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	is paper presents a novel quasi-zero sti
ness (QZS) isolator designed by combining a disk spring with a vertical linear spring.
	e static characteristics of the disk spring and the QZS isolator are investigated. 	e optimal combination of the con�gurative
parameters is derived to achieve a wide displacement range around the equilibrium position in which the sti
ness has a low value
and changes slightly. By considering the overloaded or underloaded conditions, the dynamic equations are established for both
force and displacement excitations. 	e frequency response curves (FRCs) are obtained by using the harmonic balance method
(HBM) and con�rmed by the numerical simulation.	e stability of the steady-state solution is analyzed by applying Floquet theory.
	e force, absolute displacement, and acceleration transmissibility are de�ned to evaluate the isolation performance. E
ects of the
o
set displacement, excitation amplitude, and damping ratio on the QZS isolator and the equivalent system (ELS) are studied. 	e
results demonstrate that the QZS isolator for overloaded or underloaded can exhibit di
erent sti
ness characteristics with changing
excitation amplitude. If loaded with an appropriate mass, excited by not too large amplitude, and owned a larger damper, the QZS
isolator can possess better isolation performance than its ELS in low frequency range.

1. Introduction

	e requirements for low-frequency isolators arise in many
scienti�c and industrial �elds, ranging from the isolation of
precision instruments for gravitational wave detections to the
design of seat suspension systems for motors [1, 2]. For tradi-
tional passive linear isolators, a smaller sti
ness is desired to
achieve a smaller natural frequency so that it can attenuate
low-frequency vibrations [3]. In this case, a larger static
deection is unavoidable in practical applications. To over-
come the limitation between isolation performance and static
deection, passive nonlinear isolators have been used to
obtain a high static sti
ness resulting in a small static deec-
tion and a low dynamic sti
ness resulting in a small natural
frequency [4]. By choosing the appropriate con�gurative and
geometric parameters of nonlinear isolators, a quasi-zero
sti
ness (QZS) isolator possessing zero dynamic sti
ness at
the static equilibrium position can be realized [5].

	ere are a number of ways to design a QZS isolator by
combining a negative sti
ness element with a positive ele-
ment. Ibrahim [6] presented a comprehensive assessment of
recent advances in nonlinear isolators with good ultralow
frequency isolation performance. Alabuzhev et al. [7] covered
the fundamental theory and many prototypes of vibration
isolation systems characterized with QZS. Peng et al. [8] used
six rods and a tension spring to achieve the QZS property.
Platus [9] utilized two compressed bars hinged at the center to
be the negative element. Zhang et al. [10] added a beam under
axial force to a positive sti
ness spring. Carrella et al. [11] pro-
posed a high-static-low-dynamic sti
ness (HSLDS) isolator
with a vertical linear spring in parallel with two oblique linear
springs. Kovacic et al. [12] conducted further research by
using two nonlinear prestressed oblique nonlinear springs as
negative element. Le and Ahn [13] studied a low-frequency
isolator for vehicle seat theoretically and experimentally, in
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Figure 1: Prototype model of the proposed QZS isolator.
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Figure 2: 	e principle for achieving the QZS property.

which the negative sti
ness element is con�gured by a hor-
izontal spring in series with a bar. Liu et al. [14] studied the
characteristics of a QZS isolator using Euler buckled beam
as negative sti
ness corrector. Magnetic springs were also
introduced to QZS isolators. Carrella et al. [15] proposed a
model with two linear springs and three permanent magnets
arranged in an attracting con�guration. Robertson et al. [16]
examined another isolator that exhibits localized zero sti
-
ness by the interaction between a oating magnet and two
�xed permanent magnets. Zhou and Liu [17] developed a
HDLDS isolator comprising amechanical spring and an elec-
tromagnet. Xu et al. [18] investigated a QZS isolator based on
a prototype of combining an appropriate vertical spring with
two pitched bars connected with magnets.

In this paper, we propose a new QZS isolator by com-
bining a disk spring with a vertical linear spring as shown
in Figure 1. Compared with other negative sti
ness elements,
taking a disk spring as negative sti
ness element can o
er
greater support capacity because the disk spring can bear
great loadwith small deection and supply a certain restoring
force at the atten state. 	erefore, the new QZS isolator is
suitable for being used in the occasion with space limitation
for isolators. Meanwhile, its axial nonlinear restoring force
enables the isolator to achieve the QZS property at the static
equilibrium position. 	e principle for achieving the QZS
property is presented in Figure 2. Curve 1 is the typical force-
displacement curve for the vertical linear spring, curve 2 is
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Figure 3: 	e disk spring under axial force.

the typical force-displacement curve for the disk spring, and
curve 3 is the combined curve. In the displacement range
around the static equilibrium position, the negative sti
ness
o
ered by the disk spring o
sets the positive sti
ness o
ered
by the linear spring, thus leading to a QZS isolator. And the
restoring force of the disk spring at the static equilibrium
position is positive, whichmeans the isolator can own greater
support capacity.

	e aims of this paper are to design con�gurative parame-
ters and investigate the characteristics and e
ects of overload
or underload on the isolation performance of the designed
QZS isolator. 	e paper is organized as follows. In Section 2,
the static characteristics of the disk spring as well as the QZS
isolator are presented. In addition, the optimization of the
QZS isolator is conducted to get a wider displacement range
around the static equilibrium position in which the sti
ness
is lower and changes slightly. 	e dynamic modeling and
solution are illustrated in Section 3, followed by the numer-
ical simulations and the stability analysis in Section 4. In
Section 5, the frequency response curves (FRCs) and trans-
missibilities for the force and displacement excitations are
studied by considering the overload or underload condition.
	is section also discusses the e
ects of the damping ratio on
the QZS isolator. Finally, some conclusions on the perfor-
mance of the QZS isolator are drawn in Section 6.

2. Static Characteristics of the QZS Isolator

2.1. Disk Spring. A disk spring of variable thickness loaded
axially is shown in Figure 3, where � is the external radius, � is
the internal radius, � is the distance of neutral axis to center, ℎ
is the free height, �(�) is the thickness at � position, � is the
initial cone angle of disk, and 	 is the change of cone angle
due to load 
. 	e law of variable thickness is de�ned by� (�) = 0 + 1�, (1)

where 0 = ���(1 + �((� + �)/(� − �)) − 2(��/(� − �))) and1 = (2���/(�−�))�. ��� is the thickness at radius �� = (�+�)/2,
and � = (�� − ��)/2��� is a nondimensional parameter which
de�nes the form of the spring shown in Figure 4.

Starting from the Almen and Laszlo theory [19] and
following the indications of la Rosa et al. [20], the relationship
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� = −1 � = 0 � = 1

Figure 4: Disk spring with thickness varying along the generatrix of the cone.

between the applied axial force 
 and axial deection � can
be derived:


 = 2���(� − �)2 (1 − �2) [(ℎ − �) (ℎ − �2)� +�] , (2)

where � = (� − �)	, � is Young’s modulus of the disk spring,
and � is Poisson’s ratio. 	e parameters� and� are de�ned
as

� = 1(� − �)2 [0�1 + 1�2] ,
� = 112 [30�3 + 3201�4 + 3021�1 + 31�2] ,

(3)

in which

�1 = 12 (�2 − �2) − 2� (� − �) + �2 ln �� ,
�2 = − 13 (�3 − �3) + 32� (�2 − �2) − 3�2 (� − �) + �3 ln �� ,
�3 = ln

�� ,
�4 = − (� − �) + � ln �� ,
� = (� − �)2−2� (� − �) + (� − �) ln (�/�) + � (� + �) ln (�/�) .

(4)

With the disk spring moving down from the initial
position � = 0, it starts to provide a restoring force  �. When
the disk spring is in a horizontal line which means � = ℎ, the
deection and restoring force can be expressed by the point(��,  ��). Note that the force-displacement curve is symmetric
about the point as � changes during the range [0, 2ℎ]. Set this
point as the origin of a new vertical displacement coordinate!. 	e relationship between ! and � is ! = � − ℎ. It is conve-
nient to de�ne the following nondimensional parameters:

!̂ = !� ,
ℎ̂ = ℎ� ,
�̂ = �� ,

�̂ = ��3 ,
Γ̂ = 1(1 − �̂)2 ,

 ̂� =  �2���2/ (1 − �2) .
(5)

	e relationship of nondimensional force-displacement
for the disk spring can be derived as

 ̂� = Γ̂ [�̂2 !̂3 + (�̂ − �̂2 ℎ̂2) !̂ + �̂ℎ̂] , (6)

where  ̂� is the nondimensional restoring force and !̂ is the
nondimensional displacement.

By di
erentiating (6) with respect to the nondimensional
displacement !̂, the nondimensional sti
ness of the disk

spring 4̂� can be expressed by

4̂� = Γ̂ (3�̂2 !̂2 + �̂ − �̂2 ℎ̂2) . (7)

Considering the parameters �̂ > 0 and Γ̂ > 0, it can be
seen obviously that the sti
ness of the disk spring is sym-
metric about !̂ = !̂� = 0 and reaches the minimum value4̂�min at this position. 	e disk spring owns continuous neg-
ative sti
ness regionwhen the parametersmeet the conditionℎ̂ > √2�̂/�̂. 	en the minimum negative value of the
nondimensional sti
ness and the continuous negative sti
-
ness region can be derived as follows:

4̂�min = Γ̂ (�̂ − �̂2 ℎ̂2) , (8a)

!̂ ∈ (−√ ℎ̂23 − 2�̂3�̂ ,√ ℎ̂23 − 2�̂3�̂ ) . (8b)

For the disk springs with the same internal and external
radius, and the same thickness ��� , the nondimensional
sti
ness-displacement characteristics of di
erent parameter� are presented in Figure 5 according to (7).	e displacement
region where the nondimensional sti
ness is negative is
also indicated. 	e disk springs of variable thickness possess
larger negative sti
ness region than that of constant thickness
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Figure 5: Nondimensional sti
ness characteristics of the disk
springs for di
erent |�|. “Red line” � = 0 (constant thickness); “blue
line” � = 0.5; “brown line” � = 1; “green line” � = −0.5; “cyan line”� = −1.
when they get the same minimum negative value of the
nondimensional sti
ness. Meanwhile, it can be seen that the
larger the value |�|, the larger the negative sti
ness region.
2.2. �e QZS Isolator. 	e disk spring of negative sti
ness
can be connected parallelly with a positive sti
ness spring
to achieve a low equivalent sti
ness. 	e schematic of the
proposed QZS isolator is shown in Figure 6. A vertical linear
spring 4

V
and a viscous damper ; are in parallel with a disk

spring acting as the negative sti
ness element. At the initial
position, there are no deformations both for the vertical linear
spring and the disk spring. Here the weight of the isolated
mass is ignored. As displayed in Figure 6(a), when the mass
moves downward and has a certain displacement�, it sustains
two vertical forces including an axial restoring force from
the disk spring and a restoring force from the vertical linear
spring.	us, the vertical restoring force of the isolator  � can
be derived:

 � = 4V� + 2���(� − �)2 (1 − �2) [(ℎ − �) (ℎ − �2)� +�] .
(9)

By substituting ! = � − ℎ into (9) and introducing the

nondimensional restoring force  ̂� =  �/(4V�), the nondi-
mensional restoring force can be expressed by

 ̂� = !̂ + ℎ̂ + <Γ̂ [�̂2 !̂3 + (�̂ − �̂2 ℎ̂2) !̂ + �̂ℎ̂] , (10)

where < = 2���/[4
V
(1 − �2)] is de�ned as the sti
ness ratio

between the disk spring and the vertical linear spring and
the other parameters have the same meaning with that in 2.1.
Di
erentiating (10) with respect to the nondimensional

displacement !̂, one can get the nondimensional sti
ness of
the isolator

4̂ = 1 + <Γ̂ (3�̂2 !̂2 + �̂ − �̂2 ℎ̂2) , (11)

where 4̂ = 4/4
V
is the nondimensional sti
ness.

When the disk spring is horizontal, that is, !̂ = !̂� = 0,
the nondimensional sti
ness of the isolator is symmetric
about the position and has the minimum value. It is found
that the larger the de�ned sti
ness ratio, the smaller the
nondimensional sti
ness of the isolator. However, the nondi-
mensional sti
ness of the isolator should not be negative, oth-
erwise the isolator will be unstable. By substituting !̂ = !̂� =0 into (11) and referring to the condition that the disk
spring has negative sti
ness in Section 2.1, one can get that
the con�gurative parameters of the isolator must satisfy the
condition:

√2�̂̂� < ℎ̂ ≤ √ 2̂� ( 1<Γ̂ + �̂). (12)

In operation, the isolator is prospected to reach static
equilibrium at the position !̂ = !̂� = 0 and has zero sti
ness
a�er being loaded with an appropriate mass. By setting (11)
to zero at the static equilibrium position, the desired sti
ness
ratio can be derived by

<QZS = 2Γ̂ (�̂ℎ̂2 − 2�̂) . (13)

2.3. Optimization of the QZS Isolator. Except for owning the
QZS property, it is desirable for the isolator to have a wide

range of nondimensional displacement Â from the static equi-
librium position in which the nondimensional sti
ness gets

a low value. Substituting !̂ = !̂� ± Â = ±Â into (11), one can

get relationship between the nondimensional displacement Â
and the con�gurative parameters:

Â = √ 23�̂ (4̂ − 1<Γ̂ + �̂2 ℎ̂2 − �̂). (14)

According to the practical engineering conditions [21]

and the analysis above, the con�gurative parameters �̂, �̂�� , ℎ̂,
and � are chosen from the range 0.1 ≤ �̂ ≤ 0.8, 0.01 ≤ �̂�� ≤0.1, √2�̂/�̂ < ℎ̂ ≤ √2(1/<Γ̂�̂ + �̂/�̂), and −1 ≤ � ≤1. Among all the combinations of these con�gurative param-
eters and the de�ned sti
ness ratio < calculated using (13),
only those forwhich the de�ned sti
ness ratio< is positive are
considered.	e 50CrVA is used to be the material of the disk
spring here. Its Young’s modulus is � = 206GPa, Poisson’s
ratio is � = 0.3, and ultimate stress is D = 1275MPa. It
is worthy of note that the optimization criteria include the
achievement of the largest displacement from the static equi-
librium position, at which the non-dimensional sti
ness is

equal to that of the vertical linear spring alone, that is, 4̂ = 1,
the condition that the nondimensional sti
ness cannot be
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Figure 6: Schematic representation of the proposed QZS isolator.
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Figure 7: Nondimensional sti
ness characteristics of the QZS isolator for di
erent con�gurative parameters. “Red line” curve 1; “blue line”
curve 2; “green line” curve 3; “brown line” curve 4.

negative, and the requirement that the nondimensional sti
-

ness changes slightly with the tolerance of Δ4̂ = 0.2 forΔ!̂ = 0.01 during the neighborhood of the static equilibrium
position. In addition, the maximum stress of the disk spring
occurs at the lower outer edge G or the upper inner edge H.
Moreover, only those disk springs for which the maximum
stress cannot be larger than the ultimate stress are taken into
account [20].

	e optimal result is the combination of �̂ = 0.12, �̂�� =0.1, ℎ̂ = 0.2447, and � = −0.16. As shown in Figure 7,
the nondimensional sti
ness-displacement curve for the
optimal con�gurative parameters (Curve 1) is plotted. 	e
other three curves for combinations of the con�gurative
parameters satisfying the optimization criteria listed in
Table 1 are also plotted for comparison.	e circles denote the

largest displacement calculated using (14) when 4̂ = 1. It is
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Table 1:	e con�gurative parameters of the QZS isolator satisfying
the optimization criteria.

Curve �̂ �̂�� ℎ̂ �
1 0.12 0.1 0.2447 −0.16
2 0.1 0.1 0.2402 −0.19
3 0.1 0.1 0.2192 −0.24
4 0.1 0.09 0.1995 −0.24
worth noting that the optimal QZS isolator possesses a very
small sti
ness in the neighborhood of the static equilibrium
position and a smaller sti
ness for larger displacements from
the equilibrium position.

3. Dynamic Modeling and Solution

Combining (10) and (13), the nondimensional restoring force
of the QZS isolator can be derived as ̂� = J + K!̂3, (15)

where J = �̂ℎ̂3/(�̂ℎ̂2 − 2�̂) and K = �̂/(�̂ℎ̂2 − 2�̂).
As shown in Figure 6(a), the ideal isolator loaded with an

appropriate mass can keep balance at the static equilibrium
position !̂ = !̂� = 0. And the static equilibrium position is a
zero sti
ness position. However, the isolator is more likely to
balance at !̂ = +!̂0 for overloaded or !̂ = −!̂0 for underloaded
in the practical applications. As shown in Figures 6(b) and
6(c) separately, the disturbed isolators for overloaded and
underloaded have an o
set displacement !̂0 from the static
equilibrium position. 	eir static equations can be given by

4
V
� (J ± K!̂30) = LM. (16)

	e nondimensional force-displacement and sti
ness-
displacement curves of the disturbed isolators for overloaded
and underloaded are plotted in Figure 8.	e new static equi-
librium positions are denoted by “∗” and “∘” separately while
the zero sti
ness position is denoted by “∙.” It is worthy of
note that the e
ects of the overload and underload on the
isolator cannot be ignored because the new equilibrium posi-
tions have an o
set displacement !̂0 from the zero sti
ness
position and the nondimensional sti
ness of new equilib-
rium positions would not be zero. According to Figure 6,
two types of excitations are considered: one is the harmonic
force excitationQ(�) =  cos(R�) on themass; the other one is
the harmonic displacement excitation S(�) = T cos(R�) on the
base. By using Newton’s second law of motion, one can
achieve the dynamic equations separately for the two types
of excitations given above:

L ̈V + ; ̇V + 4
V
� [J + K (V̂ ± !̂0)3] − LM =  cos (R�) , (17a)

L ̈Z + ; ̇Z + 4
V
� [J + K (Ẑ ± !̂0)3] − LM = LR2T cos (R�) ,

(17b)

where V is the displacement from the new equilibrium
position and Z = V − S is the relative displacement between
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Figure 8: Nondimensional force-displacement and sti
ness-
displacement curves with the optimal con�gurative parameters.
“∙” zero sti
ness position shown in Figure 6(a); “∗” equilibrium
position in Figure 6(b); “∘” equilibrium in Figure 6(c).

the base and the mass. Combining (16) and introducing the
nondimensional parameters as follows:

R	 = √4
VL ,

\ = R	�,
Ω = RR	 ,
_ = ;2LR	 ,
 ̂ =  LR2	`,
T̂ = T̀ ,

(18)

(17a) and (17b) can be rewritten as the nondimensional form:V̂�� + 2_V̂� + 3K!̂20V̂ ± 3K!̂0V̂2 + KV̂3 =  ̂ cos (Ω\) , (19a)

Ẑ�� + 2_Ẑ� + 3K!̂20Ẑ ± 3K!̂0Ẑ2 + KẐ3 = Ω2T̂ cos (Ω\) .
(19b)

Equations (19a) and (19b) can be expressed by a uniform
dynamic equation for simplicity:

V̂
�� + 2_V̂� + a1V̂ ± a2V̂2 + KV̂3 = bc cos (Ω\) , (20)

where a1 = 3K!̂20, a2 = 3K!̂0, c is the amplitude of the har-
monic excitations, and b = 1 for the force excitationwhile b =Ω2 for the displacement excitation. Known as the Helmholtz-
Du�ng equation, (20) can be recast in the form of a
Du�ng oscillator under asymmetric excitation. Applying the
transformation d̂ = V̂ ± a2/(3K) = V̂ ± !̂0 [22], (20) can be
rewritten as d̂�� + 2_d̂� + Kd̂3 = ±a + bc cos (Ω\) , (21)
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where a = K!̂30. Considering only the primary resonance
response, the harmonic balance method (HBM) can be
employed to get the approximate steady-state solution of (21).
	e steady-state solution is assumed to be

d̂ = G0 + G1 cos (Ω\ + e) . (22)

By substituting (22) into (21) and equating constant terms,
the coe�cients of the terms containing cos(Ω\) and sin(Ω\)
separately to zero, one can get the steady-state solution
expressed by the following algebraic equations in terms of a
bias term G0, the amplitude of the harmonic term G1, and
the phase e:

KG30 + 32KG0G21 = ±a, (23a)

−Ω2G1 + 3KG20G1 + 34KG31 = bc cos (e) , (23b)

−2_ΩG1 = bc sin (e) . (23c)

Combining (23a)–(23c), the implicit equation for the
amplitude of the bias term G0 is
25K3G90 − 20K2Ω2G70 − 15K2aG60+ 4KΩ2 (Ω2 + 4_2)G50 + 16KaΩ2G40

+ 3K (2b2c2 − 3a2)G30 − 4aΩ2 (Ω2 + 4_2)G20+ 4a2Ω2G0 − a3 = 0.
(24)

By solving (24), which is also a quadratic polynomial

aboutΩ2, the implicit equation for the peak amplitude of the
bias term for the force and displacement excitations, that is,G
0� and G�0�, can be derived separately as

− 20K3_2G
90� + 8K2_4G
70� + 36K2a_2G
60�
− 3K2c2G
50� − 16Ka_4G
40�
− 12Ka2_2G
30� + 3Kac2G
20�
+ 8a2_4G
0� − 4a3_2 = 0,

(25a)

(−75K4c2 − 80K3_2)G�90� + 32K2_4G�70�
+ (45K3ac2 + 144K2a_2)G�60� − 64Ka_4G�40�
+ (27K2a2c2 − 48Ka2_2)G�30�
+ 32a2_4G�0� + (3Ka3c2 − 16a3_2) = 0.

(25b)

	e frequencies corresponding to the peak responses Ω
�
and Ω�� for the two types of excitations can be obtained

separately:

Ω
� = √ 5K2G
60� − 4K_2G
40� − 4KaG
30� + 4a_2G
0� − a22KG
40� − 2aG
0� ,
(26a)

Ω�� = √ 5K2G�60� − 4K_2G�40� − 4KaG�30� + 4a_2G�0� − a22KG�40� + 3Kc2G�20� − 2aG�0� .
(26b)

And the amplitude of the harmonic term G1 and its peak
amplitudes G
1� and G�1� for the two types of excitations can

be derived using (23a). Note that (24)–(26b) are only valid
for the disturbed isolator for overloaded with an equilibrium
position at !̂ = +!̂0. For the disturbed isolator for under-
loaded with an equilibrium position at !̂ = −!̂0, the steady-
state solution can be achieved by transforming !̂0 to −!̂0 in
(24).

For the ideal isolator with an equilibrium position at !̂ =0, the steady-state solutions for the two types of excitations
can be obtained by setting !̂0 = 0 and following the procedure
above. Its dynamic equation is

V̂
�� + 2_V̂� + KV̂3 = bc cos (Ω\) . (27)

	en the implicit amplitude frequency equation can be
derived as916K2G61 − 32KΩ2G41 + Ω2 (Ω2 + 4_2)G21 − b2�2 = 0.

(28)

	e peak amplitude of the responsesG
1� andG�1� and the
frequencies corresponding to the peak responses Ω
� and Ω��
for the two types of excitations can be achieved as follows:

G
1� = √ 2_3 + √4_6 + 3Kc23K_ , (29a)

G�1� = 8_2√48K_2 − 9K2c2 , (29b)

Ω
� = √√4_6 + 3Kc2 − 6_34_ , (29c)

Ω��
= √ (9/2) Kc2_6 − 12_812_6 − (45/4) Kc2_4 + (27/8) K2c4_2 − (81/256) K3c6 .

(29d)
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Figure 9:	emaximumnumber of the steady-state solutions: one, three, or �ve, as a function of the o
set displacement !̂0 and the excitation
amplitude c for the optimal con�gurative parameters and _ = 0.03.

By removing the disk spring, the equivalent linear system
(ELS) to the QZS isolator can be obtained. 	e dynamic
equation of the ELS is

V̂
�� + 2_V̂� + V̂ = bc cos (Ω\) . (30)

	e amplitude of the steady-state response for (30) is

G1 = bc√(1 − Ω2)2 + (2_Ω)2 . (31)

4. Numerical Simulations and Stability

4.1. Numerical Simulations and Con	rmations. According to
the analysis of Kovacic et al. [23], the system under the
asymmetric excitation may have a maximum number of one,
three, or �ve steady-state values and exhibit multiple jumps
for di
erent combinations of excitation amplitudes. 	e
optimal con�gurative parameters illuminated in Section 2.3
and the damping ratio _ = 0.03 are used to conduct the
following investigations. 	en the value of the constant terma in (21) is only related to the o
set displacement !̂0. Based on
Descartes’ rule of signs [24] and the analysis above, the ways
in which the maximum number of the steady-state values ofG0 and G1 depend on the o
set displacement !̂0 and the
excitation amplitude c are shown in Figure 9. It is worthy
of note that there are one steady-state value for the small
excitation amplitude while three and �ve steady-state values
are the major phenomenon.

Due to the occurrence of three and �ve steady-state
values, the phenomenon of multiple jumps may appear. To
illustrate these cases, the FRCs with a maximum number of
one, three, and �ve for the force excitation corresponding to

the combinations: !̂0 = 0.04, c = 3 × 10−4; !̂0 = 0.04, c =1.2 × 10−3; !̂0 = 0.07, c = 2.7 × 10−3, respectively, and
that for the displacement excitation corresponding to the

combinations: !̂0 = 0.04, c = 3 × 10−3; !̂0 = 0.04, c =1.3 × 10−2; !̂0 = 0.07, c = 1.3 × 10−2, respectively are
plotted in Figure 10. Note that the steady-state solution is
evaluated by considering only the component of the response
at the excitation frequency. It is necessary tomake the numer-
ical simulation to con�rm the accuracy of the appropriate
solutions obtained by the HBM. By applying the MATLAB
ode45 function, the exact solutions are achieved and plot-
ted in Figure 10 using the symbols “∗” and “∘.” “∗” and
“∘” denote the exact solutions obtained separately by the
increasing and decreasing frequency, respectively. It is found
that both the bias termG0 and the amplitude of the harmonic
termG1 are calculated reasonably well in the frequency range
using the HBM.

As shown in Figures 10(b) and 10(e), the bias term G0
and the amplitude of the harmonic term G1 follow the route
marked by 1-2-3-4-5-6 as the frequency increases. Point 2 is a
jump-down point for G0 and a jump-up point for G1, while
point 4 is a jump-up point forG0 and a jump-down point forG1. If the frequency decreases, the route is 6-7-8-9-10. Point
7 is a jump-down point for G0 and a jump-up point for G1,
while point 9 is a jump-up point for G0 and a jump-down
point for G1. For the both two types of excitations, the bias
term G0 and the amplitude of the harmonic term G1 can
occur a jump-down and a jump-up phenomenon. Di
erent
fromFigures 10(b) and 10(e), it is worthy of note that the route
shown in Figures 10(c) and 10(f) is changed to 1-2-3-6 as the
frequency increases. For the two types of excitations, there is
only one jump point for the bias term G0 and the amplitude
of the harmonic term G1 such that point 2 is a jump-down
point for G0 and a jump-up point for G1.
4.2. Stability of the Steady-State Solution. On account of
the appearance of multiple values for the steady-state solu-
tion, the stability of the steady-state solution should be
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Figure 10: FRCs of the bias term G0 and the amplitude of the harmonic term G1 for the optimal con�gurative parameters and _ = 0.03.
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Table 2: 	e o
set displacement and excitation amplitude for the
two types of excitations.

Type of the
excitation

Parameters!̂0 c
Force 0, 0.04, 0.07 3×10−4, 6×10−4, 1.2×10−3,2.7 × 10−3, 2 × 10−2
Displacement 0, 0.04, 0.07 3×10−3, 8×10−3, 1.3×10−2,2 × 10−2, 1.5 × 10−1
investigated. Superposing a small nondimensional perturba-
tion î(\) on (22), one can get

d̂ = G0 + G1 cos (Ω\ + e) + î (\) . (32)

By substituting (32) into (21) and combining the steady-
state solution equation (22), the equation for the perturbation
can be derived as

î�� + 2_î� + 3K [G0 + G1 cos (Ω\ + e)]2 î = 0. (33)

Supposing that î(\) = d−��ĵ(\), (33) is changed to be the
form of Hill’s equation:

ĵ�� + 3K [k0 + k1 cos (Ω\ + e) + k2 cos 2 (Ω\ + e)] ĵ = 0,
(34)

where k0 = 3KG20+(3/2)G21−_2, k1 = 6KG0G1, k2 = (3/2)KG21.
Under parametric excitations, the system modeled by (34)
can exhibit resonance whenever the excitation frequency is
equal to 2√k0/m, in which√k0 is the normalized frequency of
the system and m is an integer [25]. It is worthy of note that the
second unstable region is of interest in the stability analysis,
that is, m = 2, because the steady-state solution obtained by
HBMowns the same frequencywith the excitation frequency.
According to Floquet theory, the solution of (34) can be
assumed to be

ĵ = d�� (n + sin (Ω\ + o)) , (35)

where p is the characteristic Floquet exponent. By inserting
(35) into (34) and applying the HBM, one can achieve that

[[[[[
p2 + k0 k12 cos (e) − k12 sin (e)− sin (e) −2pΩ − k22 sin (2e) p2 − Ω2 + k0 − k22 cos (2e)
cos (e) p2 − Ω2 + k0 + k22 cos (2e) 2pΩ − k22 sin (2e)

]]]]]
× {{{

n
sin (o)
cos (o)}}} = 0. (36)

Nontrivial solutions exist if the determinant of the matrix
in (36) vanishes, which can be derived as

k0k22 − k21 k2 + 2k21 (k0 − Ω2) − 4k0 (k0 − Ω2)2 = 0. (37)

Equation (37) is the boundary between the stable and
unstable regions and the unstable region can be determined
by

k0k22 − k21 k2 + 2k21 (k0 − Ω2) − 4k0 (k0 − Ω2)2 < 0. (38)

As shown in Figure 10, the green dotted lines of the FRCs
represent the unstable regions. If there are three steady-state
solutions occurring at the same frequency, two of them are
stable and one unstable for the two types of excitations shown
in Figures 10(b) and 10(e). When �ve steady-state solutions
occur as shown in Figures 10(c) and 10(f), three of them are
stable and two unstable.

5. Dynamic Characteristics of the QZS Isolator

For the two types of excitations, the values of the o
set
displacement !̂0 and excitation amplitude c listed in Table 2
are chosen to study their e
ects on the QZS isolator. 	e
optimal con�gurative parameters and _ = 0.03 are applied
for the QZS isolator. And the excitation amplitude c and
damping ratio _ of the ELS are chosen as same as that of the
QZS isolator for comparison convenience.

5.1. E�ects of the O�set Displacement and Excitation Ampli-
tude on the FRCs. 	e FRCs of the QZS isolator and the ELS
are illustrated in Figure 11 for the force excitation. By observ-
ing Figure 11, one can conclude that a decrease in the o
set
displacement !̂0 results in a decrease in the bias term G0
and resonance frequency Ω
� (the excitation frequency cor-
responding to the peak response) and an increase in the peak

amplitude of the harmonic term G
1� when the excitation

amplitude is �xed. It is worthy of note that the bias term
disappears for the ideal isolator with zero o
set displacement.
For the disturbed isolator with a nonzero o
set displacement,
the amplitude of the harmonic term G1 increases as the
excitation amplitude increases. But its peak amplitude of the

harmonic term G
1� cannot be larger than that of the ideal

isolator. And the e
ect of the excitation amplitude on the bias
term G0 is only obvious around the resonance frequency, in
which larger excitation amplitude leads to smaller peak

amplitude of the bias term G
0�. When the frequency is far

away from the resonance frequency, the bias termG0 changes
little and approaches the value of the o
set displacement !̂0.
It is alsoworth noting that the resonance frequency of the dis-
turbed isolator decreases at �rst, increases later, and becomes
larger than that of the ELS �nally as the excitation amplitude

increases. However, both the amplitude of the response G
1�
and resonance frequency Ω
� of the ideal isolator increase
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with the increasing excitation amplitude. 	e FRCs of the
ELS are shi�ed upwards in the whole frequency region and
the peak amplitudes always occur at Ω = 1 as the excitation
amplitude increases.

	e sti
ness characteristics of the QZS isolator are also
inuenced by the excitation amplitude. 	e QZS isolator
exhibits linear sti
ness when the excitation amplitude is
small. As the excitation amplitude increases, the ideal isolator
always exhibits the hardening sti
ness feature. But for the dis-
turbed isolator, as the excitation amplitude increases, it owns
the so�ening sti
ness and then enters a region with so�ening
sti
ness at �rst and the hardening sti
ness later on. If the
excitation amplitude is large enough, the disturbed isolator
only exhibits the hardening sti
ness.

Another important conclusion can be drawn when the
excitation amplitude of the QZS isolator is same as that of the
ELS. At low frequencies, the amplitude of the harmonic termG1 for the QZS isolator is larger than that for the ELS, while
the amplitude of the harmonic term G1 for the ideal isolator
is larger than that for the disturbed isolator. In the region
around the resonance frequency of the ELS, the amplitude
of the harmonic term G1 for the QZS isolator changes to be
smaller than that for the ELS, while the amplitude of the
harmonic termG1 for the ideal isolator changes to be smaller
than that for the disturbed isolator; at high frequencies, the
amplitudes of the harmonic termG1 for the QZS isolator and
ELS approach to be the same level.

Figure 12 shows the FRCs of the QZS isolator and the ELS
for the displacement excitation.	e vertical coordinate is the
relative displacement. Di
erent from the FRCs for the force
excitation, the peak amplitude of the harmonic term G1 for
the QZS isolator will show the unbounded value and that for
the disturbed isolator cannot be smaller than that for the ideal
isolator. 	e amplitude of the harmonic term G1 for the QZS
isolator and ELS will approach to the excitation amplitude
with the increasing excitation frequency.	e amplitude of the
harmonic termG1 for the ideal isolator reaches the excitation
amplitude at lower frequency than that for the disturbed
isolator, while the disturbed isolator reaches the excitation
amplitude at lower frequency than that for the ELS.

5.2. E�ects of the O�set Displacement and Excitation Ampli-
tude on the Transmissibilities. 	e key indexes to evaluate
the performance of an isolator are the force transmissibil-
ity for the force excitation and the absolute displacement
transmissibility for the displacement excitation. Based on
(21) and according to the investigation of Ravindra and
Mallik [22], one can draw a conclusion that the absolute
displacement transmissibility cannot perform satisfactorily
with the isolation performance of the QZS isolator at high
frequencies for the displacement excitation. 	erefore, the
absolute acceleration transmissibility for the displacement
excitation is introduced to be another index to evaluate the
isolation performance.

5.2.1. Force Transmissibility. 	e force transmissibility is de-
�ned as the ratio between the amplitude of the nondimensional

dynamic force transmitted to the base and that of the
nondimensional excitation force. It can be expressed by


 =  ̂�c , (39)

where  ̂� = √ ̂2�� +  ̂2��,  ̂�� is the nondimensional elastic force

and  ̂�� is the nondimensional damping force.
For the disturbed isolator, the solution of (20) can be

assumed to be

V̂ = G�0 + G1 cos (Ω\ + e) , (40)

where the bias term G�0 = G0 ∓ !̂0.
According to (20), the nondimensional elastic force is

 ̂�� = a1V̂ ± a2V̂2 + KV̂3. (41)

Substituting (40) into (41), the nondimensional elastic
force can be obtained as ̂�� =  ̂�0 +  ̂�1 cos (Ω\ + e) , (42)

where  ̂�0 = a1G�0±a2G�20 ±(a2G21/2)+KG�30 +(3/2)KG�0G21 and ̂�1 = a1G1 ± 2a2G�0G1 + (3/4)KG31 + 3KG�20 G1.
By considering the dynamic force only, one can get the

force transmissibility of the disturbed isolator:


 = √ ̂2�1 + (2_ΩG1)2� . (43)

For the ideal isolator and ELS, their force transmissibili-
ties can be expressed separately by [5]


 = √(KG31)2 + (2_ΩG1)2� , (44)


� = √ 1 + (2_Ω)2(1 − Ω2)2 + (2_Ω)2 . (45)

5.2.2. Absolute Displacement and Acceleration Transmissibili-
ties. 	e absolute displacement transmissibility is de�ned as
the ratio between the amplitude of the nondimensional abso-
lute displacement of the mass and nondimensional excitation
displacement. It is given by

� = |V|c . (46)

For the disturbed isolator, the nondimensional absolute
displacement of the mass can be expressed by

V̂ = d̂ ∓ !̂0 + Ŝ = G0 ∓ !̂0 + G1 cos (Ω\ + e) + c cos (Ω\) .
(47)

	en its absolute displacement transmissibility can be
derived as

� = ����G0 ∓ !̂0���� + √G21 + c2 + 2G1c cos (e)c . (48)
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Figure 12: FRCs of the QZS isolator and ELS with di
erent o
set displacements and excitation amplitudes for the displacement excitation.
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Its absolute acceleration transmissibility can be obtained
as

�� = ����� ̈V�����|S̈| =
�����V̂�����������Ŝ������ =

�����V̂�� + Ŝ�����������Ŝ������
= �����d̂�� + Ŝ�����������Ŝ������ = √G21 + c2 + 2G1c cos (e)c .

(49)

	e absolute displacement and acceleration transmissi-
bilities of the ideal isolator have the same expression as [5]

� = �� = √G21 + c2 + 2G1c cos (e)c , (50)

where cos(e) can be obtained by settingG0 = 0 in (23b). And
the absolute displacement and acceleration transmissibilities
of the ELS also have the same expression as (45).

Figure 13 presents the force transmissibility for the force
excitation and Figure 14 presents the absolute displacement
and acceleration transmissibilities for the displacement exci-
tation. Note that all the transmissibility results are plotted in
dB, that is, 20log10. By inspecting Figures 13 and 14, one can
conclude that the isolation performance of the QZS isolator
will be better or worse than that of the ELS depending on the
frequency range and excitation amplitude.

As shown in Figure 13, smaller o
set displacement yields
smaller peak amplitude and smaller resonance frequency of
the force transmissibility when the excitation amplitude is
�xed. Since the characteristics of the QZS isolator change
with the increasing excitation amplitude, the peak amplitude
of the force transmissibility for the ideal isolator is larger than
that of the disturbed isolator with a small o
set displacement.
Di
erent from that of the ELS independent of the excitation
amplitude, the force transmissibility of the QZS isolator is
a
ected obviously with the increasing excitation amplitude
when the o
set displacement is �xed. For the ideal isolator,
larger excitation amplitude results in larger peak amplitude
of the force transmissibility. However, it is worthy of note
that the peak amplitude of the force transmissibility for
the disturbed isolator decreases at �rst, increases later, and
becomes larger than that of the ELS �nally as the excitation
amplitude increases.

When the excitation amplitude of the QZS isolator is
same as that of the ELS, the force transmissibility of the QZS
isolator is larger than that of the ELS, while the force
transmissibility of the ideal isolator is larger than that of the
disturbed isolator at low frequencies. In the region around the
resonance frequency of the ELS, the force transmissibility of
the QZS isolator changes to be smaller than that for the ELS,
while the force transmissibility of the ideal isolator changes to
be smaller than that of the disturbed isolator; at high frequen-
cies, the force transmissibilities of the QZS isolator and the
ELS approach to be the same level.

Unlike the force transmissibility, the peak amplitudes of
the absolute displacement and acceleration transmissibilities
for the disturbed isolator cannot be smaller than that for the
ideal isolator as shown in Figure 14. And the QZS isolator

owns unbounded absolute displacement and acceleration
transmissibilities if the excitation amplitude is relatively large.
For the disturbed isolator, the absolute displacement trans-
missibility is always larger than the absolute displacement
transmissibility, which is also con�rmed by (48) and (49).
At low frequencies and region around the resonance fre-
quency of the ELS, the interactive feature of the absolute
displacement and acceleration transmissibilities between the
QZS isolator and ELS for same excitation amplitude are same
as that of the force transmissibility. At high frequencies, the
absolute acceleration transmissibilities of the QZS isolator
and ELS approach to be the same level, while the absolute dis-
placement transmissibility of the disturbed isolator is larger
than that of the ideal isolator and ELS. It is also worth
noting that the absolute displacement transmissibility of the
disturbed isolator at high frequencies increases as the excita-
tion amplitude increases.

5.3. E�ects of the Damping Ratio on the Transmissibilities. In
the analysis above, the damping ratio of the QZS isolator is
always �xed as _ = 0.03. It is interesting to study the e
ects of
the damping ratio on the transmissibilities of the disturbed
isolator when the o
set displacement and excitation ampli-
tude are �xed. For the two types of excitations, the values
of the o
set displacement !̂0 and excitation amplitude c are

chosen to be !̂0 = 0.07, c = 2.7 × 10−3; !̂0 = 0.07, c =1.3 × 10−2 separately. 	ere will be the occurrence of �ve
steady-state values for the disturbed isolator in the two cases.
	e transmissibilities of the disturbed isolator, the ideal iso-
lator, and their ELS with di
erent damping ratio are plotted
in Figure 15. It can be seen obviously that larger damping
ratio can result in smaller peak amplitudes of the transmis-
sibilities around the resonance frequency but worse isolation
performance at high frequencies. For the disturbed isolator
and ideal isolator, an increase in the damping ratio yields a
decrease in the maximum number of the steady-state values.
And the larger damping ratio the fewer the jump points,
whichmeans that the damper can be used to avoid the occur-
rence of the jumps for the nonlinear isolator. For the ideal
isolator, peak amplitudes of the transmissibilities will not
occur if the damping ratio is large enough, which means that
the ideal isolator can isolate the vibration at a lower frequency
than its ELS. For the disturbed isolator, it is worthy of note
that the resonance frequency decreases at �rst and increases
later on with the increasing damping ratio.

6. Conclusions

In this paper, we introduce the theoretical design and charac-
teristics analysis of a novel QZS isolator. 	e QZS isolator is
developed by adding a disk spring with negative sti
ness to
a vertical linear spring with positive sti
ness. 	e disk spring
can o
er great support capacity with small deection and the
QZS isolator is suitable for being used in the occasion with
space limitation for isolators.

	e static characteristics of the disk spring with variable
thickness are investigated and compared to that of the
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Figure 13: Force transmissibilities of QZS isolator and ELS with di
erent o
set displacements and excitation amplitudes for the force
excitation. “Red line” the disturbed isolator with !̂0 = 0.04; “blue line” the disturbed isolator with !̂0 = 0.07; “black line” the ideal isolator;
“magenta line” ELS; “green dotted line” unstable solutions; “o” peak amplitude of transmissibility.
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Figure 14: Absolute displacement and acceleration transmissibilities of the QZS isolator and ELS with di
erent o
set displacements and
excitation amplitudes for the displacement excitation. “Red line” absolute displacement transmissibility of the disturbed isolator with!̂0 = 0.04; “cyan line” absolute acceleration transmissibility of the disturbed isolator with !̂0 = 0.04; “blue line” absolute displacement
transmissibility of the disturbed isolator with !̂0 = 0.07; “brown line” absolute acceleration transmissibility of the disturbed isolator with!̂0 = 0.07; “black line” the ideal isolator; “magenta line” ELS; “green dotted line” unstable solutions; “o” peak amplitude of transmissibility.
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Figure 15: Transmissibilities of the QZS isolator and ELS with di
erent damping ratios (_ = 0.03; _ = 0.05; _ = 0.07). “Red line” the disturbed
isolator; “blue line” the ideal isolator; “black line” ELS; “green dotted line” unstable solutions; “o” peak amplitude of transmissibility; “magenta
arrow” increasing damping ratio.

constant thickness disk spring.	e relationship of the con�g-
urative parameters and de�ned sti
ness ratio is obtained for
achieving the zero sti
ness at the static equilibrium position.
Combinations of the con�gurative parameters are optimized
for a wide displacement range around the static equilibrium
position with a low dynamic sti
ness and the sti
ness
changing slightly.

	eoverloaded and underloaded conditions, which result
in an o
set displacement of the static equilibrium position
from the zero sti
ness position, are taken into considera-
tion. Considering only the primary resonance response, the
steady-state solutions for the force and displacement excita-
tions are got by employing the HBM and con�rmed by the
results of numerical simulation. Maximum number of the
steady-state values as a function of the o
set displacement
and excitation amplitude are discussed, respectively, for the
two types of excitations. 	e phenomena of multiple jumps

are illustrated and the stability is studied by applying Floquet
theory.

	e frequency response curves of the ideal and disturbed
isolator for the two types of excitations have been plotted
with di
erent combinations of the o
set displacement and
excitation amplitude. 	e results indicate that the disturbed
isolator can exhibit linear, so�ening, and mixed so�ening-
hardening and hardening sti
ness as the excitation amplitude
increases. 	e unbounded response can occur for the dis-
placement excitation. And decreasing the o
set displacement
and excitation amplitude can expand the frequency region of
isolation for the QZS isolator.

	e isolation performance of theQZS isolator is evaluated
by introducing the force transmissibility, the absolute dis-
placement, and acceleration transmissibility and compared
with the ELS for the two types of excitations.	e e
ects of the
damping ratio on the transmissibilities are discussed for the
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disturbed isolator. 	e conclusion can be summarized that if
the load di
ers less with its supporting capability, the excita-
tion amplitude is not too large and the damper is large, and
the proposed QZS isolator possesses better isolation per-
formance in low frequency range compared with the ELS.
Increasing the damper appropriately is also a feasible way to
avoid the occurrence of the jumps for the QZS isolator.

Nomenclature�: External radius of the disk springG0: Bias term of the steady-state solutionG1: Amplitude of harmonic term of the
steady-state solutionG
0�: Peak amplitude of G0 for the force
excitationG�0�: Peak amplitude of G0 for the displacement
excitationG
1�: Peak amplitude of G1 for the force
excitation�: Internal radius of the disk spring;: Damping coe�cientn: Constant term of the response under
parametric excitationsA: Range of displacement from the static
equilibrium positiond: Transformed displacement of the mass
under asymmetric excitation�: Young’s modulusQ(�): Force excitation : Amplitude of the force excitation �: Restoring force of the disk spring ��: Restoring force of the disk spring when
the disk spring in a horizontal line �: Restoring force of the QZS isolator �: Dynamic force transmitted to the base ��: Elastic force ��: Damping force �0: Constant term of  �� �1: Amplitude of harmonic term of  ��M: Acceleration of gravityℎ: Free height of the disk spring4: Sti
ness of the QZS isolator4�: Sti
ness of the disk spring4�min: 	e minimum negative value of 4�4

V
: Sti
ness of the vertical linear springL: Weight of the massm: Integer
: Axial force applied to the disk spring�: Distance of neutral axis to centerD: Ultimate stress��: 	ickness at radius ���: 	ickness at radius ��(�): 	ickness at radius ���� : 	ickness at radius ��, �� = (� + �)/2��: Absolute acceleration transmissibility�: Absolute displacement transmissibility


: Force transmissibility
�: Force transmissibility of the ELS!: Displacement response from the static
equilibrium position!0: O
set displacement!�: Value of ! when the disk spring in a
horizontal line

V: Uniform of response of both excitation�: Deection of the disk spring from initial
position��: Deection � when the disk spring in a
horizontal lineZ: Relative displacement between the base
and mass for displacement excitationS(�): Displacement excitationT: Amplitude of the displacement excitationa: Constant term of asymmetric excitationa1: Parameter of linear term in dynamic
equationa2: Parameter of square term in dynamic
equation�: Initial cone angle of disk springb: Uniform parameter of both excitationsV: Displacement from the new equilibrium
position for overloadi: Small perturbation_: Damping ratioJ: Constant term of the restoring forceo: Phase of the response under parametric
excitationsk0: Constant term of Hill’s equationk1: Amplitude of the �rst harmonic term of
Hill’s equationk2: Amplitude of the second harmonic term
of Hill’s equation�: Nondimensional parameter which de�nes
the form of the spring<: Sti
ness ratio between the disk spring and
the vertical linear spring<QZS: Sti
ness ratio when the sti
ness of the
QZS isolator equals zero�: Poisson’s ratioc: Uniform amplitude of both excitations\: Nondimensional time	: Change of cone angle due to load 
K: Parameter of cubic term in dynamic
equationR: Excitation frequencyR	: Natural frequency of the QZS isolator
without disk springΩ: Frequency ratio R/R	Ω
� : Frequency corresponding to the peak
response for force excitationΩ��: Frequency corresponding to the peak
response for displacement excitatione: Phase of the response of both excitationsp: Characteristic Floquet exponent.
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Superscripts

⋅: Time derivativê: Nondimensional quantity
�: Nondimensional time derivative.
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