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Theoretical Bounds on the Complexity of Inexact 

Computations I 

JUDEA PEARL, MEMBER, IEEE 

Abstract-This paper considers the reduction in algorithmic 
complexity that’can be achieved by permitting approximate an- 
swers to computational problems. It is shown that Shannon’s 
rate-distortion function could, under quite general conditions, 
provide lower bounds on the mean complexity of inexact compu- 
tations. As practical examples of this approach, we show that 
partial sorting of N items, insisting on matching any nonxero 
fraction of the terms with their correct successors, requires 0 (N 
log N) comparisons. On the other hand, partial sorting in linear 
time is feasible (and necessary) if one permits any finite fraction 
of pairs to remain out of order. It is also shown that any error tol- 
erance below 50 percent can neither reduce the state complexity 
of binary N-sequences from the zero-error value of O(N) nor re- 
duce the combinational complexity of N-variable Boolean functions 
from the zero-error level of 0(2N/N). 

I. INTRODUCTION 

0 

NE OF the main aims of the science of computation 
complexity is to capture generic rules which govern 

exchanges among the important parameters of computa- 
tions [l]. Tradeoffs among memory-space, program length, 
running time, and hardware cost have been the main focus 
of complexity studies [2]-[4]. Except in the area of nu- 
merical analysis, however, precision has hardly been re- 
garded as a computational commodity. Errors have, tra- 
ditionally, been assumed to have no place in computer 
systems and to be shunned at all cost. 

Recently, there has been an increasing interest in the 

possibility of saving a substantial amount of computational 
resources by deliberately allowing some imprecision in 

computation procedures. The observation that humans, 
using inexact reasoning, can outperform machines in tasks 
such as parking a car or translating languages gave rise to 

the belief that, when problem complexity increases beyond 
a certain level, inexactness could be a blessing [5]. Systems 
operating on incomplete data with approximate inference 

rules have been constructed and successfully tested in the 
area of medical diagnosis [6]. Rabin [7] conjectured that 
the disparity between the superexponential complexity of 
proofs in even the simplest algebras and the apparent 
simplicity of everyday human planning activity can be 
explained by man’s willingness to tolerate a small amount 
of error. 

This paper uses information-theoretic considerations 
to establish absolute bounds on the reduction in com- 
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plexity that can be achieved by tolerating a mean error of 
a specified type and magnitude. The method is applicable 
to many typical computation problems. One may wonder, 
for instance, if the O(n log n) comparisons necessary for 
sorting a sequence of n items co.uld be reduced substan- 
tially when one settles for only partially sorted outputs. Or, 
as another example, while it is well known that the exact 
realization of most Boolean functions of n variables re- 
quires at least 0(2n/n) two-input gates, one may be willing 

to tolerate a certain percentage of erroneous outputs and 
may inquire whether the expected number of gates could 
be reduced by a significant factor. 

Our model of inexact computation consists of a task 
environment (functions, transformation, etc.) and a class 
of computation units (machines, algorithms, sequences of 

operations, etc.) which could be employed to accomplish 
the required tasks. When no error is allowed, each task is 
accomplished by a distinct computation unit. When error 

is tolerated, one may exploit the option of assigning some 
of the tasks, especially the most frequent and most com- 
plex ones, to less complex processing units which do not 

exactly accomplish the requested tasks but produce out- 
puts somewhere in the neighborhood of the desired ones. 
Our problem is to bound from below the mean complexity 
of the resultant computation over all assignments which 
preserve a fidelity criterion of a specified level. 

II. PROBLEM STATEMENT 

The model construed to facilitate the analysis has the 
following components: 

i) a finite set F of tasks; 
ii) a countable set D of machines (or computation 

units); 
iii) a probability measure P on the subsets of F; 
iv) a complexity measure c: Q - (1,2, - - $; 
v) a penalty function d: F X Q - [O,a), d(f,w) being the 

cost incurred when task “f” is assigned to machine 
“cd”* 

vi) a se; of assignments m: F --+ 0, each giving rise to an 

average cost 

E WW(f,m(f)) 
fEF 

and an average complexity 
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The main problem of this paper is the underbounding 
of the function 

C(D) = minfgFP(fMdf)), (1) 

the minimum being over assignments m with average cost 
not exceeding D. 

Remarks: The assignment m may be many-to-one al- 
lowing for the execution of several tasks by the same ma- 
chine. We exclude, however, the option of employing 

nondeterministic assignments, thus Jm(F) 1 I IFI. As- 
signments m with average cost not exceeding D will be 
referred to as D-admissible computations. 

In certain cases, one would be more interested in com- 
plexity measures other than C(D); for example, the max- 

imum complexity maxwE,,@) c(w), or the mean static 
complexity 

Bounds on these measures are usually easier to obtain and 
will be treated only briefly in the sequel. 

The following three examples illustrate the applicability 
of the model. 

Example I: Consider the problem of realizing an arbi- 
trary Boolean function of N variables using logic-circuit 

technology. The task environment F consists of the col- 
lection of all N-variables Boolean functions f: (O,l)N - 
(O,l} with p (f) = 2- czN). D is the set of logic circuits avail- 
able for the realization of F, and c is usually taken as the 
number of gates employed by each circuit (combinational 
complexity) or the maximum number of logic levels be- 

tween the input and the output (time complexity). A rea- 
sonable measure of error-induced penalty would be the 
fraction of arguments over which the circuit output would 

not agree with the specified function. 
Example 2: Consider the problem of generating speci- 

fied binary sequences of length N using sequential circuits. 
The task environment consists of functions f: 4 - (O,l)N 

with P(f) = 2-N and Q being the set of autonomous se- 
quential machines. An accepted measure of complexity is 
the number of states which the machine must employ, and 

a reasonable penalty function would be the Hamming 
distance between the desired sequence .and the one gen- 
erated. 

Example 3: Consider the problem of devising a sorting 
algorithm for partially sorting N items with a minimum 
number of binary comparisons [3, p. 861. Each task can be 
regarded as that of executing one permutation among N! 
possible ones. Since only binary comparisons are allowed, 
the execution of each such task would consist of a sequence 
of binary decisions based on the relative order of the two 
items inspected. We may choose, therefore, to regard each 
such decision sequence as the basic computation unit 
under consideration. 8 would comprise then the set of se- 
quences of binary decisions, and the complexity measure 

would be the length of each such sequence. If, upon re- 
ceiving the input list f 1, the algorithm goes through a de- 

cision sequence w(fl), then the cost function d(fl,w(fl)) 
should reflect the damage incurred by receiving the par- 

tially sorted list produced by w(fl) instead of the fully 
sorted one desired. The appropriate cost function depends 
on the usage finally made of the sorted lists; in some cases 
the number of items placed in the wrong rank might reflect 
that damage, in others it might be the number of pairs 
produced out of order. 

III. LOWERBOUNDFOR C(D) 

The exact calculation of C(D) may be a very difficult 
undertaking, because the relation between c(w) and d(f,w), 

for given f and o, are hard to establish (see examples). 
Lower bounds for C(D) can be obtained using informa- 
tion-theoretic arguments based on Shannon’s rate-dis- 
tortion theory [8]. The main result which we shall borrow 
from the theory is Shannon’s source-coding theorem: given 
an information source [K,P] over an input alphabet K, an 

output alphabet L, and a distortion measure d(k,Z); it is 
not possible with any coding scheme to transmit the source 
information at a rate less than R(D) and with average 
distortion not exceeding D. R(D) is called the rate-dis- 
tortion function and is given by 

Wlk) 
R(D) = min CP,P(llk) log- 

PUlkEPrJ k,l 9 
(2) 

where 

PO = P(Zlk): C PkP(Zlk) d(k,Z) 5 D . 
1 I 

(3) 
W 

R(D) has been studied extensively in the literature on in- 
formation theory [9] and has been calculated for a variety 
of distortion criteria and source statistics. 

A direct corollary of the source coding theorem is as 
follows. 

Corollary: Every D-admissible computation yields an 

entropy not smaller than R(D), that is, 

H(Q) = - C Q(w) log Q(w) I R(D) (4) 
wEm(F) 

where Q is the probability induced on 52 by mapping m 

Q(u) = f & P(f). 
:m 0 

(5) 

This theorem follows from identifying [F,P] with the 
information source, D with the output alphabet, and m 
with a source code. A violation of (4) would mean that m 
exists by which [F,P] could be encoded at rate H(Q) < 
R(D) and with distortion SD, so violating Shannon’s 

theorem. 
Using (4) one can readily bound ] m(F) I by 

ImV’)l 2 exp [R(D)1 (6) 

where m is D-admissible; this follows from the fact that the 

entropy of any N-element ensemble cannot exceed log N 
(nats). 

Note that the minimum size of m(F) can, in turn, yield 

bounds on static complexity measures such as the maximal 
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complexity or the mean static complexity. Both achieve Proof: Consider any arbitrary subset Q’ E D contain- 

their minimum values when the machines employed under ing at most IF I machines. The set of R-admissible proba- 

m are sequentially chosen from Q in order of increasing bility assignments on 9’ constitutes a convex region, since 

complexity, and when their number 1 m(F) 1 is the smallest H(Q) is a strictly convex n function of Q. On the other 

allowable by (6). Let g(x) denote the number of machines hand, ZofQ(w)c(w) is linear in Q and so must assume its 

in Q having complexity exactly equal to X, x = 1,2,. . . ; then unique extremum on the boundary H(Q) = R. Applying 

inequality (6) gives the bounds this argument to all subsets 9’ proves the lemma. Q.E.D. 

max c(w) 1 n, 
oEm(F) 

(7) 

and 

(8) 
x=1 

where n, is the smallest integer satisfying 

Ii? g(x) 1 exp [R(D)]. 
x=1 

(9) 

Equations (7) and (8) are generalizations of complexity 

bounds commonly produced by enumeration [2] under the 
assumption that D = 0 and that P(f) is the uniform dis- 
tribution so that R(D) = log IFI. 

Bounds on operational complexity measures, such as 
C(D), require a further analysis since (6) does not con- 
strain the probability distribution on m(F); hence the 

mean complexity might be further decreased by assigning 
higher probabilities to machines in the lower levels of 
complexity. The essence of (4), on the other hand, is that, 
in order to achieve a mean distortion not exceeding D, the 

entropy H could not be too low,and so the probability 
distribution Q could not be too uneven. This, in turn, limits 
the difference between C(D) and the static mean com- 

plexity. 
We now produce a lower bound on C(D) by calculating 

the minimum of ZQ(w)c(w) over all probability assign- 

ments Q(w) which satisfy (4): 

C(D) 1 min CQ(w)c(w) (10) 
QE%D),F 

where &J? is the set of all R-admissible probability as- 
signments on at most IFI machines: 

h,F A IQb):H(Q) >R, lbQk4 >Oll 5 IJ'II. (11) 

Note that the right side of (10) is much easier to calculate 
than C(D); the constraint Q E PR,J does not involve d or 

P. 
It will now be shown that ZQ(w)c(o),Q E PR,F, is 

minimized by selecting a set of IF I machines from the 
lowest complexity levels of D and assigning them expo- 

nentially decreasing probabilities. 
Lemma 1: Let Q* E PR,F be a probability assignment 

such that, for all Q E PR,F, 

Then 

H(Q*) = R. (12) 

In other words, Q* is on the boundary of PR,F. 

Lemma 1 permits the reduction of the minimization in 
(10) to a simple variational problem with the equality 
constraint H(Q) = R. Its solution leads to an exponential 
probability distribution 

Q*(@) =fi (13) 

C ePC(O) 
w 

for any set of IF I machines, where II is a Lagrange multi- 
plier satisfying (12). Clearly, ZQ (w)c (w) is minimized when 
the set of IF I machines are “packed” into the lowest n 

levels of complexity, where n is the smallest integer satis- 
fying 

g g(x) 1 IFI. (14) 
x=1 

Treating P as a variable parameter, (12) and (13) con- 
stitute a pair of parametric equations relating R and the 
average complexity C, viz. 

$J xg(x)efi’” 
c, =x=1 

i: g(x)e’“’ 

-m<pso (15) 

x=1 

R, = log 2 eqxg(x) - pCcl, --03 < /.L IO. (16) 
x=1 

The solution to (15) and (16), which we call the complexity 

rate function C,(R), provides the sought for lower 

bound 

C(D) 2 C,[R(D)l. (17) 

Thus, given a value D for the tolerated mean distortion, 
C(D) can be bounded by first calculating the rate-distor- 
tion function R(D), and then the complexity rate function 
C,(R) at R = R(D). The conditions under which upper 
bounds on C(D) may have a similar relationship to R(D) 
remain an open question. 

IV. PROPERTIESOF C,(R), THECOMPLEXITYRATE 
FUNCTION 

Several typical C,(R) functions are depicted in Fig. 1. 
Whereas the exact nature of C,(R) depends on the occu- 

pation function g(x), some general characteristics of this 

function can be deduced from (15) and (16). 
A) Successive differentiations of (15) and (16) with 

respect to I* yield 

%?(R) = _ I > 0 
dR CL- 

(1% 
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.8 

.l .2 .3 .4 .5 .6 .7 .8 .9 1.0 

R/R, 

Fig. 1. Complexity Rate Function C,(R), for g(x) = n2~, Ro = 
log IF].’ 

d 2Cg(R) 

dR2 

=- P 
, o 
- . 

$ g(x)eF” - $x2g(x)e@x - [$xg(x)epx12 

(19) 

Thus C,(R) is a monotonically increasing convex U 
function of R. 

Since R(D) is known to be a monotonically decreasing 
convex U function of D with infinite slope at D = 0 [8], we 
conclude that C, [R(D)] is also a monotonically decreasing 
convex U function of D with infinite slope at D = 0. This 
supports the notion that greater reductions in complexity 
can be achieved at low levels of distortion than at high 

levels. 
B) The low-distortion behavior of C, 

the slope 

dCg(R) I 
1 

dR LI=O=-G 

which depends on the input statistics P(f 
the relation R,, = H(P). 

via (15), (16) and 

If the input functions are all equiprobable, then ~0 = 0, 

R(O) = log IFI, and the low-distortion behavior of C,(R) 

is given by the square-root relation 

AC, = (2AR)1/2Vg(n) (20) 

where 

P) is governed by 

C) Given two distinct occupation functions gl(x) and 

gz(x) such that gl(x) 2 g&x), for all x, then C,,(R) I 
C,,(R). This follows from the fact that if gi(x) > gs(x), for 
some x I n, then any probability assignment optimal 
under gs(x) can be further improved under gl(x) by filling 
in the “gap” created at x without destroying its R-ad- 
missibility. This property implies that the complexity rate 
function calculated on the basis of an upper bound on g(x) 
(instead of g(x)) still provides a lower bound to C(,D). In 
some cases, to ease the combinatoric labor of computing 
the exact value of g(x), a reasonable upper bound would 
suffice. 

D) We will now show that if g(x) is a fast growing 
function with at least an exponential rate of growth, then 
the complexity rate function C,(R) approaches a straight 
lineasn-a. 

Theorem 1: Let g(x) = Qk(?) . go(x), where Qk(x) 2 1 
is a hth degree polynomial in x and go(x) satisfies 

log gob1) > 1 

loggo(x2) -x2 

for all x1 > x2. (22) 

Then C,(R) is bounded by 

C,(R) I C,(Ro) (23) 

where 

Ro p logx?lg(z) = log IFI, (24) 

and, from (15), 

CgWo) = [ $ g(x)]-l$ xdd. (25) 

The proof is given in the Appendix. 
The fact that C,(R) is a convex function passing through 

the point (C,(Ro),Ro) gives the asymptotic behavior 

C,(R) R 

C,(Ro) s %i 
(26) 

for all values of D such that R (D)/Ro is of order higher than 

(log n)ln. 

For P(f) = l/IF\, wehaveR(D = 0) = log IFI = Roand 

C,(Ro) is equal to the classical lower bound under zero 
distortion [lo]. Under these conditions, (26) implies that 
the relative reduction in the mean complexity induced by 
tolerating a mean distortion D cannot (in the limit of large 
(FI) exceed the relative change of the rate-distortion 
function R(D). Note that condition (22) is satisfied in 
many common cases. For example, the number of auto- 
nomous machines with exactly x states is given by g(x) = 
3~2~. The number of combinational circuits employing x 
two-input gates with p input variables and q output vari- 
ables is bounded by [lo] g(x) I 3”(x + p + 2)(2x+q). The 
number of paths in a binary tree with depth x is given by 
g(x) = 2X. We believe, therefore, that R(D) would govern 
the complexity versus error tradeoffs in a variety of ap- 
plications such as function realization, language recogni- 
tion, and theorem proving. 
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V. EXAMPLES-SORTING AND MODELING and (25)), Ro = N log 2 and 

We shall now apply the result of (26) to the three ex- 
amples discussed in the introduction. 

Example 1: Consider the realization of an arbitrary 
Boolean function of N variables by combinational circuits 
containing inverters and two-input AND and OR gates. 
There are ] F ] = 22N such computational tasks and at most 
g(x) = 3x(x + N + 2)(2x+1) circuits utilizing x such gates. 

Taking the number of gates as the complexity measure and 
the fraction of arguments for which there is disagreement 

as a distortion criterion and assuming all Boolean functions 
to be equiprobable, we have [9] 

Taking as a distortion criterion the mean fraction of er- 
roneous output symbols and assuming the input sequences 
to be Bernoulli with parameter q I l/2, we find that the 
rate-distortion function is given by [9] 

R(D) = N[Hb(q) - &@)I. 

Now, using (26) and (17), we obtain 

(34) 

R(D) = 2N[log 2 - D log l/D - (1 - D) log l/l - D], 

(27) 

C(D)tN[l+O(y)] [Hb(q)-Hb(D)]. (35) 

R. = 2N log 2, (28) 

and the zero-distortion lower bound is given by [lo] 

Equation (35) implies that, for all D < q I l/2, the average 
number of states needed to construct a sequential machine 
which reproduces a Bernoulli N-sequence with error fre- 
quency not exceeding D remains of the order of N. 

C,(Ro) = O(2N/N), 

Therefore, (26) states that 

(29) 

C(D) 2 O(2N/N)[log 2 - D log l/D 

- (1 - D) log 1/l - D], (30) 

implying that no amount of error tolerance below D = 50 
percent could reduce the average combinational com- 
plexity of Boolean functions from the zero-distortion value 

of O(2NIN). 

Example 3: The task of sorting a list of N items using 

binary comparisons [3] comprises ] F ] = N! computational 
tasks, each involving the execution of one correct permu- 

tation. The computation units (n) under consideration are 
sequences of binary comparisons represented by paths 
along a tree structure. The complexity measure c(w) is 
taken to be the number of comparisons or the depth of the 
paths. Since there are g(x) = 2” distinct paths of depth x, 
the model satisfies condition (22), and so (26) is valid. 
Moreover, for large N, we have 

If, instead of the ensemble of all Boolean functions, we 
consider a class of partially specified Boolean functions, 
a lower complexity bound would result. Assume that a 

fraction p1 of the 2N input combinations are assigned an 
output “l”, a fraction po assigned an output “0” and a 
fraction 1 - po - p1 remains unspecified. Taking the 
probability of error on specified inputs as a distortion 
criterion, the rate-distortion function becomes [11] 

and 

Ro=logN!-NlogN (36) 

Cg(Ro) = log2 (N!) z 
NlogN 

log 2 * 
(37) 

Consequently, (using (26) and (17)) we obtain the as- 
ymptotic bound 

(38) 

R(D) = zN(po + PI> [Hb (fi) - HdD)] (31) 

where Hb (x) denotes the binary entropy function 

Hb(X) = -x log x - (1 - x) log (1 - x). (32) 

With this lower value of R(D), (26) yields 

b (5) --f&(D)]. 

(33) 

R(D,) N 
I 
N1ogN’ 

D, = 0 

N&g 2/D, - 2), DP >O. 
(40) 

Pippenger [12] has recently shown that (33) also represents 
an upper bound for approximate realizations of partially 
specified Boolean functions. Moreover, the zero-distortion 
bound in (29) can be tightened to read C,(Ro) = 2N/N[1 
+ 0(1/N)]. This yields a more precise form of (33), sub- 

stituting 2N/N[1 + 0(1/N)], for O(2N/N). 

Equation (39) implies that no sorting scheme exists 
which matches a fixed fraction 1 - D, > 0 of the terms with 
their correct successors and which requires fewer than O(N 
log N) comparisons. On the other hand, (40) allows for the 
possibility of sorting N-sequences in linear time, if one 
permits any finite fraction of pairs to be out of order. In- 
deed, such a sorting scheme exists in the form of QUICK- 
SORT [3] with a predetermined number of iterations. 
Every iteration involves comparing the items on the list 
to a fixed subset of randomly chosen items. For every given 
- 

Example 2: Consider the construction of a minimal state 
sequential machine to reproduce an arbitrary binary N- 
sequence. There are (F( = 2N such tasks, and g(x) = x2x 
machines with state complexity x. Therefore, (from (24) D > 0, one can determine a number k(D) of iterations 

Two distortion criteria were analyzed: the fraction of 
items d, in the output sequence which are followed by 
wrong successors, and the fraction of pairs dP in the output 
sequence which are out of order. Assuming that the input 
sequences are equiprobable, one can show [ll], [13] 

R(D,)-(1-D,)NlogN, ‘OlD,ll (39) 
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necessary to produce, on the average, a fraction at most D 
of reversed pairs. Therefore, a D-admissible partial sorting 

can be accomplished by Nh (D) comparisons. 

VI. DISCUSSION 

We have demonstrated that, under quite general con- 

ditions, Shannon’s rate-distortion function underbounds 
the extent to which computation complexity may be re- 
duced by allowing some imprecision. A necessary condition 

for enabling the conversion of a small degree of imprecision 
into a drastic reduction of complexity is that the rate- 
distortion function exhibits a similar drastic drop. Among 
the examples illustrated above, only the task of sorting 
with pair-ordering fidelity criterion (d,) exhibited a sig- 

nificant change in R (D)/Ro behavior between Dp = 0 and 
Dp > 0. In the other three examples, the ratio R(D)/Ro 
approached a constant function of D as (F ] - m, which 
forced C(D) t.o grow at a rate similar to that of C(0). 

In all four examples, we chose distortion criteria which 
measure the fraction of errors produced within some ad- 
missible set of tests (or enquiries) on the outputs. The es- 

sential difference between sorting with pair-ordering cri- 
terion and the other three examples is that the admissible 
test-set characterizing the former is highly redundant. In 
sorting with c& as a distortion measure, for example, one 
must know the successors of N - 1 items before the suc- 
cessor of the remaining item can be deduced with certainty. 
In pair-ordering sorting, on the other hand, knowing the 
correct precedence of only a small fraction of pairs (i.e., the 
N - 1 neighboring pairs) is sufficient to deduce (by 

transitivity) precedence in ail the remaining (N - l)(N - 
2)/2 pairs. The fact that this redundancy increases with N 

was necessary (though not sufficient) to allow a sorting 
complexity linear with N. 

A stronger redundancy in the test-set would normally 
result in a faster drop of R(D)/R(O) for large ] FI. For ex- 
ample, consider sorting with a distortion measure equal 
to the fraction of subsets of items whose highest member 
is not found at the highest relative position in the output 

list. The test-set in this case contains 2N - 1 separate tests, 
corresponding to the 2 N - 1 nonempty subsets that can 

be chosen from the list. The results of all these tests, 
however, could be deduced from only N - 1 tests each in- 
volving a pair of neighboring items. It is not hard to show 
that R (D)/R (0) under such distortion criteria drops at least 

as fast as 0(1/N) for D > 0. We could not find, however, 
a sorting algorithm which would guarantee a fixed D using 
fewer than N comparisons. 

It is interesting to relate the results obtained in this 

paper to the Chaitin-Kolmogoroff complexity. Chaitin [14] 
has defined a complexity measure on sequences which 
formally is almost identical to Shannon’s entropy. Chai- 
tin’s complexity K is defined as the length of the shortest 
program (with prefix property) which, when presented to 

a universal Turing machine, causes the machine to print 
the desired sequence. It is not surprising to find that this 
complexity measure behaves like Shannon’s entropy since 

only the program.‘s length, and not its execution, enters 
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into K. Thus the essential role served by the input program 
is that of a code for identifying the desired sequence. Our 

paper demonstrates that information-theoretic measures 
also govern executional complexities, i.e., complexity 
measures which reflect the cost associated with the exe- 

cution of a set of tasks by a given class of machines or al- 
gorithms. Since R(D) can be regarded as Chaitin’s program 
complexity under distortion D, (17) and (26) establish a 
connection between the latter and the executional com- 
plexity of a given computation technology characterized 

byg. 

APPENDIX 

Proof of Theorem 1 

C,(R) is a convex LJ function with dC,(R)/dR = -l/p. It must 
therefore, be the upper envelope of its tangent lines. Hence, for 
all w I 0, we have 

C,(R) L C, - ; (R -R,) = - ; (R - log Cg(x)e”“). (A-l) 

Equation (A-l) remains valid if we replace g(x) by another 
function which is everywhere greater. From (22), 

go(x) 5 [go(n)]x’n 5 [ z1 goqn, forx In 

and so 

64-2) 

C,(R) 2 -$ [R - log~lQk(x) [~lgdy)]rhe~x]. (A-3) 

Since (A-3) is valid for all p -< 0, we may choose 

p = - bog 2 go(x) (A-4) 
n x=1 I 

and obtain 

C,(R) 2 n 
log Do(x) 

R - log 2 Qk(X) 1 . (A-5) 
x=1 

Equation (22) implies that there exists a h > 0 (e.g., X = (l/x 1) log 
pf ke:;lorne fixed 1 < x I< n) such that, for all n, log go(n) L 

1% 2 &k b) 
x=1 

5 

1% X$1 Qk b) 

An 
(A-6) 

1% 5 ‘gob ) 
x=1 

Substitution in (A-5) establishes Theorem 1. 
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Correspondence 

A Distribution-Free Performance Bound in Error 
Estimation 

LUC P. DEVROYE AND T. J. WAGNER, MEMBER, IEEE 

Abstract-It is shown that distribution-free confidence intervals 
can be placed about the resubstitution estimate of the probability 
of error of any linear discrimination procedure. 

I. INTRODUCTION 

In the discrimination problem the statistician is given an ob- 

servation X, a random vector taking values in Rd, and wishes to 
estimate its state 0 E (1,2]. The only knowledge that the statis- 
tician has of the distribution of X, given 0 = i, is that which can 
be inferred from a sample of size ni drawn from F; where 

P[X I x ) 8 = i] = Fi (x), i = 1,2. (1) 

The two samples, here called data, are denoted Xi, a . . ,Xi, and 
xp, * - - ,Xz2, respectively, and are assumed to be independent 
of X regardless of its state. 

A discrimination procedure which has been frequently inves- 
tigated in the pastjsee, for example, Duda and Hart [l, ch. 51) 
is to estimate 8 by 0 where 

a= 1, 
i 

if wtX 1 ws 

2, ifwtX <we. 

The vector wt = (WI, . . . ,wd) and the number we, called the 
weight vector and threshold weight, respectively, are chosen from 
the data. Regardless of what method is used to arrive at a weight 
vector and threshold weight, the statistician will always be in- 
terested in estimating 

Li = P[i # i IX:, . a. ,Xlnl,X;, *.. ,X&,0 = i], i = 1,2, 

a random variable whose value is just the frequency of errors 
when a large number of independent observations, all with state 
i, have their states estimated using (2). 

The resubstitution estimates ii of Li are defined by 
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and 

These estimates have the appeal of being very simple to calculate 
once w and wo have been determined and, indeed, some proce- 
dures for finding w and we involve the specific calculations above. 
For example, for a given 0 < o( < 1, one may seek values w and wo 
such that, when L1 I o(, & is minimized. 

The question that we address ourselves to here is: how much 
confidence can the statistician place in these estimates, that is, 
for a given c > 0, what is 

P[l& - L;I < c]. (3) 

There is, of course, no way of calculating (3) since the distribution 
functions (1) are unknown. However, if pi denotes the measure 
on the Bore1 sets corresponding to Fi and pi denotes the empirical 
measure on the Bore1 sets for Xi, . . . ,X$ (e.g., Pi(A) is the pro- 
portion of the X with state i falling in the set A), then 

where @i deontes the class of sets of the form (x:w % 2 we], for 
i = 2, and (x:w% < we), for i = 1. The random variable on the 
right in (4) is, in the one-dimensional case, essentially what is 
dealt with in the GlivenkwCantelli theorem [2]. Indeed, for d L 

1, Wolfowitz [2] showed that this random variable tends to zero 
with probability one as ni - m. While this gives the statistician 
some assurance that, for large ni, his estimate of Li will be close 
to the actual value uniformly in all procedures for determining 
w and we (see Glick [3] for a thorough discussion of this point), 
he still falls short of getting a numerical grasp on (3). 

Suppose now that X1, . . . ,X, is a sample of size n drawn from 
the distribution function F. If p denotes the measure corre- 
sponding to F and fi denotes the empirical measure for X1, 
. . . ,X,, then Vapnik and Chervonenkis [4, theorem 2, p. 2691 
have shown that 

P{,E~ Ip(A) - P(A)1 L ~1 I 4s(@,2n)e-n~2/S 

where @ is a class of Bore1 sets in Rd and S(e,n) is the maximum 
over x1, *. a ,x, ofthe number of sets in {(xl, . s. ,x,) n A:A E @). 

For the class of “half planes” that we are considering here (e.g., 
@I or @2), 

I nd + 1, if n 2 d. 




