense laser 

radiation into a rather dense rare-gas medium (a few Torr) and then analysing along 

the propagation axis the vuv light emitted during the interaction. A schematic picture 

of the experiment principle is shown in figure 1. Most of the experiments reported 

here have been done by using a mode-locked Nd-YAG laser (40 ps pulse width, 1064 nm 

wavelength), with a maximum energy of 1 GW at a IO Hz repetition rate. The linearly 

polarized laser is focused into the interaction chamber. A useful quantity 

Totoidol 
Au or P I  coated 

Gratings 
2 7 W m m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 55011mm 

Figure 1. Experimental set-up for the detection of vuv light employed in Saclay. 
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which characterizes the focus is the confocal parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2?iw,3A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwo denoting the 

beam radius and A the wavelength. For a Gaussian beam, b is equal to twice the 

distance on the propagation axis over which the beam section increases by a factor of 

two. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A pulsed gas jet (Kung 1983, Bokor el a /  1983) produces a well collimated atomic 

beam with a 1 5  Torr pressure at 0.5 mm below the nozzle of the jet (Lompri er a1 
1988). The atomic density distribution in the jet has been measured to be very close 

to a Lorentzian distribution with a 1 mm full width at half maximum (L) .  An advantage 

of gas jets compared with differential pumping systems is that low background pressures 

can be kept in the interaction chamber and in the detection chamber (see figure 1) 

with reasonable pumping equipment. Moreover, the interaction region is small (typi- 

cally 1 mm long) and it can be exposed to an intense laser pulse in an almost collimated 

beam geometry. This can be very advantageous for phase matching in a positively 

dispersive medium (L'Huillier et a1 1988) and for avoiding significant absorption of 

the emitted radiation. 

The vuv detection system, which covers a broad spectral range from 10 to 350 nm, 

is described in figure 1. A grazing incidence holographic grating separates the different 

components of the light emitted along the propagation axis. The light is then detected 

by photomultipliers [ A >  120nm) or electron multipliers ( A  < 120 nm). This mono- 

chromator has a good detection efficiency owing to the lack of an entrance slit ( s e e  
figure 1). The number of photons produced at each frequency can be estimated to 

within one order of magnitude by using the spectral efficiency of the photon converter, 

the grating efficiency and the absolute electron multiplier gain. 

2.1.2. Results. Typical spectra consist of series of harmonic peaks superposed on a 

broad background. Figure 2 shows, for example, the spectrum between 70 nm and 

110 nm obtained in Xe at 1064nm, 3 x 10'' W cm-* with a 75 mm focal lens. Although 

the monochromator did not have a sufficient resolution for separating all the lines, 

most of the features could be attributed to discrete transitions in Xe, Xe', Xe2+. This 

fluorescence background is probably due to dielectronic recombination processes, 

following the formation of a plasma by multiphoton ionization. These processes occur 

on a much longer time scale than harmonic generation and at an intensity high enough 

for ionizing-at least partially-the non-linear medium. This light emission is incoher- 

ent and probably isotropic. Whether there is an underlying continuous background is 

110 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA90 80 70 60 

Wavelength (nml 
Figare 2. Xe spectrum obtained at 1064nm. 3 x  IO" Wcm-' 
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an open question: these processes should be studied with better resolution and at 

another detection angle (e.g. perpendicularly to the laser axis). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In figure 3, the number of photons produced in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 Torr xenon vapour is plotted 

as a function of the harmonic order for several laser intensities between 5 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO" W cm-' 

and 3 x 1013 W cm-2 (Lompr6 et a/ 1990). This result has been obtained with a 200 mm 

focal length (the confocal parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb is estimated to be 4 mm). Only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAodd harmonics 

are observed, which is to be expected for harmonic generation in  an isotropic gaseous 

monic signal decreases with the order. As the intensity increases, a plateau followed 

by a rather abrupt cutofi appears. Its length increases with the laser power, up to the 
intensity at which the medium becomes ionized with a probability close to unity, above 

1.3 x 10" W cm-'. Above this intensity, the signal increases much less rapidly, the 

distribution becomes smoother but the maximum observable harmonic order remains 

constant (equal to 21 for this pulse length). The vertical scale gives an order of 

magnitude estimate of the number of photons produced at each laser shot. This means 

a power efficiency of 10-8-10-9 for the plateau harmonics at the highest laser intensity. 

The brightness is estimated to be 10'' photons/s 8, mrad'. 

Another way of looking at these results is to plot the number of photons as a 
function of the laser intensity. Figure 4 shows, for example, the behaviour of the 15th 

harmonic. All the intensity dependences of the harmonics present a common feature: 

the number of photons increases first rapidly, then saturates when the medium gets 

ionized. There are two reasons why the ionization of the gas limits harmonic generation 

(Miyazaki and Kashiwagi 1978, Reintjes 1984, L'Huillier el a/ 1990). The main medium 

responsible for harmonic generation (the neutral atoms) gets depleted when the medium 

becomes ionized. Harmonics are still produced in the periphery of the interaction 

volume or at the beginning of the laser pulse. Ions could also generate harmonics, but 

their response is expected to be less efficient at these intensities. The second effec! that 

might limit harmonic conversion efficiencies is the breaking of phase matching owing 

to the presence of free electrons in the medium. These free electrons have a non- 
negligible effect on the refractive index (at the fundamental frequency and at the 

medium, with inversion symmetry. .A! the !owest in!cnsity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5  U 10'2 w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcm?), the har- 

Harmonic order 

Figure 3. Number of photons produced in xenon a1 1064 nm as a function of the harmonic 
order. The intensities arc, from tap fa bottom, 3 X  10" Wcm-'(--(-], 1.3X IO" Wcm-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(--.--I, 9xI0 '2Wem- '  ( - - - - - . - )  , 7 X I O " W C ~ P  (.......), s x  

IO" W c m P  (. , -A- - .  . I .  



3320 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATopicol review zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LASER INTENSITY IW.cm-? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure4. Fifteenth harmonicin Xe as a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaithelaserintensityinadoublelogarithmic 
plot. The full circles are the experimental results. The dotted curve shows the result of our 
calculation (see section 3 . 3 .  T i e  lull came has been Obtained by shiitmg the intensity 
scale so that the calculated and experimental saturation intensities agree and by scaling 
the calculated harmonic signals. 

harmonic frequencies). They induce a large positive phase mismatch between the 

generated beam and its driving polarization, which can reduce the conversion efficiency 

(see section 3.3). 

Beiow saturation, the harmonics vary as some power law of the laser intensity 

(Lompr6 et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa /  1990). The lowest order harmonics ( q  s 9) vary as predicted by lowest 

order perturbation theory. The 11th and 13th harmonics exhibit a more complex 

intensity dependence, which might be due to the influence of discrete resonances and 

which is much less rapid than the I" or perturbative power laws. The highest 

harmonics vary all in the same way, approximately as the 12th power of the laser 

intensity. iihis is consistent with the piateau observed in the harmonic intensity 

distributions (figure 3). Indeed, the fact that there is a plateau means that all the 

harmonics must have approximately the same power law. Because the intensity depen- 

dences deviate from a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 4  power law, where I is the laser intensity and q the process 

order, the atomic response cannot be described within the weak-field limit. The 

measured power law reflects, however, both the single-atom contribution and the 

coiieciive response of medium (phase maichingj which may also be power depcndeni. 

Similar results have been obtained with the other heavy rare gases (krypton and 

argon). The distributions obtained in Xe, Kr, Ar at 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx l O I 3  W cm-* are shown in figure 

5 (Li er n /  1989). The conversion efficiency decreases from Xe to AI, which is not 

surprising, since xenon is more polarizable than lighter rare gases. However, the 

maximum order that can be observed increases from 21 in Xe, 29 in Kr to 33 in Ar. 

inc J ~ I U  riarriiunic ( J L  nm, JO e v ,  1s L ~ L -  bnuriesi wavcicrrgrri I ~ U I ~ U U I I  p iuuuc~u  WLLII  

the Nd-YAG laser system (limited, however, to about 20 mJ in 40 ps). Atoms with 

higher ionization energies have in general a lower conversion efficiency but they can 

produce more harmonics. Moreover, they can experience a higher laser intensity without 

being ionized. 

-. .,e.., L._.~.I. ,-11__. * D  ..I, :. .L_ .L I .__. L -- A:...:-- ---A -I ... :*I. 
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Xe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKr Ar 
10L 1 

Hormonic Order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Number of photons produced in Xe, Kr, Ar at 3 x IO”  W c K i S  1064 nm. 

Shortening the laser pulse length also increases the intensity at which an atom 

ionizes and therefore might lead to the production of higher order harmonics. Recently, 

the 53rd harmonic of a 1 ps, 1 p m  Nd-glass laser was reported in neon at an intensity 

of 5 x 10“ W cm-2 (L‘Huillier et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa /  1991a). 

Other experimental studies involve the variation of the parameters that influence 

the macroscopic aspect of the interaction, the atomic density and the focusing condi- 

tions. Let us briefly summarize the main conclusions. First, the harmonic signal is 

found to vary as the square power of the atomic pressure (from 1 to 25 Torr) independent 

of the gas, the harmonic order and the laser intensity (Li et a /  1989). This is the 

signature of a coherent process. Indeed, a n  incoherent sum of single-atom dipole 

radiation would give a linear dependence of the signal on the atomic density. The 

square dependence shows that the measured light results from a coherent sum of the 

radiating dipoles. (In the first case, one sums the intensities; in the second case, one 

sums the amplitudes and then squares.) 

The second study is of the dependence of the signal on the interaction geometry 

(i.e. on the volume within which the harmonics are created). This helps in understanding 

phase matching, which is expected to be strongly affected by focusing (Bjorklund 1975, 

L‘Huillier el a/ 1990). As will he shown in section 3, the measured number of photons 

is proportional to b’lFq(b)12, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb is the confocal parameter, proportional to the 

focal section S and where the quantity denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF,(b)/*, the square of the phase 

matching function, reflects the propagation of the fields throughout the medium. The 

b’ factor has the following origin: b’ arises from the coherence of the process, the fact 

that the harmonic signal vanes as the square of the number of atoms involved. Since 

the medium is limited in the propagation direction by the length of the gas jet, this 

must be understood as the number of atoms in the transverse direction, in the focal 

plane, so that the number of photons then varies as S2 or b’. The detected signal is a 
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number of photons, proportional to the focal section of the harmonic field, which is 

itself proportional to the focal section of the incident field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Hence the additional 

factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb. Experiments have been performed with different geometries (Lompri zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer 
al 1990) varying from confocal focusing ( b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL )  to a plane-wave situation ( b  >> L). In 

figure 6, we compare the harmonic intensity distributions obtained with b = 1, 4 and 

6 mm and L= 1 mm at a 1.3 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO” W cm-* laser intensity. The signal has been divided 

by the global factor b’. The difference between the three results, which then reflects 

the variation of the phase matching factor lF,(b)l2 with b, lies within the experimental 

error bar. With b = 1 mm, harmonics higher than the 15th could not be detected. That 

is simply due to a harmonic/background ratio which was barely above one in this 

case. This result shows that phase matching ( lF,(b) l2)  does not depend much on the 

focusing geometry. This contradicts predictions derived from the weak-field limit 

(L‘Huillier et a1 1990; see section 3) and emphasizes the need for a general, non- 

perturbative, description of harmonic generation processes. Another important prac- 

tical conclusion is that using a loosely focused geometry considerably enhances the 

conversion efficiency (as 6’). 

10‘ 

y io5 
E 
E - 

-+ 10‘ 
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 

10’ 

10’ 

3 5 7 9 11 13 15 17 19 21 

HARMONIC ORDER 

Figure 6. Number of harmonic photons divided by b‘ in Xe at 1.3 X IO1’ W cm-‘. A, 

h= lmm:O,b=4mm;O,b=6mm(Lompr~efa l  1990). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2. Harmonic generation by a single atom 

The electrons in an atom oscillate in response to a strong laser field. This acceleration 

of the charge density causes the emission of radiation at odd multiples of the driving 

frequency. If the field is not too strong, the rate of emission can be calculated using 

standard perturbative methods. Following the pioneering work of Manakov et a1 (l975), 

Manakov and Ovsyannikov (1980) and Gontier and Trahin (1982), very accurate 

high-order non-linear susceptibilities have been obtained by Potvliege and Shakeshaft 

(1989a). Pan ef nl (1989, 1990) and Gao and Starace (1989) for hydrogenic systems. 
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The calculations of perturbative emission rates for multielectron systems are substan- 

tially more difficult, with only the lower order susceptibilities of some of the rare gases 

having been reported (see e.g. Sitz and Yaris 1968, Manakov et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/ 1975, Manakov and 

Ovsyannikov 1980, Bishop et al 1988). 

The strong-field emission from atomic systems has been successfully investigated 

using two different approaches. First, the expansion of the electronic wavefunction in 

a Floquet basis has been used by Potvliege and Shakeshaft (1989b) to obtain non- 

perturbative harmonic emission rates by hydrogen for driving frequencies of 1064 and 

532 nm. This method is valid for intensities up to the point where the ionization rate 

becomes comparable with the laser frequency. For intensities beyond this regime, the 

assumption of a constant intensity pump is invalid and the atomic response becomes 

very sensitive to the pulse shape. 

The second approach for modelling photoemission from laser excited atoms is the 

direct solution of the time-dependent Schrodinger equation. This has been accom- 

plished for a number of one-dimensional model systems by Eberiy et al (1989a, b, c) 
and by Sacks and Szoke (1991); for several model systems by Becker er a[ (1990) and 

Snndaram and Milonni (1990); for a classical electron in the field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a proton by 

Bandarage et al (1990), Chu er al (1990) and for realistic, three-dimensional atoms 

by Kulander and Shore (1989, 1990), DeVries (1990) and LaGattuta (1990). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl".ll̂ _l ..,. L.:.n ..-...--.. L ^  .I-.-:,- ..".I. .:--,. . I  .̂ ._._ -.--.. .. I . . . , . . :^_^ 
L . L . I .  IY~r,,,"". ""C "lrslly p's"s"L LIIG UGLPIID U1 L'lC >,,,g,c-c,~L,,u,, PLUIILIC CdlLUlaLlUIIJ. 

The time-dependent Schrodinger equation for a hydrogen atom in a linearly polarized 

field, using the length gauge, is 

Y ( r , t )  (2.1) 

L 

W r ,  I )  = 1 r )  KO(:) 
I = O  

and then discretizing along the radial axis 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = (j-0.5)Ar. L is adjusted as required to achieve convergence. Using a three- 

point formula for the second derivative, and defining g{ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr,+j, we can rewrite (2.1) as 

where Ho, the atomic Hamiltonian, couples radial values j to j ,  j z t  1 and is diagonal 

in I ,  while HI, the interaction term, couples angular momenta I to I +  1 and is diagonal 

on j .  In treating many-electrons atoms, we have used effective potentials (Kulander 

and Rescigno 1991) which are /-dependent functions of the radial coordinate. The 

potentials are based on Hartree-Slater calculations for the ground and lower excited 

states ofthe atom. The time-dependent calculations for thesesystems treat theexcitation 

of a single electron in the presence of the other electrons which are frozen in their 

ground-state orbitals. Thus we have neglected excitation pathways which involve double 

or multiply excited states. This choice of potential does not alter the tridiagonal forms 

of Ho and H,. 
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The time propagation is carried out using the Peaceman-Rachford alternating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g:( [ + A t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [I +iH,,'r-'[l+iH,~]~'[I - i H , ~ ] [ l  -iH,,r]g:( t )  (2.5) 

where I is the unit matrix and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = A t / 2 .  The interaction term is evaluated at the midpoint 

of the time step. Since the matrices in the brackets are all tridiagonal, the multiplication 

and inversion can be achieved with vector operations. The propagator is accurate to 

second order in the time step and is approximately unitary. The computational effort 

in solving (2.4) is linear in the number of grid points. We can propagate more than 

1 . 2 ~  lo6 spacetime points per second on a Cray Y/MP machine. 

The prompt emission by an atom in an intense field is due to the oscillation of the 

electron charge density in the vicinity of the nucleus. Electrons at large radial distances 

cannot emit high energy photons because momentum cannot be conserved. Therefore, 

we determine the time-dependent wavefunction in a limited volume near the nucleus 

by removing the flux which reaches the edges of our grid with a mask function which 

forces the amplitude smoothly to zero at the boundary. This mask function is applied 

after each integration step. 

The calculation proceeds as follows. We choose a pulse shape,f(t) in (2.11, which 

rises as the square of a sine function over five optical cycles, then is unity for the next 

15-30 cycles. During the first part of the constant intensity interval the transient 

excitations which occurred during the ramp decay by ionization. Then during the latter 

part of this interval, we determine the photoemission spectrum and rates. These we 

obtain by Fourier transforming the time-dependent induced dipole, 

directions implicit scheme (Varga 1962). 

over the last five cycles of the pulse 

2.2.2. Results. In figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 we show a complete emission spectrum for xenon in a 

1064 nm laser at an intensity of 3 x lo" W cm-2. The spectrum displays narrow peaks 

10-13 ' L ~ ~ ~ ~  ' ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ' ' . ' ~ ' ~ " ~ ' " ~ ~ ' " ~ "  

0 5 10  1 5  20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 5  30 35  40 

Harmonic order 

Figure 7. Xenon spectrum at 3 x IO" W cm-', 1064 nm, obtained from the time-dependent 
integration of the SchrGdinger equation. 
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at odd multiples of the driving frequency above a broad background. The width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
the harmonic peaks is determined by the lesser of the two intrinsic time scales in the 

problem, the ionization time or the pulse length. The background is quite sensitive to 

the integration parameters (Krause zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal 1991) and has no constant phase relationship 

to the driving field. Therefore, no phase matched, coherent background signal can be 

expected. The harmonics do  have a well defined but intensity-dependent phase delay 

which weakly affects the phase matching of these fields. 

We have performed calculations for a fine grid of intensities between 5 ~ 1 0 ' ~  and 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO" W c t f 2 .  In figure 8, the harmonic emission strengths for several of these 

intensities are displayed. This figure shows the emergence of a plateau which increases 

in strength and extent with increasing pump intensity. The harmonics initially rise very 

quickly with intensity as predicted by perturbation theory, then rise substantially more 
slowly with numerous oscillations due to intermediate resonance effects. The intensity 

dependences of the 3rd, 9th, 17th and 23rd harmonics are shown in figure 9. Only the 

third harmonic behaves approximately as I 3  over this intensity range. The approximate 

power laws for the higher harmonics are much lower than their orders, being approxi- 

mately I 6  for those in the plateau. They are also lower than the experimental power laws. 

lo-'- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Harmonic order 

Figure 8. Intensity of the dipole moment Id(qw)12 (a") as a function of the 
q. at the same laser intensities as in figure 3. 

harmonic order 

Similar studies of other rare-gas atoms qualitatively reproduce the observed trends 

in the harmonic conversion efficiencies. The highest conversion efficiency, for a given 

pump intensity, was found in xenon which is the most polarizable of the atoms studied. 

The broadest plateau in the spectrum was found in the system with the highest ionization 

potential. In figure 10 we show a comparison of the single-atom spectra for Ar, Kr 
and Xe at 3 x 10" W c K 2 .  Allowing for the difference in ionization rates for these 

three atoms, the shapes of the harmonic spectra in the figure agree very well with the 

measurements shown in figure 5 [ Li et a1 1989). In order to compare the yields directly, 

however, the effects of phase matching during the propagation of the harmonic fields 

through the medium must he determined. 
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E-4 

C E - 6 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 
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LL 
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 ase er intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtW.cm-? 

Figure 9. Intensity dependences of the 3rd. 9th. 17th and 23rd harmonic components of 
the dipole moment in xenon (atomic units). 

. 

- 

E-2 r . . 

E-121 ' ' ' ' . ' I 

H.annonlc 0rd.r 

1 5 9 13 17 21 25 29 33 37 

Figure 10. Comparison between the harmonic spectra of Xe (+-), Kr (-A-), Ar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4-) at 3 x  IO" W cm-' and 1064nm (Kulander and Rescigno 1991). 

3. Harmonic generation by an assembly of atoms exposed to an intense field 

We first give a general theoretical framework for the description of harmonic generation 

in a gaseous medium. Then, we analyse the phase matching conditions for the experi- 

ments reported in section 2.1 within the weak-field limit, using traditional non-linear 

optics arguments. In section 3.3, we give the results of a more complete calculation 

for the propagation of the harmonic fields, which uses as a source the response of an 

atom exposed to a strong field (see section 2.2). These two calculations lead to opposite 

conclusions. We find that phase matching of the high harmonics is considerably 

enhanced in a strong-field regime as compared with the weak-field limit. As will be 

explained in section 3.4, this is mainly an amplirude effect, related to the harmonics 

power law, which is much lower in a strong-field situation than in the perturbative case. 
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3.1. Theoretical framework zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We start from the general wave equation describing the propagation of an electromag- 

netic field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%'( r, 1 )  in an isotropic dielectric medium characterized by an  electronic 

polarization 9 ( r ,  t ) .  

.. ,. 
wnen rhe incident zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfieid is iineariy poiarized, this is a scaiar equation, in the direction 

of the laser field. 8(r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  and P(r, 1 )  can be expanded as 

) 9 ( r ,  I ) = +  ~ 9 . ( ( r , t ) e ~ ' " ' " + c c ) .  (3.2) g(r, I ) = $  g9(r,t)e-'"'+cc 

The Fourier transform of (3.1) gives a set of coupled equations 

( q  L 
(3.3) 

The polarization of the medium is the distribution of dipole moments induced by the 

total electric field (and not simply by the laser field). It is the sum of the linear 

polarization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP:=Nx' ( -qw;  qw)  gq where x ' ( - q w ;  q w )  is the field-free dipole 

po!irizibi!ity ind the rmr?-!inezr po!irizitioa "P:', which itse!f contzins z number of 
terms involving the fundamental and the harmonic fields. Among those terms, we can 

distinguish the non-linear polarization induced by the fundamental field, which is the 

driving term for harmonic generation, denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9:. There are higher order terms 

to the linear polarization at frequency qw, which lead to intensity-dependent corrections 

to the refractive index (Zych and Young 1978, Mahon and Yiu 1980, Ganeev el a1 
1985, Drabovich et a1 1985; Malcuit et a/ 1990). Finally, the non-linear polarization 

also includes all kinds of wave-mixing processes involving several harmonic fields 

(Tomov and Richardson 1976, Groseva et a /  1977, Reintjes 1984). For example, the 

fifth harmonic can be created from the interaction of the third harmonic field and the 

fundamental (absorption of one photon at frequency 3w, plus absorption of two photons 

at frequency 0). The ninth harmonic can be created from third harmonic generation 

of the third harmonic field, or  from the seventh harmonic, plus absorption of two laser 

photons, etc. The number of possible mixing processes increases very rapidly with the 

order. In the high-order harmonic generation experiments in gaseous media discussed 

in the present paper, however, the harmonic conversion efficiency remains weak, so 
that these indirect processes can be neglected. The study of the pressure dependence 

of the harmonic signal also indicates that such processes which would exhibit a much 

higher pressure dependence than N 2  cannot be very important. In the same way, we 

neglect depletion of the pump field, which has to be taken into account for high 

conversion efficiencies (Tomov and Richardson 1976, h e l l  el a/ 1976, Kilda1 and 

Brueck 1980). These approximations allow us to decouple the equations describing 

propagation of the harmonics. Introducing the intensity-dependent dipole polarizability 

x l (qw ,  /gal2), (3.3) can he written as 

?*~. ;+ !L I ) !C)2 [1+4x .~~ ' ( r i  @:!*)j%! = 0  (?:4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v'8q+(qw/c)'[l+47TNxyqw, lg,l*)lgq = -4r(qw/c)*P: (3.5) 

for the fundamental, and 

for the harmonic fields. 
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Equation (3.4) describes the propagation of an intense laser beam in a medium, 

including non-linear effects such as self-focusing (Grishkowsky 1970, Akhmanov et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl 
1972, Marburger 1975, Shen 1984). We neglect these effects, which are weak for long 

incident wavelengths and at relatively low atomic densities, as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the (defocusing) 

effects which may arise from the presence of free electrons. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%'] is then simply the laser 

field propagating into a medium characterized by the refractive index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, (wavevector 

k, =w/c( l+21rNx ' ( -w,  a))= n,w/c) .  
Equation (3.5) describes harmonic generation in a medium exposed to a strong 

laser field, for weak harmonic conversion efficiencies. However, its solution with 

non-perturhative polarizations and refractive indices remains a formidable problem, 

and we shall make an additional approximation which will allow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus to use a simple 

procedure for solving numerically the propagation equation. We shall neglect higher. 

order corrections to the refractive index at frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqo as we d o  for the fundamental, 

(in the resonance region) and above. However, as will he shown below, the effect of 

dispersion (i.e. the fact that the refractive index varies with the wavelength, whether 

it is intensity dependent or not) remains small in the experiments performed at Saclay, 

at a relatively low pressure. Equation (3.5) then becomes 

tl. l. :t --..-- * L" :..^t:C^> =--l."---~:~$-~"..~-"~~" -,-""*-&l.-:A-:-"&:-.. *'-..-L..,> 
r,L"u&;rr ,I ""I ,,U, UCJ""L"1C" L Y 1  llnllllulllr LLCqUF"C1CJ LIUJC L U  ,,IC: I U I I I L ~ L I U I I  L l l lG iJ I IU IU  

The homogeneous part of this differential equation is linear and we can therefore use 

an integral representation (Kleinman 1962, Bloembergen 1965, Lago et a /  1987). The 

outgoing Green function associated with the homogeneous part of (3.6) is e'*qR/4.rrR, 

with R=lr - r ' l .  (3.6) can be written as (Jackson 1975) 

(From now on, we drop the d index in Pd,.) We assume that the field is emitted close 

to the propagation axis (paraxial approximation). We are interested in the harmonic 

field outside the medium, in the far zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJield. Let r =  ( x , y ,  z) be a point in the 

medium and r ' = ( x ' , y ' ,  z') the observation point, far from the sources. The 

far-field approximation implies that ( z ' - z (  >>lx'-xl, ( y ' - y l  so that R =  
2'- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz + [(x'- x ) ~ +  (y'-y)2]/2(z'- z ) .  Equation (3.7) becomes 

%( r') = ( y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI exp[ik,,( 2'- z ) ]  exp ) d'r. (3.8) 
ik,[(x' - x)*+ (y'  - y) ' ]  

2(2'-2) 

2 

z - 2  

(3.9) 

where Ak, = k, - qk, is the phase mismatch between the polarization field and the 

harmonic field (Akq << k,, qk,). Absorption and (z-dependent) atomic density distrihu- 

tions (Rettner er al 1984, Lago er a /  1987) can he accounted for simply by replacing 

Ak,z in the exponential in (3.9) by the expression 

t m  

(3.10) 



Topical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreview 3329 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~ ( 2 )  = Im(Ak,(z)) is the absorption coefficient at frequency qw, equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X(z)uq/2,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, is the photoionization cross section and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( z )  the atomic density 

distribution. 

The solution of the propagation equation thus reduces to a straightforward three- 

dimensional integral over the non-linear medium. The last problem that needs to he 

understood in order to calculate propagation of the harmonics, particularly in a 

strong-field situation, is how to relate the Fourier components d, (=d(qw) of (2.6)) 

of the dipole moment d (  t )  calculated for a real field g( f )  = '8 cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwf, to the propagating 

non-linear polarization Pq = P,(r) eiqkhz resulting from the interaction of a focused 

beam with the medium. Consider, for example, an incident Gaussian beam (this is 

what we shall use in our calculation, though this argument is much more general). 

exp -__ 
bEo 

El(r,z)=- 
b+2iz ( bk;:i) 

(3.1 1) 

The real part of a Gaussian beam E,(r, z )  ei(Xlr-'"t' can be written as llZl(r, z)l  cos[wf+ 

d r ,  211, with 

(3.12) 

and 

2k,r2z 
v( r ,  z )  = -klr+tan-'(2z/b) -~ 

b2+4z" 
(3.13) 

The polarization PJr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz) can therefore be obtained from the time-dependent dipole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
momentcalculatedforafieldstrengthIE,(r, z)l andevaluatedatatimer '= f+q(r ,  z ) / w .  

The expression for the envelope PJr, z )  is then 

Pq(r, z)=2#(2)dq(r,z)exp t a n - ' ( 2 ~ / b ) - ~  2k r 2 z ) ]  (3.14) 
b2+4z2 

where dJr, z) denotes the qth harmonic component of the time-dependent dipole 

moment evaluated for a field strength lE,(r, z) l .  In the weak-field limit, dq(r, z )  is 
related to the qth-order non-linear susceptibility ,yq (Reintjes 1984) by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(3.15) 

In this case, the integral in (3.9) can be performed almost completely analytically. In 

a more general situation, where dq(r, z) cannot be expressed simply as a function of 

the incident field, (3.9) needs to be performed numerically. Note that by making use 

of the revolution symmetry of the problem, it actually reduces to a two-dimensional 

integral 

X' 
24 

d,(r,z)=#(Z)-IE,(r,Z)I'. 

i k,( r2 + r'2) 
xexp(  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)J,( - 2'-  rr') z 2rr rdrdz  

2(2 ' -2)  
(3.16) 

where Jo denotes the zero-order Bessel function. To conclude this section, we give the 

expression for the total number of photons emitted, Nq, which is the quantity measured 
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experimentally. Assuming that the laser pulse width is long compared with the light 

period, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,, is obtained by integrating the harmonic intensity profile both spatially and 

temporally 

N,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=- 
4h9w 

r’ lE@(r’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ’ ,  t’)I2 dr’dt’. (3.17) 

3.2. Phase marching in the weak-field limit 

In the perturbative limit, the integral in (3.9), with the polarization field Pq(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz) given 

by (3.14) can be performed analytically. The 9th harmonic field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, is equal to (Ward 

and New 1969, Miles and Harris 1973, Bjorklund 1975) 

Eo(r ’ ,  z‘, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ’ )  = -i7ik,bXqN~E,4Z’-‘GcP(r’, z’)%?:(t’)F,,(b, Ak), (3.18) 

Eo is the peak laser intensity. GZm denotes a Gaussian beam envelope for a field 

oscillating at frequency qw. with wavevector k,, and with a confocal parameter equal 

to b (3.11). The generated harmonic field E, is Gaussian with the same confocal 

parameter and beam waist location as the fundamental field. Its focal section (equal 

to .irb/2kq = bh/49) decreases with increasing order. 9: is the 9th power of the incident 

pulse distribution. The pulse width of the 9th harmonic field is equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT/& for a 

shaped (Gaussian) pulse, T denoting the laser pulse width. Phase matching is described 

by the factor F,(b,Ak), defined by a one-dimensional integral over the non-linear 

medium as 

FJb, Ak) = ( 
+m 

exp{-i[{Akz}+(q - 1) tan-’(Zz/b)]) 
J -m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x ( 1 + 4 ~ ~ / b ~ ) “ - ~ ” ~ 2 p ( z )  dz/b (3.19) 

where p ( z ) = N ( z ) / N o  is the atomic density distribution. The number of photons 

emitted at each laser shot is 

m2b3 

4h 
N,  =- T ~ ~ I x ’ ( ~ ~ / ~ ) ~ I ~ I F ~ ( ~ ,  Ak)12 (3.20) 

where T,, 94,(1) dt. Note that the single-atom response at  the peak intensity 

ld,,12=lxq(Eo/2)412 and the effect of propagation in the medium, described by the 

dimensionless factor IF,(b, Ak)l*, can be factored out and are therefore independent, 

We have studied the behaviour of F,(b,Ak) as a function of the process order q, 
the focusing geometry (characterized by the confocal parameter b )  and also the phase 

mismatch Ak. The gas density distribution used in all the calculations presented in 

this paper is described by a truncated Lorentzian in the z-direction, p ( z ) =  
1/(1+4z2/L2) for I z l s L  and p ( z ) = O  for ( z ( > L ,  with a width at half maximum of 

L= 1 mm. Figure I l ( a )  shows the variation of IF,,(b,Ak)I2 with the phase mismatch 

Ak (assumed to he real) for the seventh harmonic and confocal parameters b = 4 mm, 

b = l m m ,  b=0.4mm.  Figure l l ( b )  shows lF,,(b,Ak)(‘for b = l m m  and 9 = 3 ,  q = 7 ,  
q = 13. Although varying b or 9 leads of course to different results, the general trend 

is similar: as the process increases in order or as the geometry becomes more focused, 

the maximum of the phase-matching function shifts towards a higher negative phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2s !ong 2s the we.k-fie!d approxima!ion rem2ins va!id. 
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Figure 11. Phase matching factor lc,12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a function of the phase mismatch A k  (cm-') in 

the penurbative limit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a )  7th harmonic for b = 4  mm, b = 1 mm and b = 0.4 mm; ( b )  3rd. 

7th and 13th harmonics for b =  1 mm. 

mismatch and the average level of the oscillations in the wings of decreases. These 

two effects are due respectively to the phase factor [ (q- l ) tan- ' (2z/b)]  and to the 

amplitude term ( I  + 4 ~ ' / b ~ ) ' ~ + ' ' ' ~ ,  induced by focusing. 

Phase matching is optimized when the phase in (3.19) remains small. The optimum 

(negative) phase mismatch, which is close to 2( 1 - q)/b, increases with increasing order 

and decreasing confocal parameter (see figure 11). Indeed, the phase variation across 

the focus of the non-linear polarization induced by focusing becomes more rapid, 

leading to a larger phase lag between the generated field and its driving polarization. 

It must then be compensated by a greater phase mismatch Ak. 
The amplitude factor in (3.19) affects the shape of 1FJ2, particularly in the wings 

region. In the limit of an infinite medium and small coherence length, the harmonic 

fields generated before the focus are exactly cancelled by those created after the focus 

yielding no net harmonic generation. For a finite medium, exact cancellations occur 

only for some periodic values of the phase mismatch, which leads to oscillations in 

the wings of the phase matching function. The average level of these oscillations 

depends on how rapidly the amplitude term in (3.19) gets damped away from the 

focus. Therefore, it decreases as the geometry becomes more focused or, equivalently, 

as the process order increases. One might say that for the same confocal parameter of 

the incident beam, the interaction geometry becomes more and more of the tight focus 

type as the order of the harmonic increases. 

The phase mismatch Ak is proportional to the difference between the dynamic 

polarizabilities at the harmonic frequency and at the fundamental frequency: Ak = 

2rrqwX[,y'(-qw; qw) - , y ' ( -w ;  w ) ] / c .  We show in table 1 the values of the phase 

mismatch at 15 Torr (5.3 x IO1' atoms/cm') in Xe for the harmonics emitted at multiples 

of the YAG frequency (LHuillier et a/  1990). By comparing these values with the 

horizontal scale in figure 11, one sees that perfect phase matching is not realized in 

the high-order harmonic generation experiments. In a first approximation, one can 

simply take the intersection of the functions plotted in figure l l ( b )  with the line Ak =O. 

IFq(b,Ak)12=lFq(b,0)12. Since this is near the positive wing of IF,(b, Ak)l', phase 

matching in the experimental conditions is essentially determined by the variation of 

the amplitude of the polarization field throughout the medium, and not SO much by 

the variation of its phase. (As will be shown below, this conclusion will also be true 
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Table 1. Phase mismatches (cm-I)”. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 5 7 9 1 1  13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 17 19 21 

Neutral Xe 0.14 0.84 3.3 22 -5.7 -14 -19 -22 -23 -24 
Free electronsh 43 77 110 142 174 207 239 271 303 335 

At 15 Torr pressure. 
For a completely ionized medium 

in a strong-field situation.) In the weak-field limit the polarization field varies as the 

qth power of the incident field so that the volume in which the harmonics are generated 

becomes smaller as the process order increases. Phase matching is predicted to decrease 

with increasing order, leading to the expectation that any plateau in the single-atom 

response would be destroyed by propagation in a focused geometry. 

As a further illustration, we show in figure 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF,(b, Ak)I2 as a function of the 

process order q for the phase mismatches Ak indicated in table 1 corresponding to 

the experimental conditions in xenon. Two geometries have been investigated: b = 1 mm 

(circles) and b = 4 mm (squares). The full curves indicate the weak-field limit calcula- 

tions, the broken curves with symbols are strong-field calculations, which will be 

discussed later. The broken curves without symbols indicate the results obtained within 

the weak-field limit by neglecting dispersion (Ak = 0). The comparison between 

(F,(b, Ak)I2 and IF,(b, 0)l’ for the two geometries shows that dispersion does not play 

an important role here, owing to the rather low pressure used in the experiments. In 

contrast, the effect of focusing leads to a substantial decrease of lF,(b, Ak)I2 with q, 
reflecting the fact that the polarization amplitude is more rapidly damped away from 

the focus. The importance of this effect increases as the laser is more strongly focused, 

as shown by comparing IFJb = 1, Ak)12 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF,(b =4, Ak)I2. Note in particular the 

twelve orders of magnitude difference between the 3rd and 25th harmonics in the tight 

focusing case. 

Harmonic Older 

Figure 12. IF,(b, Ak)12 as a function of the harmonic order q in xenon at I 5  Torr for two 
focusing geometries: b = I mm (circles) and b = 4 m m  (squarer). T h e  perturbative results 
are shown by full curves, the non-perturbative results obtained at 3 x IO’ W cm? by broken 
curves with symbols. The broken curves without symbols indicate the perturbative results 
obtained by neglecting dispersion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A k  =O). 
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This weak-field analysis of the phase-matching conditions in the high-order har- 

monic generation experiments leads to the following conclusions: (i) phase matching 

decreases with increasing order, thus destroying any plateau observed in single-atom 

emission spectra; (ii) IF,(b, Ak)l’ varies with b and this variation depends strongly on 

the process order q. Consequently, the harmonic signal (b3lF,(b)l2) should not have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a simple b3 scaling. These conclusions obviously contradict the experimental ObseNa- 

tions. 

3.3. Phase matching in a strong-jeld regime 

We now present our calculations of harmonic generation in a strong laser field. As 
explained in section 2.2, the single atom response, d,, is obtained from the wavefunction 

generated by numerically integrating a time-dependent Schrodinger equation (Kulander 

and Shore 1989, 1990). We have concentrated our effort on the xenon atom, which 

has been experimentally investigated in great detail. In order to describe the non-linear 

polarization throughout the medium, i.e. for a distribution of intensities, we have 

calculated the qth component of the time-dependent dipole moment, d,, over a fine 

intensity grid, between 0.5 and 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 10’’ W cm-’ (assuming lowest-order perturbation 

theory to be valid below 5 x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO’’ W cm-’). 

The macroscopic parameters of the interaction are chosen to mimic the experimental 

conditions described in section 2.1. The incident laser beam is assumed to be Gaussian 

and we consider two cases with confocal parameters b = 4 mm or b = 1 mm (equation 

3.11)). The laser pulse shape is taken to be Gaussian with a 36ps width at half 

maximum. The phase mismatch (Ak) is assumed to he intensity independent and is 

given in table 1. 
So far, harmonic generation has been discussed for a neutral medium. In the 

experiments described in section 2, the effect of ionization becomes significant above 

2 x IO” W cm-’ and therefore needs to be included. We account for the depletion of 

the neutral medium by using ionization rates obtained from the same non-perturhative 

time-dependent calculations. In (3.14), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ( z )  is replaced by 

(3.21) 

p ( r ,  z, t )  denoting the ionization rate calculated at the intensity I ( r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, t ) .  (Here, the 

time t i s  related to the slow temporal variation of the fields.) We neglect any contribution 

to the polarization field from ions, because it is expected to be smaller than the atomic 

one. The presence of free electrons introduces a space- and time-dependent change of 

the refractive index of the medium. The index at frequency qo becomes n,,+An;(r, 1) .  

with An;(r, t ) =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0 i / 2 q 2 w 2 ,  where 02,=4rXe(r ,  f ) e 2 / m  is the square of the plasma 

frequency and Ne(r, t )  denotes the electron density. It reduces the efficiency of the 

frequency conversion, introducing an additional positive phase mismatch between 

the harmonic field and its driving polarization: Ak;(r, t )  = (An:-hn;)qo/c= 

2 0 3 q ’ -  I ) / qcw.  The values of Ak; for a completely ionized medium (Ne=&= 5.3 x 
10”atoms/cm3) are much more important than the phase mismatches due to the 

dispersion in the neutral medium, as shown in table 1. As soon as the intensity is high 

enough for a few per cent of the atoms to be ionized, dispersion is dominated by the 

presence of electrons. We have tried to estimate this effect by adding to the usual 

(atomic) phase mismatch Ak the one induced by the presence of free electrons created 

by multiphoton ionization, which we assume to he motionless during the pulse time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 X( r ,  z, t ) = X ( z )  exp - p( r ,  z, 1’) dt‘ ( 1:- 
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This is of course not valid for a 40 ps pulse, but it gives an upper estimate of the free 

electrons, influence. As already pointed out in section 3.1, we also neglect the defocusing 

effect that these free electrons might have on the propagating fields, considering only 

the variation of the phase mismatch. 

The number of photons emitted at a given harmonic frequency is obtained by 

calculating the generated field Eq(r ’ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ‘ )  (with 1 ’ -  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2’- z ) / c )  and then by integrating 

temporally and spatially the intensity profile lEq(r ’ ,  t’)I2. The results of our calculations 

in xenon for several laser intensities ranging from 5 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw cm-’ to 3 x 10” w cm-2 

and for a b = 4 mm laser confocal parameter are shown in figure 13. They can be 

compared with the experimental results in absolute value (figure 3 )  and also with single 

atom emission spectra (figure 8). At the highest laser intensity 3 x 10” W cm-2, where 

ionization becomes significant, we show results obtained with and without including 

the effect of free electrons (plotted respectively with stars and open circles). Although 

the additional positive phase mismatch induced by these free electrons is large, 

especially for the high harmonics, the resulting decrease in efficiency remains weak, 

at most a factor of two, and sometimes non-existent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Harmonic Order 

Figure 13. Calculated numbcr of photons for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb=4mm, L =  I mm at the same laser 
intensities as in figure 3 (L‘Huillier el 01 l99lc). 

The theoretical curves are generally higher than the experimental results particularly 

for the highest intensity. They are, however, mostly within the experimental error bar, 

estimated to be one order of magnitude. The general behaviour of the harmonic 

spectrum as a function of the laser intensity is well reproduced. The effect of phase 

matching is seen to be most important at the lowest intensity, i.e. in the weak-field 

limit. High harmonics are not as  well phase matched as low-order ones. At the lowest 

intensity, the cutoff occurs at a much lower order (9 instead of 15)  in the many-atom 

response than in the single-atom response (compare figures 8 and 13). However, at 

laser intensities above 9 x 10” W c K 2 ,  the length of the plateau is quite similar to that 

of the single-atom response (see figure 8). as if all the harmonics were equally phase 

matched. From the lowest intensity to about 10” W crK2 (below the onset of saturation), 

the number of photons rises more rapidly with the laser intensity than Id,/*: the effects 

of imperfect phase matching are lessening with increasing laser intensity. 
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The dotted curve in figure 4, which was presented in  section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, shows the result of 

our calculation for the 15th harmonic. There is a disagreement of a factor of two 

between the calculated and experimental saturation intensities and of a factor of seven 

for the harmonic signal. However, the relative agreement between both results is 

remarkable (see the full curve). Our calculation can reproduce fairly well the behaviour 

of the saturation, which is mainly due to depletion, and also the high power law zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( -1” )  
helow the onset of saturation. This power law is higher than the one obtained in the 

single atom response, again indicating a substantial improvement of phase matching 

conditions as the intensity increases and as one departs from the weak-field limit. 

Similar results as those presented in figure 13 have been obtained with a tighter 

focusing geometry ( b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 mm). The calculations show the same b’ scaling that was 

observed in the experiments (see section 2.4). The shape of the harmonic distribution 

at high intensity is relatively insensitive to the geometry, in contrast to the weak-field 

limit predictions discussed previously. 

Some information can also be gained by studying the spatial and temporal profiles 

of the generated fields, which have not been measured experimentally so far. Figure 

14(a) presents the spatial profile in the far field of the 15th harmonic in a strong field 

situation at 3 x 10‘’ W cm-2. Here, for simplicity, we exclude the effect of free electrons 

and we take a ‘snapshot’ of the profile at the maximum of the pulse at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = 0. The 

results are shown for two focusing geometries, collimated ( b  = 4 m m ,  broken curve) 

and confocal ( b  = 1 mm, chain curve). All the profiles have been normalized to unity 

at the maximum. The horizontal scale has been chosen so that the perturhative Gaussian 

profiles corresponding to the two geometries, which are shown by the full curve in the 

figure, be superposed. At high laser intensity, for b = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 mm, the far-field harmonic 

profile becomes narrower, which means that the harmonic beam is defocused compared 

with the perturbative limit. Rings appear, particularly in the tight focus geometry. 

However, the integrated signal does not depend strongly on how the energy is spatially 

distributed. In the perturbative limit, the high harmonics become more focused with 

increasing order (focal section varying in I j q ) .  By contrast, in the strong-field regime, 

their focal section remains approximately constant for the harmonics of the plateau 

region. 

We have also studied the temporal profiles of the harmonics, obtained by integrating 

the spatial distributions [ j  lEq(r ’ ,  t’)12r’ dr’]. These profiles, which are quite insensitive 

to the geometry, are generally larger than in the weak-field limit. They are of the order 

of 15 ps for the plateau harmonics for a 36 ps incident laser pulse. Figure 14(b) shows 

the temporal intensity profile of the 15th harmonic at b = 1 mm and 3 x lo” W cm-’. 

The asymmetry of the profile arises from the depletion of the population of neutral 

atoms during the pulse, which reduces the conversion efficiency for positive times (at 

the end of the pulse). 

Finally, we found it useful for a better understanding of these results to separate 

the role of propagation from the single atom contribution in the calculations, as we 

did in the perturbative case. We define IF,(b, Ak)I2 by analogy with equation (3.19) as 

(3.22) 

where Id$ denotes the dipole moment evaluated at the maximum intensity of the 

pulse (at best focus). Note that, in this definition, IF,(b,Ak)l’ not only characterizes 

the coherence length of the process but also reflects the spatial (and temporal) profile 

of the emitted harmonics in comparison with the weak-field limit. Here we assume a 
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Figure 14. Fifteenth harmonic intensity temporal and far field profiles at 3 x 10'~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw c m P .  
The envelope shown by the dotted curve indicates the incident laser profile. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 )  Spatial 
profile for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh = 1 m m  (chain curve) and h = 4 m m  (broken curve). ( b )  Temporal profile for 

h = l m m .  

square laser pulse which is short enough for ionization to be negligible (so that the 

separation of the single-atom response and propagation remains meaningful). The 

broken curves at  the top in figure 12 (see section 3.2) show the phase matching factor 

lF,(b, Ak)I2 at 3 x lo" W cm-'. Although in the weak-field limit [FJb ,  Ak)lL decreases 

rapidly with increasing order, and is strongly dependent on the geometry, in contrast, 

at 3 x IO1' W cm-', IF,(b, Ak)I2 remains between 1 and independent of the order. 

Moreover, it is relatively insensitive to the geometry. Our calculations yield results that 

are indeed in good agreement with the experimental conclusions and in strong disagree- 

ment with the weak-field predictions. 

3.4. Znterpretation 

We now try to explain why going to a strong-field regime for the laser-atom interaction 

significantly improves the phase matching of the high harmonics. Compared with a 
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perturbative picture, the dipole moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdq obtained from the time-dependent calcula- 

tion (or from any non-perturbative method) varies generally less rapidly with the laser 

intensity and similarly for most of the harmonics (which gives rise to the plateau 

behaviour). It shows structures and resonances (see figure 9). Finally, it has an 

intensity-dependent phase lag relative to the fundamental. What influences phase 

matching is the first property, namely the fact that the dependence of the dipole moment 

on the electric field is (on average) much weaker than that predicted within lowest-order 

perturbation theory. In order to illustrate this idea and to get some insight into the 

reason why the high harmonics are phase matched in the same way, we shall now 

consider a simple model: we assume that the dipole moment d,, varies as the pth power 

of the incident laser field, p denoting an effective order of non-linearity, lower than 

the harmonic order (d,(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q ]E , ( r ,  z)l"). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs in the perturbative limit, the integral 

in (3.9) can he performed partly analytically, though the expressions are more cumber- 

some. The harmonic field can be written as (L'Huillier et al  1991h) 

&(r', ~')=-2i . rk,b5,~~€gF~(r ' ,  2 ' )  (3.23) 

with 

+m exp[ - kqr'2/ b"a( z, z')] 
exp[-i{Akz} - iq tan-'(2z/b)+i tan-'(2z/b')] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 2 ,  2') 

x (1 + 4 ~ ~ / b ~ ) ' ~ - ~ ) ' ~ ( l  + 4 ~ ~ / b " ) - ~ ' * 2 p ( z )  dz/b. (3.24) 

We have introduced the notations 

b'= pblq b"= qb/p 

IFq(b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAk)l' is defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(z ,  z') = (1 +4z2/ b*) / (  1 -2iz/ b')+Zi(z'- z)/b". 

4k 
IF,(b, Pk)lz =$ 1!Fq(r', z')I2r' dr'. (3.25) 

In the loose focusing limit (b >> L), a(z ,  z ' )  reduces to I +2iz'/b". The first term in 

the integrand of (3.24) is the Gaussian distribution Gx:(r', z ' ) ,  which can be taken out 

of the z-dependent integral. The generated harmonic field Eq is therefore Gaussian 

with a confocal parameter b" larger than that predicted in the weak-field limit. The 

focal section of the generated beam, equal to nb"/2kq = bU4p depends on the effective 

order p, rather than on the non-linear order q. The rest of the integral is quite close 

to (3.19), apart from the amplitude term, which varies approximately as (1+ 

422/b2)"-"'2, instead of ( 1 + 4 ~ ~ / b ~ ) ( ~ - ' " ' ~ .  When p" q, this term varies much less 

rapidly throughout the medium than in the perturbative limit. As discussed previously, 

phase matching around A k  = 0 is determined by the variation of the polarization 

amplitude throughout the medium. It depends on the effective order of non-linearity 

(p) of the dipole moment d,,. Therefore it remains relatively constant for all the 

harmonics which have the same intensity dependence. 

In a more general case, the generated harmonic field is not Gaussian. The situation 

is quite similar to difference-frequency processes (Bjorklund 1975). The term 

exp[-k,r"/b"a(z, z')] leads to a strong distortion o f t h e  spatial profile which develops 

rings. From (3.24), one sees that phase matching can be favoured for some r' values, 

which may be different from zero (off axis). The number of these rings increases as 

the geometry becomes more focused. Typically, for b =4mm, there is a central spot 

and an external ring, whereas for b = 1 mm, up to four or five rings may appear (see 
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figure 14(a ) ) .  Although phase matching in this case cannot be reduced to a one- 

dimensional problem along the propagation axis, the conclusion reached in the loose 

focusing case remains also valid: since phase matching depends on the variation of 

the amplitude of the polarization field throughout the medium which does not depend 

on the process order, it remains constant for all the harmonics in the plateau. Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 compares IFJb, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAk)12 for the Sth, 13th and 21st harmonics in the weak-field limit 

(full curve) and for the 13th and 21st harmonics in the model situation where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAldq12 is 

assumed to vary with the laser field strength as  / E $ .  At A k = O ,  IFq(b,0)l2 remains 

relatively constant for the model harmonics, whereas it decreases rapidly with q in the 

perturbative limit. 

 hose mismoich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAicm? 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS. Phase matching factor 1FJ2 for the 5th. 13th and 2151 harmonics as a function 
of the phase mismatch Ak (cm-') for h = 1 mm and L = I mm. The full C U ~ Y C S  indicate the 
perturbative rcsults. The broken CUWCP are results obtained by assuming a fifth power 
dependence for the 13th and 21sl harmonics. 

This simple model, which can be carried out analytically for the most part, repro- 

duces fairly well the main aspects of the numerical calculation using as a source the 

non-perturbative atomic dipole moment. It shows that the main difference between 

the strong- and weak-field regimes is the rate at which the magnitude of the polarization 

field varies within the medium. This has an important effect on the conversion efficiency 

because, in the experimental conditions, phase matching does not depend much on 

the phases of the interfering fields, but it does depend on the variation of the amplitudes 
of the fields throughout the medium. In a strong-field regime, the harmonics get 

defocused compared with the perturbative limit and, moreover, the phase matching is 

found to be relatively constant with increasing order. 

4. Conclusion 

As was pointed out in the introduction, these harmonic generation processes are difficult 

to grasp because of the interplay between the microscopic response (emission of 
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harmonics by a single atom) and the collective one (propagation, phase matching of 

the propagating fields). In conclusion, we would like to summarize the role played by 

the many parameters of the problem, related either to the pump field or to the non-linear 

medium, influencing either the atomic response or propagation, or both. These must 

be viewed as a few tentative guidelines, most of them requiring a more thorough 

investigation, rather than definite conclusions. 

Laser intensity. As the incident pump intensity increases, the plateau increases 

rapidly both in length and in amplitude, because these processes are highly non-linear. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This remains true up to the intensity at which the atoms are depleted by ionization. 

Laserpulse length. Shortening the pulse length increases the intensity at which the 

atoms are ionized. Consequently, the medium can produce more harmonics because 

it can experience a higher intensity. Note that the pulse length of generated radiation 

follows that of the pump field, being smaller by about a factor of two. 

Laser wauelength. This aspect has not been discussed in this paper where we have 

focused on the results at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 pm. On the basis of experiments at 248 nm (McPherson el 
a1 1987) and calculations of single atom spectra performed at 532 nm and 1064 nm 

(Potvliege and Shakeshaft 1989b, Krause et al 1991), one might expect the harmonic 

conversion efficiency to increase for shorter incident wavelengths and the plateau to 

remain approximately of the same length in photon energy. 

Laser confocal parameter. This provides a simple way of increasing the harmonic 

generation efficiency, which was found to vary as b’, in the range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1-6 mm and 

L = 1 mm. Note that in the plane-wave limit the b-scaling should become less rapid, 

being approximately linear. 

Atom. Atoms with higher ionization energies can produce more harmonics but 

with a reduced efficiency. A still open question is whether ions can efficiently produce 

harmonics. 

Atomic density. The signal varies as N 2  independent of the order. This is true 

between 1 and 25Torr at 1 pm. Saturation effects (Rosman er a1 1988) are to be 

expected for shorter incident wavelengths and higher gas pressures. 

Finally, let us emphasize the main conclusion reached in this paper. These high- 

order harmonic generation processes are twice the signature of a strong-field interaction 

with a non-linear medium, which cannot be described using weak-field approximations. 

The emission of radiation by a single atom has a non-perturbative behaviour: it exhibits 

the same plateau that was observed in the experiments; the harmonics do  not vary as 

I q ,  where q is the process order. Moreover, the plateau is conserved in the many-atom 

response, a fact that cannot be reconciled with a weak-field approach to the problem. 

It comes from the variation of the non-linear polarization with the laser intensity which 

is lower than in the weak-field limit and also similar for all the harmonics in the 

plateau. Extending harmonic generation into a strong-field regime has two unexpected 

and fortunate consequences: a plateau forms in the single-atom response, which means 

that generation of, say, the 17th harmonic is as probable as the generation of the 5th 

harmonic; and all the generated harmonics become equally and efficiently phase 

matched. 
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