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ABSTRACT

An approximate analytic expression is derived for the ratio l of the ascent rate of moist deep convective

thermals and the maximum vertical velocity within them; l is characterized as a function of two non-

dimensional buoyancy-dependent parameters y and h and is used to express the thermal ascent rate as a

function of the buoyancy field. The parameter y characterizes the vertical distribution of buoyancy within the

thermal, and h is the ratio of the vertically integrated buoyancy from the surface to the thermal top and the

vertical integral of buoyancy within the thermal. Theoretical l values are calculated using values of y and h

obtained from idealized numerical simulations of ascending moist updrafts and compared to l computed

directly from the simulations. The theoretical values of l’ 0.4–0.8 are in reasonable agreement with the

simulated l (correlation coefficient of 0.86). These values are notably larger than the l5 0:4 from Hill’s

(nonbuoyant) analytic spherical vortex, which has been used previously as a framework for understanding the

dynamics of moist convective thermals. The relatively large values of l are a result of net positive buoyancy

within the upper part of thermals that opposes the downward-directed dynamic pressure gradient force below

the thermal top. These results suggest that nonzero buoyancy within moist convective thermals, relative to

their environment, fundamentally alters the relationship between the maximum vertical velocity and the

thermal-top ascent rate compared to nonbuoyant vortices. Implications for convection parameterizations and

interpretation of the forces contributing to thermal drag are discussed.

1. Introduction

Since the 1950s, two primary conceptual models have

served as a basis for understanding the structure and

behavior of atmospheric moist convection [see the re-

views of de Rooy et al. (2013) and Yano (2014)]. The

first of these is the steady-state entraining plume

model, which has a continuous buoyancy source and

entrains steadily as buoyant air rises within the plume

(e.g., Morton et al. 1956; Morton 1957). The second is

the thermal model, which consists of a nonsteady, en-

training buoyant bubble rising through a fluid (e.g.,

Scorer and Ludlam 1953; Levine 1959; Turner 1963).

The plume and thermal models predict markedly dif-

ferent structure and flow characteristics. While there

was some evidence at the time for the nonsteady

thermal-like behavior of real moist convective up-

drafts, the earliest convection schemes were based on

the steady-state plume model (e.g., Simpson andWiggert

1969), presumably because it was straightforward to

adapt and implement. Most current schemes still utilize

this framework (de Rooy et al. 2013; Yano 2014).

An early conceptual model of atmospheric moist

convection occurring as thermals or ‘‘bubbles’’ of rising

air was introduced by Scorer and Ludlam (1953) and

Ludlam and Scorer (1953). This concept was extended

by Levine (1959), who applied the mathematical

framework of Hill’s analytic spherical vortex (Hill 1894;

Lamb 1932) to quantify moist thermal behavior. This

model was expanded by Turner (1964) to account for

increases in the size of entraining thermals as they rise.

Several observational studies later reinforced the view

of moist convection as consisting of a series of rising

bubbles or a rising bubble with a trailing turbulent wake

(e.g., Austin et al. 1985; Blyth et al. 1988; Blyth and

Latham 1993; Damiani et al. 2006).

More recently, large-eddy simulation (LES) models

have been used to investigate detailed aspects of moistCorresponding author: H. Morrison, morrison@ucar.edu
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convective behavior and structure (e.g., Siebesma and

Cuijpers 1995; Siebesma and Jonker 2000; Stevens et al.

2001; Neggers et al. 2002; Bryan et al. 2003; Zhao and

Austin 2005; Jonker et al. 2008; Heus et al. 2009;

Sherwood et al. 2013; Romps and Charn 2015;

Hernandez-Deckers and Sherwood 2016; Moser and

Lasher-Trapp 2017). These LES studies have generally

supported the view of moist convective updrafts being

composed of a series of quasi-spherical bubbles of rising

air (e.g., Sherwood et al. 2013; Romps and Charn 2015;

Hernandez-Deckers and Sherwood 2016; Moser and

Lasher-Trapp 2017). This nonsteady rising thermal view

of convective structure challenges the steady-state plume

framework assumed bymost convection schemes. Recent

papers have discussed contrasts between these concep-

tual models and implications for convection schemes

(see Sherwood et al. 2013; de Rooy et al. 2013; Yano

2014). Thus, a better understanding of thermal dynam-

ics is of practical importance for improving cumulus

parameterizations.

Quantifying the ascent rate of moist convective

thermals1 is important since it directly affects their

ability to vertically transport mass, momentum, ther-

mal energy, and water. From dimensional analysis,

studies have related the thermal ascent (or descent)

rate wt* to the buoyant forcing via an empirical, non-

dimensional Froude number Fr equal to the ratio of

inertia and buoyancy forcing. Malkus and Scorer

(1955) and Scorer (1957) defined Fr using the re-

lationship wt
*2 5F2

rBR, where B is the thermal-

averaged buoyancy and R is the thermal radius;

B[2g[(r2 r0)/r0], where r is the fluid density, r0 is a

reference state density taken to be the density of the

fluid surrounding the thermal, and g is the acceleration

of gravity. These studies obtained Fr of O(1) from

cloud and laboratory thermal observations. Thermal

velocity was further explored in the laboratory study

of Sanchez et al. (1989). They examined the ratio of wt*

and a scaling velocity ys [ (BD0)
1/2, where D0 is the

initial thermal diameter. This ratio is analogous to Fr

as defined above except R is replaced by D0, and thus,

it differs from Fr by a factor of 221/2. They found

wt*/ys ; 0.5–0.8 just after release of the thermals,

consistent with Fr ; 1 from Malkus and Scorer (1955)

and Scorer (1957), with a decrease to ;0.2–0.4 as the

thermals traveled distances greater than 5D0 [see Fig. 8

in Sanchez et al. (1989)].

Studies have also characterized the ascent rate by the

ratio l of wt* and the maximum w within the thermal

(e.g., Woodward 1959; Levine 1959; Romps and Charn

2015). In contrast to wt*, the maximum w is associated

with a thermal’s internal toroidal circulation that does

not directly contribute to net vertical transport of

updraft properties. Nonetheless, recent studies have

focused on the maximum w within updrafts since it is

well characterized by the forcing from the effective

buoyancy (Peters 2016; Jeevanjee 2017), which is the

sum of the buoyancy and the vertical buoyant per-

turbation pressure gradient forces (e.g., Davies-Jones

2003; Jeevanjee and Romps 2016). Thus, the thermal

ascent rate can be obtained from l and the effective

buoyancy if they are known. The latter can be directly

calculated from the buoyancy field or derived from the

vertical profile of the buoyancy and updraft radius

following the approximations in Morrison (2016a),

Peters (2016), Jeevanjee and Romps (2016), or

Jeevanjee (2017).

Earlier laboratory tank experiments of thermals in a

neutrally stratified fluid showed that 1/l5 2:2 (l’ 0:45)

(Woodward 1959). Turner (1962) performed tank ex-

periments on buoyant starting plumes2 and found that

the mean ratio of the velocity of the thermal-like cap

front at the plume head and the maximum velocity

within the plume, analogous to l, was 0.61. More recent

LES studies have reinforced these findings (Zhao and

Austin 2005; Romps and Charn 2015). Zhao and Austin

(2005) found that the mean thermal velocity was about

half the local maximum vertical velocity within shallow

convective thermals. A more detailed analysis of l from

an LES of a field of scattered deep convection by Romps

and Charn (2015) showed an average value of 0.56.

A key factor controlling l is the dynamic perturbation

pressure, which is closely related to the vorticity field. A

theoretical model for this pressure and flow field is

provided by Hill’s analytic spherical vortex (Hill 1894;

Lamb 1932), first applied by Levine (1959) and more

recently by Sherwood et al. (2013) and Romps and

Charn (2015) as a framework for understanding moist

convective dynamics. Hill’s vortex has a maximum w

located in the vortex center, a downward-directed

pressure gradient force between the center and top,

and vertical symmetry in the thermal-relative flow

about a horizontal axis through the vortex center. These

features are broadly in line with observations of labo-

ratory thermals (Scorer 1957; Woodward 1959) and

1Throughout the paper, ‘‘ascent rate’’ of thermals refers to the

rate of ascent of the thermal top unless stated otherwise.

2Turner (1962) formulated the ‘‘starting plume’’ model by

combining the thermal and plume models. This model consists of a

rising buoyant plume, with the structure at the plume head con-

sistent with a rising thermal and the region below described by the

steady-state plume model.
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LESs of moist deep convective updraft structures

(Sherwood et al. 2013; Romps and Charn 2015;

Hernandez-Deckers and Sherwood 2016; Moser and

Lasher-Trapp 2017). Hill’s vortex gives an analytic

value of l5 0:4 (see section 2a). This is notably smaller

than the experimental and numerically simulated l ’

0.45–0.61 for buoyant thermals (Woodward 1959;

Turner 1962; Zhao and Austin 2005; Romps and Charn

2015), with some important consequences. For example,

the value of l5 0:56 from Romps and Charn (2015)

implies a mean ascent rate of moist thermals 40%

greater than that for Hill’s vortex for a given maximum

w. This has implications for the effectiveness of moist

thermals in driving the vertical mixing of updraft prop-

erties. Thus, while Hill’s vortex is consistent with many

features of moist thermal behavior, it does not provide

very good accuracy in predicting l.

Levine (1959) suggested that departures of l from

Hill’s value of 0.4 for moist thermals in the real atmo-

sphere could arise from viscous effects, nonspherical

thermal shape, or ‘‘small irregularities.’’ The effects of

stable stratification in the surrounding fluid are also ne-

glected, which could impact l, although Warren (1960)

showed that wave drag is negligible for thermals except

when their buoyancy changes sign. This result was sup-

ported by the LES study of Hernandez-Deckers and

Sherwood (2016), while Romps and Oktem (2015)

showed that wave drag may be important for large ther-

mals (radius of 1km), especially those with a moderate

ascent rate (;4ms21). While these factors may play a

role, we argue that a more fundamental inconsistency

arises when applying Hill’s vortex to moist thermal dy-

namics because Hill’s vortex is nonbuoyant. One

straightforward effect of buoyancy is an apparent ‘‘drag’’

on thermals induced by the buoyant perturbation pres-

sure gradient force (Romps and Charn 2015; Hernandez-

Deckers and Sherwood 2016). Herein, we show that

another important effect of buoyancy is on l and the

thermal-top ascent rate. It is proposed that the un-

derestimation of l for moist thermals by Hill’s vortex

model compared to experimental and simulated values

is a direct consequence of the positive buoyancy within

thermals. This effect is quantified by deriving simple

theoretical expressions for l and the thermal ascent rate

as functions of the updraft buoyancy structure, extending

Hill’s analytic vortex solution. The primary goal is to

improve the quantitative understanding of the factors

controlling l and the ascent rate of convective thermals

in a simplified framework, with a focus on moist deep

convection. These expressions are compared to idealized

three-dimensional (3D) numerical updraft simulations.

Finally, we discuss implications for the drag force expe-

rienced by thermals and convection parameterizations.

The rest of the paper is organized as follows: Section

2 presents an overview of Hill’s analytic vortex and

derivations of the theoretical expressions for l and

moist convective thermal-top ascent rate. Section 3

describes the configuration of the numerical simula-

tions. The theoretical expressions for l and ascent rate

are compared with values from the numerical simu-

lations in section 4. The relationship to previous

studies on thermal drag is discussed in section 5. Im-

plications for convection parameterization are dis-

cussed in section 6. Finally, section 7 gives a summary

and conclusions.

2. Theory

a. Flow and perturbation pressure in Hill’s vortex

Hill’s analytic spherical vortex (Hill 1894) is steady

state and translates with velocity U5wt* through an

inviscid fluid that is at rest infinitely far from the vortex

(wt* is the velocity at the vortex top in this frame of

reference). This flow structure is shown in Fig. 1. The

motion of the entire field is axisymmetric around the line

of forward motion of the vortex. Vorticity within the

sphere is proportional to the distance from the axis of

symmetry, while the flow outside the sphere is the same

as the irrotational motion around a moving solid sphere.

Matching solutions for the interior and exterior flow, the

streamfunction in cylindrical axisymmetric coordinates

(r, z) is given by (Hill 1894; Lamb 1932)

FIG. 1. Streamfunction isolines for Hill’s analytic spherical vor-

tex. The radius, height, and flow velocity are normalized such that

the vortex radius is 1 and the flow velocity at the vortex top wt*

is 1. Normalized isolines are shown with an interval of 0.1 between

21 and 1, with the c5 0 isoline shown in red.
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(1)

where a is the radius of the vortex (Fig. 1).

The velocity along r5 0 within the vortex in the frame

of reference following the vortex (such that the velocity

at the vortex top is zero) is

w
r50

5
1

r

›c

›r
5

3

2
w

t
*

�
12

z2

a2

�
, (2)

for z2 1 r2 # a2. Hereafter, w* indicates vertical velocity

in the frame of reference with zero velocity infinitely far

from the vortex, whilew indicates vertical velocity in the

frame of reference with zero velocity at the vortex top

(i.e., following the vortex).

Defining l[wt*/wm*, where wm* is the maximum ver-

tical velocity in the vortex, l5 0:4 can be obtained from

(2) using the relation wm 5wm* 2wt*, where wm is the

maximum vertical velocity at the vortex center (r5 0,

z5 0) in the frame of reference following the vortex.

The pressure difference Dp between the vortex top

(z5 a) and vortex center (z5 0) along r5 0 as a func-

tion of wm* and l can be derived as follows. First, an

expression for wm is found by evaluating (2) at z5 0;

squaring this expression gives

w2
m 5

9

4
w

t
*2 . (3)

Next, we integrate the Boussinesq vertical momentum

equation in cylindrical axisymmetric coordinates, given

by (6) below, over dz from z5 0 to z5 a, assuming

steady state (i.e., ›/›t5 0), noting that u5 0 by symme-

try and buoyancy B5 0 since the vortex is nonbuoyant.

This gives an expression relating Dp and w2
m, which is

combined with (3) to yield an expression for Dp as a

function of wt
*2. This is combined with wt

*2 5 l2wm
*2,

which is derived from the definition of l, yielding after

rearranging terms,

Dp5
9

8
l2r

0
w*2m . (4)

In general, the perturbation pressure field in a fluid

can be expressed as p5 pdynam 1 pbuoy, where pdynam is

the dynamic perturbation pressure and pbuoy is the

buoyant perturbation pressure relative to a motionless,

hydrostatically balanced reference state. Here, we

consider dynamic and buoyant perturbation pressures

in the usual way, defined for Boussinesq flow as

=
2p

dynam
52r

0
= � (u � =u) and

=
2p

buoy
5 r

0

›B

›z
,

(5)

where u is the wind vector. There is no buoyancy in

Hill’s vortex, and hence, pbuoy 5 0, and (4) gives the

dynamic pressure difference between the vortex top

and center.

b. Ascent rate of a buoyant thermal

Approximate analytic expressions for l and the

ascent rate of a moist thermal that is buoyant with

respect to its surrounding environment are derived

next. Figure 2 shows the conceptual model that serves

as the basis for this derivation, where the structure of

the dynamic and buoyant perturbation pressure forc-

ings are based on Peters (2016) and Morrison (2016a),

respectively, as well as the numerical simulations

presented in section 4. We start with the inviscid

Boussinesq vertical momentum equation in axisym-

metric cylindrical coordinates:

›w

›t
1 u

›w

›r
1w

›w

›z
52

1

r
0

›p

›z
1B , (6)

where u is the radial velocity, z is height, and r is the

horizontal distance from the updraft center. The quan-

tities p and B are perturbation pressure and buoyancy

relative to a motionless, hydrostatically balanced hori-

zontally and temporally invariant reference state.

We focus on the thermal center at r5 0, where u5 0

by symmetry, and assume steady-state flow within the

thermal relative to its ascent. Considering (6) in the

frame of reference relative to the thermal ascent rate

such that w at the thermal top is zero (wt 5 0), vertical

integration from the height of the thermal-relative

maximum w (wm) to the thermal top gives

w2
t 2w2

m 52w2
m 52

2Dp

r
0

1 2

ðHt

Hm

Bdz , (7)

where Hm is the height of maximum vertical velocity,

and Ht is the height of the thermal top. Next, we

introduce a nondimensional flow-dependent parameter

b defined by the ratio

b[
w2

m

2BDH
, (8)

where DH5Ht 2Hb and B[ (1/DH)
Ð Ht

Hb
Bdz; Hb is the

height of the thermal bottom, and b will be discussed in

more detail later. We introduce another parameter y

defined by
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y[ 12
1

BDH

ðHt

Hm

Bdz . (9)

Physically, y is the fraction of the thermal’s total verti-

cally integrated buoyancy contained between Hb and

Hm, and hence, (12 y) is the fraction of the vertically

integrated buoyancy between Hm and Ht. Combining

(7)–(9) gives

22bBDH52
2Dp

r
0

1 2(12 y)BDH . (10)

In contrast with (4) from Hill’s vortex, Dp in (10) for

moist convective thermals includes both pdynam and pbuoy

(Fig. 2). Analytic approximations for pbuoy were pre-

viously derived by Morrison (2016a). For 3D flow, the

expression from Morrison [2016a, their (28)] gives an

estimate for the difference in pbuoy between the top and

bottom of the thermal, (Dpbuoy)th5 r0(a
2BDH/21a2),

assuming spherical geometry of the region of positive

buoyancy relative to the environment such that H5 2R

in the equation from Morrison (2016a). Here, H and R

are the updraft height and radius, respectively, and a is

the ratio of w horizontally averaged across the updraft

to w at the updraft center. We also approximate the

difference in pbuoy between Ht and Hm, denoted as

Dpbuoy. We assume that the ratio Dpbuoy/(Dpbuoy)th scales

with the fraction of the thermal’s total vertically in-

tegrated buoyancy contained betweenHm andHt, equal

to (12 y). Thus, Dpbuoy is obtained from scaling

(Dpbuoy)th by (12 y) to yield

Dp
buoy

’
r
0
(12 y)a2BDH

21a2
. (11)

Note that there is some uncertainty with this approach

because, in general for atmospheric moist thermals,

there is nonzero buoyancy outside of the thermal

boundaries, which influences the pbuoy field within them.

This is neglected for simplicity since, as shown later,

pbuoy has a limited impact on l. Combining (11) and (8)

gives

Dp
buoy

’
r
0
(12 y)a2w2

m

2b(21a2)
. (12)

It is assumed that the distribution of pdynam between

Hm andHt along the thermal’s vertical axis of symmetry

follows the scaling of Dp as a function of wm* and l from

Hill’s vortex given by (4). This is reasonable since LES

studies have shown the overall flow structure of moist

FIG. 2. Schematic of the buoyancy (yellow–orange shading) and flow (black arrows) in

a rising moist thermal. (left) The general orientation of vertical accelerations in the thermal

and (right) a hypothetical vertical velocity profile through the thermal center. Here, wb*, wm*,

andwt*are the vertical velocities at the thermal bottom, themaximumwithin the thermal, and

the thermal top (at heightsHb,Hm, andHt , respectively) in the frame of referencewithw*5 0

at the surface.
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convective thermals is similar toHill’s vortex (Sherwood

et al. 2013; Romps and Charn 2015; Hernandez-Deckers

and Sherwood 2016; Moser and Lasher-Trapp 2017).

Note that here we only use Hill’s vortex scaling of pdynam

between Hm and Ht and make no other assumptions

about the pdynam field. Usingwm 5wm* 2wt*5 (12 l)wm*,

squaring this expression, and combining it with (4) gives

Dp
dynam

5
9

8

l2

(12l)2
r
0
w2

m . (13)

Combining (12) and (13) yields

Dp5Dp
dynam

1Dp
buoy

’

"
9l2

8(12l)2
1

(12 y)a2

2b(21a2)

#
r
0
w2

m .

(14)

Next, we derive an expression for b in terms of the

vertically integrated buoyancy. For the simulated up-

drafts described in Peters (2016) and Morrison (2016b),

the magnitude of wm* was accurately diagnosed by ver-

tically integrating the sum of B and 2(1/r)(›pbuoy/›z)

(i.e., the effective buoyancy) over the region with B. 0,

with pdynam neglected. Thus, pdynam is important in ex-

plaining why wm* occurs below the level of maximum

vertically integrated buoyant forcing, but it does not

appreciably impact themagnitude ofwm*. This is because

of the vertical structure of the pdynam field, with an

upward-directed pdynam force in the lower part of the

updraft approximately balanced by a downward-

directed pdynam force near the updraft top.

Given this finding, we approximate wm* by vertically

integrating the vertical momentum equation along r5 0

over heights where B. 0. For simplicity, it is assumed

that the updraft region with B. 0 is contained between

the surface (z5 0) and the thermal top (z5Ht), ne-

glecting regions with B, 0 between the surface and

thermal top. This gives

w
m
*2 ’

ðz5Ht

z50

›(w*2)

›z
dz52

2Dp
buoy,u

r
0

1 2

ðz5Ht

z50

Bdz , (15)

where Dpbuoy,u [
Ð z5Ht

z50
(›pbuoy/›z) dz. Similar to previous

derivations (Morrison 2016a; Peters 2016), (15) as-

sumes that the vertical integral of buoyancy at time t is

equal to the integral of the Lagrangian derivative

dw*/dt5w*dw*/dz over the path traveled by a parcel

from the initial time to t (i.e., w*›w*/›z5w*dw*/dz),

implying ›w*/›t5 0 along the parcel path. This ap-

proach gives a close correspondence between values of

wm* calculated using the simulated B field and wm* ob-

tained directly from the simulations as shown in

section 4.

The right-hand side of (15) is approximated following

Morrison [2016a, their (27)]. We use wm* 5wN from that

paper, where wN is the maximum vertical velocity ac-

counting for B and pbuoy but neglecting pdynam. We also

assume for simplicity that CAPE from (27) in Morrison

(2016a) can be approximated as CAPE’
Ð z5Ht

z50
Bdz; this

follows from the assumption above that the updraft re-

gion with B. 0 is contained between z5 0 and z5Ht,

neglecting the impact of B, 0 between these heights.

With these approximations, after rearranging terms,

(27) from Morrison (2016a) is written as

w*2m ’
2

11
a2A2

r

2

ðz5Ht

z50

Bdz , (16)

where Ar [ 2R/H is the width-to-height aspect ratio of

the updraft’s region of positive buoyancy, relative to the

environment, including that in the thermal head and

wake regions (see Fig. 2).

Combining (16) and (8) with w2
m 5 (wm* 2wt*)

2
5

(12 l)2wm
*2 and rearranging terms, b can be expressed

as

b’
(12 l)2

�
11

a2A2
r

2

�

ðz5Ht

z50

Bdz

BDH
5

(12l)2

�
11

a2A2
r

2

� h , (17)

where h[
�Ð z5Ht

z50
Bdz

�
/(BDH) is the ratio of the verti-

cally integrated buoyancy from the surface to the ther-

mal top and the vertically integrated buoyancy within

the thermal. Generally, the magnitude of h will be small

(e.g., h; 1) when the thermal is in the lower tropo-

sphere and large (e.g., h � 1) when it is in the upper

troposphere. This is because the ratio of the vertically

integrated buoyancy within the thermal, relative to that

in the stem below (Fig. 2), generally decreases as ther-

mals rise through the troposphere.

Combining (8), (10), (14), and (17) yields a quadratic

expression for l that depends only on a, Ar, and the

nondimensional buoyancy-dependent parameters h and

y. This is solved for l to give

l5
2b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 4AC
p

2A
, (18)

where A5 5/4, b5 2, and C5 (12 y)[11 (a2A2
r /2)]

f[a2/(21a2)]2 1g/h2 1. In (18), we have taken the

positive root of the quadratic expression, which

yields physical solutions. Since wt*5lwm*, an esti-

mate for the ascent rate of the thermal top follows

from (16):
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w
t
*’ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

11
a2A2

r

2

ðz5Ht

z5H0

Bdz

vuuut . (19)

Values of l from (18) as a function of y and h are

shown in Fig. 3. These calculations use a5 0:78, which is

the mean value from the numerical simulations, and the

scaling Ar 5 2/h; see section 4 for details. As a sanity

check, taking the limit h/‘ in (18), meaning that the

thermal’s buoyancy vanishes, returns the value of

l5 0:4, consistent with Hill’s vortex, which is non-

buoyant. Values of l decrease with increasing h, ranging

from greater than 1 for h � 1 to less than 0.45 for h. 5.

Likewise, values of l decrease with increasing y, albeit

by a smaller amount (up to ;0.25) over the range of y

from the simulations (approximately 0:05, y, 0:75).

This implies that l is larger when the thermal’s vertical

distribution of positive buoyancy is concentrated near

the thermal top.

As discussed in the introduction, earlier observational

studies related wt* to the buoyant forcing via an empir-

ical Froude number Fr. For a spherical thermal with

B5 0 in the environment outside the thermal, meaning

h5 1 and Ar 5 1, we can express Fr 5 2(11a2/2)21/2
l

using (16) combined with Fr 5wt*/(BR)
1/2 from Scorer

(1957). Assuming a5 0:78 as above and a homogeneous

buoyancy field within the thermal with a maximum w in

the thermal center so that y5 0:5, (18) gives l5 0:56 and

correspondingly Fr 5 0:98. While the thermal buoyancy

structure was not quantified in the cloud observational

and laboratory studies of Malkus and Scorer (1955) and

Scorer (1957) so that a direct comparison is not possible,

the theoretical Fr 5 0:98 is similar to the mean values of

0.89 (Malkus and Scorer 1955) and 1.2 (Scorer 1957)

from these studies.

We also calculated theoretical values of l but with

Dpbuoy in (12) equal to zero and with an increase of

Dpbuoy by a factor of 2; Dpbuoy affects l since it coun-

teracts part of the upward buoyant force in the upper

part of the thermal, but the overall impact is small

(Figs. 3b,c). When it is neglected, or scaled by a factor of

2, the change in l ranges from;0.01 for l5 0:45 to;0.1

for l5 1. Thus, assumptions regarding Dpbuoy are not

very important for estimating l.

This paper focuses on positively buoyant moist con-

vective thermals. However, when h is negative, that is,

when the net buoyancy within the thermal is negative

while the total buoyancy integrated from the surface to

the thermal top is positive (e.g., overshooting convec-

tion), the expression for l gives values less than that for

Hill’s vortex of 0.4. This makes sense, since h, 0 and

y. 0 implies negative buoyancy between Hm and Ht,

which contributes a downward-directed buoyant force

FIG. 3. (a) Theoretical values of l from (18) as a function of

parameters y and h. The contour lines in (a) have colors

matching the l values shown in Fig. 9. (b) Difference in l from

(18) with that neglecting Dpbuoy within the thermal (red contour

lines). (c) Difference in l from (18) with that increasing Dpbuoy

by a factor of 2 (blue contour lines). Contour intervals in (b) and

(c) are every 0.01 between20.1 and 0.1 and every 0.1 outside of

this range.
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in addition to the downward-directed force from

2(1/r)(›pdynam/›z).

An assessment of the theoretical expressions for l and

wt* by comparison with numerical simulations is pre-

sented in section 4. In the next section, we describe the

configuration of these numerical experiments.

3. Description of the numerical model and setup

The development and evolution of idealized moist

deep convective thermals is simulated within an other-

wise initially homogeneous environment. We use the

Cloud Model 1 (CM1), version 18 (Bryan and Fritsch

2002), which is a fully compressible and nonhydrostatic

model that was designed for simulating cloud processes.

CM1 is configured in three dimensions with horizontal

and vertical grid spacings of 100m, 513 grid points for

each horizontal direction (equating to a 51.2-km-wide

domain), and 201 grid points in the vertical (equating

to a 20-km-deep domain). CM1 uses a time-splitting

acoustic scheme, with the acoustic time step set to 1/6

of the overall model time step of 0.5 s. The simulation

time is 15min. Lateral boundary conditions are periodic,

and model top and bottom boundary conditions are free

slip. Microphysics is represented by a modified version

of the Morrison et al. (2005) double-moment scheme.

All microphysical processes except cloud liquid water

condensation and evaporation are turned off to avoid

complications associated with precipitation formation

and ice processes. Mixing from subgrid-scale eddies is

parameterized following Smagorinsky (1963). The ini-

tial thermodynamic profiles follow from the analytic

sounding ofWeisman andKlemp (1982), which supports

deep convection with a convective available potential

energy of approximately 2700 J kg21. Convection is ini-

tiated by adding a bubble with a maximum perturbation

potential temperature of 2K centered at a height of

1.5 km. The initial bubble radius is varied in the simu-

lations from 500 to 4000m. The environmental wind is

set to zero. The distributions of pdynam and pbuoy are

obtained by solving the diagnostic pressure equation

using a fast Fourier transform in the horizontal direction

(which is consistent with periodic lateral boundary

conditions) and a fast Fourier cosine transform in the

vertical direction (which is consistent with Neumann top

and bottom boundary conditions).

The simple idealized framework utilized here is

intended to capture fundamental aspects of the scaling

behavior of moist deep convective thermals. This

framework facilitates a direct, quantitative comparison

with the theoretical expressions since 1) the convective

initiation and initial updraft properties are well con-

trolled in all simulations; 2) updraft size scales with the

initial bubble size, allowing systematic testing over a

wide range of thermal sizes; and 3) flow irregularities

and asymmetries are limited, and vertical axisymmetry

around the thermal center is retained (the latter con-

sistent with the geometry assumed by the theoretical

derivation). High resolution (100-m horizontal and

vertical grid spacings) allows the model to capture de-

tails of the thermal toroidal circulation and other aspects

of the flow such as changes in thermal volume over time.

However, explicitly resolved turbulence is limited in

these simulations because of the finite time required to

spin up grid-scale turbulent motion and develop an en-

ergy cascade (e.g., Chow et al. 2005; Lebo and Morrison

2015). Thus, we emphasize that these simulations are not

LES as it is traditionally defined and should instead be

considered as high-resolution simulations of diffusive

moist thermals. As will be shown, though simple, this

framework captures key features of moist convective

thermals in LESs (Sherwood et al. 2013; Romps and

Charn 2015; Hernandez-Deckers and Sherwood 2016;

Moser and Lasher-Trapp 2017), including a flow struc-

ture similar to Hill’s vortex and ‘‘stickiness’’ due to a

significant fraction of the upward buoyant forcing that is

countered by a downward-directed perturbation pres-

sure gradient force. While the effects of explicitly re-

solving turbulent eddies on l and the thermal ascent rate

are uncertain, LES studies have also shown that mo-

mentum mixing from turbulent eddies is relatively un-

important in the vertical momentum budget of thermals

(Sherwood et al. 2013; Romps and Charn 2015;

Hernandez-Deckers and Sherwood 2016).

The simulated thermals have radii that are roughly

one-half the radius of the initial bubbles and thus range

from about 300m to 2km. Note that previous LES

studies (e.g., Hernandez-Deckers and Sherwood 2016)

have found most cumulus thermals to be small (,300-m

radius). Thus, the thermals in our simulations are on the

large end of the size range fromLESs, but our intent is to

focus on thermals that have a scale similar to the updraft

structures themselves rather than those associated with

smaller-scale turbulent eddies.

4. Comparison of the numerical simulations and

theory

All of the simulations initiate moist convection within

the first few minutes and subsequently produce cloud

updrafts that ascend through most or all of the tropo-

sphere. The updraft structure consists of an ascending

buoyant plume with a toroidal circulation in the

thermal-like flow at the rising plume head (Figs. 4–6).

This structure is similar to the starting plume described

by Turner (1962). Thermal-like structures are also
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evident lower down in the wake region, particularly for

the wider updrafts, but here, we focus on the thermals

located at the updraft head. The boundaries of these

thermals are indicated by the blue lines in Fig. 4, defined

using a methodology similar to Romps and Charn

(2015). The thermal structure located at the updraft

head is found by moving downward from the model top

along r5 0 (defined by the thermal’s vertical axis of

symmetry at x5 0 in Fig. 4) and locating the first local

maximum in divergence with w. 1 ms21, which is how

the thermal top is defined. The vertical velocity at this

level provides wt*, which is then used to calculate the

streamfunction using c(r, z)[ 2p
Ð r
0r(w*2wt*)r

0 dr0.

Thermals are defined by regions with c. 0. The lower

thermal boundary is defined by the height where

w*5wt* along the thermal’s vertical axis since the

streamfunction there is zero. Note that buoyancy and the

buoyant perturbation pressure from the simulations are

defined relative to the initial thermodynamic sounding,

which is close to the horizontally averaged thermody-

namic profiles. Both the 500- and 1000-m bubble simu-

lations experience a large reduction in positive buoyancy

by 13min, whereas the larger thermals retain consider-

able positive buoyancy at 13min.

Maximum vertical velocities generally occur 1–3 km

below cloud top approximately at the thermal center

(Fig. 4). The distributions of pbuoy (Fig. 5) are broadly

consistent with previous studies (Morrison 2016a; Peters

2016), with a local high in pbuoy near the updraft top

and a local low near the updraft bottom, although the

structure of pbuoy becomes increasingly complex over

time as the buoyancy field evolves. The magnitude of

pbuoy is smaller for narrow compared to wide updrafts,

consistent with the idea that narrow updrafts have a

larger effective buoyancy (Jeevanjee and Romps 2016;

Peters 2016; Jeevanjee 2017). The distribution of pdynam

FIG. 4. Perturbation potential temperature u0 (color shading; K), and w* (gray contour lines at intervals of 5m s21, starting at 5m s21).

The x axis is the horizontal distance with zero located along the thermal’s central axis. Thick black lines indicate the boundaries of the

thermal at the updraft head, defined as described in section 4. (a),(e) The 500-m bubble run at 10 and 13min. (b),(f) The 1000-m run at 10

and 13min. (c),(g) The 2000-m run at 10 and 13min. (d),(h) The 4000-m run at 10 and 13min.
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(Fig. 6) is characterized by low pressure associated with

the thermal’s toroidal circulation, high pressure near the

updraft top, and high pressure near the updraft bottom.

This is consistent with the conceptual model from Peters

(2016) and broadly similar to the pressure distribution

within Hill’s vortex. As with pbuoy, the magnitude of

pdynam is smaller for narrow updrafts compared to

wide ones.

In subsequent analysis, we focus on time periods when

the thermals/updrafts rise through the troposphere.

These time periods are defined in each simulation as

when 1) the thermal top is below 12 km, the approximate

tropopause height; 2) the thermal bottom, defined by the

level belowHm where the vertical velocity is equal towt*,

exceeds 1 km in height; and 3) the thermal top ascends at

greater than 2ms21. The l from the simulations is cal-

culated using a centered time difference and then

smoothed using a Gaussian filter of radius 15min. Re-

sults are shown at 1-min intervals as the thermals rise.

The parameters y and h in the theoretical expressions

are directly obtained from the simulations at each

analysis time; a is derived from the simulations by de-

fining the updraft region as that with w$ 1 ms21 and

perturbation potential temperature $ 1K. At each

vertical level within the updraft, we take the ratio of the

horizontal-averaged w and the maximum w and then

average these values vertically. A mean value of

a5 0:78 for all of the cases is used in the theoretical

calculations. The width-to-height aspect ratio of the

buoyant updraft region Ar is difficult to quantify pre-

cisely from the simulations since the width of the

buoyant region varies with height (i.e., the relatively

wide thermal ‘‘head’’ vs the narrower ‘‘stem’’ below,

seen in Fig. 4, particularly for the wider updrafts). For

simplicity, we relate Ar to the nondimensional height-

dependent parameter h from section 2, which can be

expressed as h5BuHt/(BDH), where Bu and Ht are the

mean buoyancy and distance from the surface to the

thermal top, respectively, and B and DH are the mean

buoyancy within the thermal and distance from the

thermal bottom to top. Since the updraft height in-

creases much more than the width as updrafts grow

FIG. 5. As in Fig. 4, but for pbuoy, where red contour lines show pbuoy . 0 starting at 0.1 hPa and increasing with intervals of 0.5 hPa. Blue

contour lines indicate pbuoy , 0 starting at 20.1 hPa and decreasing with intervals of 0.5 hPa.
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(Fig. 4), it is reasonable to assume Ar is proportional

to h21. Here, we approximate Ar 5 2h21, which gives a

remarkably close correspondence between values of

wm* calculated using (16) and the simulated wm* as

shown below.

We first compare the theoretical representations of

Dpdynam [(4)], Dpbuoy [(11)], and wm* [(16)] to values of

these quantities obtained directly from the simulations.

To evaluate the theoretical expressions, linear correla-

tion coefficients rcc and normalized root-mean-square

error NERR[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/N)�(ai 2 bi)

2
q

/range(ai) are com-

puted, where ai is the value of a quantity directly from

the model output, bi is the theoretical value of that

quantity at the same time, N is the number of data

points, and ‘‘range’’ is the range of simulated values.

When both rcc and NERR are small, this implies large

scatter but limited bias, while when both NERR and rcc
are large, there is a large bias but limited scatter.

Theoretical values of Dpdynam correspond well to sim-

ulated values (Fig. 7a) with rcc5 0:91 and NERR5 0:49.

The comparison is somewhat poorer later in the simula-

tions, especially for the 2000- and 4000-m initial bubble

cases, with up to a factor of 2–2.5 overestimation by the

theoretical values. This probably reflects the increased

complexity of the flow field and hence larger devia-

tions from Hill’s vortex over time. There is a close

correspondence between the simulated and theo-

retical Dpbuoy for the 500-m bubble simulations but

large differences for the 1000–4000-m simulations

(Fig. 7b). The theoretical and simulated wm* are re-

markably similar to one another, with rcc . 0:98 and

NERR# 0:08 (Fig. 8a).

The simulated and theoretical l have a reasonable

correspondence for all bubble sizes and times, with

rcc 5 0:86 and NERR5 0:15 (Fig. 8b). While there is

scatter, the theoretical and simulated l values also ex-

hibit similar dependencies on y and h (Fig. 9), with an

increase of l with a decrease of h or y. For example, all

simulated points with l. 0:7 occur when h, 1, while all

points with l, 0:5 have h. 1:2. Values of l are gener-

ally largest early in the lifetimes of the thermals and

decrease to about 0.4–0.5 later. This behavior is ex-

plained by values of h and y that increase over time

during the simulations as the thermals rise, because of

FIG. 6. As in Fig. 5, but with pdynam indicated by the contour lines.

MAY 2018 MORR I SON AND PETERS 1709



the generation of positive buoyancy in the stem region

below the thermals and the reduction of buoyancy in the

upper part of the thermals. This behavior is consistent

with the laboratory thermal study of Sanchez et al.

(1989). A direct comparison of the theoretical expres-

sions with their results is not possible since they did not

report buoyancy distributions within the thermals and in

their environment. Nonetheless, they showed a clear

decrease in the ratio of wt*and ys (see the introduction),

analogous to a decrease in l, as thermals traveled to

distances of several times their initial diameter (see their

Fig. 8).

The buoyant perturbation pressure difference Dpbuoy

from Ht to Hm is generally smaller than Dpdynam except

for a brief period during the 2000- and 4000-m bubble

simulations when they are similar in magnitude. This

implies that Dpdynam plays a comparatively larger role in

determining l and also explains why the theoretical

values of l correspond well with the simulated values

despite fairly large differences between the theoretical

and simulated Dpbuoy. Given the close correspondence

between the simulated and theoretical wm* and the

reasonable correspondence for l, the theoretical

thermal-top ascent ratewt*5 lwm* matches well with the

simulated values (rcc $ 0:98 for all cases).

To investigate further the roles of pdynam, pbuoy, and B

in determining l, we analyze back trajectories (Fig. 10)

released from near the thermal top at r5 0, defined

along the vertical axis of symmetry around the thermal/

updraft center. Given this axisymmetry, horizontal ve-

locity along these trajectories is zero, and hence, the

trajectories are oriented in the vertical. Note that at

r5 0, the thermal top and bottom lie at the intersection

of the streamlines and thus are local, instantaneous

stagnation points with zero velocity relative to the as-

cent rate of the thermal top and bottom. Back trajec-

tories released at 12min near the thermal top show that

parcels approximately follow the thermal bottom until

about 10min and then ascend through the depth of the

thermal between 10 and 12min (Figs. 10a,b). The sum

of 2(1/r)(›pdynam/›z), 2(1/r)(›pbuoy/›z), and B corre-

sponds closely to the actual dw*/dt (cf. the black and

gray dashed lines in Figs. 10c,d). This indicates the

limited role of momentum entrainment and mixing onw

along r5 0. This is expected since grid-scale turbulence

is limited in this framework but nonetheless is consistent

with LES studies showing the limited impact of en-

trainment and detrainment on the updraft momentum

budget (Dawe and Austin 2011; de Roode et al. 2012;

Sherwood et al. 2013; Romps and Charn 2015;

Hernandez-Deckers and Sherwood 2016).

To understand the forces controlling l, of particular

interest are the forces that cause a decrease in w be-

tween the level of maximumw,Hm, and the thermal top.

Whereas B contributes to increasing w with time,

2(1/r)(›pbuoy/›z) has little impact; 2(1/r)(›pdynam/›z)

imparts a net upward force on w between the thermal

bottom and Hm and a larger net downward forcing be-

tween Hm and the thermal top. The latter leads to a

reduction in w of about 25m s21 between Hm and the

thermal top for the 1000-m bubble simulation and about

20m s21 for the 2000-m simulation (Figs. 10e,f). Overall,

FIG. 7. Scatterplots (circles; blue: 500-m bubble simulation; green: 1000-m simulation; red: 2000-m simulation;

cyan: 4000-m simulation) comparing theoretical and simulated quantities from 1-min model output, where lines

connect temporally adjacent points and colored3marks indicate the earliest analysis time. Note that the3marks

from the different simulations lie close to one another and are difficult to distinguish. (a) Plot of Dpdynam diagnosed

by (13) with w2
m determined from the simulated thermals (x axis) vs Dpdynam directly obtained from the simulated

thermals (y axis). (b) Plot of Dpbuoy diagnosed by (12) with w2
m determined from the simulated thermals (x axis) vs

Dpbuoy directly obtained from the simulated thermals (y axis). The NERR and rcc are the normalized root-mean-

square error and correlation coefficient for individual cases, respectively.
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these results highlight the competing effects of B and

2(1/r)(›pdynam/›z) on w between Hm and the thermal

top and hence their competing roles in controlling l.

5. Relationship to previous studies on thermal drag

Sherwood et al. (2013), Romps and Charn (2015), and

Hernandez-Deckers and Sherwood (2016) investigated

the w momentum budget of thermals in LESs of moist

deep convection in the context of buoyant and drag

forces. Although Sherwood et al. (2013) did not pre-

cisely define drag, their narrative implies that they in-

terpreted drag as a force imparted by momentum

mixing. The limited importance of momentummixing in

their simulations led them to conclude that moist con-

vective thermals are minimally affected by drag and are

thus ‘‘slippery.’’ They suggested that this lack of drag

was because the internal thermal flow structure was

similar to Hill’s vortex, which formally has no drag be-

cause its dynamic pressure field is vertically symmetric

about the central vortex axis, and hence does not

impart a net force on the vortex, and because its flow is

inviscid.

In contrast to Sherwood et al. (2013), Romps and

Charn (2015) explicitly defined drag as the net pertur-

bation pressure gradient force acting on a thermal and

calculated it directly from the pressure field in an LES of

scattered deep convection.When defined in this way, the

dominant balance within the w momentum budget was

between buoyancy and drag (i.e., ‘‘sticky’’ thermals).

They found that the drag defined by the perturbation

FIG. 8. As in Fig. 7, but for (a) plot of wm* diagnosed by (16)

(x axis) vs wm* directly obtained from the simulated thermals

(y axis). (b) Plot of l diagnosed by (18) with y and h obtained

directly from model output (x axis) vs l directly obtained

from the simulated thermals (y axis). (c) Plot of wt* diagnosed by

(19) (x axis) vs wt*directly obtained from the simulated thermals

(y axis).

FIG. 9. Theoretical values of l as a function of h and y computed

from (18) shown by color contour lines (corresponding to the color

bar on the right) at intervals of 0.05. Circle locations indicate values

of y and h computed from 1-min snapshots of thermals simulated

by CM1, and the circle color (which corresponds to the color bar on

the right) indicates the simulated l value at that time.
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FIG. 10. Time series of quantities from simulations calculated along back trajectories released near the

thermal top at 12 min. (a) The trajectory height (blue line), the thermal top and bottom (black lines), and

the height of maximum w (gray dashed line) in the 1000-m bubble simulation. (b) As in (a), but for the

2000-m bubble simulation. (c),(d) Vertical accelerations (m s22) are shown: dw*/dt computed directly from

the modeled w* (black dashed line), B (red line), 2(1/r)(›pbuoy/›z) (blue line), 2(1/r)(›pdynam/›z) (green

line), and SUM[B2 (1/r)(›pbuoy/›z)2 (1/r)(›pdynam/›z) (gray dashed line). (e),(f) Time integrals of the

quantities in (c) and (d), which give the net change in w* (m s21) from a particular forcing. Trajectories were

released along the thermal’s vertical axis of symmetry and computed from 10-s model output. Note that the

black and gray dashed lines in (c)–(f) are very close to one another and difficult to distinguish.
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pressure gradient force was well correlated with the stan-

dard drag law for a sphere with a drag coefficientCD ’ 0:6,

larger than the CD ’ 0:2 for high Reynolds number flow

past a solid sphere. While seemingly contradicting the

Sherwood et al. (2013) slippery thermal hypothesis, these

differences are explained in part simply by differences in

how these studies defined and interpreted drag, as was ac-

knowledged by Romps and Charn (2015) and Hernandez-

Deckers and Sherwood (2016).

In the rest of this section, we discuss how l and wt* are

connected to thermal drag and discuss results in the

context of these previous studies. We first write the

inviscid, Boussinesq vertical momentum equation as a

Lagrangian derivative dw*/dt5Beff 2 r21
0 ›pdynam/›z,

where Beff is the effective buoyancy. Using the chain rule

d/dt5 (dz/dt)(d/dz)5w*(d/dz) and neglecting pdynam as

discussed in section 2b, this expression well describes the

vertical variation of the maximum w* (wm* ) within a

thermal ascending along the vertical axis of symmetry

(r5 0). This implies wm* dwm* /dz’Beff, where Beff is the

effective buoyancy along r5 0. Since wt*5 lwm*, we can

write

w
t
*
dw

t
*

dz
’ l2B

eff
5dB

eff
2dB

eff
12

l2B
eff

dB
eff

 !
, (20)

where dBeff is the thermal volume–averaged effective

buoyancy, and it is assumed dl/dz5 0 for simplicity and

tractability. While there is some vertical variation of l as

shown in section 4, the variation of l relative to its mag-

nitude is much less than the variation of wt* relative to its

magnitude. Equation (20) is written in the form on the

right-hand side based solely on the mathematical identity

x2y5 z2 z(12 x2y/z) that holds for any x, y, and z 6¼ 0.

Integrating (20) over the path of the thermal as it

ascends a distance H, assuming the initial thermal

velocity is zero, gives wt
*2 ’ 2l2BeffH, where Beff is the

average effective buoyancy over H. This is combined

with (20) to give

w
t
*
dw

t
*

dz
’dB

eff
2

dB
eff

2Hl2B
eff

12
l2B

eff

dB
eff

 !
w*

2

t 5dB
eff

2cF
D
,

(21)

where cFD is a volume-average drag force on the thermal.

Approximating Beff by its average value (i.e., Beff ’Beff),

(21) is simplified to

w
t
*
dw

t
*

dz
’dB

eff
2

1

2H

�
B

r

l2
2 1

�
w*

2

t 5dB
eff

2cF
D
, (22)

whereBr [
dBeff/Beff. If the ascent rate of the thermal top

is equal to the volume-averaged thermal ascent rate,

wt*5cw* and (22) is equivalent to the thermal volume–

averaged w momentum equation given by (24) below

assuming Boussinesq flow and neglecting momentum

mixing but written such that the pbuoy force (or analo-

gously the virtual mass force) is included in dBeff and
cFD 5 r21

0
b›pdynam/›z. Combining (22) with the standard

drag law for a sphere cFD 5 3CDw
*2
t /(8R), where R is the

thermal radius and CD is the drag coefficient, we can

solve for CD:

C
D
5

4R

3H

�
B

r

l2
2 1

�
. (23)

This expression relates CD and l. Since l is closely

linked to the buoyancy field via parameters y and h

primarily through vertical gradients of pdynam (as op-

posed to pbuoy) as shown in section 2b, this suggests

that there is a drag on thermals associated primarily

with pdynam due to flow asymmetries induced by the

thermal buoyancy itself. Equation (23) shows that CD

should increase as l decreases, for a given Br, since a

small value of l implies a slow ascent rate, which re-

quires large drag. On the other hand, CD decreases

as Br decreases. This makes physical sense, since small

Br means that the thermal volume–averaged buoy-

ancy is small compared with the buoyancy along the

thermal’s vertical central axis, and hence, less drag is

needed to oppose the thermal volume–averaged

buoyant force for a given wt*.

The simulations indicate a value of Br ; 0:5 (not

shown). Combined with values of l; 0.4–0.8, this

gives a drag that counters up to 70% of the thermal-

averaged buoyant forcing based on (20), which may

help to explain why thermals tend to be sticky. Using

Br 5 0:5 and values of R/H5 0:5 and l5 0:65 consis-

tent with the simulated lower-tropospheric thermals

in (23) gives CD 5 0:12; R/H5 0:25 and l5 0:5 for

midtropospheric thermals gives CD 5 0:33; R/H5 0:1

and l5 0:4 for upper-tropospheric thermals gives

CD 5 0:28. This is reasonably in line with values of CD

for convective thermals diagnosed from the LESs of

Romps and Charn (2015) and Hernandez-Deckers

and Sherwood (2016) of ;0.6 and ;0–0.5, re-

spectively. Interestingly, the theoretical values of CD

from (23) approach zero and even become negative

as l increases to values larger than about 0.7, for

Br ’ 0:5. Since large values of l (.0.65) occur early in

the simulated thermal lifetimes (Fig. 8b), this suggests

that small or negative CD should occur at low levels

with an increase of CD to ;0.3 as thermals ascend and

l decreases. This behavior is consistent with the pro-

files of CD diagnosed by Hernandez-Deckers and

Sherwood (2016; see their Fig. 15).
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To investigate forces impacting the simulated ther-

mals, we compute the vertical momentum budget av-

eraged over the thermal volume, written as

ddrw*
dt

5 crB|{z}
A

2

b›p
buoy

›z|fflfflffl{zfflfflffl}
B

2

b›p
dynam

›z|fflfflfflffl{zfflfflfflffl}
C

2 RES|fflffl{zfflffl}
D

, (24)

where the overhats denote a volume average, term A is

buoyancy, term B is the buoyant perturbation pressure

forcing, term C is dynamic pressure forcing, and term D

is a residual that implicitly includes the effects of mo-

mentum entrainment and detrainment [e.g., Romps and

Charn 2015, their (3)]. The thermal boundaries are de-

fined as described in section 4.

Figure 11 shows time series of the individual terms in

(24) evaluated for the 1000- and 2000-m bubble simu-

lations. Buoyancy provides a net upward force through

the first 12min of the simulations. In general, 2›bpdynam/›z

imparts amuch larger net downward force on thermals than

2›bpbuoy/›z, particularly early in the thermal lifetime.

Composites of vertical profiles through the center of the

thermal confirm the pattern of a net upward force fromB, a

small net downward force from2›pbuoy/›z, and a larger net

downward force from 2›pdynam/›z (Fig. 12). A net down-

ward force from 2›bpdynam/›z occurs because the

downward-directed force in the upper part of the

thermals is larger than the upward-directed force in

the lower part, consistent with the trajectory analysis in

section 4.Overall,2›bpdynam/›z counters roughly fromone-

third to one-half of the buoyant force, with 2›bpbuoy/›z

countering less than 15% of the buoyancy. These thermals

are therefore sticky, broadly consistent with the theoretical

derivation above andwith convective thermals in theLESs

of Romps and Charn (2015) and Hernandez-Deckers and

Sherwood (2016).

FIG. 11. (a) Time series of terms in the thermal volume–averaged vertical moment budget [(24)] from the 1000-m

bubble simulation (kg s22m22): crB (term A; red line),2b›pbuoy/›z (term B; blue line),2b›pdynam/›z (term C; green

line), RES (term D; magenta line), and (d/dt)drw* (black dashed line) computed directly from the simulation with

the time derivative estimated as a second-order centered difference. (b) As in (a), but from the 2000-m bubble

simulation. (c),(d) Time integrals of the quantities in (a) and (b), which give the net change in drw* (kg s21m22)

from a particular forcing.
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Note that RES is nonnegligible in the w momentum

budget. However, this does not necessarily imply that

momentum mixing is important; the trajectory analysis

of forces discussed in section 4 showed little impact from

momentum mixing along the thermal’s vertical axis of

symmetry, where themodel-resolved horizontal velocity

is zero. In contrast to the pdynam and B terms, the sign of

RES varies during the simulation and is inconsistent

between the 1000- and 2000-m bubble simulations. In

addition to contributions from explicit and numerical

mixing, the magnitude of RES is likely a result of the

model discretization when calculating the terms in (24),

calculation of ›drw*/›t based on 10-s model output, and

shifts in the diagnosed location of the lower thermal

boundary.

Overall, theory and simulation results suggest that the

buoyancy within thermals induces an asymmetry in the

flow that leads to drag primarily from pdynam, in contrast

to Hill’s vortex, which has a symmetric pdynam field and

zero drag. It is emphasized that this drag is not associ-

ated with wave drag, viscous boundary layer effects, or

mixing, all of which are neglected in (20)–(23). This drag

is manifest as an increased downward-directed pdynam

force on parcels rising along the thermal’s central axis in

the upper part of the thermal relative to the upward-

directed pdynam force in the lower part. This counters the

increased integrated buoyant forcing experienced by the

parcels associated with the thermal’s buoyancy. This

mechanism of drag is notably different from the drag

on a solid sphere moving through a fluid at a high

Reynolds number, which is associated with a high-shear

boundary layer. A drag via the vertical pdynam force in-

duced by flow asymmetry from the thermal’s buoyancy

provides a plausible explanation for why moist thermals

typically experience considerable drag and are sticky

even when wave drag is minimal as in Hernandez-

Deckers and Sherwood (2016), there is no shear-induced

boundary layer, and the buoyant perturbation pressure

force is relatively unimportant as in our simulations

here. This may also explain why drag in the LES of

Hernandez-Deckers and Sherwood (2016, p. 4135) be-

haved ‘‘in a different way to drag on a solid sphere,’’ was

not weak, counteracted most of the buoyancy, and was

unrelated to mixing.

6. Implications for convective parameterizations

As illustrated by Fig. 4, a thermal’s core region of

upward motion contains its maximum upward velocity

wm* roughly consistent with Hill’s vortex; wm* generally

occurs at a height near the thermal center and is closely

associated with the internal toroidal circulation, which

does not directly contribute to the net vertical transport

of updraft properties. On the other hand, if cloud up-

draft properties are contained within the thermal

boundaries, then the vertical transport of updraft

properties is controlled by the thermal ascent rate wt*

and size. Since wm* is closely related to the updraft

buoyancy profile following (16) as seen in Fig. 8a (see

also Peters 2016), and wt*5 lwm*, the expressions for

l and wt*derived in section 2 provide a quantitative way

to relate the thermal ascent rate to the updraft buoyancy

FIG. 12. (a) Composites along the thermal’s vertical axis of symmetry (r5 0) of B (red line; m s22),

2(1/r)(›pbuoy/›z) (blue line; m s22),2(1/r)(›pdynam/›z) (green line; m s22), and the sum of these three terms (gray

dashed line) from 4 to 13min for the 1000-m bubble simulation. At each time, the depth of the thermal DH is

defined as the distance between the top and bottom thermal boundaries, indicated by the horizontal lines labeled

TOP and BOTTOM. The normalized height is defined as Znorm [ (z2 zmid)/DH, where zmid is the height midway

through the thermal. Finally, composites are computed using Znorm, where 20:5,Znorm , 0:5 defines the bound-

aries of the thermal. (b) As in (a), but for the 2000-m bubble simulation.
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profile. While deep convection schemes typically em-

ploy bulk plumes meant to represent the aggregate be-

havior of an ensemble of convective clouds, for example,

in relating entrainment andmass flux profiles, as pointed

out by Sherwood et al. (2013, p. 2431), such schemes

‘‘must ultimately be founded to some extent on as-

sumptions as to the behavior of individual clouds.’’ Since

the vertical mass flux associated with a thermal is equal

to its cross-sectional area times its ascent rate, if the

ascent rate can be calculated from the updraft buoyancy,

then the total vertical convective mass flux (i.e., within a

large-scale model grid box) can be directly related to the

number and size of convective thermals. This could

improve linkages between the vertical velocity and

buoyancy within individual convective clouds, the ver-

tical mass flux closure, and assumptions about updraft

geometry (e.g., its width).

7. Summary and conclusions

In this paper, an analytic expression was derived for

the ratio l of the ascent rate of the top of moist deep

convective thermalswt*to the maximum vertical velocity

within them wm*. This expression includes the effects of

buoyancy, buoyant perturbation pressure, and dynamic

perturbation pressure. The buoyant perturbation pres-

sure was characterized following the analytic formula-

tion of Morrison (2016a) but had little impact on l. The

dynamic perturbation pressure was assumed to follow

the scaling relationship for Hill’s analytic spherical

vortex. The theoretical lwas formulated as a function of

two nondimensional buoyancy-related parameters y and

h; y is related to the vertical distribution of buoyancy

within the thermal, and h is the ratio of the total buoy-

ancy integrated from the surface to the thermal top and

the vertically integrated buoyancy within the thermal.

Theoretical values of l were compared with those

directly obtained from numerical simulations. Moist

deep convective thermals in the simulations were initi-

ated with warm bubbles of varying size, producing a

wide range of updraft sizes and characteristics. The

theoretical and simulated values of l showed a reason-

able correspondence (correlation coefficient of 0.86)

and ranged between ;0.4 and 0.8. The largest values of

l were associated with h; 1, meaning that the ratio of

the vertically integrated thermal buoyancy to the total

vertically integrated buoyancy was relatively large,

which occurred early in the simulations. The vertical

velocity ratio l tended to decrease over the thermal

lifetime. This behavior was captured by the theoretical

expressions and is consistent with the thermal labora-

tory study of Sanchez et al. (1989). Large values of

l relative to that for Hill’s vortex (l5 0:4), which is

nonbuoyant, were a direct consequence of positive

buoyancy between the height of maximum w within the

thermal and the thermal top. This is intuitive since w is

fundamentally linked to the buoyant forcing. Thus, the

presence of buoyancy within thermals, relative to their

environment, fundamentally alters the relationship be-

tween the ascent rate of the thermal top and the maxi-

mum w. This is in contrast to Levine (1959), who

suggested that differences in l for real moist convective

thermals compared to Hill’s vortex value of 0.4 would

arise from viscous effects, departures from spherical

form, or ‘‘small irregularities.’’ On the other hand, ver-

tical gradients of dynamic perturbation pressure explain

the decrease of w between the height of maximum w,

generally occurring near the thermal center, and the

thermal top.

The maximum vertical velocitywm* was well estimated

by vertically integrating the sum of buoyancy and an

estimate of the buoyant perturbation pressure gradient

force. In these simulations, the buoyant perturbation

pressure was relatively unimportant overall because the

positively buoyant updraft regions were generally tall

and narrow. Sincewt* is equal to lwm*, the expressions for

l and wm* provide a simple method for quantitatively

linking the thermal-top ascent rate to the vertical profile

of buoyancy. This is useful since the net vertical trans-

port of updraft properties by thermals is controlled by

their ascent rate and size, whereas wm* is more closely

related to the thermal’s internal toroidal circulation that

does not directly contribute to net vertical transport of

updraft properties. These expressions can therefore

provide a way to more explicitly link the convective

vertical mass flux in deep convection parameterizations

with updraft properties including ascent rate, vertical

velocity and buoyancy profiles, and updraft size.

Because this study focused on the dynamics of moist

thermals, we employed a simple treatment of the mi-

crophysics that included only cloud liquid condensation

and evaporation. However, a more detailed represen-

tation of the microphysics could have some impact on

the dynamical structure, for example, by altering the

buoyancy distribution within thermals via the genera-

tion and fallout of precipitation and the formation of

cold pools, among others. Conversely, the thermal’s

dynamical structure will also impact the microphysics.

One such interaction pathway is the recycling of liquid

and ice hydrometeors through the thermal’s toroidal

circulation or between successive thermals, which may

affect the precipitation efficiency (e.g., Moser and

Lasher-Trapp 2017) as well as cloud glaciation (e.g.,

Lasher-Trapp et al. 2016).

In addition to the impacts on l discussed above, the

presence of positive buoyancy within the simulated
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thermals, relative to their environment, also led to a

vertical asymmetry in the flow characteristics and dy-

namic perturbation pressure field, unlike in Hill’s vortex,

which has a vertically symmetric pdynam field and zero drag.

This asymmetry was associated with a downward drag

force from dynamic pressure that counteracted roughly

from one-third to one-half of the upward buoyant force,

consistent with the ‘‘sticky’’ thermal hypothesis (Romps

and Charn 2015; Hernandez-Deckers and Sherwood

2016). Theoretical expressions for this drag were derived

that related the drag coefficient CD in the standard drag

law to l. In contrast to the pdynam force, the magnitude of

the pbuoy force within the thermals was small compared to

the buoyancy, with both defined relative to the initial

thermodynamic sounding. Overall, these results suggested

that the net pdynam force on a thermal induced by this flow

asymmetry can lead to a significant fraction of the buoyant

forcing being counteracted, even with negligible wave

drag, viscous boundary layer effects, momentum mixing,

or buoyant perturbation pressure forcing.

There are some caveats that should be kept in mind

when interpreting these results. First, the theoretical ex-

pressions for l and wt*neglected the effects of momentum

entrainment. However, this assumption is consistent with

previous studies showing the limited impact of momentum

mixing on thewmomentum budget of convective updrafts

(e.g., Dawe and Austin 2011; de Roode et al. 2012;

Sherwood et al. 2013; Romps andCharn 2015; Hernandez-

Deckers and Sherwood 2016; Morrison 2017). The theo-

retical expressions also assumed that the buoyancy profile,

and hence y and h, are known quantities. Buoyancy within

updrafts is strongly influenced by entrainment and di-

lution, which remains a challenge to understand and

quantify (de Rooy et al. 2013).

The simple modeling framework utilized here

facilitated a direct quantitative comparison with the

theoretical expressions. High resolution (100-m hori-

zontal and vertical grid spacings) allowed the model to

capture details of the flow including the thermal toroidal

circulation. While simple, this framework captured key

features of moist convective thermals in previous LESs

(Sherwood et al. 2013; Romps and Charn 2015;

Hernandez-Deckers and Sherwood 2016; Moser and

Lasher-Trapp 2017), including a flow structure similar to

Hill’s vortex and ‘‘stickiness’’ due to a significant frac-

tion of the upward buoyant forcing that was countered

by a downward-directed perturbation pressure gradient

force. However, the simulations were not LESs since

resolved turbulent motion was limited. LES studies have

shown that momentum mixing from turbulent eddies is

relatively unimportant in the vertical momentum

budget of moist thermals (Sherwood et al. 2013;

Romps and Charn 2015; Hernandez-Deckers and

Sherwood 2016). Nonetheless, the effects of explicitly

resolving smaller-scale turbulent eddies on l and wt*

are unclear, and future work using LES would com-

plement the current study.
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