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Abstract-Unnormalized (NF2) relations, not conforming to the first normal 
form condition (lNF) of the relational model have been proposed recently for 
a variety of new applications. In this paper we extend NF2 relational theory 
in a way that it becomes possible to use NF2 relations as storage structures for 
conventionallNF relational database interfaces. Physical clustering of precom
puted joins can be achieved this way without introducing redundancy. However, 
applying transformation rules to internal relations straightforwardly, will still 
yield unnecessary join operations. With the equivalence rules introduced here 
we prove that efficient algebraic optimization can be performed using standard 
(INF) techniques. Particularly, all redundant joins can be properly removed. 

1. Introduction 
A lot of recent research in relational databases has concentrated on unnormalized relations. Drop
ping the first normal form condition and allowing non-first-normal-form relations (NF2 relations) 
has been recognized as a promising attempt to capture the requirements introduced by new ("non
standard") applications of database systems. The areas of interest include textual [SP82j, pictorial 
[BR84j, geographical [M8W86J, and office data [SLTC82j as well as knowledge representation tech
niques [SR86J. While experience with the feasibility of the model in these applications is not yet 
available, the theory of NF2 relations is already in an advanced state. Formal definitions of the 
NF2 relational model have been given by [AB84, FT83, Ja85, RK885a, 8S84J and most of these 
include operations on NF2 relations in algebra and/or calculus style. Also design theory for NF2 
relations has already come up with results [AB84, FG85, FT83, Gu85, OY85, RKS85aJ. 

The focus of this paper is different from the above work. As already mentioned in [AB84, 
FT83, SS83J we consider NF2 relations to be a reasonable storage structure even for INF databases. 
The underlying idea is the following: the hierarchical structure of NF2 relations can be utilized as 
an efficient possibility to store precomputed joins without introducing redundancy. "Denormal
ization" as a means of internally materializing the most frequent join operations was proposed in 
[8880, 8881J. A physical database layout differing from the usual "1 relation-l operating system 
file" choice was proven to dramatically reduce query processing costs. The most important but 
also expensive operation in relational systems is the join. Hence, significant performance enhance
ments can be achieved with this approach. Redundant storage of tuples from one relation with 
each matching tuple of the other relation can be avoided, if we use a hierachical storage scheme. 
Therefore, NF2 relations were proposed in [8883J as reasonable storage structures for INF data
bases. Besides the formal description of the internal database layout, as an additional benefit the 
transformations between conceptual (user) and internal (system) levels, C and I respectively, can 
be described within the model by the NF2 relational algebra. 

http://nbn-resolving.de/urn:nbn:de:bsz:352-228734
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Three related problems with this approach are discussed and solved in this paper. The first 
one intuitively concerns the information contents of the conceptual and internal levels, which 
obviously must be identical. Formally, when the transformations are (algebraic) mappings, these 
must be invertible. Invertibility of relational algebra expressions has partly been studied in the 
past. "Lossless joins" [ASU79! are an example. We will use joins and nesting for the mapping 
C -+ I to obtain the hierarchical structures. In order to guarantee invertibility of this mapping, we 
use the outer join rather than natural join to avoid loosing "dangling" tuples. As a consequence 
of this, we have to deal with a special kind of null value introduced by the outer join. It should 
be clear, that these null values are a formal description of some "dummy" storage objects at an 
internal DBS layer. Therefore, this paper does not deal with null values in a general context. The 
interested reader is refered to IRKS85bJ for a detailed discussion on several types of nulls in the 
NF2 relational model. For our purposes only a few properties of the null value "w" resulting from 
the outer join are discussed and the necessary formalism to manipulate these "dummy objects" is 
defined. 

The second and more substantial problem is imposed by the need for algebraic optimization 
of queries. The algebraic expressions defining the mapping I -+ C can be substituted for the 
conceptual relations used in the expressions of the user queries. However, algebraic equivalences 
have to be applied in order to eliminate redundant joins, for instance. Consider two C-relations 
that are internally stored in one materialized join relation. The C-relations can be reobtained 
by projections. Thus substituting the projection expressions into user queries yields a join of two 
projections. Algebraic optimization techniques can be used to recognize the redundant join
according to IASU79J-and eliminate it from the query. Without this optimization, the efficient 
internal structure could not be utilized. 

Equivalence rules known from previous research [ASU79, U182, Ma83J for the INF case and also 
including NF2 relations [AB84, FT83, JS82j are not sufficient to do the necessary transformations. 
Extended equivalences are presented in this paper. According to these, all materialized joins in 
user queries can be properly eliminated. 

The third aspect captured by this paper, concerns the NF2 queries resulting from the opti
mization step. Obviously, for our hierarchical internal DB layout there is a class of NF2 queries 
that reflects this structure and therefore can be evaluated very efficiently. Our objective is to 
map a maximum of user queries to that kind of internal counterparts. In fact, we will see that 
select-project-join queries can be transformed to these "single pass processible" NF2 queries, if all 
joins are internally materialized. It is exactly this class of NF2 queries that will be available at 
the kernel interface of a prototype NF2 relational database system developed at the University of 
Darmstadt [DOPSSW85, DPS86, SW86, Sche86J. 

As an introductory example consider two conceptual (4NF) relations 

Dept(dno, dname, budget) 

Emp(m&., ename, sal, dno) 

If we internally store the NF2 relation 

I dept( dno, dname, budget, I emp( eno, ename, sal)) 

we do not need to compute Dept b<l Emp at runtime of user queries. For instance consider the 
user query 7I"dname,.aIO'ename='smith,{Dept b<l Emp) which can be processed very efficiently by the 
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following NF2 algebraic expression (see section 2 for details). 

PJemp( frldname, fr[sall( (1 ename='Smith,(1 emp »](1 dept» 

The internal query contains only a simple NF2 filter expression and unnesting but no join operation, 
thus it can be evaluated efficiently. 

8ection 2 shortly reviews the NF2 relational model from [88841 and introduces the notations 
used throughout the paper. The class of single pass proce88ible queries is informally characterized 
and a subset of the algebra is claimed to be single pass processible. In section 3 we define the type 
of conceptual-to-internal mappings foreseen in this paper and deal with the problem of inverting 
the mapping. We present the necessary rules to deal with the special type of null value resulting 
from the outer joins. 

Extended algebraic equivalence rules involving the null values as well as the nested algebra 
operators from [8884] are presented in section 4. With these rules we prove that algebraic op
timization can be done in our environment using essentially INF optimization and some simple 
transformation rules. Optimal "quasi INF" expressions are computed and then transformed to 
NF2 expressions by an optimizer sketched in section 5. The paper concludes with an outline of 
further research in section 6. 

2. The NF2 Relational Model 
Relations with relation valued attributes do not conform to the first-normal-form, because they al
low decomposable attribute values, namely relations. Thus, formal definitions like [FT83, RK885a, 
8884j apply INF notations repeatedly to capture the nested relational structures. We do not give 
formal definitions in this paper, but shortly review the notations drawn from [88841. As in the 
INF case (cf. [Ma831) we have a relation R as a pair (d, v) consisting of a description d and a value 
v. The description d is a pair (n, B), where n is the name of the relation drawn from some given 
set N of names. The schema s describes the components of R. Hence 8 is a set of descriptions di 
of the attributes of R. Atomic attributes have descriptions (ai, 0), Le. the empty set serves as the 
schema of atomic attributes. Relation valued attributes have descriptions (ai, Bi), where Bi '" 0 is 
the schema of the corresponding (sub-) relation. For a relation R = (d, v) with d = (n, B) we apply 
the following notation: 

sch(R) = sch(d) = s 

val(R) = v 
attr(R) = {ai I (ai, B.) Ed} 

the schema 
the value and 
the attributes (name components of sch(R)) of R. 

The value of a relation vale R) is a set of tuples, each tuple can either be regarded as a mapping 
from an attribute set to a corresponding domain set or as an element of a Cartesian product of 
domains [8884, Ja861. We adopt the first interpretation here and use teas) to denote the ai-value 
of a tuple t in val(R) where ai E attr(R). Extending this notion canonically teA) is the A-value of 
t in val(R) for A ~ attr(R). As usual we give the schema of an NF2 relation in the following form: 

R(a1"'" an, b1 ( ... ), ... , bm ( •• • » 

where the ai are the names of atomic attributes of Rand bi the names of relation valued attributes. 
Between the parentheses after bi we denote the schema of the bi in exactly the same way. 
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The NF2 relational algebra we use in the following has been presented in [8883] and formally 
defined in (8884). Operators x, U, fl, -, Ix! are defined exactly as in the INF case, whereas 11' and C1 

(projection and selection) have been extended and two new operators II and p. (nest and unnest) 
were introduced. The latter two are also used in [AB84, J882, FT83, RK885a, 8883, 8884]. 
Extended defintions for p. and II will be given in section 3 of this paper, the extensions of 11' and C1 

shall be exemplified in the following. 
For the scope of this paper, concerning extended selection we only need set comparisons 

allowed in selection formulae together with set-valued constants (especially 0). Within projection 
lists, i.e. the set of attributes that are projected, we allow the application of algebraic expressions 
(especially again 11' and (1) to relation valued attributes. As an example consider a relation 

Dept(dno, dname, Emp(eno, ename, sal, Course(cno, year») 

(with the obvious interpretation) then 

Ql = C1[dname = 'research' A Emp ::; 0J(Dept) 

yields 'established' research departments, i.e. those who already have employees, 

Q2 = 1I'[dname, 1I'[ename, sal](Emp)] (Dept) 

gives a list of department names each with a list of employee names and salaries, i.e. the schema 
of Q2 is Q2(dname,Emp(ename,sal)) and 

Q3 = 1I'[dname,C1[sal > lO.OOOI(Emp»)(Dept) 

yields a relation with schema Q2(dname, Emp(eno, ename, sal, Course( .. . )))-a list of "rich" em
ployees grouped by dna me. Details of the nested algebra are not important in this paper, the 
interested reader is referred to [8884). Nevertheless, we will shortly discuss our notion of single 

pass processible queries. By the term single pass processible we indicate, that this kind of queries 
can be evaluated efficiently by an NF2 relational DBM8 [DP886, 8che85j. The results of these 
queries can be computed within one (hierarchical) scan over the tuples in val(R). The notion was 
influenced by so-called single-table queries in flat relational systems, i.e. queries that do not include 
joins. However, in our case of nested relations "single table" queries may well contain operations 
with join complexity (set comparisons, nested joins). Therefore we need a more sophisticated no
tion of "simplicity" of queries. A detailed discussion of what is single pass processible and what 
is not, is deferred to a forthcomming report. However, the following theorem describes a class of 
queries tha.t surely belongs to this class. 

THEOREM 2.1. An NJj't relational expression is single pass processible, if it is built ac

cording to the following recursive rule: 

speeR) = 1I'[LJC1[FJ { ~[L*I(R) 
L is a "lNF" projection list, i.e. without nested algebraic expressions 

F IS a simple selection formula, consisting of conjunctions of comparisons between attributes and 

constants (0 is the only constant permitted for relation valued attributes) and 

L* is a projection list containing single pass expressions applied to relation valued attributes, i.e. 

spe(A) • 

Like most results of this paper, due to limitations on space the above is stated without proof. 
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3. Transformation Between Conceptual and Internal Layer 
In this section we will define conceptual schemata, the various choices of conceptual-to-internal 
mappings and study invertibility of these mappings. Extensions of nest and unnest operators
compared to !AB84, FT83, RKS85a, SS84J-are introduced to capture the null values resulting 
from outer joins. The latter are needed to guarantee invertibility of the denormalization, because 
natural joins would loose "dangling" tuples in general. 

3.1 Conceptual Relations 
We consider a given set "conceptual DB schema" C = {CRlt ... ,CR,.} of (conceptual) relations 
CRt. The schema C is in 4NF [Fa77J, which means every valid MVD (and thus FD) is expressed as 
a key condition in one of the CRt. Furthermore, we assume C to be free of null values. We denote 
with key(CRt) ~ attr(CRt) the set of primary key attributes of CRt. Without loss of generality 
we assume all attribute names in C distinct except foreign keys. A ~ attr(CRt) is a foreign key, 
iff A = key(CRi) for some j =F i and CRt, CRj E C. We will sometimes use C. as a short form for 
attr(CRt). For the following discussion of mappings it is useful to illustrate the conceptual schema 
by a directed (acyclic) graph. 

DEFINITION 3.1. Let C be a set of relations with known keys and foreign keys. The cor
responding schema graph is sg( C) = (N, E) t where the set of nodes N contains one node per 

conceptual relation. N = {CRt I CRt E C} and the set of edges E is obtained from the key-foreign 

key relationships in C: E = {CRt -. C Ri I key( CRt) ~ attr( C Ri) 1\ i =F j} 

A similar schema graph with attribute nodes added is used in IFT83J. sg(C) corresponds to 
the Bachman-diagram of the equivalent CODASYL database. In analogy to this, if CRt -. CRi 
is in sg(C) we will call CRt the "owner relation" of the "member" CRi in the following. 

3.2 Conceptual to Internal Mappings 
As claimed in the introduction and illustrated by an example our overall goal in choosing inter
nal representations is improving performance. Two aspects of physical database design will be 
considered in this section: clustering and denormalization. Clustering means mapping data that 
is accessed together very frequently to the same block or at least adjacent blocks of secondary 
storage media thus reducing the costs of physical I/0. Denormalization was proposed in !SS80, 
SS81J. Whenever two relations are combined by (natural) joins in a considerable portion of user 
queries, it may be advantageous to internally precompute the join and store the result. Obviously, 
the decision for or against this "materialization" of the join depends on update frequencies for the 
involved relations. Whereas ISS80, SS81J decide to store the original relations in addition to the 
join sometimes, we can drop them if the join is materialized. The reason is twofold. First we use 
the outer join rather than a natural join to avoid loosing tuples and secondly we nest the "mem
ber" relation into the "owner" yielding a hierarchical structure. Therefore we do not introduce 
redundant storage of owner attributes with every matching member as in [SS80, SS81J. Moreover, 
nesting the members into the owner tuples yields a clustered storage structure. By the combination 
of join and nest we can establish both physical design objectives mentioned above. Considering the 
conceptual schema graph sg(C) we can describe the possible internal NF2 representations (that do 
not introduce redundancy) by the following definition. 
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DEFINITION 3.2. Given a conceptual schema C with its graph sg(C), the 8et ir(C) of all 
possible internal representations obtained by denormalization and neding i8 described by the 
set for(sg(C» of alilorest8 that can be obtained by deleting some 01 the edgu in sg(C). 

The set of internal NF2 relations corresponding to IE ir(C) is intuitively clear. Every tree in 
for(I) is a relation, where the root denotes the top level relation and descendents denote subrela
tions. In general ire C) will contain more than one alternative. It is the task of physical database 
design (optimization) to select one of them based upon an estimated transaction mix. An example 
is given in figure 3.1. 

C = {CR1C,i,B,C) 

C~(D,E,F) 

CRs(Ji,D,G)} 

for(Id = CR1 C~ 

! 
for(I2 ) = CR1 C~ 

! 
CRs CRs 

corresponding internal relations: 

I~ IRI I~ 

A It\ ~ 
DEF JiBC D E FIRs 

1\ 
Ji G 

IRI 

/T\ 
JiBC 

Figure 3.1: Choices for internal representations 

I~ IR3 

~ ;f'\ 
DEF JiDG 

DEFINITION 3.3. The tree representation [88841 01 the internal ~ relations corre
sponding to for(I) is obtained by appending nodes ai lor ai E attr(C~) to the nodes C~, iff 
ai ¢ key(CRi ) and CRi -+ C~ in for(l). Finally C~ is renamed to l~. The internal schema 
I i8 the set 01 relations denoted by root nodes in for(l). 

Every edge in for(I) corresponds to an outer join between the owner and member relation 
followed by a nest operation. All attributes of the member except the foreign key are nested into 
a subrelation. 

EXAMPLE 3.1. 
for(I) = CRI 1= {IRd 

! => 
C~ IRI = VIR.=(C.\C 1 ) (CRI I8IC~) 
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As we used the outer join operator (181) to produce null values for dangling tuples, we have 
to decide on how nest should behave on tuples containing nulls. One decision is obvious: if all 
attributes to be nested have a null value, then the resulting tuple should have an empty subrelation. 
However, a problem arises, if all attributes that are not nested have a null value. Especially, should 
several of such occurrences be regarded equal or not. In a more general context, this would lead 
to a discussion on equality of null values or the concept of "informativeness" of tuples containing 
nulls-see IRK885b], for instance. Again we remind the reader, that this paper is not meant as 
an overall treatment of null values. As we introduced the null values as a formal tool of modelling 
"dummy objects", we can decide on equality from a pragmatic point of view. For our purpose of 
defining an internal schema it is appropriate to consider nulls equal in non-nesting attributes, i.e. 
all member tuples without owners are gathered in a subrelation of a single tuple containing only 
nulls in the owner attributes. Notice that this situation was excluded in our definition of conceptual 
schemata, because we did not allow nulls in C-relations. Nevertheless, we give a definition of v 
that captures this case too. For instance, consider figure 3.2. Notice that all definitions that follow 
will not contain the schema part of the operations defined. Most of the definitions from [8884J can 
be applied. In the other cases, the schema transforming effect of the operations should be obvious. 
A formal treatment would require additional notational conventions that were left out. The same 
applies for the proofs of equivalent algebraic expressions. 

VCD=(C,D)(R) 

R A B CD 
A B C D C D 
al b1 w w al b1 0 
42 b2 Cl d1 42 ~ Cl d1 

a2 b2 C2 d2 C2 d2 

W W C3 d3 W W c3 d3 

W W C. d3 c. d3 

Figure 3.2: Nesting tuples containing nulls 

Here "w" denotes a null meaning "not existent". (This "closed world assumption" is appro
priate, because we want to store existent tuples from the C-relations !) 

DEFINTION 3.4. Let attr(R) = A, B ~ A, then 

val(v.,=(B)(R)) = {t I teA \ B) E val(1rA\BR)A 

t(z) = {t'(B) I t' E val(R) A t'(A \ B) = teA \ B) A Vb E B : I'(b) :f: w}} 

Notice how the additional condition t'(b) :f: w for all bE B produces the desired empty subrelations. 

3.3 Inversion of the Mapping C -> I 

Conversely, unnest should map empty subrelations to nulls rather than eliminating these tuples, 
as it does in the standard definitions IAB84, FT83, RK885a, 8884], hence we introduce an unnest 
operator p. that preserves tuples containing empty subrelations by mapping 0 to w. 
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DEFINITION 3.5. Let attr(R) = A, x E A and attr(x) = B, then 

val(]Z.:r;=(B)(R)) = {t 13t' E val(R) : teA \ B) = t'{A \ B)/\ 

( (t(B) E t'(x) /\ t'(x) :f; 0) V (Vb E B : t(b) = w /\ fl(X) = 0) ) } 

The conceptual relations did not contain null values, hence we need an operation, to eliminate 
tuples containing nulls. Therefore, we introduce a reduction operator Px, deleting all tuples from 
a relation, containing a null value in at least one of the attributes in X: 

DEFINITION 3.6. Let R be a relation with X ~ attr(R), then 

val(px{R» = {t I t E val(R) /\ Va EX: tea) :f; w} 

peR) = PaUr(R) (R) 

Obviously, whether we unnest first and eliminate w-tuples afterwards or delete tuples contain
ing empty sets and then unnest yields the same result. Further, the standard un nest operator JJ. 
comprises P and ]Z. 

LEMMA 3.1. 

• 
It is known from [FT83, J882J that any nest operation can be undone by applying the cor

responding unnest, i.e. JJ.AVA(R) = R. Our simple extension of the nest operation, however, 
invalidates this property in general. Consider two tuples tl = (a, w) and t2 = (a, b); nesting the 
second attribute produces t' = {a, {b}). A subsequent un nest will not reproduce tuple t l • The 
reason is that there was another tuple (t2) containing the same information in the attributes not 
nested, and thus nest did not map tl to (a,0) (t2 is more informative than td. We could think 
about a more sophisticated definition of nest, but fortunately for our purpose the current definition 
is sufficient, because the above situation does not occur as we see from the following lemmas. 

LEMMA 3.2. Iff Vt E val(R) : (t(A) = w => ~t' E val(R) : t'(attr(R) \ A) = t(attr(R) \ A» 
then 

• 
LEMMA 3.3. Let t E val(R 181 S) and a, a' E attr(R) \ attr(S), then 

tea) = w ~ tea') = w • 
COROLLARY 3.1. 

R 181 S = ]ZxvX=(attr(R)\attr(S»R 181 S • 
This means, nesting member tuples as a subrelation into the corresponding owner tuples is 

always invertible. The following lemma captures the well known fact that outer join is always 
invertible: 
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LEMMA 3.4. 
R = 1I'attr(R) Pattr(R) (R 181 S) • 

With lemma 3.3 we further conclude that instead of checking all attributes of R against null values 
it is sufficient to check either one except the join attributes: 

COROLLARY 3.2. 

Va E attr(R) \ attr(S): R = 1I'attr(R)Pa(R 181 S) • 
For our example 3.1 we can therefore define the inversion of the mapping C -+ I by: 

EXAMPLE 3.1 (CONT 'D ) • 

IRl = V1R2=(C,\ct>(CRl I8IC~) ~ CRl = 1I'c,Pc,(IRd 

C~ = 1I'C.PC.'jiIR.(I~) = 1I'C.PIR.(IRd 

Notice that the simplification CR1 1I'c,(IRtl is valid, if the foreign key condition is main-
tained on level C, because in this case no "member" tuples would be accepted with a foreign key 
pointing to a nonexistent "owner". As we did not allow null values in C-relations, there is also no 
member without an owner. Further we see from example 3.1 that p-operations are sufficient in the 
mapping I -+ C, if we only unnest those subrelations of IRt needed to reconstruct a certain CRi' 

Our basic idea for the optimization step described in sections 4 and 5 is the following: use 
a global unnest-operation, i.e. one that procudes the equivalent INF relation (e.g. UNNEST· in 
[FT83] p. in [RKS85a]) in all of the equations for the mapping I -+ C. This yields the same 
INF relation p*(IRt) in all equations for conceptual relations that are contained in a common IRj. 
The benefit is, that to eliminate redundant joins from queries involving such conceptual relations, 
we could then utilize INF techniques. The following consideration explains, why we introduced 'ji 
and will use 'ji* in the sequel. Consider an owner relation CR1 with two members C~, CR3 • A 
tuple in IRI (with both joins materialized, i.e. subrelations [~, [R3 ) that has members in [~ 
but not in [R3 would disappear, if we used p •. Hence, we use 'ji* preserving all tuples and decide 
on nulls afterwards using the p-operation. 

In order to prepare for the next theorem we give a lemma, that allows to bring the equations 
defining C -+ [ into a canonical form. 

LEMMA 3.5. Let X ~ attr(R) \ attr(S), then 

• 
Any internal relation is obtained by a sequence of "outer join followed by nest"-operations, i.e. 

According to lemma 3.5 this can be rewritten as [Ri = V1Ril =(CRh \CRi.)(V",(v", (CR;.I8I(···18I 
... (- .. ))))), i.e. a sequence of outer joins followed by a sequence of nest operations. Now it is easy 
to prove theorem 3.1, capturing the invertibility proposition of our conceptual to internal mapping. 
The inversion can be done by equations in a canonical form using global unnest: 
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THEOREM 3.1. GifJen C = {C R1 , ••• , C R,.} a set of conceptual relations and I a correspond
ing internal representation I E ir( C). For 1 ~ i ~ n let I Rj, be the root of the tree in for(I) 
containing node IR;, then: 

• 
4. Algebraic Equivalences 
For the classical relational model a large scale of algebraic equivalences have been studied, a 

summary of the results is contained e.g. in [Ul82]. [ABU79, ASU79] have given lossless join 

properties that can be used to eliminate redundant joins from queries expressed in INF algebra 
or the like. Concerning the NF2 relational model [JS82] presented some first equivalence rules 
capturing inversion of nest by unnest and vice versa, commutativity of nest and unnest and a few 

other properties. The work of [FT83] gives a comprehensive overview of positive and negative 
results on commuting nest/unnest with the other algebraic operators. In case of an extended 
algebra for NF2 relations like [AB84, SS84] first results have also been presented. Obviously, with 

an extended algebra we can prove some more properties than with a standard algebra enriched by 
nest and un nest only. Here we summarize the main equivalence rules that can be used to efficiently 
optimize and process select-project-join (SP J-) queries on level C by NF2 queries on level I. 

As p-operations are contained in the expressions we need additional transformation rules for 
commuting p and the other algebraic operators. These are given in subsequent lemmas. We also 

need criteria for deciding whether the join of two projections equals the original relation (lossless 
join property) when reduction operations are involved. This can be regarded as an extension of the 
results from [ABU79]. Theorem 4.1 states the corresponding proposition. Using these results, we 

can further prove that neglecting the reductions p during the join elimination phase and inserting 

them in the right places afterwards yields correct results. 

In the following we will use X, Y, ... to denote sets of attributes and adopt the usual short 
notation XY for the union Xu Y. First we state properties on commuting p with other algebra 
operations, notice that p is some special kind of selection. 

LEMMA 4.1. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

LEMMA 4.2. 

pxpyR = pxyR 

pXO'FR = O'FPXR 

Px1fyR = 1fYPX R 

Pxy(R X S) = pxR x pyS 

pxy(R!XI S) = PxR!XI pyS 

<=>X~Y 

<=> X ~ attr(R) 1\ Y ~ attr(S) 

<=> X ~ attr(R) 1\ Y ~ attr(S) 

lIa=(X)PX R = O'a,t0 I1a=(X)R 

pxlia=(X)R = lia=(x)O'a,teR = l-'a=(x)R 

1fxy(R !XI S) = 1fxR !XI1fyS <=> X n Y = attr(R) n attr(S) 

Proof: Substitute 1f,0' and x for !XI and apply the equivalences known from [Ul82]. 

• 

• 
Combining the two lemmas we derive the following theorem giving a lossless join criterion for 

project-join mappings containing p's: 
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THEOREM 4.1. Let X, X', Y, Y' ~ attr(R), then 

Proof: 

X n X' = XY n X'Y' 1\ (X n X' -+-+ XY V X n X' -+-+ X'Y') 

1rxpyR lx11rx.py.R = 1rX (1rXYPY R) lx11rx·(1rx.y.py.R) 

= 1rxx.(1rXYPY R lx11rx·y·py·R) 

~ X n X' = XY n X'Y' (Lemma 4.2) 

= 1rxx.(PY1rXY R IxI py.1rx.y.R) 

= 1rxx.pyy.(1rxy R lx11rx·y·R) 

~ XY n X'Y' -+-+ XY or X'Y' ([ABU79]) 

= 1rxx·pyy·R 

We applied lemma 4.1 in the 3rd, 4th and 6th equation. The preconditions for the 2nd and 5th 
equations conclude the proof. • 

Provided with the above equivalences we can transform user queries from the conceptual to the 
internal level by substituting the equations for GBi (from I -+ G) into the G-query. Optimization 
and join elimination can be performed by applying these results. In this "verbatim" approach, 
however, we have to deal with reduction operations (p). Thus we have to develop a new formula 
manipulation system, or whatever method else. Our claim in the beginning was, that traditional 

lNF techniques would suffice. In order to prove this statement we give a variation of the lossless 
join condition in the following. Due to this new criterion we can rely on join elimination that does 
not consider p's. The only prerequisite is that we introduce the appropriate reductions into the 
optimized query expressions afterwards. 

THEOREM 4.2. For some conceptual relations GRl,G~ internally stored in IR, with at

tribute sets Gl , G2 respectifJely the following equifJalence holds: 

( i) 

( ii) 

1rx (1rc. Pc. Ji* IR) 1x11rx.(1rc.Pc.Ji* IR) = 1rxx.1rc.c.Pc.c.Ji* IR 

~ 

1rxJi* IR lx11rx.Ji* IR = 1rxx.Ji* IR 

Proof: (i) '* (ii): Easy (and not used in the following) 
(i) <= (ii): 

(ii) '* X n X' -+-+ X or X n X, -+-+ X, in Ji* IR 

The outer join does not introduce any MVDs, except the following: 
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Hence, X n X' -+-+ X or X n X' -+-+ X' must be valid MVDs in C. As C was claimed to be in 
4NF there are no nontrivial MVDs except key conditions. Thus there must exist CRI , CR,;, such 
that X ~ CI , X' ~ C2 , with Xn X' = CI n C2 and XnX' -+-+ CI or XnX' -+-+ C2 • From this 
and theorem 4.1 we conclude (li) =? (i) which completes the proof. • 

5. An NF2 Algebraic Query Optimizer 
In this section we will emphasize the practical issues of our theory. The conclusion will be that in 
fact INF optimization is the essential part needed in our proposed environment. However, before 
we can outline a prototype implementation we have to state a few more algebraic equivalences 
involving the nested NF2 algebra from 18884J. 

From theorem 4.2 we conclude that substituting the expression from I -+ C and applying 
INF join elimination plus rules to move selections and projections down the expression tree (which 
reduces the size of intermediate results and is a standard algebraic optimization technique-see 
[Ul82J) yields an optimized "quasi-1NF" relational expression of the form 

E = !ru( IXI( !ru(pji* I Rj))) 

that does not contain redundant joins anymore. By the term "quasi-lNF" we indicate the fact, 
that the essential part of the expression uses only INF algebra. However, due to the presence of 
ji* we actually have an NF2 expression. 

The strategy now is to push the unnest operations up in the query's parse tree in order to 
utilize the power of the NF2 algebra. In fact we will not apply ji*, but rather the necessary ji's only. 
As a result we will observe a single type of NF2 expressions resulting from this process, namely 
single pass processible queries (or joins of those to be exact). For the scope of this paper we will 
only give the rules to commute ji and the u and fr operations that follow in the above expression 
E. 80me types of joins with subrelations can be performed within the NF2 algebra, results on 
this topic will be presented in a forthcomming report. The transformation rules for p and friO' are 
given in the following theorems, which are stated without proofs, because the formalism needed 
was left out in this paper. 

THEOREM 5.1. 1/ F = Fl /\ F2 where Fl refers to attributes in attr(R) \ {A} and F2 refers 
to attr(A}, then 

• 
THEOREM 5.2. 1/ L = L'L" where L' ~ attr(R) \ A, L" ~ attr(A), then 

• 
We give example applications of these transformation rules in the following. 
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~ 

PAll O'A,=3 (PAl (1I'[A2' 1I'[O'A111=s(All)](Ad ](R») 

EXAMPLE 5.2. Here we illustrate the treatment of the reductions p. Let sg(C) = {CR1 -+ 

C~} and J = {JR1((attr(CRd),J~(attr(C~) \ attr(CRd))}. This means the join between 
the "owner· CR1 and the "'member· C~ is materialized. Consider the following user query: 

Notice that Qc "I CR1 in general! Following are the equations defining C -+ J and J -+ C: 

C -+ J: JR1 = VIR,=(C,\CI) (CR1 t8I C~) 

J -+ C: CR1 = 1I'CI Pc, Ji' JR1 

C~ = 1I'c, Pc, Ji' JR1 

Knowing C1 n C2 -+ C1, we conclude from theorem 5.1 that the join is redundant, and hence Qc 

can be simplified to 1I'CIPCIC,Ji' JR1. The following is a derivation of this result by application of 
the rules from section 4: 

Qc = 1I'ci (CR1 IX! C~) 

= 1I'ci (1I'C IPCl Ji' JR1 IXI 1I'c,Pc,Ji' JR1 ) 

= 1I'ci (PCI(1I'Cl Ji' JRd IX! Pc, (1I'c,Ji' JRd) 

= 1I'CI Pclc, (1I'c l Ji' JR1 1X11I'c,Ji' JR1 ) 

= 1I'ci Pclc, 1I'clc,Ji' J R1 

= 1I'c i Pclc, Ji' JR1 

= 1I'ci PCI Ji' O'c,~0 J R1 

= 1I'ci PCI O'C,~0 JR1 

= 1I'ci O'c,~0 JR1 

the last equation holds if foreign key conditions are maintained, the fifth one is valid because of the 
FD given. Notice that without the p-operation we would have concluded Qc = 1I'XI1l'CIC,Ji' J R1 = 
1I'cl Ji' JR1 = CR1, which is not correct! 

EXAMPLE 5.3. Now we derive the result already presented in the introductory example. The 
equations defining the mappings between conceptual and internal mappings are: 

C -+ J: Jdept = veno,ename,.al:lemp (Dept t8I Emp) 

J -+ C: Dept = 1I'dno,dname,budgetPdno,dname,budgetJi' Jdept 

Emp = 1I'eno,ename,.al,dnoPeno,ename,.al,dnoJi' Jdept 
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The transformation of the query can be done as follows: 

1I"dname,oa'O'ename='Smith,(Dept IXI Emp) 

= 1t" dname,8al0' ename='Smith' 

(1I"dno,dname,bud.getPdno,dname,bud.get"ji* 1 dept 1X11I" eno,ename,oal,dnoPeno,ename.oa'.dno"ji* 1 dept) 

::::: 1r dname"alD" ename='Smith' Pdno,tlname,budget,eno,ename,.al 

(1I"dno,dname. budllet"ji* Idept 1X11I"eno.ename,oa"dno"ji* Idept) 

:: 11" dname.oa'O' ename='Smith' Pdno,dname,budllet,eno,ename,oa'( 1I"dno,dname,bud.get,eno,ename,oa,"ji* 1 dept) 

= 1I"dname,oa'O'ename='Smith'Pdno,dname,bud.get,eno,ename,oa,("ji* Idept) 

1I"dname,oa'O'ename='Smith'Pdname,oa,("ji* Idept) 

Pdname,oa,1I" dname,oa'O' ename='Smith' ("ji* 1 dept) 

= Pdname,oa,1I"dname,oal"ji* 1I"[dno, dname, budget, O'ename='Smith,(lemp»)(1 dept) 

= Pdname,oal"ji*1I"!dname, 1I"[sal](Iemp)]1I"[dno, dname, budget, O'ename='Smith·(1 emp)I(ldept) 

Pdname,oa,"ji* 1I"!dname, 1I"[sal]O'ename='smitb'{1 emp )\(1 dept) 

= Pdname"ji*0'Iemp¢,1I"!dname, 1I"[sal]O'ename='Smith,(lemp)](ldept) 

Notice that we did not check against null values in the formulation given in the introduction, i.e. 
the reduction operation and the selection on Iemp were omitted there. 

One of the last transformations in the above example combined two subsequent NF2 projections 
into one. The following equivalence states the corresponding extension of the classical cascaded 
projections rule from [Ul82J for our case of nested projections: 

LEMMA 5.1. Let exprl, expr2 be algebraic expressions (operator sequences), then 

• 
Now we are able to state the main result of our work contained in this pa.per. As claimed in 

the beginning, using NF2 relations internally does not introduce additional complexity to the join 
elimination process and thus to algebraic optimization. 

THEOREM 5.3. Given C in "NF, 1 as N.F2 relations obtained by de normalization and nesting 
according to definitions 9.!!, 9.9. Any conjunctive SPJ (select-project-join) query on C can be 
optimized and transformed to I using only lNF optimization techniques and additionally the rules 
in theorems 5.1, 5.!! and lemma 5.5. Whenever all joins contained in the conceptual query are 
materialized internally, this results in only one single pass proeessible N.F2 query. • 

As the applications of the transformation rules from above are straightforward and can be 
realized efficiently, the complexity of the whole process is dominated by join elimination (i.e. the 
INF optimization). Hence, with the appropriate restrictions on conceptual queries one can for 
instance optimize in polynominal time using tableaux techniques [ASU79J. 

A prototype a.lgebraic optimizer has already been implemented in PROLOG. The optimization 
algorithm can be sketched as follows: 
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Step 1 - Analyse the parse tfee. 
If there are two leaf nodes referring to the same internal relation, consider the projections 
that occur on the path from the leaves to their lowest common ancestor in the tree and 
find out, whether the join is redundant (applying knowledge about keys, FD's and 
MVD's). 

Step £ - Move 71" and (1 a.& far down the tree as possible. 
Step 9 - Consider the ji"'-operations: apply the necessary unnests and move]I up the tree. 

Implicitely, step 1 applies rules from [Ul82J to move selections up in the tree past joins- in 
order to check redundancy of the join according to [ASU79]. However, as selections can always be 
moved up (but not down), we do not actually transform the tree but simply ignore selections, when 
we decide whether a join is redundant. If a join is eliminated, the selections from both subtrees 
are conjunctively combined. In step 2 we perform the usual optimization, trying to move (1 (and 
71") down the parse tree. Finally, step 3 transforms the optimized "quasi INF" query to nested NF2 
algebra. Step 3 is the only one using the rules for NF2 algebra operations, whereas the others are 
standard INF techniques. In step 3 we also introduce the necessary p-operations, or apply the 
corresponding (1 (eliminating empty subrelations before the unnest). 

Allthough we used PROLOG in this first implementation and added some more equivalences 
than the ones presented here-concerning disjunctions in selection formulae-response times of the 
optimizer are fairly short (An adhoc test in a multi-user environment on a SIEMENS mainframe, 
optimizing the query from example 5.3-including dialogue handling-took about 1.7sec CPU
time and < 5sec response time.) Of course it is known that in general optimization is NP-complete 
[ASU79J. Nevertheless computation time seems to be tolerable in all practical cases. 

6. Conclusion 
The use of unnormalized relations as a storage structure for 4NF relations has been proposed. As 
a consequence, the mapping between the differing conceptual and internal database layouts could 
be defined algebraically. A series of new equivalence rules among algebraic expressions containing 
unnest and reduction operators as well as NF2 selections and projections were presented. Based on 
these equivalences we proved the applicability of our approach. Algebraic optimization needed for 
elimination of materialized, hence redundant joins can be performed utilizing only INF techniques 
with little additional information for the case of NF2 relations. Moreover, whenever queries do not 
need any join operations internally, because all joins contained in the user query are materialized, 
a simple, efficiently evaluable type of NF2 expressions results from the transformation. We also 
sketched a first implementation having proven practicability of the results presented. 

From the above observation we also conclude some justification of the way our algebra was 
desigued. Allthough [AB84] Use a different type of algebra for their Verso model, they come to a 
similar result. [Bi85] also states that select-projection-join queries can be mapped to a single "Verso 
superselection" under some circumstances. While parts of the Verso model will be implemented 
in hardware (the Verso DB machine [BRS82, V86]), we are pursuing a software implementation. 
A database kernel system, called DASDBS-DArmStadt DataBase System- is currently being 
implemented at the Technical University of Darmstadt [DOPSSW85, Sche86, SW86J. The ar
chitecture is partitioned into an application independent kernel, and several application specific 
front-ends ("DBS family"). All functions that are exspected to be common to the various applica
tion areas planned (conventiona14NF interface, geographic applications, knowledge representation 
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support) will be implemented in the kernel. Currently the kernel will support NF2 relations a.nd 
single pass expressions. The application specific front-end for the conventional (flat) relational 
interface will be built on top of this kernel. The results presented in this paper are the theoretical 
foundation of the query optimizer contained in this "standard applications module" . 

Related work for the future includes treatment of disjunctive selection criteria, utilization of 
nested NF2 joins and more sophisticated conceptual to internal mappings reflecting e.g. n : m
relationships. With little additional (foreign) key redundancy we could support access in a more 
symmetrical way than by splitting into disjoint hierarchies. The algebraic manipulations needed 
to optimize in the presence of the new internal structures can easily be added to our solution. 
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