
Theoretical Foundation of Algebraic Optimization
Utilizing Unnormalized Relations

Marc H. Scholl

Technical University of Darmstadt
Department of Computer 8cience

Alexanderstrasse 24
D-6100 Darmstadt, West Germany

Abstract-Unnormalized (NF2) relations, not conforming to the first normal
form condition (lNF) of the relational model have been proposed recently for
a variety of new applications. In this paper we extend NF2 relational theory
in a way that it becomes possible to use NF2 relations as storage structures for
conventionallNF relational database interfaces. Physical clustering of precom
puted joins can be achieved this way without introducing redundancy. However,
applying transformation rules to internal relations straightforwardly, will still
yield unnecessary join operations. With the equivalence rules introduced here
we prove that efficient algebraic optimization can be performed using standard
(INF) techniques. Particularly, all redundant joins can be properly removed.

1. Introduction
A lot of recent research in relational databases has concentrated on unnormalized relations. Drop
ping the first normal form condition and allowing non-first-normal-form relations (NF2 relations)
has been recognized as a promising attempt to capture the requirements introduced by new ("non
standard") applications of database systems. The areas of interest include textual [SP82j, pictorial
[BR84j, geographical [M8W86J, and office data [SLTC82j as well as knowledge representation tech
niques [SR86J. While experience with the feasibility of the model in these applications is not yet
available, the theory of NF2 relations is already in an advanced state. Formal definitions of the
NF2 relational model have been given by [AB84, FT83, Ja85, RK885a, 8S84J and most of these
include operations on NF2 relations in algebra and/or calculus style. Also design theory for NF2
relations has already come up with results [AB84, FG85, FT83, Gu85, OY85, RKS85aJ.

The focus of this paper is different from the above work. As already mentioned in [AB84,
FT83, SS83J we consider NF2 relations to be a reasonable storage structure even for INF databases.
The underlying idea is the following: the hierarchical structure of NF2 relations can be utilized as
an efficient possibility to store precomputed joins without introducing redundancy. "Denormal
ization" as a means of internally materializing the most frequent join operations was proposed in
[8880, 8881J. A physical database layout differing from the usual "1 relation-l operating system
file" choice was proven to dramatically reduce query processing costs. The most important but
also expensive operation in relational systems is the join. Hence, significant performance enhance
ments can be achieved with this approach. Redundant storage of tuples from one relation with
each matching tuple of the other relation can be avoided, if we use a hierachical storage scheme.
Therefore, NF2 relations were proposed in [8883J as reasonable storage structures for INF data
bases. Besides the formal description of the internal database layout, as an additional benefit the
transformations between conceptual (user) and internal (system) levels, C and I respectively, can
be described within the model by the NF2 relational algebra.

http://nbn-resolving.de/urn:nbn:de:bsz:352-228734

381

Three related problems with this approach are discussed and solved in this paper. The first
one intuitively concerns the information contents of the conceptual and internal levels, which
obviously must be identical. Formally, when the transformations are (algebraic) mappings, these
must be invertible. Invertibility of relational algebra expressions has partly been studied in the
past. "Lossless joins" [ASU79! are an example. We will use joins and nesting for the mapping
C -+ I to obtain the hierarchical structures. In order to guarantee invertibility of this mapping, we
use the outer join rather than natural join to avoid loosing "dangling" tuples. As a consequence
of this, we have to deal with a special kind of null value introduced by the outer join. It should
be clear, that these null values are a formal description of some "dummy" storage objects at an
internal DBS layer. Therefore, this paper does not deal with null values in a general context. The
interested reader is refered to IRKS85bJ for a detailed discussion on several types of nulls in the
NF2 relational model. For our purposes only a few properties of the null value "w" resulting from
the outer join are discussed and the necessary formalism to manipulate these "dummy objects" is
defined.

The second and more substantial problem is imposed by the need for algebraic optimization
of queries. The algebraic expressions defining the mapping I -+ C can be substituted for the
conceptual relations used in the expressions of the user queries. However, algebraic equivalences
have to be applied in order to eliminate redundant joins, for instance. Consider two C-relations
that are internally stored in one materialized join relation. The C-relations can be reobtained
by projections. Thus substituting the projection expressions into user queries yields a join of two
projections. Algebraic optimization techniques can be used to recognize the redundant join
according to IASU79J-and eliminate it from the query. Without this optimization, the efficient
internal structure could not be utilized.

Equivalence rules known from previous research [ASU79, U182, Ma83J for the INF case and also
including NF2 relations [AB84, FT83, JS82j are not sufficient to do the necessary transformations.
Extended equivalences are presented in this paper. According to these, all materialized joins in
user queries can be properly eliminated.

The third aspect captured by this paper, concerns the NF2 queries resulting from the opti
mization step. Obviously, for our hierarchical internal DB layout there is a class of NF2 queries
that reflects this structure and therefore can be evaluated very efficiently. Our objective is to
map a maximum of user queries to that kind of internal counterparts. In fact, we will see that
select-project-join queries can be transformed to these "single pass processible" NF2 queries, if all
joins are internally materialized. It is exactly this class of NF2 queries that will be available at
the kernel interface of a prototype NF2 relational database system developed at the University of
Darmstadt [DOPSSW85, DPS86, SW86, Sche86J.

As an introductory example consider two conceptual (4NF) relations

Dept(dno, dname, budget)

Emp(m&., ename, sal, dno)

If we internally store the NF2 relation

I dept(dno, dname, budget, I emp(eno, ename, sal))

we do not need to compute Dept b<l Emp at runtime of user queries. For instance consider the
user query 7I"dname,.aIO'ename='smith,{Dept b<l Emp) which can be processed very efficiently by the

382

following NF2 algebraic expression (see section 2 for details).

PJemp(frldname, fr[sall((1 ename='Smith,(1 emp »](1 dept»

The internal query contains only a simple NF2 filter expression and unnesting but no join operation,
thus it can be evaluated efficiently.

8ection 2 shortly reviews the NF2 relational model from [88841 and introduces the notations
used throughout the paper. The class of single pass proce88ible queries is informally characterized
and a subset of the algebra is claimed to be single pass processible. In section 3 we define the type
of conceptual-to-internal mappings foreseen in this paper and deal with the problem of inverting
the mapping. We present the necessary rules to deal with the special type of null value resulting
from the outer joins.

Extended algebraic equivalence rules involving the null values as well as the nested algebra
operators from [8884] are presented in section 4. With these rules we prove that algebraic op
timization can be done in our environment using essentially INF optimization and some simple
transformation rules. Optimal "quasi INF" expressions are computed and then transformed to
NF2 expressions by an optimizer sketched in section 5. The paper concludes with an outline of
further research in section 6.

2. The NF2 Relational Model
Relations with relation valued attributes do not conform to the first-normal-form, because they al
low decomposable attribute values, namely relations. Thus, formal definitions like [FT83, RK885a,
8884j apply INF notations repeatedly to capture the nested relational structures. We do not give
formal definitions in this paper, but shortly review the notations drawn from [88841. As in the
INF case (cf. [Ma831) we have a relation R as a pair (d, v) consisting of a description d and a value
v. The description d is a pair (n, B), where n is the name of the relation drawn from some given
set N of names. The schema s describes the components of R. Hence 8 is a set of descriptions di
of the attributes of R. Atomic attributes have descriptions (ai, 0), Le. the empty set serves as the
schema of atomic attributes. Relation valued attributes have descriptions (ai, Bi), where Bi '" 0 is
the schema of the corresponding (sub-) relation. For a relation R = (d, v) with d = (n, B) we apply
the following notation:

sch(R) = sch(d) = s

val(R) = v
attr(R) = {ai I (ai, B.) Ed}

the schema
the value and
the attributes (name components of sch(R)) of R.

The value of a relation vale R) is a set of tuples, each tuple can either be regarded as a mapping
from an attribute set to a corresponding domain set or as an element of a Cartesian product of
domains [8884, Ja861. We adopt the first interpretation here and use teas) to denote the ai-value
of a tuple t in val(R) where ai E attr(R). Extending this notion canonically teA) is the A-value of
t in val(R) for A ~ attr(R). As usual we give the schema of an NF2 relation in the following form:

R(a1"'" an, b1 (...), ... , bm (•• • »

where the ai are the names of atomic attributes of Rand bi the names of relation valued attributes.
Between the parentheses after bi we denote the schema of the bi in exactly the same way.

383

The NF2 relational algebra we use in the following has been presented in [8883] and formally
defined in (8884). Operators x, U, fl, -, Ix! are defined exactly as in the INF case, whereas 11' and C1

(projection and selection) have been extended and two new operators II and p. (nest and unnest)
were introduced. The latter two are also used in [AB84, J882, FT83, RK885a, 8883, 8884].
Extended defintions for p. and II will be given in section 3 of this paper, the extensions of 11' and C1

shall be exemplified in the following.
For the scope of this paper, concerning extended selection we only need set comparisons

allowed in selection formulae together with set-valued constants (especially 0). Within projection
lists, i.e. the set of attributes that are projected, we allow the application of algebraic expressions
(especially again 11' and (1) to relation valued attributes. As an example consider a relation

Dept(dno, dname, Emp(eno, ename, sal, Course(cno, year»)

(with the obvious interpretation) then

Ql = C1[dname = 'research' A Emp ::; 0J(Dept)

yields 'established' research departments, i.e. those who already have employees,

Q2 = 1I'[dname, 1I'[ename, sal](Emp)] (Dept)

gives a list of department names each with a list of employee names and salaries, i.e. the schema
of Q2 is Q2(dname,Emp(ename,sal)) and

Q3 = 1I'[dname,C1[sal > lO.OOOI(Emp»)(Dept)

yields a relation with schema Q2(dname, Emp(eno, ename, sal, Course(.. .)))-a list of "rich" em
ployees grouped by dna me. Details of the nested algebra are not important in this paper, the
interested reader is referred to [8884). Nevertheless, we will shortly discuss our notion of single

pass processible queries. By the term single pass processible we indicate, that this kind of queries
can be evaluated efficiently by an NF2 relational DBM8 [DP886, 8che85j. The results of these
queries can be computed within one (hierarchical) scan over the tuples in val(R). The notion was
influenced by so-called single-table queries in flat relational systems, i.e. queries that do not include
joins. However, in our case of nested relations "single table" queries may well contain operations
with join complexity (set comparisons, nested joins). Therefore we need a more sophisticated no
tion of "simplicity" of queries. A detailed discussion of what is single pass processible and what
is not, is deferred to a forthcomming report. However, the following theorem describes a class of
queries tha.t surely belongs to this class.

THEOREM 2.1. An NJj't relational expression is single pass processible, if it is built ac

cording to the following recursive rule:

speeR) = 1I'[LJC1[FJ { ~[L*I(R)
L is a "lNF" projection list, i.e. without nested algebraic expressions

F IS a simple selection formula, consisting of conjunctions of comparisons between attributes and

constants (0 is the only constant permitted for relation valued attributes) and

L* is a projection list containing single pass expressions applied to relation valued attributes, i.e.

spe(A) •

Like most results of this paper, due to limitations on space the above is stated without proof.

384

3. Transformation Between Conceptual and Internal Layer
In this section we will define conceptual schemata, the various choices of conceptual-to-internal
mappings and study invertibility of these mappings. Extensions of nest and unnest operators
compared to !AB84, FT83, RKS85a, SS84J-are introduced to capture the null values resulting
from outer joins. The latter are needed to guarantee invertibility of the denormalization, because
natural joins would loose "dangling" tuples in general.

3.1 Conceptual Relations
We consider a given set "conceptual DB schema" C = {CRlt ... ,CR,.} of (conceptual) relations
CRt. The schema C is in 4NF [Fa77J, which means every valid MVD (and thus FD) is expressed as
a key condition in one of the CRt. Furthermore, we assume C to be free of null values. We denote
with key(CRt) ~ attr(CRt) the set of primary key attributes of CRt. Without loss of generality
we assume all attribute names in C distinct except foreign keys. A ~ attr(CRt) is a foreign key,
iff A = key(CRi) for some j =F i and CRt, CRj E C. We will sometimes use C. as a short form for
attr(CRt). For the following discussion of mappings it is useful to illustrate the conceptual schema
by a directed (acyclic) graph.

DEFINITION 3.1. Let C be a set of relations with known keys and foreign keys. The cor
responding schema graph is sg(C) = (N, E) t where the set of nodes N contains one node per

conceptual relation. N = {CRt I CRt E C} and the set of edges E is obtained from the key-foreign

key relationships in C: E = {CRt -. C Ri I key(CRt) ~ attr(C Ri) 1\ i =F j}

A similar schema graph with attribute nodes added is used in IFT83J. sg(C) corresponds to
the Bachman-diagram of the equivalent CODASYL database. In analogy to this, if CRt -. CRi
is in sg(C) we will call CRt the "owner relation" of the "member" CRi in the following.

3.2 Conceptual to Internal Mappings
As claimed in the introduction and illustrated by an example our overall goal in choosing inter
nal representations is improving performance. Two aspects of physical database design will be
considered in this section: clustering and denormalization. Clustering means mapping data that
is accessed together very frequently to the same block or at least adjacent blocks of secondary
storage media thus reducing the costs of physical I/0. Denormalization was proposed in !SS80,
SS81J. Whenever two relations are combined by (natural) joins in a considerable portion of user
queries, it may be advantageous to internally precompute the join and store the result. Obviously,
the decision for or against this "materialization" of the join depends on update frequencies for the
involved relations. Whereas ISS80, SS81J decide to store the original relations in addition to the
join sometimes, we can drop them if the join is materialized. The reason is twofold. First we use
the outer join rather than a natural join to avoid loosing tuples and secondly we nest the "mem
ber" relation into the "owner" yielding a hierarchical structure. Therefore we do not introduce
redundant storage of owner attributes with every matching member as in [SS80, SS81J. Moreover,
nesting the members into the owner tuples yields a clustered storage structure. By the combination
of join and nest we can establish both physical design objectives mentioned above. Considering the
conceptual schema graph sg(C) we can describe the possible internal NF2 representations (that do
not introduce redundancy) by the following definition.

385

DEFINITION 3.2. Given a conceptual schema C with its graph sg(C), the 8et ir(C) of all
possible internal representations obtained by denormalization and neding i8 described by the
set for(sg(C» of alilorest8 that can be obtained by deleting some 01 the edgu in sg(C).

The set of internal NF2 relations corresponding to IE ir(C) is intuitively clear. Every tree in
for(I) is a relation, where the root denotes the top level relation and descendents denote subrela
tions. In general ire C) will contain more than one alternative. It is the task of physical database
design (optimization) to select one of them based upon an estimated transaction mix. An example
is given in figure 3.1.

C = {CR1C,i,B,C)

C~(D,E,F)

CRs(Ji,D,G)}

for(Id = CR1 C~

!
for(I2) = CR1 C~

!
CRs CRs

corresponding internal relations:

I~ IRI I~

A It\ ~
DEF JiBC D E FIRs

1\
Ji G

IRI

/T\
JiBC

Figure 3.1: Choices for internal representations

I~ IR3

~ ;f'\
DEF JiDG

DEFINITION 3.3. The tree representation [88841 01 the internal ~ relations corre
sponding to for(I) is obtained by appending nodes ai lor ai E attr(C~) to the nodes C~, iff
ai ¢ key(CRi) and CRi -+ C~ in for(l). Finally C~ is renamed to l~. The internal schema
I i8 the set 01 relations denoted by root nodes in for(l).

Every edge in for(I) corresponds to an outer join between the owner and member relation
followed by a nest operation. All attributes of the member except the foreign key are nested into
a subrelation.

EXAMPLE 3.1.
for(I) = CRI 1= {IRd

! =>
C~ IRI = VIR.=(C.\C 1) (CRI I8IC~)

386

As we used the outer join operator (181) to produce null values for dangling tuples, we have
to decide on how nest should behave on tuples containing nulls. One decision is obvious: if all
attributes to be nested have a null value, then the resulting tuple should have an empty subrelation.
However, a problem arises, if all attributes that are not nested have a null value. Especially, should
several of such occurrences be regarded equal or not. In a more general context, this would lead
to a discussion on equality of null values or the concept of "informativeness" of tuples containing
nulls-see IRK885b], for instance. Again we remind the reader, that this paper is not meant as
an overall treatment of null values. As we introduced the null values as a formal tool of modelling
"dummy objects", we can decide on equality from a pragmatic point of view. For our purpose of
defining an internal schema it is appropriate to consider nulls equal in non-nesting attributes, i.e.
all member tuples without owners are gathered in a subrelation of a single tuple containing only
nulls in the owner attributes. Notice that this situation was excluded in our definition of conceptual
schemata, because we did not allow nulls in C-relations. Nevertheless, we give a definition of v
that captures this case too. For instance, consider figure 3.2. Notice that all definitions that follow
will not contain the schema part of the operations defined. Most of the definitions from [8884J can
be applied. In the other cases, the schema transforming effect of the operations should be obvious.
A formal treatment would require additional notational conventions that were left out. The same
applies for the proofs of equivalent algebraic expressions.

VCD=(C,D)(R)

R A B CD
A B C D C D
al b1 w w al b1 0
42 b2 Cl d1 42 ~ Cl d1

a2 b2 C2 d2 C2 d2

W W C3 d3 W W c3 d3

W W C. d3 c. d3

Figure 3.2: Nesting tuples containing nulls

Here "w" denotes a null meaning "not existent". (This "closed world assumption" is appro
priate, because we want to store existent tuples from the C-relations !)

DEFINTION 3.4. Let attr(R) = A, B ~ A, then

val(v.,=(B)(R)) = {t I teA \ B) E val(1rA\BR)A

t(z) = {t'(B) I t' E val(R) A t'(A \ B) = teA \ B) A Vb E B : I'(b) :f: w}}

Notice how the additional condition t'(b) :f: w for all bE B produces the desired empty subrelations.

3.3 Inversion of the Mapping C -> I

Conversely, unnest should map empty subrelations to nulls rather than eliminating these tuples,
as it does in the standard definitions IAB84, FT83, RK885a, 8884], hence we introduce an unnest
operator p. that preserves tuples containing empty subrelations by mapping 0 to w.

387

DEFINITION 3.5. Let attr(R) = A, x E A and attr(x) = B, then

val(]Z.:r;=(B)(R)) = {t 13t' E val(R) : teA \ B) = t'{A \ B)/\

((t(B) E t'(x) /\ t'(x) :f; 0) V (Vb E B : t(b) = w /\ fl(X) = 0)) }

The conceptual relations did not contain null values, hence we need an operation, to eliminate
tuples containing nulls. Therefore, we introduce a reduction operator Px, deleting all tuples from
a relation, containing a null value in at least one of the attributes in X:

DEFINITION 3.6. Let R be a relation with X ~ attr(R), then

val(px{R» = {t I t E val(R) /\ Va EX: tea) :f; w}

peR) = PaUr(R) (R)

Obviously, whether we unnest first and eliminate w-tuples afterwards or delete tuples contain
ing empty sets and then unnest yields the same result. Further, the standard un nest operator JJ.
comprises P and]Z.

LEMMA 3.1.

•
It is known from [FT83, J882J that any nest operation can be undone by applying the cor

responding unnest, i.e. JJ.AVA(R) = R. Our simple extension of the nest operation, however,
invalidates this property in general. Consider two tuples tl = (a, w) and t2 = (a, b); nesting the
second attribute produces t' = {a, {b}). A subsequent un nest will not reproduce tuple t l • The
reason is that there was another tuple (t2) containing the same information in the attributes not
nested, and thus nest did not map tl to (a,0) (t2 is more informative than td. We could think
about a more sophisticated definition of nest, but fortunately for our purpose the current definition
is sufficient, because the above situation does not occur as we see from the following lemmas.

LEMMA 3.2. Iff Vt E val(R) : (t(A) = w => ~t' E val(R) : t'(attr(R) \ A) = t(attr(R) \ A»
then

•
LEMMA 3.3. Let t E val(R 181 S) and a, a' E attr(R) \ attr(S), then

tea) = w ~ tea') = w •
COROLLARY 3.1.

R 181 S =]ZxvX=(attr(R)\attr(S»R 181 S •
This means, nesting member tuples as a subrelation into the corresponding owner tuples is

always invertible. The following lemma captures the well known fact that outer join is always
invertible:

388

LEMMA 3.4.
R = 1I'attr(R) Pattr(R) (R 181 S) •

With lemma 3.3 we further conclude that instead of checking all attributes of R against null values
it is sufficient to check either one except the join attributes:

COROLLARY 3.2.

Va E attr(R) \ attr(S): R = 1I'attr(R)Pa(R 181 S) •
For our example 3.1 we can therefore define the inversion of the mapping C -+ I by:

EXAMPLE 3.1 (CONT 'D) •

IRl = V1R2=(C,\ct>(CRl I8IC~) ~ CRl = 1I'c,Pc,(IRd

C~ = 1I'C.PC.'jiIR.(I~) = 1I'C.PIR.(IRd

Notice that the simplification CR1 1I'c,(IRtl is valid, if the foreign key condition is main-
tained on level C, because in this case no "member" tuples would be accepted with a foreign key
pointing to a nonexistent "owner". As we did not allow null values in C-relations, there is also no
member without an owner. Further we see from example 3.1 that p-operations are sufficient in the
mapping I -+ C, if we only unnest those subrelations of IRt needed to reconstruct a certain CRi'

Our basic idea for the optimization step described in sections 4 and 5 is the following: use
a global unnest-operation, i.e. one that procudes the equivalent INF relation (e.g. UNNEST· in
[FT83] p. in [RKS85a]) in all of the equations for the mapping I -+ C. This yields the same
INF relation p*(IRt) in all equations for conceptual relations that are contained in a common IRj.
The benefit is, that to eliminate redundant joins from queries involving such conceptual relations,
we could then utilize INF techniques. The following consideration explains, why we introduced 'ji
and will use 'ji* in the sequel. Consider an owner relation CR1 with two members C~, CR3 • A
tuple in IRI (with both joins materialized, i.e. subrelations [~, [R3) that has members in [~
but not in [R3 would disappear, if we used p •. Hence, we use 'ji* preserving all tuples and decide
on nulls afterwards using the p-operation.

In order to prepare for the next theorem we give a lemma, that allows to bring the equations
defining C -+ [into a canonical form.

LEMMA 3.5. Let X ~ attr(R) \ attr(S), then

•
Any internal relation is obtained by a sequence of "outer join followed by nest"-operations, i.e.

According to lemma 3.5 this can be rewritten as [Ri = V1Ril =(CRh \CRi.)(V",(v", (CR;.I8I(···18I
... (- ..))))), i.e. a sequence of outer joins followed by a sequence of nest operations. Now it is easy
to prove theorem 3.1, capturing the invertibility proposition of our conceptual to internal mapping.
The inversion can be done by equations in a canonical form using global unnest:

389

THEOREM 3.1. GifJen C = {C R1 , ••• , C R,.} a set of conceptual relations and I a correspond
ing internal representation I E ir(C). For 1 ~ i ~ n let I Rj, be the root of the tree in for(I)
containing node IR;, then:

•
4. Algebraic Equivalences
For the classical relational model a large scale of algebraic equivalences have been studied, a

summary of the results is contained e.g. in [Ul82]. [ABU79, ASU79] have given lossless join

properties that can be used to eliminate redundant joins from queries expressed in INF algebra
or the like. Concerning the NF2 relational model [JS82] presented some first equivalence rules
capturing inversion of nest by unnest and vice versa, commutativity of nest and unnest and a few

other properties. The work of [FT83] gives a comprehensive overview of positive and negative
results on commuting nest/unnest with the other algebraic operators. In case of an extended
algebra for NF2 relations like [AB84, SS84] first results have also been presented. Obviously, with

an extended algebra we can prove some more properties than with a standard algebra enriched by
nest and un nest only. Here we summarize the main equivalence rules that can be used to efficiently
optimize and process select-project-join (SP J-) queries on level C by NF2 queries on level I.

As p-operations are contained in the expressions we need additional transformation rules for
commuting p and the other algebraic operators. These are given in subsequent lemmas. We also

need criteria for deciding whether the join of two projections equals the original relation (lossless
join property) when reduction operations are involved. This can be regarded as an extension of the
results from [ABU79]. Theorem 4.1 states the corresponding proposition. Using these results, we

can further prove that neglecting the reductions p during the join elimination phase and inserting

them in the right places afterwards yields correct results.

In the following we will use X, Y, ... to denote sets of attributes and adopt the usual short
notation XY for the union Xu Y. First we state properties on commuting p with other algebra
operations, notice that p is some special kind of selection.

LEMMA 4.1.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

LEMMA 4.2.

pxpyR = pxyR

pXO'FR = O'FPXR

Px1fyR = 1fYPX R

Pxy(R X S) = pxR x pyS

pxy(R!XI S) = PxR!XI pyS

<=>X~Y

<=> X ~ attr(R) 1\ Y ~ attr(S)

<=> X ~ attr(R) 1\ Y ~ attr(S)

lIa=(X)PX R = O'a,t0 I1a=(X)R

pxlia=(X)R = lia=(x)O'a,teR = l-'a=(x)R

1fxy(R !XI S) = 1fxR !XI1fyS <=> X n Y = attr(R) n attr(S)

Proof: Substitute 1f,0' and x for !XI and apply the equivalences known from [Ul82].

•

•
Combining the two lemmas we derive the following theorem giving a lossless join criterion for

project-join mappings containing p's:

390

THEOREM 4.1. Let X, X', Y, Y' ~ attr(R), then

Proof:

X n X' = XY n X'Y' 1\ (X n X' -+-+ XY V X n X' -+-+ X'Y')

1rxpyR lx11rx.py.R = 1rX (1rXYPY R) lx11rx·(1rx.y.py.R)

= 1rxx.(1rXYPY R lx11rx·y·py·R)

~ X n X' = XY n X'Y' (Lemma 4.2)

= 1rxx.(PY1rXY R IxI py.1rx.y.R)

= 1rxx.pyy.(1rxy R lx11rx·y·R)

~ XY n X'Y' -+-+ XY or X'Y' ([ABU79])

= 1rxx·pyy·R

We applied lemma 4.1 in the 3rd, 4th and 6th equation. The preconditions for the 2nd and 5th
equations conclude the proof. •

Provided with the above equivalences we can transform user queries from the conceptual to the
internal level by substituting the equations for GBi (from I -+ G) into the G-query. Optimization
and join elimination can be performed by applying these results. In this "verbatim" approach,
however, we have to deal with reduction operations (p). Thus we have to develop a new formula
manipulation system, or whatever method else. Our claim in the beginning was, that traditional

lNF techniques would suffice. In order to prove this statement we give a variation of the lossless
join condition in the following. Due to this new criterion we can rely on join elimination that does
not consider p's. The only prerequisite is that we introduce the appropriate reductions into the
optimized query expressions afterwards.

THEOREM 4.2. For some conceptual relations GRl,G~ internally stored in IR, with at

tribute sets Gl , G2 respectifJely the following equifJalence holds:

(i)

(ii)

1rx (1rc. Pc. Ji* IR) 1x11rx.(1rc.Pc.Ji* IR) = 1rxx.1rc.c.Pc.c.Ji* IR

~

1rxJi* IR lx11rx.Ji* IR = 1rxx.Ji* IR

Proof: (i) '* (ii): Easy (and not used in the following)
(i) <= (ii):

(ii) '* X n X' -+-+ X or X n X, -+-+ X, in Ji* IR

The outer join does not introduce any MVDs, except the following:

391

Hence, X n X' -+-+ X or X n X' -+-+ X' must be valid MVDs in C. As C was claimed to be in
4NF there are no nontrivial MVDs except key conditions. Thus there must exist CRI , CR,;, such
that X ~ CI , X' ~ C2 , with Xn X' = CI n C2 and XnX' -+-+ CI or XnX' -+-+ C2 • From this
and theorem 4.1 we conclude (li) =? (i) which completes the proof. •

5. An NF2 Algebraic Query Optimizer
In this section we will emphasize the practical issues of our theory. The conclusion will be that in
fact INF optimization is the essential part needed in our proposed environment. However, before
we can outline a prototype implementation we have to state a few more algebraic equivalences
involving the nested NF2 algebra from 18884J.

From theorem 4.2 we conclude that substituting the expression from I -+ C and applying
INF join elimination plus rules to move selections and projections down the expression tree (which
reduces the size of intermediate results and is a standard algebraic optimization technique-see
[Ul82J) yields an optimized "quasi-1NF" relational expression of the form

E = !ru(IXI(!ru(pji* I Rj)))

that does not contain redundant joins anymore. By the term "quasi-lNF" we indicate the fact,
that the essential part of the expression uses only INF algebra. However, due to the presence of
ji* we actually have an NF2 expression.

The strategy now is to push the unnest operations up in the query's parse tree in order to
utilize the power of the NF2 algebra. In fact we will not apply ji*, but rather the necessary ji's only.
As a result we will observe a single type of NF2 expressions resulting from this process, namely
single pass processible queries (or joins of those to be exact). For the scope of this paper we will
only give the rules to commute ji and the u and fr operations that follow in the above expression
E. 80me types of joins with subrelations can be performed within the NF2 algebra, results on
this topic will be presented in a forthcomming report. The transformation rules for p and friO' are
given in the following theorems, which are stated without proofs, because the formalism needed
was left out in this paper.

THEOREM 5.1. 1/ F = Fl /\ F2 where Fl refers to attributes in attr(R) \ {A} and F2 refers
to attr(A}, then

•
THEOREM 5.2. 1/ L = L'L" where L' ~ attr(R) \ A, L" ~ attr(A), then

•
We give example applications of these transformation rules in the following.

392

~

PAll O'A,=3 (PAl (1I'[A2' 1I'[O'A111=s(All)](Ad](R»)

EXAMPLE 5.2. Here we illustrate the treatment of the reductions p. Let sg(C) = {CR1 -+

C~} and J = {JR1((attr(CRd),J~(attr(C~) \ attr(CRd))}. This means the join between
the "owner· CR1 and the "'member· C~ is materialized. Consider the following user query:

Notice that Qc "I CR1 in general! Following are the equations defining C -+ J and J -+ C:

C -+ J: JR1 = VIR,=(C,\CI) (CR1 t8I C~)

J -+ C: CR1 = 1I'CI Pc, Ji' JR1

C~ = 1I'c, Pc, Ji' JR1

Knowing C1 n C2 -+ C1, we conclude from theorem 5.1 that the join is redundant, and hence Qc

can be simplified to 1I'CIPCIC,Ji' JR1. The following is a derivation of this result by application of
the rules from section 4:

Qc = 1I'ci (CR1 IX! C~)

= 1I'ci (1I'C IPCl Ji' JR1 IXI 1I'c,Pc,Ji' JR1)

= 1I'ci (PCI(1I'Cl Ji' JRd IX! Pc, (1I'c,Ji' JRd)

= 1I'CI Pclc, (1I'c l Ji' JR1 1X11I'c,Ji' JR1)

= 1I'ci Pclc, 1I'clc,Ji' J R1

= 1I'c i Pclc, Ji' JR1

= 1I'ci PCI Ji' O'c,~0 J R1

= 1I'ci PCI O'C,~0 JR1

= 1I'ci O'c,~0 JR1

the last equation holds if foreign key conditions are maintained, the fifth one is valid because of the
FD given. Notice that without the p-operation we would have concluded Qc = 1I'XI1l'CIC,Ji' J R1 =
1I'cl Ji' JR1 = CR1, which is not correct!

EXAMPLE 5.3. Now we derive the result already presented in the introductory example. The
equations defining the mappings between conceptual and internal mappings are:

C -+ J: Jdept = veno,ename,.al:lemp (Dept t8I Emp)

J -+ C: Dept = 1I'dno,dname,budgetPdno,dname,budgetJi' Jdept

Emp = 1I'eno,ename,.al,dnoPeno,ename,.al,dnoJi' Jdept

393

The transformation of the query can be done as follows:

1I"dname,oa'O'ename='Smith,(Dept IXI Emp)

= 1t" dname,8al0' ename='Smith'

(1I"dno,dname,bud.getPdno,dname,bud.get"ji* 1 dept 1X11I" eno,ename,oal,dnoPeno,ename.oa'.dno"ji* 1 dept)

::::: 1r dname"alD" ename='Smith' Pdno,tlname,budget,eno,ename,.al

(1I"dno,dname. budllet"ji* Idept 1X11I"eno.ename,oa"dno"ji* Idept)

:: 11" dname.oa'O' ename='Smith' Pdno,dname,budllet,eno,ename,oa'(1I"dno,dname,bud.get,eno,ename,oa,"ji* 1 dept)

= 1I"dname,oa'O'ename='Smith'Pdno,dname,bud.get,eno,ename,oa,("ji* Idept)

1I"dname,oa'O'ename='Smith'Pdname,oa,("ji* Idept)

Pdname,oa,1I" dname,oa'O' ename='Smith' ("ji* 1 dept)

= Pdname,oa,1I"dname,oal"ji* 1I"[dno, dname, budget, O'ename='Smith,(lemp»)(1 dept)

= Pdname,oal"ji*1I"!dname, 1I"[sal](Iemp)]1I"[dno, dname, budget, O'ename='Smith·(1 emp)I(ldept)

Pdname,oa,"ji* 1I"!dname, 1I"[sal]O'ename='smitb'{1 emp)\(1 dept)

= Pdname"ji*0'Iemp¢,1I"!dname, 1I"[sal]O'ename='Smith,(lemp)](ldept)

Notice that we did not check against null values in the formulation given in the introduction, i.e.
the reduction operation and the selection on Iemp were omitted there.

One of the last transformations in the above example combined two subsequent NF2 projections
into one. The following equivalence states the corresponding extension of the classical cascaded
projections rule from [Ul82J for our case of nested projections:

LEMMA 5.1. Let exprl, expr2 be algebraic expressions (operator sequences), then

•
Now we are able to state the main result of our work contained in this pa.per. As claimed in

the beginning, using NF2 relations internally does not introduce additional complexity to the join
elimination process and thus to algebraic optimization.

THEOREM 5.3. Given C in "NF, 1 as N.F2 relations obtained by de normalization and nesting
according to definitions 9.!!, 9.9. Any conjunctive SPJ (select-project-join) query on C can be
optimized and transformed to I using only lNF optimization techniques and additionally the rules
in theorems 5.1, 5.!! and lemma 5.5. Whenever all joins contained in the conceptual query are
materialized internally, this results in only one single pass proeessible N.F2 query. •

As the applications of the transformation rules from above are straightforward and can be
realized efficiently, the complexity of the whole process is dominated by join elimination (i.e. the
INF optimization). Hence, with the appropriate restrictions on conceptual queries one can for
instance optimize in polynominal time using tableaux techniques [ASU79J.

A prototype a.lgebraic optimizer has already been implemented in PROLOG. The optimization
algorithm can be sketched as follows:

394

Step 1 - Analyse the parse tfee.
If there are two leaf nodes referring to the same internal relation, consider the projections
that occur on the path from the leaves to their lowest common ancestor in the tree and
find out, whether the join is redundant (applying knowledge about keys, FD's and
MVD's).

Step £ - Move 71" and (1 a.& far down the tree as possible.
Step 9 - Consider the ji"'-operations: apply the necessary unnests and move]I up the tree.

Implicitely, step 1 applies rules from [Ul82J to move selections up in the tree past joins- in
order to check redundancy of the join according to [ASU79]. However, as selections can always be
moved up (but not down), we do not actually transform the tree but simply ignore selections, when
we decide whether a join is redundant. If a join is eliminated, the selections from both subtrees
are conjunctively combined. In step 2 we perform the usual optimization, trying to move (1 (and
71") down the parse tree. Finally, step 3 transforms the optimized "quasi INF" query to nested NF2
algebra. Step 3 is the only one using the rules for NF2 algebra operations, whereas the others are
standard INF techniques. In step 3 we also introduce the necessary p-operations, or apply the
corresponding (1 (eliminating empty subrelations before the unnest).

Allthough we used PROLOG in this first implementation and added some more equivalences
than the ones presented here-concerning disjunctions in selection formulae-response times of the
optimizer are fairly short (An adhoc test in a multi-user environment on a SIEMENS mainframe,
optimizing the query from example 5.3-including dialogue handling-took about 1.7sec CPU
time and < 5sec response time.) Of course it is known that in general optimization is NP-complete
[ASU79J. Nevertheless computation time seems to be tolerable in all practical cases.

6. Conclusion
The use of unnormalized relations as a storage structure for 4NF relations has been proposed. As
a consequence, the mapping between the differing conceptual and internal database layouts could
be defined algebraically. A series of new equivalence rules among algebraic expressions containing
unnest and reduction operators as well as NF2 selections and projections were presented. Based on
these equivalences we proved the applicability of our approach. Algebraic optimization needed for
elimination of materialized, hence redundant joins can be performed utilizing only INF techniques
with little additional information for the case of NF2 relations. Moreover, whenever queries do not
need any join operations internally, because all joins contained in the user query are materialized,
a simple, efficiently evaluable type of NF2 expressions results from the transformation. We also
sketched a first implementation having proven practicability of the results presented.

From the above observation we also conclude some justification of the way our algebra was
desigued. Allthough [AB84] Use a different type of algebra for their Verso model, they come to a
similar result. [Bi85] also states that select-projection-join queries can be mapped to a single "Verso
superselection" under some circumstances. While parts of the Verso model will be implemented
in hardware (the Verso DB machine [BRS82, V86]), we are pursuing a software implementation.
A database kernel system, called DASDBS-DArmStadt DataBase System- is currently being
implemented at the Technical University of Darmstadt [DOPSSW85, Sche86, SW86J. The ar
chitecture is partitioned into an application independent kernel, and several application specific
front-ends ("DBS family"). All functions that are exspected to be common to the various applica
tion areas planned (conventiona14NF interface, geographic applications, knowledge representation

395

support) will be implemented in the kernel. Currently the kernel will support NF2 relations a.nd
single pass expressions. The application specific front-end for the conventional (flat) relational
interface will be built on top of this kernel. The results presented in this paper are the theoretical
foundation of the query optimizer contained in this "standard applications module" .

Related work for the future includes treatment of disjunctive selection criteria, utilization of
nested NF2 joins and more sophisticated conceptual to internal mappings reflecting e.g. n : m
relationships. With little additional (foreign) key redundancy we could support access in a more
symmetrical way than by splitting into disjoint hierarchies. The algebraic manipulations needed
to optimize in the presence of the new internal structures can easily be added to our solution.

Acknowledgement

Thanks to Hans-Jorg Schek for initiating my work on this subject. Bernd Paul and Gerhard
Weikum have contributed by clarifying discussions on the contents and presentation of this paper.
Liz Klinger needed little TEXnical support to do the typing.

7. References

[AB84] s. Abiteboul, N. Bidoit: Non First Normal Form Relations to Represent Hier
archically Organised Data, Proc. 3rd ACM PODS, Waterloo, Ontario, Canada,
1984

[ABU79] A.V. Aho, C. Beeri, J.D. Ullman: The Theory of Joins in Relational Databases,
ACM TODS, Vol. 4:3, 1979

[ASU79) A.V. Aho, Y. Sagiv, J.D. Ullman: Equivalences Among Relational Expressions,
SIAM Journ. of Computing, Vol. 8:2, 1979

[Bi8S] N. Bidoit: Efficient Evaluation of Queries Using Nested Relations, Techn. Report
INRIA, 1985

[BR84] W. Benn, B. Radig: Retrieval of Relational Structures for Image Sequence Analy
sis, Proc. 10th VLDB Conference, Singapore, 1984

[BRS82] F. Bancilhon, P. Richard, M. Scholl: On Line Processing of Compacted Relations,
Proc. 8th VLDB Conference, Mexico, 1982

[DOPSSW85] U. Deppisch, V. Obermeit, H.-B. Paul, H.-J. Schek, M.H. Scholl, G. Weikum: The
Storage Component of a Database Kernel System, Techn. Rep. DVSI-1985-Tl,
TU Darmstadt,
Short German version in: Proc. GI Conf. on DBSs in Office, Technical and Scien
tific Applications, Karlsruhe, 1985, IFB 94, Spri.nger, german title: Ein Subsystem
zur stabilen Speicherung versionenbehafteter, hierarchisch strukturierter Tupel

[DPS86j U. Deppisch, H.-B. Paul, H.-J. Schek: A Storage System for Complex Objects,
Proc. Int'l Workshop on Object-Oriented Database Systems, Pacific Grove, CA,
1986

[Fa77] R. Fagin: Mulitvalued Dependencies and a New Normal Form for Relational Data
bases, ACM TODS, Vol. 2:3, 1977

[FG85] P.C. Fischer, D. van Gucht: Determining When a Structure is a Nested Relation,
Proc. 11th VLDB Conference, Stockholm, 1985

IFT83j P.C. Fischer, S.J. Thomas: Operators for Non-First-Normal-Form Relations, Proc.
IEEE COMPSAC 1983

[Gu85] D. van Gucht: Theory of Unnormalized Relational Structures, Ph. D. Thesis, also
available as Techn. Rep. CS-85-o7, Vanderbilt University, Nashville, TN, 1985

[Ja8S] G. Jaeschke: Recursive Algebra for Relations with Relation Valued Attributes,
Techn. Rep. TR 85.03.002, IBM Heidelberg Scientific Centre, 1985

[Ja86]

[JS82]

[Ma83]

IMSW86]

[OY85]

[RKS85a]

[RKS85b]

[Sche85]

[Sche86]

[SLTC82]

[SP82]

[SR86]

[SS80]

[SS81J

[SS83]

[SS84]

[SW86]

[V86]

[U182J

396

G. Jaeschke: Algebraic Expressions for Higher Order Relational Databases, unpub
lished manuscript
G. Jaeschke, H.-J. Schek: Remarks on the Algebra of Non-First-Normal-Form Re
lations, Proc. 1st ACM PODS, Los Angeles, 1982
D. Maier: The Theory of Relational Databases, Pitman Publishing Ltd., London,
1983
F. Maher, H.-J. Schek, W. Waterield: A Database Kernel System for Geoscien
tific Applications, to appear in: Proc. 2nd Int'l Symp. on Spatial Data Handling,
Seattle, 1986
Z.M. Ozsoyoglu, L.Y. Yuan: A Normal Form for Nested Relations, Proc. 4th ACM
PODS, 1985
M.A. Roth, H.F. Korth, A. Silberschatz: Extended Algebra and Calculus for .,lNF
Relational Databases, Techn. Rep. TR-84-36, Revised Version, University of Texas
at Austin, 1985
M.A. Roth, H.F. Korth, A. Silberschatz: Null Values in ..,lNF Relational Data
bases, Techn. Rep. TR-85-32, University of Texas at Austin, 1985
H.-J. Schek: Towards a Basic Relational NFl! Algebra Processor, Proc. Int'l Conf. on
FODO, Kyoto, 1985
H.-J. Schek: Research Activities of the DVSI-Group 1989-1985, Techn. Rep. DVSI-
1986-T2, TU Darmstadt, 1986
N.C. Shu, V.Y. Lum, F.C. Tung, C.L. Chang: Specification of Forms Processing
and Business Procedures for Office Automation, IEEE TOSE, VoL SE-8:5, 1982
H.-J. Schek, P. Pistor: Data Structures for an Integrated Database Management
and Information RetrietJal System, Proc. 8th VLDB Conference, Mexico, 1982
H.-J. Schek, U. Reimer: A Frame Representation Model and its Mapping to NFl!
Relations, submitted for publication, 1986
M. Schkolnik, P. Sorenson: Denormalization: A Performance Oriented Database
Design Technique, Proc. AICA Conf., Bologna, Italy, 1980
M. Schkolnik, P. Sorenson: The Effects of Denormalization on Database Perfor
mance, Res. Rep. RJ3082 (38128), IBM Res. Lab. San Jose, Ca., 1981
H.-J. Schek, M.H. Scholl: Die NFI!-Relationenalgebra zur einheitlichen Manipula
tion externer, konzeptueller und interner DatenstruK:turen, in: J.W. Schmidt (ed.):
Sprachen fur Datenbanken, IFB 72, Springer, 1983
H.-J. Schek, M.H. Scholl: The Relational Model with Relation-Valued Attributes,
Techn. Rep. DVSI-1984-Tl, TU Darmstadt, published in: Information Systems,
Vol. 11:2, 1986
H.-J. Schek, G. Weikum: DASDBS: Concepts and Architecture of a Database Sys
tem for AdtJanced Applications, Techn. Rep. DVSI-1986-Tl, TU Darmstadt, 1986
Verso, J. (pen name for the Verso team): Verso: A Database Machine Based on
Non-First-Normal-Form Relations, INRIA Report, 1986
J.D. Ullman: Principles of Database Systems (end ed.), Computer Science Press,
Rockville, MD, 1982

