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The observation of long-lived electronic coherence in a photo-

synthetic pigment–protein complex, the Fenna–Matthews–Olson

(FMO) complex, is suggestive that quantum coherence might play

a significant role in achieving the remarkable efficiency of photo-

synthetic electronic energy transfer (EET), although the data were

acquired at cryogenic temperature [Engel GS, et al. (2007) Evidence

for wavelike energy transfer through quantum coherence in pho-

tosynthetic systems. Nature 446:782–786]. In this paper, the spatial

and temporal dynamics of EET through the FMO complex at physi-

ological temperature are investigated theoretically. The numerical

results reveal that quantum wave-like motion persists for sev-

eral hundred femtoseconds even at physiological temperature, and

suggest that the FMO complex may work as a rectifier for unidirec-

tional energy flow from the peripheral light-harvesting antenna

to the reaction center complex by taking advantage of quantum

coherence and the energy landscape of pigments tuned by the pro-

tein scaffold. A potential role of quantum coherence is to overcome

local energetic traps and aid efficient trapping of electronic energy

by the pigments facing the reaction center complex.

photosynthesis | electronic energy transfer | quantum dynamics

P hotosynthesis starts with the absorption of a photon of sunlight
by one of the light-harvesting pigments, followed by transfer

of the energy to the reaction center, where the primary electron
transfer reactions convert the solar energy into an electrochemi-
cal gradient. (1) The transfer of this excitation energy towards the
reaction center (RC) occurs with a near unity quantum yield.

The Fenna–Matthews–Olson (FMO) pigment–protein complex
(2–5) is found in low light-adapted green sulfur bacteria. Under
physiological conditions, this complex is situated between the
so-called base-plate protein of the large peripheral chlorosome
antenna and the RC complex, and is tasked with transporting sun-
light energy harvested in the chlorosome to the RC pigments. The
complex is a trimer made of identical subunits, each of which
contains seven bacteriochlorophyll (BChl) molecules. By virtue
of its relatively small size, it represents an important model in
photosynthetic excitation energy transfer (EET), and has been
extensively studied experimentally and theoretically. In the late
90s, Savikhin et al. (6) observed quantum beating in the FMO
complex using fluorescence anisotropy technique although it had
been generally assumed that electronic coherence decay so rapidly
that it does not affect the EET. (7) However, it was difficult to
unambiguously assign this experimental observation to an elec-
tronic origin. Recently, Engel et al. (8) investigated the FMO
complex isolated from Chlorobaculum tepidum by means of 2D
electronic spectroscopy, (9–11) and succeeded in observing long-
lasting quantum beating providing direct evidence for long-lived
electronic coherence. (12, 13) The observed coherence lasts for
time scales similar to the EET timescales, implying that electronic
excitations move coherently through the FMO protein rather than
by incoherent hopping motion. Observation of long-lasting quan-
tum coherence is not unique to the FMO complex. Lee et al.
(14) revealed coherent dynamics in the RC of a purple bacteria,
Rhodobacter sphaeroides, by applying two-color electronic coher-
ent photon echo technique. These observations have led to the

suggestion that quantum coherence might play significant roles in
achieving remarkable efficiency of photosynthetic EET. Although
the observations of long-lasting quantum coherence provide valu-
able insights into the inner working of photosynthetic complexes,
the measurements were performed outside the physiological range
of temperatures. Generally, quantum coherence at physiological
temperatures is fragile compared to that at cryogenic tempera-
tures because amplitude of environmental fluctuations increases
with increasing temperature. Hence, the robustness and roles
of quantum coherence under physiological conditions are to a
large extent unknown. In order to explore these questions, the-
oretical investigations with models of appropriate sophistication
are required in addition to further experimental studies (15–18).
Recently, Aspuru-Guzik and coworkers (19–21), and Plenio and
Huelga (22) discussed effects of quantum coherence on enhance-
ment of photosynthetic EET efficiency from the perspective of a
quantum walk.

Photosynthetic EET processes are usually analyzed in two per-
turbative limits. When the electronic coupling between pigments
is small in comparison to the electron-environment coupling,
which can be specified by magnitude of reorganization energy, the
electronic coupling can be treated perturbatively. This treatment
yields Förster theory (23), which describes incoherent hopping
between pigments. In the opposite limit, when the reorganization
energies are small, it is possible to treat the electron-environment
coupling perturbatively to obtain a quantum master equation.
The most commonly used theory from this approach in the litera-
ture of photosynthetic EET is the conventional Redfield equation
(24), which is one of the few viable paths to explore quantum
coherence. However, in a typical photosynthetic EET system the
reorganization energies are not small in comparison to the elec-
tronic coupling. In the FMO complex, the electronic coupling
strengths span a wide range, 1 ≈ 100 cm−1 while the suggested
reorganization energies span a similar range (11, 25–27). Hence,
the Redfield equation approach might lead to erroneous insights
or incorrect conclusions regarding the quantum coherence and
its interplay with the protein environment (17, 18). Recently, the
present authors developed a quantum dynamics equation for EET
(18) by taking into account effects of the environmental reorga-
nization dynamics on the pigments in a nonperturbative fashion
based on the hierarchical expansion technique (28). The devel-
oped equation can describe EET processes irrespective of the
electron-environment coupling strength, and reduces to the con-
ventional Redfield and Förster theories in their respective limits
of validity. In the regime of coherent wave-like motion, more-
over, the equation predicts several times longer lifetimes of the
electronic coherence between pigments than does the Redfield
equation.
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In this article, we apply the aforementioned quantum dynamic
equation in order to investigate the robustness and roles of
quantum coherence in the C. tepidum FMO complex under phys-
iological conditions. Here, special attention is paid to the EET
dynamics in the site basis in order to obtain insights into the spa-
tial and temporal evolution of electronic excitation energy through
the FMO complex. Calculations are performed on the basis of
the electron-environment coupling parameters adopted for simul-
taneous fitting of linear and 2D rephasing, nonrephasing and
polarization-dependent electronic spectra (27). The numerical
results reveal that electronic coherence persists for several hun-
dred femtoseconds even at physiological temperature, T = 300 K.
Based on the numerical results, the physical roles of quantum
coherence under physiological conditions are discussed.

Theory

To describe EET dynamics in a photosynthetic complex contain-
ing N pigments, each pigment is modeled by a two-level system
describing its S0 → S1 transition (the Qy transition of a BChl). The
total Hamiltonian of the EET dynamics consists of three parts,

Ĥtot = Ĥe + Ĥph + Ĥel−ph. [1]

The first part Ĥe is the Hamiltonian of electronic states of the
pigments expressed as

Ĥe =

N
∑

j=1

| j〉εj〈 j| +
∑

k �=j

| j〉Jjk〈k|, [2]

where | j〉 represents the state where only the jth pigment is in its
S1 state and all others are in their S0 states. εj is the so-called site
energy of the jth pigment defined as the optical transition energy
at the equilibrium configuration of environmental phonons associ-
ated with the S0 state. Jjk denotes the electronic coupling between

the jth and kth pigments. The second term Ĥph is the Hamiltonian
of the environmental phonons, where the ξth mode dynamics is
described by the dimensionless coordinate, q̂ξ. The last Hamilton-

ian Ĥel−ph is responsible for fluctuations in the site energies by the
phonon dynamics, and is expressed as

Ĥel−ph =

N
∑

j=1

V̂jûj [3]

where we have defined V̂j ≡ | j〉〈 j| and ûj ≡ −
∑

ξ cjξq̂ξ with cjξ

being the coupling constant between the jth pigment and ξth
phonon mode. The fluctuations in site energies of different pig-
ments may be correlated or uncorrelated, depending on whether
the site energies couple to the same or to different phonon modes
of the protein environment. At present, however, there is no direct
way to access accurate information on the correlated fluctuations
in the FMO complex; hence, we assume uncorrelated fluctuations
in this work.

An adequate description of the EET dynamics is given by the
reduced density operator ρ̂(t) ≡ Trph{ρ̂

tot(t)}, where ρ̂tot(t) denotes
the density operator for the total system. For the reduction we
suppose that the total system at the initial time, t = 0, is in the fac-

torized product state of the form, ρ̂tot(0) ∝ ρ̂(0) exp(−βĤph) with
β ≡ 1/kBT . Generally, this initial condition is unphysical since
it neglects an inherent correlation between a system and its envi-
ronment (28, 29). In electronic excitation processes, however, this
initial condition is appropriate because it corresponds to excitation
in accordance to the vertical Franck–Condon transition (18).

The coupling of an electronic transition of the jth pigment to
the environmental phonons can be specified by the spectral density
of the electron-phonon coupling constants, Jj(ω). This includes
information contents on dynamics of the environmental phonons.

The equilibrium phonon state in the S0 state is generally a non-
equilibrium state in the S1 state because of the electron-phonon
coupling. After the excitation, hence, the coupling relaxes the
phonons toward the actual equilibrium with dissipating the reor-
ganization energy. The reorganization dynamics, in principle, can
be measured by fluorescence Stokes shift experiment (30), where
the observable quantity is the phonon relaxation function,

Γj(t) =
2

π

∫ ∞

0

dω
Jj(ω)

ω
cos ωt. [4]

Note that Γj(0) ≡ 2λj is the Stokes shift magnitude expressed
as two times the reorganization energy λj. Simultaneously, the
coupling induces fluctuations in the site energies of pigments.
Information on the timescale of the processes can be obtained
by means of three-pulse photon-echo peak shift experiment (30),
where the observable quantity is the phonon symmetrized correla-
tion function, Sj(t). If the environmental phonons can be described
classically, the relaxation function and the symmetrized correla-
tion function satisfy the classical fluctuation-dissipation relation,
Γj(t) = βSj(t); hence, these two functions contain the same infor-
mation on the phonon dynamics, whose characteristic timescale is
given by ref. 31

τc =
1

Γj(0)

∫ ∞

0

dt Γj(t). [5]

Generally, the relaxation function has a complicated form involv-
ing several components (30). In this article, we model the relax-
ation function by an exponential form, Γj(t) = 2λj exp(−γjt), in
order to focus on the timescale of the phonon relaxation dynamics.
For this modeling, the timescale of the phonon relaxation is simply

τc = γ−1
j , and the spectral density is expressed as the overdamped

Brownian oscillator model, Jj(ω) = 2λjγjω/(ω2 + γ2
j ). Although

this spectral density has been successfully used for analyses of
experimental results (27, 32, 33), it may produce qualitatively dif-
ferent phonon sidebands from the experimental results in zero
temperature limit (7, 34, 35). However, this limitation is not the
major concern of the present study.

When the high-temperature condition characterized by β�γj <

1 is assumed for the overdamped Brownian oscillator model,
the following hierarchically coupled equations of motion for the
reduced density operator can be derived in a nonperturbative
manner (18):

∂

∂t
σ̂(n, t) = −

⎛

⎝iL̂e +

N
∑

j=1

njγj

⎞

⎠ σ̂(n, t)

+

N
∑

j=1

[

Φ̂jσ̂(nj+, t) + njΘ̂jσ̂(nj−, t)
]

, [6]

for sets of nonnegative integers, n ≡ (n1, n2, . . . , nN ). nj± dif-
fers from n only by changing the specified nj to nj ± 1, i.e.,
nj± ≡ (n1, . . . , nj ± 1, . . . , nN ). In Eq. 6, only the element σ̂(0, t)
is identical to the reduced density operator ρ̂(t), while the others
{σ̂(n �= 0, t)} are auxiliary operators to take into account fluctua-
tions in site energies and dissipation of reorganization energies.

The Liouvillian corresponding to the electronic Hamiltonian Ĥe

is denoted by L̂e, while the relaxation operators are given by

Φ̂j = iV̂ ×
j , [7]

Θ̂j = i

(

2λj

β�2
V̂ ×

j − i
λj

�
γjV̂

◦
j

)

, [8]

where we have introduced the hyper-operator notations, Ô× f̂ ≡

Ôf̂ − f̂ Ô and Ô◦ f̂ ≡ Ôf̂ + f̂ Ô, for any operator Ô and operand f̂ .
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Note that Eq. 6 is a set of equations of motion in the operator form,
and hence the numerical results are independent of the represen-
tation in which the equations are integrated. The hierarchically
coupled equations Eq. 6 continue to infinity, which is impossible
to treat computationally. In order to terminate Eq. 6 at a finite
stage, we replace Eq. 6 by

∂

∂t
σ̂(n, t) = −iL̂eσ̂(n, t), [9]

for the integers n = (n1, n2, . . . , nN ) satisfying

N ≡

N
∑

j=1

nj ≫
ωe

min(γ1, γ2, . . . , γN )
, [10]

where ωe is a characteristic frequency for L̂e (18). Thus, the
required number of the operators {σ̂(n, t)} is evaluated as
∑N

k=0

(

k+N−1
N−1

)

= (N + N )!/(N!N !). Note that low-temperature

correction terms explained in Appendix should be included into
Eq. 6 when the high-temperature condition β�γj < 1 is not
satisfied.

As demonstrated in ref. 18, the reduced hierarchy equation
Eq. 6 can describe quantum coherent wave-like motion, incoher-
ent hopping, and an elusive intermediate EET regime in a unified
manner, and reduces to the conventional Redfield and Förster
theories in their respective limits of validity. Recently, Jang et al.
(15) developed another quantum dynamic equation to interpo-
late between the Redfield and Förster limits by employing the
small polaron transformation (36). The small polaron approach is
based on the second-order perturbative truncation with respect to
the renormalized electron-phonon coupling, whereas the present
hierarchy approach is derived in a non perturbative fashion. It
will be interesting to compare the two approaches for future
works.

Results and Discussion

In this section, we present and discuss numerical results regarding
EET dynamics in the FMO complex of C. tepidum. The complex is
a trimer made of identical subunits, each containing seven BChls.
Because the strongest electronic coupling between two BChls in
different FMO monomeric subunit is about an order of magni-
tude smaller than the local reorganization energies, the coherence
between them is rapidly destroyed by the environmental distur-
bance (26). Therefore, we assume that the intersubunit coupling
is vanishingly small and we consider the EET dynamics within one
subunit. To simulate the EET dynamics, we use the Hamiltonian

Fig. 1. Seven BChl molecules belonging to the monomeric subunit of the
FMO complex. The complex is oriented with BChl 1 and 6 toward the base-
plate protein whereas BChl 3 and 4 define the target region in contact with
the reaction center complex. The spiral strands are α-helices that are part of
protein environment.

Fig. 2. Time evolution of the population of each BChl in the FMO complex.
Calculations were done for cryogenic temperature, T = 77 K. The reorgani-
zation energy and the phonon relaxation time are set to be λj = 35 cm−1 and
τc = γ−1

j
= 50 fs, respectively.

for the trimeric structure of the FMO complex given in ref. 26
(supporting information (SI) Table S1.) We use the usual num-
bering of the BChls, which was originally chosen by Fenna and
Matthews (2) (see Fig. 1).

Although the spectral densityJj(ω) is a crucial factor to describe
EET dynamics, no direct and detailed information on its form is
available for the FMO complex at present. Hence, several empiri-
cal forms have been employed under the assumption that the spec-
tral densities for the different BChls are equivalent (11, 25–27, 33),
and then the phonon relaxation time τc estimated by Eqs. 4 and
5 ranges from 35 fs (26)∗ to 166 fs (25) in the literature. Recently,
Read et al. (27) conducted 2D electronic spectroscopic experi-
ments to visualize excitonic structure in the FMO complex of
Prosthecochloris aestuarii, and they performed simultaneous fitting
of the linear and 2D rephasing, nonrephasing, and polarization-
dependent spectra by employing the overdamped Brownian oscil-
lator model. To obtain excellent agreement between the exper-
imental data and numerical fitting, they adopted λj = 35 cm−1

and τc = γ−1
j = 50 fs as the values of reorganization energy and

relaxation time of the phonons, respectively. Therefore, we also
employ these values with the assumption that the phonon spectral
densities for the individual BChls are equivalent. For numerical
integration of Eq. 6, the depth of hierarchy we employed here is at
most N = 12. For all calculations, the accuracy were checked by
changing the values of N to make sure that the numerical results
are converged.

EET Dynamics and Temperature Dependence Following the previous
proposal based on theoretical calculations (26), the FMO com-
plex has been assumed to be oriented with BChl 1 and 6 toward
the baseplate protein whereas BChls 3 and 4 define the target
region in contact with the RC complex. Recently, this orienta-
tion was verified experimentally by Wen et al. (5). Accordingly,
we adopt BChls 1 or 6 as the initial excited pigment for numerical
calculations.

Fig. 2 presents the EET dynamics at cryogenic temperature,
T = 77 K. These results clearly show that the energy flow in the
FMO complex occurs primarily through two EET pathways, which
connect spatially proximate and excitonically coupled BChls as
demonstrated by Brixner et al. with 2D electronic spectroscopy
(11, 25):

∗ The relaxation function and the symmetrized correlation function at 300 K produced by
the spectral density in ref. 26 show nonoscillatory negative values from 80 fs to 1 ps, whose
physical origin is not yet clear. Hence, it is impossible to estimate the relaxation time τc by
employing Eq. 5. Here, we have estimated the relaxation time only from the initial decay
(<80 fs) of the relaxation function.
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BChls 1 → 2 → 3 ⇋ 4, [11a]

BChls 6 → 5, 7, 4 → 3. [11b]

The double arrow (⇋) in Eq. 11a indicates that excitation
energy equilibrates between BChls 3 and 4 after BChl 3 is
populated. In Fig. 2A, the long lifetime of BChl 1 is due to the
relatively high site energy of BChl 2. Hence, populations of BChls
1 and 3 are dominant at time t = 1 ps. In Fig. 2B, on the other
hand, those of BChls 3 and 4 are dominant at time t = 1 ps owing
to very fast transport of electronic excitation energy. These behav-
iors are consistent with the transient pump-probe experiment by
Vulto et al. (7, 37) because BChl 1 participates in exciton 3 and
BChls 3 and 4 construct exciton 1, where the numbers give the
rank starting with the smallest exciton energy. Furthermore, in
Fig. 2A and B, quantum coherent wave-like motions are visible
up to 700 fs. This time scale is consistent with the observation by
Engel et al. (8) with 2D electronic spectroscopy.

Fig. 3 gives the EET dynamics at physiological temperature,
T = 300 K. The dynamics at T = 300 K is also dominated by
the two EET pathways given in Eq. 11, as described by Adolphs
and Renger with the conventional and modified Redfield theo-
ries. (26, 38) More noteworthy is that coherent wave-like motions
can be clearly observed up to 350 fs even at the physiological
temperature. Note that the phonon relaxation time used here,
τc = 50 fs, was obtained as a numerical fitting parameter for the
experimental data; it was not measured directly. For numerical
fitting of other 2D spectra of the FMO complex from C. tepidum
(11), an Ohmic spectral function with an exponential cutoff was
employed, i.e., Jj(ω) ∝ λjω exp(−ω/ωc) with λj = 35 cm−1 and

ωc = 50 cm−1 (25), which yields the phonon relaxation time of
τc = 166 fs. Therefore, attention should be also paid to possibili-
ties of slower phonon relaxation times. Most recently, the present
authors have demonstrated that slower phonon relaxation times
are preferable in terms of longer lifetime of electronic coher-
ence among pigments (18). Indeed, calculations employing the

slower value, γ−1
j = 166 fs, predict longer-lasting (up to 550 fs)

wave-like motions at T = 300 K as shown in Fig. 4, which can
not be reproduced with conventional Redfield theory because
the dynamics are now in the strong non-Markovian regime. In
Eq. 6, slower fluctuations preserve longer-lived quantum coher-
ent oscillation, whereas the Markov approximation in the Red-
field theory causes infinitely fast fluctuation and thus collapses
the coherence quickly. On the other hand, in the fastest relax-
ation case in the literature, τc = 35 fs (35), numerical results
with Eq. 6 also show the wave-like behavior lasting for 350fs
at T = 300 K, virtually the same as in the case of τc = 50 fs.

Fig. 3. Time evolution of the population of each BChl in the FMO complex.
Calculations were done for physiological temperature, T = 300 K. The other
parameters are the same as in Fig. 2.

Fig. 4. Time evolution of the population of each BChl in the FMO complex.
Calculations were done for the same parameters as in Fig. 3, except for the
phonon relaxation times τc = γ−1

j
= 166 fs.

(Fig. S1) Therefore, we expect that long-lived electronic coher-
ence among BChls is present in the FMO complex even at
physiological temperatures, irrespective of the phonon relaxation
times.

Roles of Quantum Coherence The observation of long-lasting and
robust quantum coherence prompts the speculation that quantum
effects may play a significant role in achieving the remarkable effi-
ciency of photosynthetic EET. Engel et al. (8) proposed that the
FMO complex performs a quantum search algorithm that is more
efficient than a classical random walk suggested by the hopping
mechanism. Quantum coherence enables the excitation to rapidly
and reversibly sample multiple pathways to search for BChl 3 that
connects to the RC.

Unidirectional energy flow facilitates the achievement of a near-
unity quantum yield. For the unidirectionality, once excitation
migrates to the linker pigments between the FMO complex and
the RC, it has to be trapped and directed to the RC (27). Here, we
explore the idea that the FMO complex may work as a type of “rec-
tifier” for the unidirectional flow from the chlorosome antenna to
the RC by taking advantage of quantum coherence and the site
energy landscape tuned by the protein scaffold. The basic idea is
as follows: If the EET were dominated only by diffusive incoher-
ent hopping, trapping in subsidiary energetic minima would be
inevitable. However, quantum delocalization can allow avoidance
of the traps to aid the subsequent trapping of excitation by the
linker pigments, BChls 3 and 4.

More insight can be gained if attention is given to the site energy
of the BChl in the baseplate. It has been reported that the Qy

absorption of the baseplate BChl in C. tepidum is located around
800 nm (12, 500 cm−1) (39, 40). This lies between the site energies
of BChl 1 (12, 410 cm−1) and BChl 6 (12, 630 cm−1) in ref. 26, and
implies that the FMO complex has two windows and their respec-
tive onward pathways given in Eq. 11 in order to capture and
convey electronic excitation energy from the baseplate without
loss. Fig. 5 presents the energy landscapes along the two primary
pathways.

In terms of an “energy funnel,” it is advantageous that the site
energy of BChl 1 is low in comparison to that of the baseplate
BChl. Nevertheless, the site energy of BChl 2 is higher than BChl
1, and hence BChl 1 is a local energetic minimum. It is not clear
whether there exists a physiological significance to the barrier cre-
ated by BChl 2. Here, we notice that the energy gap between BChls
1 and 3 is 200 cm−1, which corresponds to the magnitude of ther-
mal energy kBT at physiological temperature T = 300 K. If the
BChls in the pathway shown in Fig. 5A were arranged in such
a way that their site energies monotonically decrease, the rela-
tively flat energy landscape compared to kBT would allow facile
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Fig. 5. The energy landscapes along the two primary transfer pathways in
the FMO complex: baseplate → BChls 1 → 2 → 3 → 4 (A) and baseplate →

BChls 6 → 5, 7, 4 → 3 (B). The relatively strong couplings between BChls are
depicted by solid lines.

backward transfer of excitation away from BChl 3 at physiological
temperatures, and the equilibrated population of BChl 3 would
decrease. However, the FMO energy landscape is set up such that
the site energy of BChl 2 is higher by ≈ 300 cm−1 than that of
BChl 3; hence, the back transfer is suppressed and thus BChl 3 is
able to have larger amount of population of excitation in equilib-
rium. (Fig. S2) If the energy transfer from BChl 1 to BChl 2 were
a slow incoherent hopping process, the excitation energy would
be trapped on BChl 1. However, the wave-like motion induced by
the quantum superposition between BChls 1 and 2 enables such
trapping to be avoided. Indeed, Figs. 2A and 3A clearly show that
the detrapping of excitation on BChl 1 involves quantum coherent
wave-like motion. (Figs. S3 and S4)

The site energy of BChl 6 is higher than the energy of the
baseplate BChl. If the deexcitation of the BChl 6 were slow,
the excitation could return to the baseplate easily according to the
detailed balance condition between BChl 6 and a baseplate BChl.
In order to avoid this backward transfer, BChl 6 needs to convey
its excitation energy to other BChls as quickly as possible. This
is accomplished by having BChl 6 be strongly coupled to both of
BChls 5 and 7, which in turn are strongly coupled to BChl 4. Figs. 2,
3, and 4 demonstrate that the initial rises of populations in BChls
5, 7, and 4 are based on quantum wave-like motion irrespective
of temperature, and then the excitation of BChl 6 is delocalized
coherently over BChls 4, 5, 6, and 7 on the 100-fs time scale. After
the ultrafast delocalization, the excitation begins to explore the
lowest energy site, BChl 3. This enables the energy flow though the
pathway shown in Fig. 5B to be unidirectional and highly efficient.

Here, we have not taken into account the effect of static dis-
order because the suggested standard deviation of the Gaussian

distribution of the site energies is ≈ 20 cm−1 (the corresponding
fwhm is ≈ 50 cm−1) (25, 27), which is smaller than the site energy
gaps in the FMO complex, and therefore the static disorder of the
individual sites has little influence on the qualitative nature of the
energy landscape. However, even if the static disorder is relatively
large, quantum coherence is still expected to help excitation to
overcome local energetic traps created by the static disorder as dis-
cussed by Renger and Marcus (41) for the variable-range hopping
mechanism of electron transfer through DNA.

Concluding Remarks

In this article, we have investigated theoretically the spatial and
temporal dynamics of the EET through the FMO complex of C.
tepidum in order to address the robustness and role of the quan-
tum coherence under physiological conditions. For the description
of the dynamics, we applied the hierarchically coupled equations
approach, which reduces to the conventional Redfield and Förster
theories in their respective limits of validity. The numerical cal-
culations were performed based on the electron-phonon coupling
parameters adopted for the fitting of 2D electronic spectroscopic
data, where the reorganization energy and the phonon relaxation
time are 35 cm−1 and τc = 50 fs, respectively. The results revealed
the presence of quantum coherent wave-like motion persisting
for 350 fs even at physiological temperature T = 300 K. Taking
into account the possibility of slower phonon relaxation, we also
carried out numerical calculations for τc = 166 fs. For this case,
the dynamic equation used here yields wave-like motion persist-
ing for 550 fs at T = 300 K, which cannot be reproduced by the
conventional Markovian Redfield equation because the dynam-
ics are in the strong non-Markovian regime. Recently, Collini and
Scholes (42, 43) showed the presence of a quantum coherent EET
process in the conjugated polymer MEH-PPV by means of 2D
electronic spectroscopy. Their 2D spectra show that long-lived
electronic coherences persist for at least 250 fs after photoexci-
tation of MEH-PPV in solution at 293 K. Although MEH-PPV
is not a photosynthetic complex, their experimental observation
of long-lived coherence at room temperature is corroborative for
our theoretical predictions. Moreover, as one of potential roles of
quantum coherence in the FMO complex, we suggested that quan-
tum coherence allows the FMO complex to work as a rectifier for
unidirectional energy flow from the chlorosome antenna to the
RC complex. It is reasonable to suppose that quantum coherence
can overcome local energetic traps to aid the subsequent trapping
of electronic energy by the BChl molecules in contact with the RC
complex.

In the present calculations, it has been assumed that the phonon
spectral densities for the individual BChls are equivalent and
fluctuations in different site energies are uncorrelated. This is
because there exists no accurate and detailed information on
the coupling between BChls and phonons of the FMO protein.
Nevertheless, our results predict the presence of quantum coher-
ence lasting for several hundred femtoseconds at physiological
temperature. In the RC complex of a purple bacterium, Groot
et al. (44) reported that the phonon relaxation time and electron-
phonon coupling strength of one of the BChls are both about
1.5 times different from those of a record BChl in the same
complex. Additionally, Lee et al. (14) showed that fluctuations
in the bacteriopheophytin and accessory BChl excited energies
are strongly correlated enabling long-lasting electronic coherence
between them. It has also been reported that correlated fluctua-
tions may enhance the contribution of quantum coherence to EET
efficiency of the FMO complex (20). Hence, it is also likely that
the couplings between the FMO protein and the embedded BChls
are heterogeneous and may be optimized for individual BChl
sites in order to preserve longer-lived coherence or to achieve
higher efficiency in comparison to the present results. A more
detailed understanding of quantum coherent effects in photosyn-
thetic systems demands comprehensive investigations combining
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the quantum dynamic theories with quantum chemical calcula-
tions and molecular dynamics simulations, in addition to fur-
ther experimental studies. Investigations from the perspective of
quantum information science should also provide insights into
the issue.

Appendix: Low-Temperature Correction Terms

For the overdamped Brownian oscillator model of the phonon
spectral density, the phonon symmetrized correlation function can
be expressed as
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where the first term is the classical correlation function and the
second term involving the bosonic Matsubara frequency, νk ≡
2πk/β� (k ≥ 1), represents the quantum corrections. Under
the high-temperature condition characterized by β�γj < 1, the
second term is vanishingly small and then the symmetrized corre-
lation function can be described classically. For low temperature
β�γj > 1, however, the first term is not sufficient. The quan-
tum dynamic equation based only on the first term does not
ensure detailed balance at low temperature; hence, some diagonal
elements of the density matrices may be negative.

In this article, we have included only the lowest-order quan-
tum correction involving only νk=1 to calculate the EET dynamics
at T = 77K, because the breakdown of the detailed balance
condition is minor for the parameters employed here. For the

cases of γ−1
j ≥ 50 fs and T ≥ 77 K, the value of ν1 is sufficiently

large in comparison with γj; hence, ν1 exp(−ν1t) can be replaced
by Dirac’s δ function. As the result, the symmetrized correla-
tion function containing the lowest-order quantum correlation is
given by
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Following the derivation in ref. 18 with Eq. A2, we can obtain a
modified equation applicable to the case of T = 77 K. The resul-
tant expression can be obtained by the following replacements in
Eq. 6:
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12. Pisliakov AV, Mancǎl T, Fleming GR (2006) Two-dimensional optical three-pulse pho-
ton echo spectroscopy. II. Signatures of coherent electronic motion and exciton
population transfer in dimer two-dimensional spectra. J Chem Phys 124:234505.

13. Cheng Y-C, Fleming GR (2008) Coherence quantum beats in two-dimensional elec-
tronic spectroscopy. J Phys Chem A 112:4254–4260.

14. Lee H, Cheng Y-C, Fleming GR (2007) Coherence dynamics in photosynthesis: Protein
protection of excitonic coherence. Science 316:1462–1465.

15. Jang S, Cheng Y-C, Reichman DR, Eaves JD (2008) Theory of coherent resonance energy
transfer. J Chem Phys 129:101104.

16. Cheng Y-C, Fleming GR (2009) Dynamics of light harvesting in photosynthesis. Annu
Rev Phys Chem 60:241–262.

17. Ishizaki A, Fleming GR (2009) On the adequacy of the Redfield equation and related
approaches to the study of quantum dynamics in electronic energy transfer. J Chem
Phys 130:234110.

18. Ishizaki A, Fleming GR (2009) Unified treatment of quantum coherent and incoher-
ent hopping dynamics in electronic energy transfer: Reduced hierarchy equations
approach. J Chem Phys 130:234111.

19. Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A (2008) Environment-assisted
quantum walks in photosynthetic energy transfer. J Chem Phys 129:174106.

20. Rebentrost P, Mohseni M, Aspuru-Guzik A (2009) Role of quantum coherence in
chromophoric energy transport. J Phys Chem B 113:9942–9947.

21. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik, A (2009) Environment-
assisted quantum transport. New J Phys 11:033003.

22. Plenio MB, Huelga SF (2008) Dephasing-assisted transport: quantum networks and
biomolecules. New J Phys 10:113019.

23. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys
2:55–75.

24. Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1:19–31.
25. Cho M, Vaswani HM, Brixner T, Stenger J, Fleming GR (2005) Exciton analysis in 2D

electronic spectroscopy. J Phys Chem B 109:10542–10556.
26. Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the

FMO complex of green sulfur bacteria. Biophys J 91:2778–2797.
27. Read EL, et al. (2008) Visualization of excitonic structure in the Fenna-Matthews-

Olson photosynthetic complex by polarization-dependent two-dimensional electronic
spectroscopy. Biophys J 95:847–856.

28. Tanimura Y (2006) Stochastic Lioville, Langevin, Fokker-Planck, and master equation
approaches to quantum dissipative systems. J Phys Soc Jpn 75:082001.

29. Grabert H, Schramm P, Ingold G-L (1988) Quantum Brownian motion: The functional
integral approach. Phys Rep 168:115–207.

30. Fleming GR, Cho M (1996) Chromophore-solvent dynamics. Annu Rev Phys Chem
47:109–134.

31. Kubo R (1963) Stochastic Liouville equations. J Math Phys 4:174–183.
32. Zigmantas D, et al. (2006) Two-dimensional electronic spectroscopy of the B800-B820

light-harvesting complex. Proc Natl Acad Sci USA 103:12672–12677.
33. Read EL, et al. (2007) Cross-peak-specific two-dimensional electronic spectroscopy.

Proc Natl Acad Sci USA 104:14203–14208.
34. Wendling M, et al. (2000) Electron-Vibrational coupling in the Fenna-Matthews-

Olson complex of Prosthecochloris aestuarii determined by temperature-dependent
absorption and fluorescence line-narrowing measurements. J Phys Chem B 104:5825–
5831.

35. Renger T, Marcus RA (2002) On the relation of protein dynamics and exciton relaxation
in pigment-protein complexes: An estimation of the spectral density and a theory for
the calculation of optical spectra. J Chem Phys 116:9997–10019.

36. Rackovsky S, Silbey R (1973) Electronic-energy transfer in impure solids. I. Two
molecules embedded in a lattice. Mol Phys 25:61–72.

37. Vulto SIE, et al. (1998) Excited-state structure and dynamics in FMO antenna complexes
from photosynthetic green sulfur bacteria. J Phys Chem B 102:10630–10635.

38. Müh F, et al. (2007) α-Helices direct excitation energy flow in the Fenna-Matthews-
Olson protein. Proc Natl Acad Sci USA 104:16862–16867.

39. Francke C, Amesz J (1997) Isolation and pigment composition of the antenna system
of four species of green sulfur bacteria. Photosynth Res 52:137–146.

40. Frigaard N-U, et al. (2005) Isolation and characterization of carotenosomes from a
bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–
111.

41. Renger T, Marcus RA (2003) Variable-range hopping electron transfer through
disordered bridge states: Application to DNA. J Phys Chem A 107:8404–8419.

42. Collini E, Scholes GD (2009) Coherent intrachain energy migration in a conjugated
polymer at room temperature. Science 323:369–373.

43. Collini E, Scholes GD (2009) Electronic and vibrational coherences in resonance energy
transfer along MEH-PPV chains at room temperature. J Phys Chem A 113:4223–
4241.

44. Groot ML, Yu JY, Agarwal R, Norris JR, Fleming GR (1998) Three-pulse photon echo
measurements on the accessory pigments in the reaction center of Rhodobacter
sphaeroides. J Phys Chem B 102:5923–5931.

17260 www.pnas.org / cgi / doi / 10.1073 / pnas.0908989106 Ishizaki and Fleming


