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Abstract: Photoelasticity is a fast and powerful technique for internal stress detection and quality
control in crystals; to fully exploit its possibilities, an appropriate theoretical analysis must be devel-
oped for different crystallographic structure and observation planes. For a cubic crystal specimen
whose geometry is non-coherent with its crystallographic directions (i.e., observation planes and
crystallographic directions are not parallel), we write a set of equations that allow an estimate of
the refraction indices as a function of the residual stress. This is obtained upon the assumption that
the residual stress may be represented by a plane stress parallel to the observation face. For cubic
crystals, we obtain an explicit estimate of the residual stress intensity; this can be achieved provided
we know the piezo-optic tensor component, the orientation of two non-parallel specimen faces with
respect to the crystallographic axes, and that we can measure the principal directions of the refractive
indices on the observation face.
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1. Introduction

Photoelasticity is a fast and non-destructive control technique that allows us to de-
tect the residual stress generated by the crystal defectivity related to macro-defects by
means of fringe observation through instrumentation such as Polariscope. These residual
stress may not only induce brittle fractures of the crystal as a direct macroscopic effect,
but they are also a signal of general defectiveness and quality degradation. Photoelastic-
ity, applied to optically anisotropic and isotropic transparent materials, is a well-known
technique [1–6]: in the past, its study and the development were directed mainly to optically
isotropic media. The advantage of this technique is, beyond any doubt, the possibility
to perform fast and non-destructive tests: moreover, the measurement technique can be
automatized [6]. To obtain deeper insight into the crystal status, it is possible to apply at the
same time other techniques that are more time- and cost-consuming; however, for fast initial
screening, photoelasticity remains the best technique, and in most cases its application
alone is enough to assess the quality of crystalline or non-crystalline transparent media [7].

Crystalline materials have a wide range of applications as a function of their specific
properties. Among these, scintillating crystals, thanks to their capability to act as radiation
detectors, have a large range of applications (see, e.g., [8,9]), from the high-energy physics
calorimeters [10–15], and were afterwards and successfully used in other fields such as
security, geological prospecting, dark matter detection in astrophysics, and radiation
detection in medical imaging devices [16,17].

The growing interest in these biomedical applications has stimulated both the search
for new scintillating crystals and a deeper understanding of the properties and behavior of
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existing ones. Among the most widely used crystals in the biomedical field for diagnostic
imaging devices, crystals of the cubic group, such as Bi4Ge3O12 (BGO), Gd3Al2Ga3O12
(GaGG), and NaI:Tl (this last one a perovskite of the space group Pm3̄m [18]), play a
fundamental role.

The presence of structural defects of a mechanical nature or distortions of the crys-
talline lattice, due to the presence of both applied and residual stresses, may have significant
effects on the electro-optical properties of the crystal. Important parameters such as the
generation and transmission of light, both in terms of intensity and wavelength, can signifi-
cantly depend on these mechanical aspects, which can also significantly alter the behavior
of crystal-based systems such as interferometers, optical fibers, acousto-optic devices, and
many others.

A further cause of mechanical defects is the crystal growth process: this process is in
fact very complex and can even lead to growth-related crystal failures. The most important
of the critical parameters to control during growth are temperature, temperature gradient
within the boule, and growth speed (see, e.g., [19]). Moreover light transmittance, light
yield, and decay time (which are some of fundamental parameters for a good scintillator)
can be affected by the growth process [17]. The quality control of crystals during the
production stage detects the defective level, where defectivity refers to defects such as
vacancies, dislocations, oxygen deficiency, interstitial oxide defects, and Frenkel-type
defects. These defects can capture free carriers, resulting in decreased light transmission [17]
and also impairing mechanical properties. An understanding of crystal defectiveness then
may allow for the optimization of the growth parameters of the production process and the
identification of poor-quality samples. All these defects induce a state of internal stress that
can be detected by the means of photoelastic techniques. In view of these considerations,
the quality detection by means of a fast and non-destructive method such as photoelasticity
is therefore mandatory.

In more recent times, the photoelastic studies of the anisotropic crystals evolved
toward a deeper knowledge of the elasto-optic behavior, a circumstance that allowed for
the design of new measurements devices (polariscopes) [20–24]. For instance, the study of
the interference fringes in conoscopic observations (i.e., the Cassini-like curves, sections of
the Bertin surfaces [25,26]), has improved the knowledge and measurement techniques on
complex crystals with low symmetry [27–32].

The large existing literature on optically isotropic media allows us to evaluate the
stress distribution aimed at mechanical design [1–3]; however, when we deal with cubic
crystals, there are some issues that do not appear in isotropic materials. Indeed, we recently
put in evidence that, by the means of conoscopic analysis, no interference fringes can be
detected as in anisotropic crystals, ruling out the feasibility of the stress deduction by the
Cassini-like curves [33]. Further problems arise from the fact that, in general, crystals can be
cut at random directions, for instance, to obtain the maximum number of finished crystals
from the original boule; hence, the orientation of crystal sample faces can be very different
from the crystallographic directions. As a consequence of this, correlating the variations
of the refractive indices measured along a direction normal to a surface of the specimen,
with the effective state of stress, becomes, even in the simplest case of plane stress state,
a problem strongly dependent on the misalignment between the specimen faces and the
crystallographic directions and which requires a more complex mathematical treatment.

In this paper, by following our previous works, we provide an elasto-optic study
when the orientations of the faces of the slab do not coincide with the crystallographic axes.
If we know the orientation of the slab faces with respect to the crystallographic planes
(for instance by the means of XRD measurements), we can express the components of
the piezo-optic tensor in the specimen frame provided we know the components in the
crystallographic frame [34–36]. Then, we can establish a relation between the residual
stress and the refraction indices difference measured by a traditional technique as in [1–5].
It is important to remark that in observation by polariscope, we can investigate a small
volume in the direction of observation and that we measure the mean stress within such
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a volume. Therefore, it is safe to assume that the mean residual stress along the direction
of observation (i.e., across the specimen thickness) are zero, whereas the non-zero mean
stress is a plane stress state in the plane orthogonal to the direction of observation. Since
the residual stress is a signature of the general quality state, this method allows us to assess
the crystal quality.

For a deep understanding of the scope and the purpose of the present work, we need
to remark that a global estimate of the residual stress can be obtained also by the means of
XRD [37,38] as well as by the means of other well-established techniques (vid., e.g., [39]).
In this regard, photoelastic techniques are less expensive and time-consuming and allow us
to obtain a global signature of the residual stress within the crystal with a single measure
and in a fast and reliable manner.

Notations

We denote with boldface lowercase (e.g., v) the elements of the three-dimensional
vector space V and with boldface uppercase (e.g., A) the second order tensors whose
underlying space we denote with Lin; with Sym (Skw) we denote the subspace of Lin of
symmetric (skew-symmetric) tensors A = AT (A = −AT). The group of proper orthogonal
tensors (rotations) is denoted by Rot. Given an orthonormal frame {e1 , e2 , e3}, we denote
the components of vectors and tensors as:

vi = v · ei , Aij = Aej · ei = A · ei ⊗ ej , i, j = 1 , 2 , 3 , (1)

with corresponding representations (where the Einstein convention of sum on repeated
indexes is applied)

v = viei , A = Aijei ⊗ ej . (2)

We define the fourth-order tensors as maps Π : Lin→ Lin whose components are defined
by:

πijhk = Π[eh ⊗ ek] · ei ⊗ ej , i, j, h, k = 1 , 2 , 3 , (3)

and whose representation is:

Π = πijhk(ei ⊗ ej)⊗ (eh ⊗ ek) . (4)

We shall also make use of Voigt’s notation for second-order symmetric tensors and fourth-
order tensors Π : Sym→ Sym, namely

Aij → Am , Πijhk → Πmn , i, j = 1 , 2 , 3 , m, n = 1 , 2 , . . . , 6 , (5)

provided the identification (ij→ m): 11→ 1; 22→ 2; 33→ 3; 23→ 4; 13→ 5; 12→ 6.

2. Misaligned Cubic Crystals
2.1. Crystallographic and Specimen Frames

We consider a specimen of a cubic crystal observed by a polariscope along a direction
m, which is orthogonal to a plane surface Σ of the specimen, whose orientation is not
related to the cubic crystallographic directions (Figure 1).

We denote with {ek , k = 1 , 2 , 3} an orthonormal frame, which is directed as the
crystallographic directions [1 , 0 , 0], [0 , 1 , 0] and [0 , 0 , 1] and we assume that the orientation
of Σ in the crystallographic frame is given by {h , k , l}. Accordingly, the unit normal m to
Σ is given by:

m =
1√

h2 + k2 + l2
(he1 + ke2 + le3) = mkek . (6)
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We assume that we are able to measure the crystallographic orientation {h′ , k′ , l′} of
another face Σ′, which is not parallel to Σ and whose unit normal is

m′ =
1√

h′2 + k′2 + l′2
(h′e1 + k′e2 + l′e3) = m′kek . (7)

Figure 1. The crystallographic and specimen frames.

We define the orthonormal frame {uK , K = 1 , 2 , 3} related to the specimen as

u1 = m′ ×m ,

u2 = ‖P⊥m′‖−1P⊥m′ , (8)

u3 = m ,

where P⊥ = I−m⊗m is the orthogonal projector on Σ. Clearly, there exists a rotation Q
such that

uK = Qek , K = k = 1 , 2 , 3 , (9)

and whose associated matrix in the frame {ek} is given by:

[Q] ≡
[

u1 u2 u3
]
≡

 Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 ,

and whose components are uniquely determined once we find the orientation of the two
planes Σ and Σ′ with respect to the crystallographic frame (For a different approach to the
representation of the rotation matrix, see Appendix B).

2.2. Piezo-Optic Crystals

In a piezo-optic crystal, the inverse permittivity tensor B ∈ Sym depends on the
Cauchy stress T ∈ Sym by the means of the linear Maxwell relation (also credited to
Pockels, vid., e.g., [40]):

B(T) = Bo + Π[T] , (10)

where Bo is the inverse permittivity tensor of the unstressed crystal and Π is the fourth-
order piezo-optic tensor; we recall that the eigenvalues Bk of B(T) are related to the
principal refraction indexes nk by:

Bk = n−2
k , k = 1 , 2 , 3 . (11)

We define the symmetry group G of a piezo-optic crystal as

G ≡ {Q ∈ Rot | QB = BQ ,QΠ = ΠQ} ; (12)
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where Q denotes the orthogonal conjugator associated with Q, i.e.,

Q[A] = QAQT , ∀A ∈ Lin . (13)

The tabular representation of the components Bij and πijhk in the crystallographic frame
{ei} for the crystallographic groups can be found, e.g., in [36,41]. Once we know the
components in the frame {ei}, those in the specimen frame {uA} can be found by the
means of (9)

B = Bijei ⊗ ej = BijQiAQjBuA ⊗ uB = B̂ABuA ⊗ uB , (14)

Π = πijhkei ⊗ ej ⊗ eh ⊗ ek ,

= πijhkQAiQBjQChQDkuA ⊗ uB ⊗ uC ⊗ uD , (15)

= π̂ABCDuA ⊗ uB ⊗ uC ⊗ uD ;

then, the components of B and Π in the frame {uA} are given by:

B̂AB = BijQiAQjB , π̂ABCD = πijhkQAiQbjQChQDk . (16)

In the general case, the matrices of B and Π in the frame {uA} shall be different from
those in the frame {ei}: indeed, for Q̂ a generic rotation whose orthogonal conjugator is Q̂,
then

B̂ = Q̂TBQ̂ , Π̂ = Q̂TΠQ̂ , (17)

where with abuse of notation we used the tensor notation to represent the matrices in the
two frames. Since, by (12):

B = QBQT , Π = QTΠQ , ∀Q ∈ G , (18)

then by (17) and (18), we obtain

B̂ = Q̂TQBQTQ̂ , Π̂ = Q̂TQTΠQQ̂ , (19)

and hence the conditions B̂ = B and Π̂ = Π imply:

Q̂ = Q ∈ G . (20)

Accordingly, in the most general case, the matrices of B and Π in the frame {uK} shall
have a structure different from those in the frame {ek} with a different number of non-null
components and different relations between the components: however, provided we know
the components of the generic rotation Q̂, by (16) the components in the specimen frame
are uniquely determined from those in the crystallographic frame.

3. Stressed Cubic Crystals

In this section, we consider a stressed cubic crystal, whose inverse permittivity tensor
B(T) is given by

B(T) = n−2
o I + Π[T] , (21)

where no is the refraction index of the unstressed crystal. We assume that T represents
the residual stress due for instance to the growth cutting and polishing processes or to
radiation induced defects, and also that T is the plane stress:

Tm = Tu3 = 0 , (22)

whose representation in the frame {uK} is:

T = TABuA ⊗ uB , A, B = 1 , 2 . (23)
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Accordingly, (21) admits the following representation in components in the specimen frame:

B̂MN(T) = n−2
o δMN + π̂MNABTAB , M, N = 1 , 2 , 3 ; A, B = 1 , 2 , (24)

where the relevant components π̂MNAB are given in terms of the components πijhk for the
Cubic group and in terms of (9) into the Appendix A. The tensor B is associated with the
optical indicatrix (Figure 2) or index ellipsoid, which is defined as the locus:

S ≡ {y ∈ R3 | By · y = 1 } , (25)

whose property is that for any given direction of light propagation v, the principal axes of
the ellipsoid C defined by:

C = S ∩ {y · v = 0} , (26)

are the refraction indexes associated with that direction of propagation. Now, if we assume
that the specimen is observed along the direction of propagation m = u3, the equation of C is:

B̂11y2
1 + B̂22y2

2 + 2B̂12y1y2 = 1 , (27)

whose principal axes are given by

nα =
1√
Bα

, α = 1 , 2 , (28)

where:

B1,2 =
B̂11 + B̂22

2
±

√
(

B̂11 − B̂22

2
)2 + B̂2

12 , (29)

being

B̂11 = n−2
o + π̂1MTM ,

B̂22 = n−2
o + π̂2MTM , M = 1 , 2 , 6 ; (30)

B̂12 = π̂6MTM ,

here we use Voigt’s notation as defined at the end of §.1.
As we did in [27,33,42], we assume that the stress is small, in the sense that:

‖T‖ = O(ε) , (31)

with ε as a small parameter, in such a way that

nα(ε) =
1√
Bα

∣∣∣
ε=0

+
d
dε

( 1√
Bα

)∣∣∣
ε=0

ε + o(ε2) , α = 1 , 2 . (32)

By (29) and a trivial calculation, then within higher-order terms in ε we finally obtain

n1 = no −
n3

o
2
(K1 −

√
K2

2 + K2
3) ,

(33)

n2 = no −
n3

o
2
(K1 +

√
K2

2 + K2
3) ,

with

K1 =
π̂1M + π̂2M

2
TM ,

K2 =
π̂1M − π̂2M

2
TM , M = 1 , 2 , 6 , (34)

K3 = π̂6MTM .
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The principal directions of the ellipse C are rotated with respect to the directions (u1 , u2)
by an angle γ, which is given by:

tan 2γ =
2B̂12

B̂22 − B̂11
= −K3

K2
. (35)

We can detect the extinction directions, i.e., the directions where the polarizer and
analyzer of the conoscopic system are aligned with the optic axes and which coincide with
the eigenvectors, by following for instance the procedure explained in [26], vid. also [33].
In this case, the rotation of the polarizer of γ put the system in extinction mode, being
the axis of the polarizer parallel to one of the principal axes of the section of the Optical
Indicatrix and the analyzer, of course, normal to it. Moreover, by measuring the velocity of
propagation of the light in the plane of C, we can obtain a measure of the refraction indexes
(n1 , n2), even if the evaluation of the angle γ may be ambiguous.

Figure 2. The optical indicatrix.

Since we are able to measure (n1 , n2 , γ), then by (33) and (35) we can obtain the
set of parameters (K1 , K2 , K3), which by (34) depends on the components of Π in the
crystallographic frame, on the components of the rotation Q between such a frame and the
specimen frame and on the three components T1 , T2 , T6 of the plane stress:

K1 =
2no − n1 − n2

n3
o

,

K2 =
1√

1 + tan2 2γ

n1 − n2

n3
o

, (36)

K3 =
tan 2γ√

1 + tan2 2γ

n2 − n1

n3
o

;

then, provided Π and Q are given, from (34) we may obtain the values of the stress
components as the solution of

π̂11 + π̂21 π̂12 + π̂22 π̂16 + π̂26

π̂11 − π̂21 π̂12 − π̂22 π̂16 − π̂26

π̂61 π̂62 π̂66




T1

T2

T6

 =


2K1

2K2

K3

 . (37)
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It is important to remark that, in the case of residual stress, by photoelastic techniques,
we obtain an average estimate of the stress components along the direction of observation.

Example

We consider a specimen of BaF2 (a typical optical component for optical thermometric
instruments such as thermo-cameras and infrared pyrometers), that is cubic, class m3̄m, and
whose refraction index is no = 1.45 at λ = 5 µm with piezo-optic components (in Pa−1):

π11 = −0.62× 10−12 , π12 = 2.31× 10−12 , π66 = 1.06× 10−12 . (38)

The crystal is observed orthogonally to the plane Σ ≡ {1 , 3 , 6} and on this plane we
measured n1 = 1.44999, n2 = 1.45001 and γ = 7.8 × 10−4 rad. Another face of the
specimen is parallel to the plane Σ′ ≡ {2 , 6 ,−1} and accordingly, the face Σ is rotated at
an angle of θ = 0.126 rad around the direction

ω = −0.227e1 + 0.316e2 + 0.921e3 . (39)

The component of Π in the specimen frame

u1 = 0.28e1 + 0.84e2 − 0.46e3 ,

u2 = −0.94e1 + 0.31e2 , (40)

u3 = 0.14e1 + 0.44e2 + 0.88u3 ,

are (in terms of 10−12 Pa−1):

π̂11 = 0.014 , π̂22 = 0.956 , π̂12 = 1.793 ,

π̂21 = 1.434 , π̂66 = −0.252 , π̂16 = −0.775 ,

π̂26 = −0.422 , π̂61 = −0.775 , π̂62 = −0.422 .

(41)

From (37), we then arrive at the following values for the plane stress components in
the frame {uK}:

T11 = 3.59 MPa , T22 = 4.22 MPa , T12 = 18.15 MPa , (42)

that are smaller than the BaF2 elastic limit which is σe = 26 MPa.

4. Conclusions

We considered a specimen of a cubic crystal whose faces are rotated with respect to the
crystallographic planes, an instance that can occur when the crystals are cut from a boule
with the aim to optimize the volume of finished crystals. We assumed that the crystal is
observed by the means of a polariscope on one of its faces and that we are able, for instance
by using XRD diffraction, to evaluate the Miller indexes of this face and of another one. The
knowledge of the specimen surface with respect to the cubic crystallographic axes allows
for the complete description of the rotation matrix, which connects the crystallographic
and the specimen frame.

Provided this, and upon the assumption that the residual stress within the specimen is
a plane stress in the observed face, we are able to express the relation between the refraction
index in the observation plane and the three components of the residual stress in terms
of the components of the piezo-optic tensor and the rotation matrix. The equation we
obtained allows for a complete identification of the residual plane stress once we are able to
experimentally measure the refraction index and the extinction direction in the observation
plane. We finish by proposing an example for the numerical validation of the model with
the data for a BaF2 crystal.
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The proposed model will allow for the development of methods and systems for qual-
ity assessment and monitoring of optical components, which are critical in many optical
and electro-optical apparatuses and whose application fields span medicine, telecommuni-
cations, aerospace engineering, high-energy physics, and environmental control.
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Appendix A

For the cubic group, the piezo-optic matrix has tabular representation in the frame
{ei} for the two classes 23 and 3m (vid., e.g., [36,41]):

Π ≡



π1111 π1122 π1133 0 0 0
π2211 π1111 π1122 0 0 0
π1122 π2211 π1111 0 0 0

0 0 0 π2323 0 0
0 0 0 0 π2323 0
0 0 0 0 0 π2323

 , (A1)

whereas that for the classes 432, 4̄3m and m3̄m can be obtained by putting

π1133 = π2211 = π1122 , (A2)

into (A1).
Relation (21) depends on the 9 components π̂MNAB, which are related to the five

independent components πijhk in (A1) by means of
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π̂1111 = π1111(Q4
11 + Q4

12 + Q4
13) + π2323(Q2

12Q2
13 + Q2

11Q2
13 + Q2

11Q2
12)

+ π1122(Q2
11Q2

12 + Q2
12Q2

13 + Q2
11Q2

13) + π2211(Q2
12Q2

11 + Q2
13Q2

12)

+ π1133Q2
11Q2

13 ,

π̂2222 = π1111(Q4
21 + Q4

22 + Q4
23) + π2323(Q2

22Q2
23 + Q2

21Q2
23 + Q2

21Q2
22)

+ π1122(Q2
21Q2

22 + Q2
22Q2

23 + Q2
21Q2

23) + π2211(Q2
22Q2

21 + Q2
23Q2

22)

+ π1133Q2
21Q2

23 ,

π̂1212 = π1111(Q2
11Q2

21 + Q2
22Q2

12 + Q2
12Q2

23) + π2323(Q2
12Q2

23 + Q2
11Q2

23 + Q2
11Q2

22)

+ π1122(Q11Q12Q21Q22 + Q11Q13Q21Q23 + Q12Q13Q22Q23)

+ π2211(Q11Q12Q21Q22 + Q11Q13Q21Q23) + π1133Q11Q13Q21Q23 ,

π̂1122 = π1111(Q2
11Q2

21 + Q2
12Q2

22 + Q2
13Q2

23)

+ π2323(Q12Q13Q22Q23 + Q11Q12Q21Q22 + Q11Q12Q21Q22)

+ π1122(Q2
11Q2

22 + Q2
12Q2

23 + Q2
13Q2

21)

+ π2211(Q2
12Q2

21 + Q2
13Q2

22) + π1133Q2
11Q2

23 ,

π̂2211 = π1111(Q2
21Q2

12 + Q2
22Q2

12 + Q2
23Q2

13)

+ π2323(Q22Q23Q12Q13 + Q21Q23Q11Q13 + Q21Q22Q11Q12)

+ π1122(Q2
21Q2

12 + Q2
22Q2

13 + Q2
23Q2

11)

+ π2211(Q2
22Q2

11 + Q2
23Q2

12) + π1133Q2
21Q2

13 ,

π̂1112 = π1111(Q3
11Q21 + Q3

12Q22 + Q3
13Q23)

+ π2323(Q2
12Q13Q23 + Q2

11Q13Q23 + Q2
11Q12Q22) ,

+ π1122(Q2
11Q12Q22 + Q2

13Q11Q21 + Q2
12Q13Q23) ,

+ π2211(Q2
12Q11Q21 + Q2

13Q12Q22) + π1133Q2
11Q13Q23 ,

π̂2212 = π1111(Q3
21Q11 + Q3

22Q12 + Q3
23Q13)

+ π2323(Q2
23Q12Q22 + Q2

23Q11Q21 + Q2
22Q11Q21)

+ π1122(Q2
21Q12Q22 + Q2

23Q11Q21 + Q2
22Q13Q23)

+ π2211(Q2
22Q11Q21 + Q2

23Q12Q22) + π1133Q2
21Q13Q23 ,

π̂1211 = π1111(Q3
11Q21 + Q2

12Q22 + Q3
13Q23)

+ π2323(Q2
12Q23Q13 + Q2

11Q23Q13 + Q2
11Q22Q12)

+ π1122(Q2
12Q21Q11 + Q2

11Q23Q13 + Q2
13Q22Q12)

+ π2211(Q2
11Q22Q12 + Q2

12Q23Q13) + π1133Q11Q21Q2
13 ,

π̂1222 = π1111(Q3
21Q11 + Q3

22Q12 + Q3
23Q13)

+ π2323(Q2
23Q12Q22 + Q2

23Q11Q21 + Q2
22Q11Q21)

+ π1122(Q2
22Q11Q21 + Q2

21Q13Q23 + Q2
23Q12Q22)

+ π2211(Q2
21Q12Q22 + Q2

22Q13Q23) + π1133Q11Q21Q2
23 .

The equivalent relations for the other groups are easily obtained by means of (A2).
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Appendix B

A rotation Q can be represented, once the pair angle of rotation and axis of rotation
(ϕ , ω) is given, by means of the Rodrigues formula [43]:

Q = I + sin ϕW + (1− cos ϕ)W2 , (A3)

where the W ∈ Skw and W2 ∈ Sym are, respectively, given by

Wω = 0 , W2 = −(I−ω⊗ω) ; (A4)

in an orthonormal frame {e1 , e2 , e3 = ω}, the associated matrix has the simple representa-
tion:

Q ≡

 cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 . (A5)

In Section 2, we represented the rotation matrix in terms of the two vectors m and m′ and
one may wonder how to recover the pair (ϕ , ω) from (10). To obtain the rotation angle, we
simply consider the trace of Q, which is one of the orthogonal invariants:

tr Q = Q11 + Q22 + Q33 = 1 + 2 cos θ ; (A6)

as far as the axis is concerned, since by definition the axis is the eigenvector with a unit
eigenvalue, i.e., Qω = ω, then its components can be obtained by solving the system:

(Q11 − 1)ω1 + Q12ω2 = −Q13ω3 ,

Q21ω1 + (Q22 − 1)ω2 = −Q23ω3 ,

provided ω2
1 + ω2

2 + ω2
3 = 1. We obtain:

ω1 =
Q23Q12 −Q13(Q22 − 1)√

A
,

ω2 =
Q21Q13 −Q23(Q11 − 1)√

A
, (A7)

ω3 =
(Q11 − 1)(Q22 − 1)−Q12Q21√

A
,

with

A = (Q23Q12 −Q13(Q22 − 1))2 + (Q21Q13 −Q23(Q11 − 1))2 (A8)

+ ((Q11 − 1)(Q22 − 1)−Q12Q21)
2 .

Conversely, the components of Q are given in terms of the components of ω by:

Q11 = cos ϕ + ω2
1(1− cos ϕ) ,

Q22 = cos ϕ + ω2
2(1− cos ϕ) ,

Q33 = cos ϕ + ω2
3(1− cos ϕ) ,

Q12 = − sin ϕω3 + (1− cos ϕ)ω1ω2 ,

Q13 = sin ϕω2 + (1− cos ϕ)ω1ω3 , (A9)

Q23 = − sin ϕω1 + (1− cos ϕ)ω2ω3 ,

Q21 = sin ϕω3 + (1− cos ϕ)ω1ω2 ,

Q31 = − sin ϕω2 + (1− cos ϕ)ω1ω3 ,

Q32 = sin ϕω1 + (1− cos ϕ)ω2ω3 .
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