
Theoretical Foundations of Active Learning

Steve Hanneke

May 2009

CMU-ML-09-106

Report Documentation Page
Form Approved

OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington

VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE

MAY 2009
2. REPORT TYPE

3. DATES COVERED

 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE

Theoretical Foundations of Active Learning

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Carnegie Mellon University,School of Computer Science,Machine

Learning Department,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

Same as

Report (SAR)

18. NUMBER

OF PAGES

160

19a. NAME OF

RESPONSIBLE PERSON
a. REPORT

unclassified

b. ABSTRACT

unclassified

c. THIS PAGE

unclassified

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18

Theoretical Foundations of Active Learning

Steve Hanneke

May 2009

CMU-ML-09-106

Machine Learning Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Avrim Blum

Sanjoy Dasgupta

Larry Wasserman

Eric P. Xing

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright c© 2009 Steve Hanneke

This research was sponsored by the U.S. Army Research Office under contract no. DAAD190210389 and the

National Science Foundation under contract no. IIS0713379. The views and conclusions contained in this document

are those of the author and should not be interpreted as representing the official policies, either expressed or implied,

of any sponsoring institution, the U.S. government or any other entity.

Keywords: Active Learning, Statistical Learning Theory, Sequential Design, Selective Sam-

pling

This thesis is dedicated to the many teachers who have helped me along the way.

iv

Abstract

I study the informational complexity of active learning in a statistical learning

theory framework. Specifically, I derive bounds on the rates of convergence achiev-

able by active learning, under various noise models and under general conditions

on the hypothesis class. I also study the theoretical advantages of active learning

over passive learning, and develop procedures for transforming passive learning al-

gorithms into active learning algorithms with asymptotically superior label com-

plexity. Finally, I study generalizations of active learning to more general forms of

interactive statistical learning.

vi

Acknowledgments

There are so many people I am indebted to for helping to make this thesis, and

indeed my entire career, possible. To begin, I am grateful to the faculty of Webster

University, where my journey into science truly began. Support from the teachers I

was privileged to have there, including Gary Coffman, Britt-Marie Schiller, Ed and

Anna B. Sakurai, and John Aleshunas, to name a few, inspired in me a deep curiosity

and hunger for understanding. I am also grateful to my teachers and colleagues at the

University of Illinois. In particular, Dan Roth deserves my appreciation for nothing

less than teaching me how to do effective research; my experience as an undergrad-

uate working with Dan and the other members of his Cognitive Computation Group

shaped my fundamental approach to research.

I would like to thank several of the professors at Carnegie Mellon. This institu-

tion is an exciting place to be for anyone interested in machine learning; it has been

an almost ideal setting for me to develop a mature knowledge of learning theory, and

is generally a warm place to call home (metaphorically speaking). I would specif-

ically like to thank my advisors (past and present), Eric Xing, Larry Wasserman,

and Steve Fienberg, whose knowledge, insights, and wisdom have been invaluable

at various times during the past four years; I am particularly grateful to them for al-

lowing me the freedom to pursue the topics I am passionate about. Several students

at Carnegie Mellon have also helped to enrich this experience. In particular, Nina

Balcan has been a source for many many interesting, insightful and always exciting

discussions.

In addition to those mentioned above, I am also grateful to several colleagues

who have been invaluable at times through insightful comments, advice, or discus-

sions, and who have generally made me feel a welcomed part of the larger learning

theory community. These include John Langford, Sanjoy Dasgupta, Avrim Blum,

Rob Nowak, Leo Kontorovich, Vitaly Feldman, and Elad Hazan, among others.

I would also like to thank Eric Xing, Larry Wasserman, Avrim Blum, and Sanjoy

Dasgupta for serving on my thesis committee.

Finally, on a personal note, I would like to thank my parents, grandparents,

brother, and all of my family and friends, for helping me understand the value of

learning while growing up, and for their continued unwavering support in all that I

do.

Contents

1 Notation and Background 1

1.1 Introduction . 1

1.2 A Simple Example: Thresholds . 2

1.3 Notation . 4

1.4 A Simple Algorithm Based on Disagreement 8

1.5 A Lower Bound . 10

1.6 Splitting Index . 11

1.7 Agnostic Active Learning . 12

2 Rates of Convergence in Active Learning 13

2.1 Introduction . 13

2.1.1 Tsybakov’s Noise Conditions . 15

2.1.2 Disagreement Coefficient . 16

2.2 General Algorithms . 20

2.2.1 Algorithm 1 . 20

2.2.2 Algorithm 2 . 22

2.3 Convergence Rates . 23

2.3.1 The Disagreement Coefficient and Active Learning: Basic Results 23

2.3.2 Known Results on Convergence Rates for Agnostic Active Learning . . . 25

2.3.3 Adaptation to Tsybakov’s Noise Conditions 26

2.3.4 Adaptive Rates in Active Learning . 28

2.4 Model Selection . 32

2.5 Conclusions . 35

2.6 Definition of Ê . 35

2.7 Main Proofs . 36

2.7.1 Definition of r0 . 37

2.7.2 Proofs Relating to Section 2.3 . 38

2.7.3 Proofs Relating to Section 2.4 . 44

2.8 Time Complexity of Algorithm 2 . 48

2.9 A Refined Analysis of PAC Learning Via the Disagreement Coefficient 50

2.9.1 Error Rates for Any Consistent Classifier 51

2.9.2 Specializing to Particular Algorithms 53

viii

3 Significance of the Verifiable/Unverifiable Distinction in Realizable Active Learning 55

3.1 Introduction . 56

3.1.1 A Simple Example: Intervals . 57

3.1.2 Our Results . 59

3.2 Background and Notation . 60

3.2.1 The Verifiable Label Complexity . 61

3.2.2 The True Label Complexity . 62

3.3 Strict Improvements of Active Over Passive . 63

3.4 Decomposing Hypothesis Classes . 65

3.5 Exponential Rates . 67

3.5.1 Exponential rates for simple classes . 68

3.5.2 Geometric Concepts, Uniform Distribution 68

3.5.3 Composition results . 72

3.5.4 Lower Bounds . 74

3.6 Discussion and Open Questions . 78

3.7 The Verifiable Label Complexity of the Empty Interval 80

3.8 Proof of Theorem 3.7 . 82

3.9 Proof of Theorem 3.8 . 83

3.10 Heuristic Approaches to Decomposition . 84

3.11 Proof of Theorem 3.5 . 85

4 Activized Learning: Transforming Passive to Active With Improved Label Complexity 93

4.1 Definitions and Notation . 93

4.2 A Basic Activizer . 95

4.3 Toward Agnostic Activized Learning . 99

4.3.1 Positive Results . 100

4.4 Proofs . 103

4.4.1 Proof of Theorems 4.3, 4.4, and 4.8 . 103

5 Beyond Label Requests: A General Framework for Interactive Statistical Learning122

5.1 Introduction . 123

5.2 Active Exact Learning . 124

5.2.1 Related Work . 128

5.2.2 Cost Complexity Bounds . 129

5.2.3 An Example: Discrete Intervals . 132

5.3 Pool-Based Active PAC Learning . 133

5.3.1 Related Work . 135

5.3.2 Cost Complexity Upper Bounds . 135

5.3.3 An Example: Intersection-Closed Concept Spaces 137

5.3.4 A Cost Complexity Lower Bound . 140

5.4 Discussion and Open Problems . 141

Bibliography 144

ix

Chapter 1

Notation and Background

1.1 Introduction

In active learning, a learning algorithm is given access to a large pool of unlabeled examples, and

is allowed to request the label of any particular examples from that pool, interactively. The ob-

jective is to learn a function that accurately predicts the labels of new examples, while requesting

as few labels as possible. This contrasts with passive learning, where the examples to be labeled

are chosen randomly. In comparison, active learning can often significantly decrease the work

load of human annotators by more carefully selecting which examples from the unlabeled pool

should be labeled. This is of particular interest for learning tasks where unlabeled examples are

available in abundance, but label information comes only through significant effort or cost.

In the passive learning literature, there are well-known bounds on the rate of convergence

of the loss of an estimator, as a function of the number of labeled examples observed [e.g.,

Benedek and Itai, 1988, Blumer et al., 1989, Koltchinskii, 2006, Kulkarni, 1989, Long, 1995,

Vapnik, 1998]. However, significantly less is presently known about the analogous rate in active

learning: namely, the rate of convergence of the loss of an estimator, as a function of the number

of label requests made by an active learning algorithm.

In this thesis, I will outline some recent progress I have been able to make toward understand-

1

ing the achievable rates of convergence by active learning, along with algorithms that achieve

them. I will also describe a few of the many open problems remaining on this topic.

The thesis begins with a brief survey of the history of this topic, along with an introduction

to the formal definitions and notation that will be used throughout the thesis. It then describes

some of my contributions to this area. To begin, Chapter 2 describes some rates of convergence

achievable by active learning algorithms under various noise conditions, as quantified by a new

complexity parameter called the disagreement coefficient. It then continues by exploring an in-

teresting distinction between two different notions of label complexity: namely, verifiable and

unverifiable. This distinction turns out to be extremely important for active learning, and Chap-

ter 3 explains why. Following this, Chapter 4 describes a reductions-based approach to active

learning, in which the goal is to transform passive learning algorithms into active learning al-

gorithms having strictly superior label complexity. The results in that chapter are surprisingly

general and of deep theoretical significance. The thesis concludes with Chapter 5, which de-

scribes some preliminary work on generalizations of active learning to more general types of

interactive statistical learning, proving results at a higher level of abstraction, so that they can

apply to a variety of interactive learning protocols.

1.2 A Simple Example: Thresholds

We begin with the canonical toy example illustrating the potential benefits of active learning.

Suppose we are tasked with finding, somewhere in the interval [0, 1], a threshold value x; we are

scored based on how close our guess is to the true value, so that if we guess x equals z for some

z ∈ [0, 1], we are awarded 1− |x− z| points. There is an oracle at hand who knows the value of

x, and given any point x′ ∈ [0, 1] can tell us whether x′ ≥ x or x′ < x.

The passive learning strategy can be simply described as taking points uniformly at random

from the interval [0, 1] and asking the oracle whether each point is≥ x or < x for every one. After

a number of these random queries, the passive learning strategy chooses its guess somewhere

2

between x′
1 = the largest x′ that it knows is < x, and x′

2 = the smallest x′ it knows is ≥ x (say

it guesses
x′
1+x′

2

2
). By a simple argument, if the passive strategy asks about n points, then the

expected distance between x′
1 and x′

2 is at least 1
n+1

(say for x = 1/2), so we expect the passive

strategy’s guess to be off by some amount ≥ 1
2(n+1)

.

On the other hand, suppose instead of asking the oracle about every one of these random

points, we instead look at each one sequentially, and only ask about a point if it is between the

current x′
1 and the current x′

2; that is, we only ask about a point if it is not greater than a point

x′ known to be ≥ x and not less than a point known to be < x. This certainly seems to be a

reasonable modification to our strategy, since we already know how the oracle would respond

for the points we choose not to ask about. In this case, if we ask the oracle about n points, each

one reduces the width of the interval [x′
1, x

′
2] at that moment by some factor βi. These n factors

βi are upper bounded by n independent Uniform([1/2, 1]) random variables (representing the

fraction of the interval on the larger side of the x′), so that the expected final width of [x′
1, x

′
2] is

at most (3
4
)n ≤ exp{−n/4}. Therefore, we expect this modified strategy’s guess to be off by at

most half this amount.1

As we will see, this modified strategy is a special case of an active learning algorithm I will

refer to as CAL (after its discoverers, Cohn, Atlas, and Ladner [1994]) or Algorithm 0, which

I introduce in Section 1.4. The gap between the passive strategy, which can only reduce the

distance between the guess and the true threshold at a linear rate Ω(n−1), and the active strategy,

which can reduce this distance at an exponential rate 1
2
(3

4
)n, can be substantial. For instance, with

n = 20, 1
2(n+1)

≈ .024 while 1
2
(3

4
)n ≈ .0016, better than an order of magnitude improvement.

We will see several cases below where these types of exponential improvements are achievable

by active learning algorithms for much more realistic learning problems, but in many cases the

proofs can be thought of as simple generalizations of this toy example.

1Of course, the optimal strategy for this task always asks about
x′

1
+x′

2

2 , and thus closes the gap at a rate 2−n.

However, the less aggressive strategy I described here illustrates a simple case of an algorithm we will use exten-

sively below.

3

1.3 Notation

Perhaps the simplest active learning task is binary classification, and we will focus primar-

ily on that task. Let X be an instance space, comprising all possible examples we may ever

encounter. C is a set of measurable functions h : X → {−1, 1}, known as the concept

space or hypothesis class. We also overload this notation so that for m ∈ N and a sequence

S = {x1, . . . , xm} ∈ Xm, h(S) = (h(x1), h(x2), . . . , h(xm)). We denote by d the VC di-

mension of C, and by C[m] = max
S∈Xm

|{h(S) : h ∈ C}| the shatter coefficient (a.k.a. growth

function) value at m [Vapnik, 1998]. Generally, we will refer to any C with finite VC dimension

as a VC class. D is a known set of probability distributions on X × {−1, 1}, in which there

is some unknown target distribution DXY . I also denote by D[X] the marginal of D over X .

There is additionally a sequence of examples (x1, y1), (x2, y2), . . . sampled i.i.d. according to

DXY . In the active learning setting, the yi values are hidden from the learning algorithm until

requested. Define Zm = {(x1, y1), (x2, y2), . . . , (xm, ym)}, a finite sequence consisting of the

first m examples.

For any h ∈ C and distribution D′ over X × {−1, 1}, let erD′(h) = P(X,Y)∼D′{h(X) 6= Y },

and for S = {(x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
m, y′

m)} ∈ (X × {−1, 1})m, define the empirical error

erS(h) = 1
2m

∑m
i=1 |h(x′

i) − y′
i|. When D′ = DXY (the target distribution), we abbreviate the

former by er(h) = erDXY
(h), and when S = Zm, we abbreviate the latter by erm(h) = erZm(h).

The noise rate, denoted ν(C,DXY), is defined as ν(C,D) = infh∈C erD(h); we abbreviate this

by ν when C and D = DXY are clear from the context (i.e., the concept space and target dis-

tribution). We also define η(x;D) = PD(Y = 1|x), and define the Bayes error rate, denoted

β(D), as β(D) = EX∼D[X][min{η(X;D), 1− η(X;D)}], which represents the best achievable

error rate by any classifier; we will also refer to the Bayes optimal classifier, denoted h∗, de-

fined as h∗
D(x) = 21[η(x;D) ≥ 1/2] − 1; again, for D = DXY , we may abbreviate this as

η(x) = η(x;DXY), β = β(DXY), and h∗ = h∗
DXY

.

For concept space H and distribution D′ over X , for any measurable h : X → {−1, 1} and

4

any r > 0, define

BH,D′(h, r) = {h′ ∈ H : PX∼D′(h(X) 6= h′(X)) ≤ r}.

When H = C, D′ = DXY [X], or both are true, we may simply write BD′(h, r), BH(h, r),

or B(h, r) respectively. For concept space H and distribution D′ over X × {−1, +1}, for any

ǫ ∈ [0, 1], define the ǫ−minimal set, H(ǫ;D′) = {h ∈ H : erD′(h) − ν(H,D′) ≤ ǫ}. When

D′ = DXY (target distribution) and is clear from the context, we abbreviate this by H(ǫ) =

H(ǫ;DXY). For a concept space H and distribution D′ over X , define the diameter of H as

diam(H;D′) = suph1,h2∈H PX∼D(h1(X) 6= h2(X)); as before, when D′ = DXY [X] and is clear

from the context, we will abbreviate this as diam(H) = diam(H;DXY [X]).

Also define the region of disagreement of a concept spaceH as

DIS(H) = {x ∈ X : ∃h1, h2 ∈ H s.t. h1(x) 6= h2(x)}.

Also, for a concept spaceH, distributionD overX ×{−1, +1}, ǫ ∈ [0, 1], and m ∈ N, define

the expected continuity modulus as

ωH(m, ǫ;D) = ES∼Dm sup
h1,h2∈H:

PX∼D[X]{h1(X)6=h2(X)}≤ǫ

|(erD(h1)− erS(h1))− (erD(h2)− erS(h2))|.

At this point, let us distinguish between some particular settings, distinguished by the defini-

tion of D as one of the following sets of distributions.

• Agnostic = { all D} (the set of all joint distributions on X × {−1, +1}).

• BenignNoise(C) = {D : ν(C,D) = β(D)}.

• Tsybakov(C, κ, µ) =
{

D : ∀ǫ > 0, diam(C(ǫ;D);D) ≤ µǫ
1
κ

}

, (for any finite parameters

κ ≥ 1, µ > 0).

• Entropy[](C, α, ρ) =
{

D : ∀m ∈ N and ǫ ∈ [0, 1], ωC(m, ǫ;D) ≤ αǫ
1−ρ
2 m−1/2

}

, (for any

finite parameters α > 0, ρ ∈ (0, 1)).

• UniformNoise(C) = {D : ∃α ∈ [0, 1/2), f ∈ C s.t. ∀x ∈ X , PD(Y 6= f(x)|X = x) =

α}.

5

• Realizable(C) = {D : ∃f ∈ C s.t. erD(f) = 0}.

• Realizable(C,DX) = Realizable(C) ∩ {D : D[X] = DX}, (for any given marginal

distribution DX over X).

Agnostic is the most general setting we will study, and is referred to as the agnostic case,

where D is the set of all joint distributions. However, at times we will consider the other

sets, which represent various restrictions of Agnostic. In particular, the set BenignNoise(C)

essentially corresponds to situations in which the lack of a perfect classifier in C is due to

stochasticity of the labels, not model misspecification. Tsybakov(C, κ, µ) is a further restric-

tion, introduced by Mammen and Tsybakov [1999] and Tsybakov [2004], which (informally)

represents those distributions having reasonably low noise near the optimal decision bound-

ary (see Chapter 2 for further explanations). Entropy[](C, α, ρ) represents the finite entropy

with bracketing condition common to the empirical processes literature [e.g., Koltchinskii, 2006,

van der Vaart and Wellner, 1996]. UniformNoise(C) represents a (rather artificial) subset of

BenignNoise(C) in which every point has the same probability of being labeled opposite to

the optimal label. Realizable(C) represents the realizable case, popularized by the PAC model

of passive learning [Valiant, 1984], in which there is a perfect classifier in the concept space;

in this setting, we will refer to this perfect classifier as the target function, typically denoted

h∗. Realizable(C,DX) represents a restriction of the realizable case, which we will refer to as

the fixed-distribution realizable case; this corresponds to learning problems where the marginal

distribution over X is known a priori.

Several of the more restrictive sets above may initially seem unrealistic. However, they

become more plausible when we consider fairly complex concept spaces (e.g., nonparametric

spaces). On the other hand, some (specifically, UniformNoise(C) and Realizable(C,DX))

are basically toy scenarios, which are only explored as stepping stones toward more realistic

assumptions.

We now define the primary quantities of interest throughout this thesis: namely, rates of

6

convergence, and label complexity.

Definition 1.1. (Unverifiable rate) An algorithmA achieves a rate of convergence R̄(·, ·) on

expected excess error with respect to C if for any DXY and n ∈ N, if hn = A(n) is the

algorithm’s output after at most n label requests, for target distributionDXY , then

E[er(hn)]− ν(C,DXY) ≤ R̄(n,DXY).

An algorithmA achieves a rate of convergence R(·, ·, ·) on confidence-bounded excess error

with respect to C if, for any DXY , δ ∈ (0, 1), and n ∈ N, if hn = A(n) is the algorithm’s output

after at most n label requests, for target distributionDXY , then

P(er(hn)− ν(C,DXY) ≤ R(n, δ,DXY)) ≥ 1− δ.

Definition 1.2. (Verifiable rate) An algorithmA achieves a rate of convergence R(·, ·, ·) on an

accessible bound on excess error with respect to C, under D if, for any DXY ∈ D, δ ∈ (0, 1),

and n ∈ N, if (hn, ǫ̂n) = A(n) is the algorithm’s output after at most n label requests, for target

distributionDXY , then

P(er(hn)− ν(C,DXY) ≤ ǫ̂n ≤ R(n, δ,DXY)) ≥ 1− δ.

I will refer to Definition 1.2 as a verifiable rate under D, for short. If ever I simply refer to

the rate, I will mean Definition 1.1. To distinguish these two notions of convergence rates, I may

sometimes refer to Definition 1.1 as the unverifiable rate or the true rate. Clearly any algorithm

that achieves a verifiable rate R also achieves R as an unverifiable rate. However, we will see

interesting cases where the reverse is not true.

At times, it will be necessary to express some results in terms of the number of label requests

required to guarantee a certain error rate. This quantity is referred to as the label complexity, and

is defined quite naturally as follows.

7

Definition 1.3. (Unverifiable label complexity) An algorithmA achieves a label complexity

Λ̄(·, ·) for expected error, if for any DXY , ∀ǫ ∈ (0, 1), ∀n ≥ Λ̄(ǫ,DXY), if hn = A(n) is the

algorithm’s output after at most n label requests, for target distributionDXY , then

E[er(hn)] ≤ ǫ.

An algorithmA achieves a label complexity Λ(·, ·, ·) for confidence-bounded error, if for any

DXY , ∀ǫ, δ ∈ (0, 1), ∀n ≥ Λ(ǫ, δ,DXY), if hn = A(n) is the algorithm’s output after at most n

label requests, for target distributionDXY , then P(er(hn) ≤ ǫ) ≥ 1− δ.

Definition 1.4. (Verifiable label complexity) An algorithmA achieves a verifiable label

complexity Λ(·, ·, ·) for C under D if it achieves a verifiable rate R with respect to C under D

such that, for any DXY ∈ D, ∀δ ∈ (0, 1), ∀ǫ ∈ (0, 1), ∀n ≥ Λ(ǫ, δ,DXY), R(n, δ,DXY) ≤ ǫ.

Again, to distinguish between these definitions, I may sometimes refer to the former as the

unverifiable label complexity or the true label complexity. Also, throughout the thesis, I will

maintain the convention that whenever I refer to a “rate R” or “label complexity Λ,” I refer to the

confidence-bounded variety, and similarly when I refer to a “rate R̄” or “label complexity Λ̄,” in

those cases I refer to the version of the definition for expected error rates.

A brief note on measurability:

Throughout this thesis, we will let E and P (and indeed any reference to “probability”) refer to

the outer expectation and probability [van der Vaart and Wellner, 1996], so that quantities such

as P(DIS(B(h, r))) are well defined, even if DIS(B(h, r)) is not measurable.

1.4 A Simple Algorithm Based on Disagreement

One of the earliest, and most elegant, theoretically sound active learning algorithms for the re-

alizable case was provided by Cohn, Atlas, and Ladner [1994]. Under the assumption that there

exists a perfect classifier in C, they proposed an algorithm which processes unlabeled examples

in sequence, and for each one it determines whether there exists a classifier in C consistent with

all previously observed labels that labels this new example +1 and one that labels this example

8

−1; if so, the algorithm requests the label, and otherwise it does not request the label; after n label

requests, the algorithm returns any classifier consistent with all observed labels. In some sense,

this algorithm corresponds to the very least we could expect of an active learning algorithm, as

it never requests the label of an example it can derive from known information, but otherwise

makes no effort to search for informative examples. We can equivalently think of this algorithm

as maintaining two sets: V ⊆ C is the set of candidate hypotheses still under consideration, and

R = DIS(V) is their region of disagreement. We can then think of the algorithm as request-

ing a random labeled example from the conditional distribution of DXY given that X ∈ R, and

subsequently removing from V any classifier inconsistent with the observed label.

Most of the active learning algorithms we study in subsequent chapters will be, in some

way, variants of, or extensions to, this basic procedure. In fact, at this writing, all of the pub-

lished general-purpose agnostic active learning algorithms achieving nontrivial improvements

are derivatives of Algorithm 0. A formal definition of the algorithm is given below.

Algorithm 0

Input: hypothesis classH, label budget n
Output: classifier hn ∈ H and error bound ǫ̂n

0. V0 ←H, q ← 0
1. For m = 1, 2, . . .
2. If ∃h1, h2 ∈ Vq s.t. h1(xm) 6= h2(xm),
3. Request ym

4. q ← q + 1
5. Vq ← {h ∈ Vq−1 : h(xm) = ym}
6. If q = n, Return an arbitrary classifier hn ∈ Vn and value ǫ̂n = diam(Vn)

One of the most appealing properties of this algorithm, besides its simplicity, is the fact that

it makes extremely efficient use of the unlabeled examples; in fact, supposing the algorithm

processes m unlabeled examples before returning, we can take the classifier hn and label all of

the examples we skipped over (i.e., those we did not request the labels of); this actually produces

a set of m perfectly labeled examples, which we can feed into our favorite passive learning

algorithm, even though we only requested the labels of a subset of those examples. This fact

also provides a simple proof that er(hn) can be bounded by a quantity that decreases to zero (in

9

probability) with n: namely, diam(Vn). However, Cohn et al. [1994] did not provide any further

characterization of the rates achieved by this algorithm in general. For this, we must wait until

Chapter 2, where I provide the first general characterization of the rates achieved by this method

in terms of a quantity I call the disagreement coefficient.

1.5 A Lower Bound

When beginning an investigation into the achievable rates, it is natural to first ask what we can

possibly hope to achieve, and what results are definitely not possible. That is, what are some

fundamental limits on what this type of learning is capable of. This type of question was inves-

tigated by Kulkarni et al. [1993] in a more general setting. Informally, the reasoning is that each

label request can communicate at most one bit of information. So the best we can hope for is

something logarithmic in the “size” of the hypothesis class. Of course, for infinite hypothesis

classes this makes no sense, but with the help of a notion of cover size, Kulkarni et al. [1993]

were able to prove the analogous result.

Specifically, let N(ǫ) be the size of the smallest set V of classifiers in C such that ∀h ∈

C, ∃h′ ∈ V : PX∼D[h(X) 6= h′(X)] ≤ ǫ, for some distribution D over X . Then any achievable

label complexity Λ has the property that ∀ǫ > 0, sup
DXY ∈Realizable(C,D)

Λ(ǫ, δ,DXY)≥ log2[(1−δ)N(2ǫ)].

Since we can often get a reasonable estimate of N(ǫ) by its distribution-free upper bound

2
(

2e
ǫ

ln 2e
ǫ

)d
[Haussler, 1992], we can often expect our rates to be at best exp {−cn/d} for some

constant c. In particular, rather than working with N(ǫ) in the results below, I will typically

formulate upper bounds in terms of d; in most of these cases, some variant of log N(ǫ) could

easily be substituted to achieve a tighter bound (by using the cover as a hypothesis class instead

of the full space), closer in spirit to this lower bound.

10

1.6 Splitting Index

Over the past decade, several special-purpose active learning algorithms were proposed, but

notably lacking was a general theory of convergence rates for active learning. This changed in

2005 when Dasgupta published his theory of splitting indices [Dasgupta, 2005].

As before, this section is restricted to the realizable case. Let Q ⊆ {{h1, h2} : h1, h2 ∈ C}

be a finite set of unordered pairs of classifiers from C. For x ∈ X and y ∈ {−1, +1}, define

Qy
x = {{h1, h2} ∈ Q : h1(x) = h2(x) = y}. A point x ∈ X is said to ρ-split Q if

max
y∈{−1,+1}

|Qy
x| ≤ (1− ρ)|Q|.

We sayH ⊆ C is (ρ, ∆, τ)-splittable if for all finite Q ⊆ {{h1,h2}⊆C :P(h1(X) 6=h2(X))>∆},

P(X ρ-splits Q) ≥ τ.

A large value of ρ for a reasonably large τ indicates that there are highly informative examples

that are not too rare. Dasgupta effectively proves the following results.

Theorem 1.5. For any VC class C, for some universal constant c > 0, there is an algorithm

with verifiable label complexity Λ for Realizable(C) such that, for any ǫ ∈ (0, 1), δ ∈ (0, 1),

and DXY ∈ Realizable(C), if B(h∗, 4∆) is (ρ, ∆, τ)-splittable for all ∆ ≥ ǫ/2, then

Λ(ǫ, δ,DXY) ≤ cd
ρ
log d

ǫδτ
log 1

ǫ
.

The value ρ has been referred to as the splitting index. It can be useful for quantifying

the verifiable rates for a variety of problems in the realizable case. For example, Dasgupta

[2005] uses it to analyze the problem where C is the class of homogeneous linear separators in d

dimensions, and DXY [X] = D is the uniform distribution on the unit d-dimensional sphere. He

shows that this problem is (1/2, ǫ, ǫ)-splittable for any ǫ > 0 for any target in C. This implies a

verifiable rate for Realizable(C,D) of

R(n, δ,DXY) ∝ d

δ
· exp

{

−c′
√

n

d

}

for a constant c′ > 0. This rate was previously known for other algorithms [e.g., Dasgupta et al.,

2005], but had not previously been derived as a special case of such a general analysis.

11

1.7 Agnostic Active Learning

Though each of the preceding analyses provides valuable insights into the nature of active learn-

ing, they also suffer the drawback of reliance on the realizability assumption. In particular, that

there is no label noise, and that the Bayes optimal classifier is in C, are severe and often unreal-

istic assumptions. We would ideally like an analysis of the agnostic case as well. However, the

aforementioned algorithms (e.g., CAL, and the algorithm achieving the splitting index bounds)

no longer function properly in the presence of nonzero noise rates. So we need to start from the

basics and build new techniques that are robust to noise conditions.

To begin, we may again ask what we might hope to achieve. That is, are there fundamental

information-theoretic limits on what we can do with this type of learning? This question was

investigated by Kääriäinen [2006]. In particular, he was able to prove that for basically any

nontrivial marginal D over X , noise rate ν, number n, and active learning algorithm, there is

some distribution DXY with marginal D and noise rate ν such that the algorithm’s achieved rate

R(n, δ,DXY) at n satisfies (for some constant c > 0)

R(n, δ,DXY) ≥ c

√

ν2 log(1/δ)

n
.

Furthermore, this result was improved by Beygelzimer, Dasgupta, and Langford [2009] to

R(n, 3/4, DXY) ≥ c

√

ν2d

n
.

Considering that rates ∝
√

νd log(1/δ)
n

are achievable in passive learning, this indicates that,

even for concept spaces that had exponential rates in the realizable case, any bound on the veri-

fiable rates that shows significant improvement (more than a multiplicative factor of
√

ν) in the

dependence on n for nonzero noise rates must depend on DXY in more than simply the noise

rate.

12

Chapter 2

Rates of Convergence in Active Learning

In this chapter, we study the rates of convergence in generalization error achievable by active

learning under various types of label noise. Additionally, we study the more general problem of

active learning with a nested hierarchy of hypothesis classes, and propose an algorithm whose

error rate provably converges to the best achievable error among classifiers in the hierarchy at a

rate adaptive to both the complexity of the optimal classifier and the noise conditions. In partic-

ular, we state sufficient conditions for these rates to be dramatically faster than those achievable

by passive learning.

2.1 Introduction

There have recently been a series of exciting advances on the topic of active learning with

arbitrary classification noise (the so-called agnostic PAC model), resulting in several new al-

gorithms capable of achieving improved convergence rates compared to passive learning un-

der certain conditions. The first, proposed by Balcan, Beygelzimer, and Langford [2006] was

the A2 (agnostic active) algorithm, which is provably never significantly worse than passive

learning by empirical risk minimization. This algorithm was later analyzed in more detail

in [Hanneke, 2007b], where it was found that a complexity measure called the disagreement

13

coefficient characterizes the worst-case convergence rates achieved by A2 for any given hypothe-

sis class, data distribution, and best achievable error rate in the class. The next major advance was

by Dasgupta, Hsu, and Monteleoni [2007], who proposed a new algorithm, and proved that it im-

proves the dependence of the convergence rates on the disagreement coefficient compared to A2.

Both algorithms are defined below in Section 2.2. While all of these advances are encouraging,

they are limited in two ways. First, the convergence rates that have been proven for these algo-

rithms typically only improve the dependence on the magnitude of the noise (more precisely, the

noise rate of the hypothesis class), compared to passive learning. Thus, in an asymptotic sense,

for nonzero noise rates these results represent at best a constant factor improvement over passive

learning. Second, these results are limited to learning with a fixed hypothesis class of limited

expressiveness, so that convergence to the Bayes error rate is not always a possibility.

On the first of these limitations, some recent work by Castro and Nowak [2006] on learn-

ing threshold classifiers discovered that if certain parameters of the noise distribution are known

(namely, parameters related to Tsybakov’s margin conditions), then we can achieve strict im-

provements in the asymptotic convergence rate via a specific active learning algorithm designed

to take advantage of that knowledge for thresholds. That work left open the question of whether

such improvements could be achieved by an algorithm that does not explicitly depend on the

noise conditions (i.e., in the agnostic setting), and whether this type of improvement is achiev-

able for more general families of hypothesis classes. In a personal communication, John Lang-

ford reported that he and Rui Castro determined such improvements are in fact achieved by

A2 for the special case of threshold classifiers. However, there remained an open question of

whether such rate improvements could be generalized to hold for arbitrary hypothesis classes.

In Section 2.3, we provide precisely this generalization. We analyze the rates achieved by A2

under Tsybakov’s noise conditions [Mammen and Tsybakov, 1999, Tsybakov, 2004]; in par-

ticular, we find that these rates are strictly superior to the known rates for passive learning,

when the disagreement coefficient is small. We also study a novel modification of the algorithm

14

of Dasgupta, Hsu, and Monteleoni [2007], proving that it improves upon the rates of A2 in its

dependence on the disagreement coefficient.

Additionally, in Section 2.4, we address the second limitation by proposing a general model

selection procedure for active learning with an arbitrary structure of nested hypothesis classes.

If the classes each have finite complexity, the error rate for this algorithm converges to the best

achievable error by any classifier in the structure, at a rate that adapts to the noise conditions

and complexity of the optimal classifier. In general, if the structure is constructed to include

arbitrarily good approximations to any classifier, the error converges to the Bayes error rate in

the limit. In particular, if the Bayes optimal classifier is in some class within the structure, the

algorithm performs nearly as well as running an agnostic active learning algorithm on that single

hypothesis class, thus preserving the convergence rate improvements achievable for that class.

2.1.1 Tsybakov’s Noise Conditions

In this chapter, we will primarily be interested in the sets Tsybakov(C, κ, µ), for parameter

values µ > 0 and κ ≥ 1. These noise conditions have recently received substantial attention

in the passive learning literature, as they describe situations in which the asymptotic minimax

convergence rate of passive learning is faster than the worst case n−1/2 rate [e.g., Koltchinskii,

2006, Mammen and Tsybakov, 1999, Massart and Élodie Nédélec, 2006, Tsybakov, 2004].

This condition is satisfied when, for example,

∃µ′ > 0, κ ≥ 1 s.t. ∃h ∈ C : ∀h′ ∈ C, er(h′)− ν ≥ µ′P{h(X) 6= h′(X)}κ.

As we will see, the case where κ = 1 is particularly interesting; for instance, this is the case

when h∗ ∈ C and P{|η(X) − 1/2| > c} = 1 for some constant c ∈ (0, 1/2). Informally, in

many cases these conditions can often be interpreted in terms of the relation between magnitude

of noise and distance to the decision boundary; that is, since in practice the amount of noise

in an example’s label is often inversely related to the distance from the decision boundary, a

κ value of 1 may often result from having low density near the decision boundary (i.e., large

15

margin); when this is not the case, the value of κ is essentially determined by how quickly η(x)

changes as x approaches the decision boundary. See [Castro and Nowak, 2006, Koltchinskii,

2006, Mammen and Tsybakov, 1999, Massart and Élodie Nédélec, 2006, Tsybakov, 2004] for

further interpretations of this margin condition.

It is known that when these conditions are satisfied for some κ ≥ 1 and µ > 0, the passive

learning method of empirical risk minimization achieves a convergence rate guarantee, holding

with probability≥ 1− δ, of

er(arg min
h∈C

ern(h))− ν ≤ c

(

d log(n/δ)

n

)
κ

2κ−1

,

where c is a (κ and µ -dependent) constant [Koltchinskii, 2006, Mammen and Tsybakov, 1999,

Massart and Élodie Nédélec, 2006]. Furthermore, for some hypothesis classes, this is known to

be a tight bound (up to the log factor) on the minimax convergence rate, so that there is no passive

learning algorithm for these classes for which we can guarantee a faster convergence rate, given

that the guarantee depends on DXY only through µ and κ [Tsybakov, 2004].

2.1.2 Disagreement Coefficient

Central to the idea of Algorithm 0, and the various generalizations there-of we will study, is

the idea of the region of disagreement of the version space. Thus, a quantification of the per-

formance of these algorithms should hinge upon a description of how quickly the region of

disagreement collapses as the algorithm processes examples. This rate of collapse is precisely

captured by a notion introduced in [Hanneke, 2007b], called the disagreement coefficient. It is

a measure of the complexity of an active learning problem, which has proven quite useful for

analyzing the convergence rates of certain types of active learning algorithms: for example, the

algorithms of Balcan, Beygelzimer, and Langford [2006], Beygelzimer, Dasgupta, and Langford

[2009], Cohn, Atlas, and Ladner [1994], Dasgupta, Hsu, and Monteleoni [2007]. Informally, it

quantifies how much disagreement there is among a set of classifiers relative to how close to

16

some h they are. The following is a version of its definition, which we will use extensively

below.

Definition 2.1. The disagreement coefficient of h with respect to C under DXY [X] is

θh = sup
r>r0

P(DIS(B(h, r)))

r
,

where r0 can either be defined as 0, giving a coarse analysis, or for a more subtle analysis we

can take it to be a function of n, the number of labels (see Section 2.7.1 for such a definition

valid for the main theorems of this chapter: 2.11-2.15).

We further define the disagreement coefficient for the hypothesis class C with respect to the

target distributionDXY as θ = lim supk→∞ θh(k) , where {h(k)} is any sequence of h(k) ∈ C with

er(h(k)) monotonically decreasing to ν.

In particular, we can always bound the disagreement coefficient by suph∈C θh ≥ θ.

Because of its simple intuitive interpretation, measuring the amount of disagreement in a local

neighborhood of some classifier h, the disagreement coefficient has the wonderful property of

being relatively simple to calculate for a wide range of learning problems, especially when those

problems have some type of geometric representation. To illustrate this, we will go through a

few simple examples, taken from [Hanneke, 2007b].

Consider the hypothesis class of thresholds hz on the interval [0, 1] (for z ∈ [0, 1]), where

hz(x) = +1 iff x ≥ z. Furthermore, suppose DXY [X] is uniform on [0, 1]. In this case, it is

clear that the disagreement coefficient is at most 2, since the region of disagreement of B(hz, r)

is roughly {x ∈ [0, 1] : |x − z| ≤ r}. That is, since the disagreement region grows at rate 1 in

two disjoint directions as r increases, the disagreement coefficient θhz = 2 for any z ∈ (0, 1).

As a second example, consider the disagreement coefficient for intervals on [0, 1]. As before,

let X = [0, 1] and DXY [X] be uniform, but this time C is the set of intervals I[a,b] such that for

x ∈ [0, 1], I[a,b](x) = +1 iff x ∈ [a, b] (for a, b ∈ [0, 1], a ≤ b). In contrast to thresholds, the

disagreement coefficients θh for the space of intervals vary widely depending on the particular h.

In particular, take any h = I[a,b] where 0 < a ≤ b < 1. In this case, θh ≤ max
{

1
max{r0,b−a}

, 4
}

.

17

To see this, note that when r0 < r < b − a, every interval in B(I[a,b], r) has its lower and

upper boundaries within r of a and b, respectively; thus, P(DIS(B(I[a,b], r))) ≤ 4r. How-

ever, when r ≥ max{r0, b − a}, every interval of width ≤ r − (b − a) is in B(I[a,b], r), so

P(DIS(B(I[a,b], r))) = 1.

As a slightly more involved example, consider the following theorem.

Theorem 2.2. [Hanneke, 2007b] If X is the surface of the origin-centered unit sphere in Rd for

d > 2, C is the space of linear separators whose decision surface passes through the origin, and

DXY [X] is the uniform distribution on X , then ∀h ∈ C the disagreement coefficient θh satisfies

1

4
min

{

π
√

d,
1

r0

}

≤ θh ≤ min

{

π
√

d,
1

r0

}

.

Proof. First we represent the concepts in C as weight vectors w ∈ Rd in the usual way. For

w1, w2 ∈ C, by examining the projection of DXY [X] onto the subspace spanned by {w1, w2},

we see that P(x : sign(w1 · x) 6= sign(w2 · x)) = arccos(w1·w2)
π

. Thus, for any w ∈ C and

r ≤ 1/2, B(w, r) = {w′ : w · w′ ≥ cos(πr)}. Since the decision boundary corresponding to w′

is orthogonal to the vector w′, some simple trigonometry gives us that

DIS(B(w, r)) = {x ∈ X : |x · w| ≤ sin(πr)}.

Letting A(d, R) = 2πd/2Rd−1

Γ(d
2)

denote the surface area of the radius-R sphere in Rd, we can express

the disagreement rate at radius r as

P(DIS(B(w, r)))

=
1

A(d, 1)

∫ sin(πr)

−sin(πr)

A
(

d− 1,
√

1− x2
)

dx =
Γ
(

d
2

)

√
πΓ
(

d−1
2

)

∫ sin(πr)

−sin(πr)

(

1− x2
)

d−2
2 dx (∗)

≤ Γ
(

d
2

)

√
πΓ
(

d−1
2

)2sin(πr) ≤
√

d− 2sin(πr) ≤
√

dπr.

For the lower bound, note that P(DIS(B(w, 1/2))) = 1 so θw ≥ min
{

2, 1
r0

}

, and thus we need

18

only consider r0 < 1
8
. Supposing r0 < r < 1

8
, note that (∗) is at least

√

d

12

∫ sin(πr)

−sin(πr)

(

1− x2
)

d
2 dx ≥

√

π

12

∫ sin(πr)

−sin(πr)

√

d

π
e−d·x2

dx

≥ 1

2
min

{

1

2
,
√

dsin(πr)

}

≥ 1

4
min

{

1, π
√

dr
}

.

The disagreement coefficient has many interesting properties that can help to bound its value

for a given hypothesis class and distribution. We list a few elementary properties below. Their

proofs, which are quite short and follow directly from the definition, are left as easy exercises.

Lemma 2.3. [Close Marginals][Hanneke, 2007b] Suppose ∃λ ∈ (0, 1] s.t. for any measurable

set A ⊆ X , λPDX
(A) ≤ PD′

X
(A) ≤ 1

λ
PDX

(A). Let h : X → {−1, 1} be a measurable classifier,

and suppose θh and θ′h are the disagreement coefficients for h with respect to C under DX and

D′
X respectively. Then

λ2θh ≤ θ′h ≤
1

λ2
θh.

Lemma 2.4. [Finite Mixtures] Suppose ∃α ∈ [0, 1] s.t. for any measurable set A ⊆ X ,

PDX
(A) = αPD1(A) + (1− α)PD2(A). For a measurable h : X → {−1, 1}, let θ

(1)
h be the

disagreement coefficient with respect to C under D1, θ
(2)
h be the disagreement coefficient with

respect to C under D2, and θh be the disagreement coefficient with respect to C under DX . Then

θh ≤ θ
(1)
h + θ

(2)
h .

Lemma 2.5. [Finite Unions] Suppose h ∈ C1 ∩ C2 is a classifier s.t. the disagreement

coefficient with respect to C1 under DX is θ
(1)
h and with respect to C2 under DX is θ

(2)
h . Then if

θh is the disagreement coefficient with respect to C = C1 ∪ C2 under DX , we have that

max
{

θ
(1)
h , θ

(2)
h

}

≤ θh ≤ θ
(1)
h + θ

(2)
h .

The disagreement coefficient has deep connections to several other quantities, such as dou-

bling dimension [Li and Long, 2007] and VC dimension [Vapnik, 1982]. See [Hanneke, 2007b],

19

[Dasgupta, Hsu, and Monteleoni, 2007], [Balcan, Hanneke, and Wortman, 2008], and

[Beygelzimer, Dasgupta, and Langford, 2009] for further discussions of various uses of the dis-

agreement coefficient and related notions and extensions in active learning. In particular,

Beygelzimer, Dasgupta, and Langford [2009] present an interesting analysis using a natural ex-

tension of the disagreement coefficient to study active learning with a larger family of loss func-

tions beyond 0 − 1 loss. As a related aside, although the focus of this thesis is active learning,

interestingly the disagreement coefficient also has applications in the analysis of passive learn-

ing; see Section 2.9 for an interesting example of this.

2.2 General Algorithms

The algorithms described below for the problem of active learning with label noise each represent

noise-robust variants of Algorithm 0. They work to reduce the set of candidate hypotheses, while

only requesting the labels of examples in the region of disagreement of these candidates. The

trick is to only remove a classifier from the candidate set once we have high statistical confidence

that it is worse than some other candidate classifier so that we never remove the best classifier.

However, the two algorithms differ somewhat in the details of how that confidence is calculated.

2.2.1 Algorithm 1

The first algorithm, originally proposed by Balcan, Beygelzimer, and Langford [2006], is typi-

cally referred to as A2 for Agnostic Active. This was historically the first general-purpose ag-

nostic active learning algorithm shown to achieve improved error guarantees for certain learning

problems in certain ranges of n and ν. A version of the algorithm is described below.

20

Algorithm 1

Input: hypothesis class C, label budget n, confidence δ
Output: classifier ĥ

0. V ← C, R← DIS(C), Q← ∅, m← 0
1. For t = 1, 2, . . . , n
2. If P(DIS(V)) ≤ 1

2
P(R)

3. R← DIS(V); Q← ∅
4. If P(R) ≤ 2−n, Return any h ∈ V
5. m← min{m′ > m : Xm′ ∈ R}
6. Request Ym and let Q← Q ∪ {(Xm, Ym)}
7. V ← {h ∈ V : LB(h, Q, δ/n) ≤ min

h′∈V
UB(h′, Q, δ/n)}

8. ht ← arg min
h∈V

UB(h, Q, δ/n)

9. βt ← (UB(ht, Q, δ/n)−min
h∈V

LB(h, Q, δ/n))P(R)

10. Return ĥn = ht̂, where t̂ = argmin
t∈{1,2,...,n}

βt

Algorithm 1 is defined in terms of two functions: UB and LB. These represent upper and

lower confidence bounds on the error rate of a classifier from C with respect to an arbitrary

sampling distribution, as a function of a labeled sequence sampled according to that distribution.

As long as these bounds satisfy

PZ∼Dm{∀h ∈ C, LB(h, Z, δ) ≤ erD(h) ≤ UB(h, Z, δ)} ≥ 1− δ

for any distribution D over X × {−1, 1} and any δ ∈ (0, 1/2), and UB and LB converge to

each other as m grows, this algorithm is known to be correct, in that er(ĥ)− ν converges to 0 in

probability [Balcan, Beygelzimer, and Langford, 2006]. For instance, Balcan, Beygelzimer, and

Langford suggest defining these functions based on classic results on uniform convergence rates

in passive learning [Vapnik, 1982], such as

UB(h, Q, δ) = min{erQ(h) + G(|Q|, δ), 1}, LB(h, Q, δ) = max{erQ(h)−G(|Q|, δ), 0},

(2.1)

where G(m, δ) = 1
m

+

√

ln 4
δ
+d ln 2em

d

m
, and by convention G(0, δ) = ∞. This choice is justified

by the following lemma, due to Vapnik [1998].

21

Lemma 2.6. For any distributionD over X × {−1, 1}, and any δ > 0 and m ∈ N, with

probability≥ 1− δ over the draw of Z ∼ Dm, every h ∈ C satisfies

|erZ(h)− erD(h)| ≤ G(m, δ). (2.2)

To avoid computational issues, instead of explicitly representing the sets V and R, we may

implicitly represent it as a set of constraints imposed by the condition in Step 7 of previous

iterations. We may also replace P(DIS(V)) and P(R) by estimates, since these quantities can be

estimated to arbitrary precision with arbitrarily high confidence using only unlabeled examples.

2.2.2 Algorithm 2

The second algorithm we study was originally proposed by Dasgupta, Hsu, and Monteleoni [2007].

It uses a type of constrained passive learning subroutine, LEARN, defined as follows.

LEARNC(L, Q) = argmin
h∈C:erL(h)=0

erQ(h).

By convention, if no h ∈ C has erL(h) = 0, LEARNC(L, Q) = ∅.

Algorithm 2

Input: hypothesis class C, label budget n, confidence δ
Output: classifier ĥ, set of labeled examples L, set of labeled examples Q

0. L ← ∅, Q← ∅
1. For m = 1, 2, . . .
2. If |Q| = n or |L| = 2n, Return ĥ = LEARNC(L, Q) along with L and Q
3. For each y ∈ {−1, +1}, let h(y) = LEARNC(L ∪ {(Xm, y)}, Q)
4. If some y has h(−y) =∅ or

erL∪Q(h(−y))− erL∪Q(h(y)) > ∆m−1(L, Q, h(y), h(−y), δ)
5. Then L ← L ∪ {(Xm, y)}
6. Else Request the label Ym and let Q← Q ∪ {(Xm, Ym)}

Algorithm 2 is defined in terms of a function ∆m(L, Q, h(y), h(−y), δ), representing a thresh-

old for a type of hypothesis test. This threshold must be set carefully, since the set L ∪ Q is not

actually an i.i.d. sample fromDXY . Dasgupta, Hsu, and Monteleoni [2007] suggest defining this

function as

∆m(L, Q, h(y), h(−y), δ) = β2
m + βm

(

√

erL∪Q(h(y)) +
√

erL∪Q(h(−y))

)

, (2.3)

22

where βm =
√

4 ln(8m(m+1)C[2m]2/δ)
m

and C[2m] is the shatter coefficient [e.g., Devroye et al.,

1996]; this suggestion is based on a confidence bound they derive, and they prove the correct-

ness of the algorithm with this definition. For now we will focus on the first return value (the

classifier), leaving the others for Section 2.4, where they will be useful for chaining multiple

executions together.

2.3 Convergence Rates

In both of the above cases, one can prove fallback guarantees stating that neither algorithm is sig-

nificantly worse than the minimax rates for passive learning [Balcan, Beygelzimer, and Langford,

2006, Dasgupta, Hsu, and Monteleoni, 2007]. However, it is even more interesting to discuss sit-

uations in which one can prove error rate guarantees for these algorithms significantly better than

those achievable by passive learning. In this section, we begin by reviewing known results on

these potential improvements, stated in terms of the disagreement coefficient; we then proceed to

discuss new results for Algorithm 1 and a novel variant of Algorithm 2, and describe the conver-

gence rates achieved by these methods in terms of the disagreement coefficient and Tsybakov’s

noise conditions.

2.3.1 The Disagreement Coefficient and Active Learning: Basic Results

Before going into the results for general distributionsDXY onX×{−1, +1}, it will be instructive

to first look at the special case when the noise rate is zero. Understanding how the disagreement

coefficient enters into the analysis of this simpler case may aid in digestion of the theorems and

proofs for the general case presented later, where it plays an essentially analogous role. Most of

the major ingredients of the proofs for the general case can be found in this special case, albeit

in a much simpler form. Although this result has not previously been published, the proof is

essentially similar to (one case of) the analysis of Algorithm 1 in [Hanneke, 2007b].

23

Theorem 2.7. Suppose DXY ∈ Realizable(C) for a VC class C, and let f ∈ C be such that

er(f) = 0, and θf <∞. For any n ∈ N, with probability≥ 1− δ over the draw of the

unlabeled examples, the classifier hn returned by Algorithm 0after n label requests satisfies

er(hn) ≤ 2 · exp

{

− n

6θf (4d ln(44θf) + ln(2n/δ)

}

.

Proof. The case diam(C) = 0 is trivial, so assume diam(C) > 0 (and thus d ≥ 1 and θf > 0).

Let Vt denote the set of classifiers in C consistent with the first t label requests. If P(DIS(Vt)) =

0 for some t ≤ n, then the result holds trivially. Otherwise, with probability 1, the algorithm uses

all n label requests; in this case, consider some t < n. Let xmt denote the example corresponding

to the tth label request. Let λn = 4θf (4d ln(16eθf) + ln(2n/δ)), t′ = t + λn, and let xmt′
denote

the example corresponding to label request number t′ (assuming t ≤ n− λn). In particular, this

implies |{xmt+1, xmt+2, . . . , xmt′
} ∩ DIS(Vt)| ≥ λn, which means there is an i.i.d. sample of

size λn from DXY [X] given X ∈ DIS(Vt) contained in {xmt+1, xmt+2, . . . , xmt′
}: namely, the

first λn points in this subsequence that are in DIS(Vt).

Now recall that, by classic results from the passive learning literature [e.g., Blumer et al.,

1989, Vapnik, 1982], this implies that on an event Eδ,t holding with probability 1− δ/n,

sup
h∈Vt′

er(h|DIS(Vt)) ≤
4d ln 2eλn

d
+ ln 2n

δ

λn
≤ 1/(2θf).

Since Vt′ ⊆ Vt, this means

P(DIS(Vt′)) ≤ P(DIS(B(f, P(DIS(Vt))/(2θf)))) ≤ P(DIS(Vt))/2.

By a union bound, the events Eδ,t hold for all t ∈ {iλn : i ∈ {0, 1, . . . , ⌊n/λn⌋ − 1}} with

probability≥ 1− δ. On these events, if n ≥ λn⌈log2(1/ǫ)⌉, then (by induction)

sup
h∈Vn

er(h) ≤ P(DIS(Vn)) ≤ ǫ.

Solving for ǫ in terms of n gives the result.

24

2.3.2 Known Results on Convergence Rates for Agnostic Active Learning

We will now describe the known results for agnostic active learning algorithms, starting with

Algorithm 1. The key to the potential convergence rate improvements of Algorithm 1 is that,

as the region of disagreement R decreases in measure, the magnitude of the error difference

er(h|R) − er(h′|R) of any classifiers h, h′ ∈ V under the conditional sampling distribution

(given R) can become significantly larger (by a factor of P(R)−1) than er(h)− er(h′), making it

significantly easier to determine which of the two is worse using a sample of labeled examples.

In particular, [Hanneke, 2007b] developed a technique for analyzing this type of algorithm, re-

sulting in the following convergence rate guarantee for Algorithm 1. The proof follows similar

reasoning to what we will see in the next subsection, but is omitted here to reduce redundancy;

see [Hanneke, 2007b] for the full details.

Theorem 2.8. [Hanneke, 2007b] Let ĥn be the classifier returned by Algorithm 1 when allowed

n label requests, using the bounds (2.1) and confidence parameter δ > 0. Then there exists a

finite universal constant c such that, with probability≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν ≤ c

√

ν2θ2d log 1
δ

n
log

n

ν2θ2d log 1
δ

+
1

δ
exp

{

−
√

n

cθ2d

}

.

Similarly, the key to improvements from Algorithm 2 is that as m increases, we only need to

request the labels of those examples in the region of disagreement of the set of classifiers with

near-optimal empirical error rates. Thus, if P(DIS(C(ǫ))) shrinks as ǫ decreases, we expect the

frequency of label requests to shrink as m increases. Since we are careful not to discard the best

classifier, and the excess error rate of a classifier can be bounded in terms of the ∆m function, we

end up with a bound on the excess error which is converging in m, the number of unlabeled ex-

amples processed, even though we request a number of labels growing slower than m. When this

situation occurs, we expect Algorithm 2 will provide an improved convergence rate compared

to passive learning. Using the disagreement coefficient, Dasgupta, Hsu, and Monteleoni [2007]

prove the following convergence rate guarantee.

25

Theorem 2.9. [Dasgupta, Hsu, and Monteleoni, 2007] Let ĥn be the classifier returned by

Algorithm 2 when allowed n label requests, using the threshold (2.3), and confidence parameter

δ > 0. Then there exists a finite universal constant c such that, with probability≥ 1− δ,

∀n ∈ N,

er(ĥn)− ν ≤ c

√

ν2θd log 1
δ
log n

θνδ

n
+

√

d log
1

δ
· exp

{

−
√

n

cθd log2 1
δ

}

.

Note that, among other changes, this bound improves the dependence on the disagreement

coefficient, θ, compared to the bound for Algorithm 1. In both cases, for certain ranges of θ,

ν, and n, these bounds can represent significant improvements in the excess error guarantees,

compared to the corresponding guarantees possible for passive learning. However, in both cases,

when ν > 0 these bounds have an asymptotic dependence on n of Θ̃(n−1/2), which is no better

than the convergence rates achievable by passive learning (e.g., by empirical risk minimization).

Thus, there remains the question of whether either algorithm can achieve asymptotic convergence

rates strictly superior to passive learning for distributions with nonzero noise rates. This is the

topic we turn to next.

2.3.3 Adaptation to Tsybakov’s Noise Conditions

It is known that for most nontrivial C, for any n and ν > 0, for every active learning algorithm

there is some distribution with noise rate ν for which we can guarantee excess error no better

than ∝ νn−1/2 [Kääriäinen, 2006]; that is, the n−1/2 asymptotic dependence on n in the above

bounds matches the corresponding minimax rate, and thus cannot be improved as long as the

bounds depend on DXY only via ν (and θ). Therefore, if we hope to discover situations in which

these algorithms have strictly superior asymptotic dependence on n, we will need to allow the

bounds to depend on a more detailed description of the noise distribution than simply the noise

rate ν.

As previously mentioned, one way to describe a noise distribution using a more detailed

26

parameterization is to use Tsybakov’s noise conditions (Tsybakov(C, κ, µ)). In the context of

passive learning, this allows one to describe situations in which the rate of convergence is be-

tween n−1 and n−1/2, even when ν > 0. This raises the natural question of how these active

learning algorithms perform when the noise distribution satisfies this condition with finite µ and

κ parameter values. In many ways, it seems active learning is particularly well-suited to ex-

ploit these more favorable noise conditions, since they imply that as we eliminate suboptimal

classifiers, the diameter of the version space decreases; thus, for small θ values, the region of

disagreement should also be decreasing, allowing us to focus the samples in a smaller region and

accelerate the convergence.

Focusing on the special case of one-dimensional threshold classifiers under a uniform marginal

distribution, Castro and Nowak [2006] studied conditions related to Tsybakov(C, κ, µ). In par-

ticular, they studied a threshold-learning algorithm that, unlike the algorithms described here,

takes κ as input, and found its convergence rate to be ∝
(

log n
n

)
κ

2κ−2 when κ > 1, and exp{−cn}

for some (µ-dependent) constant c, when κ = 1. Note that this improves over the n− κ
2κ−1 rates

achievable in passive learning [Tsybakov, 2004]. Furthermore, they prove that a value∝ n− κ
2κ−2

(or exp{−c′n}, for some c′, when κ = 1) is also a lower bound on the minimax rate. Later, in

a personal communication, Langford reported that this near-optimal rate is also achieved by Al-

gorithm 1 for the same learning problem (one-dimensional threshold classifiers under a uniform

marginal distribution), leading to speculation that perhaps these improvements are achievable in

the general case as well (under conditions on the disagreement coefficient).

Other than the one-dimensional threshold learning problem, it was not previously known

whether Algorithm 1 or Algorithm 2 generally achieves convergence rates that exhibit these

types of improvements.

27

2.3.4 Adaptive Rates in Active Learning

The above observations open the question of whether these algorithms, or variants thereof, im-

prove this asymptotic dependence on n. It turns out this is indeed possible. Specifically, we have

the following result for Algorithm 1.

Theorem 2.10. Let ĥn be the classifier returned by Algorithm 1 when allowed n label requests,

using the bounds (2.1) and confidence parameter δ > 0. Suppose further that

DXY ∈ Tsybakov(C, κ, µ) for finite parameter values κ ≥ 1 and µ > 0 and VC class C. Then

there exists a finite (κ- and µ-dependent) constant c such that, for any n ∈ N, with probability

≥ 1− δ,

er(ĥn)− ν ≤















exp
{

− n
cdθ2 log(n/δ)

}

, when κ = 1

c
(

dθ2 log2(n/δ)
n

)
κ

2κ−2

, when κ > 1

.

Proof. The case of diam(C) = 0 clearly holds, so we will focus on the nontrivial case of

diam(C) > 0 (and therefore, θ > 0 and d ≥ 1). We will proceed by bounding the label

complexity, or size of the label budget n that is sufficient to guarantee, with high probability, that

the excess error of the returned classifier will be at most ǫ (for arbitrary ǫ > 0); with this in hand,

we can simply bound the inverse of the function to get the result in terms of a bound on excess

error.

First note that, by Lemma 2.6 and a union bound, on an event of probability 1 − δ, (2.2)

holds with η = δ/n for every set Q, relative to the conditional distribution given its respective

R set, for any value of n. For the remainder of this proof, we assume that this 1− δ probability

event occurs. In particular, this means that for every h ∈ C and every Q set in the algorithm,

LB(h, Q, δ/n) ≤ er(h|R) ≤ UB(h, Q, δ/n), for the set R that Q is sampled under. Thus, we

always have the invariant that at all times,

∀γ > 0, {h ∈ V : er(h)− ν ≤ γ} 6= ∅, (2.4)

and therefore also that ∀t, er(ht)− ν = (er(ht|R)− infh∈V er(h|R))P(R) ≤ βt. We will spend

28

the remainder of the proof bounding the size of n sufficient to guarantee some βt ≤ ǫ.

Recalling the definition of the h(k) sequence (from Definition 2.1), note that after step 7,
{

h ∈ V : lim supk P(h(X) 6= h(k)(X)) > P(R)
2θ

}

=

{

h ∈ V :

(

lim supk P(h(X) 6= h(k)(X))

µ

)κ

>

(

P(R)

2µθ

)κ}

⊆
{

h ∈ V :

(

diam(er(h)− ν; C)

µ

)κ

>

(

P(R)

2µθ

)κ}

⊆
{

h ∈ V : er(h)− ν >

(

P(R)

2µθ

)κ}

=

{

h ∈ V : er(h|R)− inf
h′∈V

er(h′|R) > P(R)κ−1(2µθ)−κ

}

⊆
{

h ∈ V : UB(h, Q, δ/n)− min
h′∈V

LB(h′, Q, δ/n) > P(R)κ−1(2µθ)−κ

}

=

{

h ∈ V : LB(h, Q, δ/n)−min
h′∈V

UB(h′, Q, δ/n) > P(R)κ−1(2µθ)−κ − 4G(|Q|, δ/n)

}

.

By definition, every h ∈ V has LB(h, Q, δ/n) ≤ minh′∈V UB(h′, Q, δ/n), so for this last set to

be nonempty after step 7, we must have P(R)κ−1(2µθ)−κ < 4G(|Q|, δ/n). On the other hand, if
{

h ∈ V : lim supk P(h(X) 6= h(k)(X)) > P(R)
2θ

}

= ∅, then

P(DIS(V)) ≤ P(DIS({h ∈ C : lim sup
k

P(h(X) 6= h(k)(X)) ≤ P(R)/(2θ)}))

= lim sup
k

P(DIS({h ∈ C : P(h(X) 6= h(k)(X)) ≤ P(R)/(2θ)})) ≤ lim sup
k

θhk

P(R)

2θ
=

P(R)

2
,

so that we will definitely satisfy the condition in step 2 on the next round. Since |Q| gets reset

to 0 upon reaching step 3, we have that after every execution of step 7, P(R)κ−1(2µθ)−κ <

4G(|Q| − 1, δ/n).

If P(R) ≤ ǫ
2G(|Q|−1,δ/n)

≤ ǫ
2G(|Q|,δ/n)

, then certainly βt ≤ ǫ. So on any round for which

βt > ǫ, we must have P(R) > ǫ
2G(|Q|−1,δ/n)

. Combined with the above observations, on any

round for which βt > ǫ,
(

ǫ
2G(|Q|−1,δ/n)

)κ−1

(2µθ)−κ < 4G(|Q| − 1, δ/n), which implies (by

simple algebra)

|Q| ≤
(

1

ǫ

)
2κ−2

κ

(6µθ)2

(

ln
4

δ
+ (d + 1) ln(n)

)

+ 1.

29

Since we need to reach step 3 at most ⌈log(1/ǫ)⌉ times before we are guaranteed some βt ≤ ǫ

(P(R) is at least halved each time we reach step 3), any

n ≥ 1 +

(

(

1

ǫ

)
2κ−2

κ

(6µθ)2

(

ln
4

δ
+ (d + 1) ln(n)

)

+ 1

)

log2

2

ǫ
(2.5)

suffices to guarantee some βt ≤ ǫ. This implies the stated result by basic inequalities to bound

the smallest value of ǫ satisfying (2.5) for a given value of n.

If the disagreement coefficient is relatively small, Theorem 2.10 can represent a significant

improvement in convergence rate compared to passive learning, where we typically expect rates

of order n−κ/(2κ−1) [Mammen and Tsybakov, 1999, Tsybakov, 2004]; this gap is especially no-

table when the disagreement coefficient and κ are small. In particular, the bound matches (up to

log factors) the form of the minimax rate lower bound proven by Castro and Nowak [2006] for

threshold classifiers (where θ = 2). Note that, unlike the analysis of Castro and Nowak [2006],

we do not require the algorithm to be given any extra information about the noise distribution,

so that this result is somewhat stronger; it is also more general, as this bound applies to an arbi-

trary hypothesis class. In some sense, Theorem 2.10 is somewhat surprising, since the bounds

UB and LB used to define the set V and the bounds βt are not themselves adaptive to the noise

conditions.

Note that, as before, n gets divided by θ2 in the rates achieved by A2. As before, it is not

clear whether any modification to the definitions of UB and LB can reduce this exponent on

θ from 2 to 1. As such, it is natural to investigate the rates achieved by Algorithm 2 under

Tsybakov(C, κ, µ); we know that it does improve the dependence on θ for the worst case rates

over distributions with any given noise rate, so we might hope that it does the same for the

rates over distributions with any given values of µ and κ. Unfortunately, we do not presently

know whether the original definition of Algorithm 2 achieves this improvement. However, we

now present a slight modification of the algorithm, and prove that it does indeed provide the

desired improvement in dependence on θ, while maintaining the improvements in the asymptotic

30

dependence on n. Specifically, consider the following definition for the threshold in Algorithm

2.

∆m(L, Q, h(y), h(−y), δ) = 3ÊC(L ∪Q, δ;L), (2.6)

where ÊC(·, ·; ·) is defined in Section 2.6, based on a notion of local Rademacher complexity

studied by Koltchinskii [2006]. Unlike the previous definitions, these definitions are known to

be adaptive to Tsybakov’s noise conditions, so that we would expect them to be asymptotically

tighter and therefore allow the algorithm to more aggressively prune the set of candidate hypothe-

ses. Using these definitions, we have the following theorem; its proof is included in Section 2.7.

Theorem 2.11. Suppose ĥn is the classifier returned by Algorithm 2 with threshold as in (2.6),

when allowed n label requests and given confidence parameter δ > 0. Suppose further that

DXY ∈ Tsybakov(C, κ, µ) for finite parameter values κ ≥ 1 and µ > 0 and VC class C. Then

there exists a finite (κ and µ -dependent) constant c such that, with probability≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν ≤















1
δ
· exp

{

−
√

n
cdθ log3(d/δ)

}

, when κ = 1

c
(

dθ log2(dn/δ)
n

)
κ

2κ−2
, when κ > 1

.

Note that this does indeed improve the dependence on θ, reducing its exponent from 2 to 1;

we do lose some in that there is now a square root in the exponent of the κ = 1 case, but it is

likely that an improved definition of Ê and a refined analysis can correct this. The bound in The-

orem 2.11 is stated in terms of the VC dimension d. However, for certain nonparametric function

classes, it is sometimes preferable to quantify the complexity of the class in terms of a constraint

on the entropy (with bracketing) of the class Entropy[](C, α, ρ) [see e.g., Castro and Nowak,

2007, Koltchinskii, 2006, Tsybakov, 2004, van der Vaart and Wellner, 1996].

In passive learning, it is known that empirical risk minimization achieves a rate of order

n−κ/(2κ+ρ−1), under Entropy[](C, α, ρ) ∩ Tsybakov(C, κ, µ), and that this is sometimes tight

[Koltchinskii, 2006, Tsybakov, 2004]. The following theorem gives a bound on the rate of con-

vergence of the same version of Algorithm 2 as in Theorem 2.11, this time in terms of the entropy

with bracketing condition which, as before, is faster than the passive learning rate when the dis-

31

agreement coefficient is small. The proof of this is included in Section 2.7.

Theorem 2.12. Suppose ĥn is the classifier returned by Algorithm 2 with threshold as in (2.6),

when allowed n label requests and given confidence parameter δ > 0. Suppose further that

DXY ∈ Entropy[](C, α, ρ) ∩ Tsybakov(C, κ, µ) for finite parameter values κ ≥ 1, µ > 0,

α > 0, and ρ ∈ (0, 1). Then there exists a finite (κ, µ, α and ρ -dependent) constant c such that,

with probability≥ 1− δ, ∀n ∈ N,

er(ĥn)− ν ≤ c

(

θ log2(n/δ)

n

)

κ
2κ+ρ−2

.

Although this result is stated for Algorithm 2, it is conceivable that, by modifying Algorithm

1 to use definitions of V and βt based on ÊC(Q, δ; ∅), an analogous result may be possible for

Algorithm 1 as well.

2.4 Model Selection

While the previous sections address adaptation to the noise distribution, they are still restrictive

in that they deal only with finite complexity hypothesis classes, where it is often unrealistic

to expect convergence to the Bayes error rate to be achievable. We address this issue in this

section by developing a general algorithm for learning with a sequence of nested hypothesis

classes of increasing complexity, similar to the setting of Structural Risk Minimization in passive

learning [Vapnik, 1982]. The starting point for this discussion is the assumption of a structure on

C, in the form of a sequence of nested hypothesis classes.

C1 ⊂ C2 ⊂ · · ·

Each class has an associated noise rate νi = infh∈Ci
er(h), and we define ν∞ = lim

i→∞
νi. We also

let θi and di be the disagreement coefficient and VC dimension, respectively, for the set Ci. We

are interested in an algorithm that guarantees convergence in probability of the error rate to ν∞.

We are particularly interested in situations where ν∞ = ν∗, a condition which is realistic in this

32

setting since Ci can be defined so that it is always satisfied [see e.g., Devroye, Györfi, and Lugosi,

1996]. Additionally, if we are so lucky as to have some νi = ν∗, then we would like the conver-

gence rate achieved by the algorithm to be not significantly worse than running one of the above

agnostic active learning algorithms with hypothesis class Ci alone. In this context, we can de-

fine a structure-dependent version of Tsybakov’s noise condition by
⋂

i∈I

Tsybakov(Ci, κi, µi), for

some I ⊆ N, and finite parameters κi ≥ 1 and µi > 0.

In passive learning, there are several methods for this type of model selection which are

known to preserve the convergence rates of each class Ci under Tsybakov(Ci, κi, µi). [e.g.,

Koltchinskii, 2006, Tsybakov, 2004]. In particular, Koltchinskii [2006] develops a method that

performs this type of model selection; it turns out we can modify Koltchinskii’s method to suit

our present needs in the context of active learning; this results in a general active learning model

selection method that preserves the types of improved rates discussed in the previous section.

This modification is presented below, based on using Algorithm 2 as a subroutine. (It may also

be possible to define an analogous method that uses Algorithm 1 as a subroutine instead.)

Algorithm 3

Input: nested sequence of classes {Ci}, label budget n, confidence parameter δ
Output: classifier ĥn

0. For i = ⌊
√

n/2⌋, ⌊
√

n/2⌋ − 1, ⌊
√

n/2⌋ − 2, . . . , 1
1. Let Lin and Qin be the sets returned by Algorithm 2 run with Ci and the

threshold in (2.6), allowing ⌊n/(2i2)⌋ label requests, and confidence δ/(2i2)
2. Let hin ← LEARNCi

(∪j≥iLjn, Qin)

3. If hin 6= ∅ and ∀j s.t. i < j ≤ ⌊
√

n/2⌋,
erLjn∪Qjn

(hin)− erLjn∪Qjn
(hjn) ≤ 3

2
ÊCj

(Ljn∪Qjn, δ/(2j2);Ljn)

4. ĥn ← hin

5. Return ĥn

The function Ê·(·, ·; ·) is defined in Section 2.6. This method can be shown to correctly

converge in probability to an error rate of ν∞ at a rate never significantly worse than the original

passive learning method of Koltchinskii [2006], as desired. Additionally, we have the following

guarantee on the rate of convergence under the structure-dependent definition of Tsybakov’s

noise conditions. The proof is similar in style to Koltchinskii’s original proof, though some

33

care is needed due to the altered sampling distribution and the constraint set Ljn. The proof is

included in Section 2.7.

Theorem 2.13. Suppose ĥn is the classifier returned by Algorithm 3, when allowed n label

requests and confidence parameter δ > 0. Suppose further that DXY ∈
⋂

i∈I

Tsybakov(Ci, κi, µi)

for some nonempty I ⊆ N and for finite parameter values κi ≥ 1 and µi > 0. Then there exist

finite (κi and µi -dependent) constants ci such that, with probability≥ 1− δ, ∀n ≥ 2,

er(ĥn)− ν∞ ≤ 3 min
i∈I

(νi − ν∞) +



















1
δ
· exp

{

−
√

n

cidiθi log3 di
δ

}

, if κi = 1

ci

(

diθi log2 din

δ

n

)

κi
2κi−2

, if κi > 1

.

In particular, if we are so lucky as to have νi = ν∗ for some finite i ∈ I , then the above algorithm

achieves a convergence rate not significantly worse than that guaranteed by Theorem 2.11 for

applying Algorithm 2 directly, with hypothesis class Ci.

As in the case of finite-complexity C, we can also show a variant of this result when the

complexities are quantified in terms of the entropy with bracketing. Specifically, consider the

following theorem; the proof is in Section 2.7. Again, this represents an improvement over

known results for passive learning when the disagreement coefficient is small.

Theorem 2.14. Suppose ĥn is the classifier returned by Algorithm 3, when allowed n label

requests and confidence parameter δ > 0. Suppose further that

DXY ∈
⋂

i∈I

Tsybakov(Ci, κi, µi) ∩ Entropy[](Ci, αi, ρi) for some nonempty I ⊆ N and finite

parameters µi > 0, κi ≥ 1, αi > 0 and ρi ∈ (0, 1). Then there exist finite (κi, µi, αi and ρi

-dependent) constants ci such that, with probability≥ 1− δ, ∀n ≥ 2,

er(ĥn)− ν∞ ≤ 3 min
i∈I

(νi − ν∞) + ci

(

θi log2 in
δ

n

)

κi
2κi+ρi−2

.

In addition to these theorems for this structure-dependent version of Tsybakov’s noise con-

ditions, we also have the following result for a structure-independent version.

34

Theorem 2.15. Suppose ĥn is the classifier returned by Algorithm 3, when allowed n label

requests and confidence parameter δ > 0. Suppose further that there exists a constant µ > 0

such that for all measurable h : X → {−1, 1}, er(h)− ν∗ ≥ µP{h(X) 6= h∗(X)}. Then there

exists a finite (µ-dependent) constant c such that, with probability≥ 1− δ, ∀n ≥ 2,

er(ĥn)− ν∗ ≤ c min
i

(νi − ν∗) + exp

{

−
√

n

cdiθi log3 idi

δ

}

.

The case where er(h) − ν∗ ≥ µP{h(X) 6= h∗(X)}κ for κ > 1 can be studied analogously,

though the rate improvements over passive learning are more subtle.

2.5 Conclusions

Under Tsybakov’s noise conditions, active learning can offer improved asymptotic convergence

rates compared to passive learning when the disagreement coefficient is small. It is also possible

to preserve these improved convergence rates when learning with a nested structure of hypothesis

classes, using an algorithm that adapts to both the noise conditions and the complexity of the

optimal classifier.

2.6 Definition of Ê

For any function f : X → R, and ξ1, ξ2, . . . a sequence of independent random variables with

distribution uniform in {−1, +1}, define the Rademacher process for f under a finite sequence

of labeled examples Q = {(X ′
i, Y

′
i)} as

R(f ; Q) =
1

|Q|

|Q|
∑

i=1

ξif(X ′
i).

The ξi should be thought of as internal variables in the learning algorithm, rather than being

fundamental to the learning problem.

35

For any two sequences of labeled examples L = {(X ′
i, Y

′
i)} and Q = {(X ′′

i , Y ′′
i)}, define

C[L] = {h ∈ C : erL(h) = 0},

Ĉ(ǫ;L, Q) = {h ∈ C[L] : erQ(h)− min
h′∈C[L]

erQ(h′) ≤ ǫ},

let

D̂C(ǫ;L, Q) = sup
h1,h2∈Ĉ(ǫ;L,Q)

1

|Q|

|Q|
∑

i=1

1[h1(X
′′
i) 6= h2(X

′′
i)],

and define

φ̂C(ǫ;L, Q) =
1

2
sup

h1,h2∈Ĉ(ǫ;L,Q)

R(h1 − h2; Q).

Let δ ∈ (0, 1], m ∈ N, and define

sm(δ) = ln
20m2 log2(3m)

δ
.

Let Zǫ = {j ∈ Z : 2j ≥ ǫ}, and for any sequence of labeled examples Q = {(X ′
i, Y

′
i)},

define Qm = {(X ′
1, Y

′
1), (X

′
2, Y

′
2), . . . , (X

′
m, Y ′

m)}. We use the following notation of Koltchin-

skii Koltchinskii [2006] with only minor modifications. For ǫ ∈ [0, 1], define

ÛC(ǫ, δ;L, Q)=K̂

(

φ̂C(ĉǫ;L, Q)+

√

s|Q|(δ)D̂C(ĉǫ;L,Q)

|Q|
+

s|Q|(δ)

|Q|

)

ÊC(Q, δ;L)= min
m≤|Q|

inf
{

ǫ>0:∀j∈Zǫ,ÛC(2j, δ;L, Qm)≤2j−4
}

where, for our purposes, we can take K̂ = 752, and ĉ = 3/2, though there seems to be room for

improvement in these constants. We also define ÊC(∅, δ; C,L) =∞ by convention.

2.7 Main Proofs

Let ÊC(m, δ) = ÊC(Zm, δ; ∅). For each m ∈ N, let ĥ∗
m = arg min

h∈C

erm(h) be the empirical risk

minimizer in C for the true labels of the first m examples.

For ǫ > 0, define C(ǫ) = {h ∈ C : er(h)− ν ≤ ǫ}. For m ∈ N, let

φC(m, ǫ) = E sup
h1,h2∈C(ǫ)

|(er(h1)− erm(h1))− (er(h2)− erm(h2))|,

36

ŨC(m, ǫ, δ) = K̃

(

φC(m, c̃ǫ) +

√

sm(δ)diam(C(c̃ǫ))

m
+

sm(δ)

m

)

,

ẼC(m, δ) = inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŨC(m, 2j, δ) ≤ 2j−4
}

,

where, for our purposes, we can take K̃ = 8272 and c̃ = 3. We also define ẼC(0, δ) = ∞. The

following lemma is crucial to all of the proofs that follow.

Lemma 2.16. [Koltchinskii, 2006] There is an event EC,δ with P(EC,δ) ≥ 1− δ/2 such that, on

event EC,δ, ∀m ∈ N, ∀h ∈ C, ∀τ ∈ (0, 1/m), ∀h′ ∈ C(τ),

er(h)− ν ≤ max
{

2(erm(h)− erm(h′) + τ), ÊC(m, δ)
}

erm(h)− erm(ĥ∗
n) ≤ 3

2
max

{

(er(h)− ν), ÊC(m, δ)
}

,

ÊC(m, δ) ≤ ẼC(m, δ),

and for any j ∈ Z with 2j > ÊC(m, δ),

sup
h1,h2∈C(2j)

|(erm(h1)− er(h1))− (erm(h2)− er(h2))| ≤ ÛC(2j , δ; ∅,Zm).

This lemma essentially follows from details of the proof of Koltchinskii’s Theorem 1, Lemma

2, and Theorem 3 [Koltchinskii, 2006]1. We do not provide a proof of Lemma 2.16 here. The

reader is referred to Koltchinskii’s paper for the details.

2.7.1 Definition of r0

If θ is bounded by a finite constant, the definition of r0 is not too important. However, in some

cases, setting r0 = 0 results in a suboptimal, or even infinite, value of θ, which is undesirable.

In these cases, we would like to set r0 as large as possible while maintaining the validity of

the bounds, and if we do this carefully we should be able to establish bounds that, even in the

worst case when θ = 1/r0, are never worse than the bounds for some analogous passive learning

1Our min
m≤|Q|

modification to Koltchinskii’s version of ÊC(m, δ) is not a problem, since φC(m, ǫ) and
sm(δ)

m
are

nonincreasing functions of m.

37

method; however, to do this requires r0 to depend on the parameters of the learning problem:

namely, n, δ, C, and DXY .

Generally, depending on the bound we wish to prove, different values of r0 may be appro-

priate. For the tightest bound in terms of θ proven below (namely, Lemma 2.18), the following

definition of r0 gives a good bound. Defining

m̃C(n, δ,DXY) = min

{

m ∈ N : n ≤ log2

4m2

δ
+ 2e

m−1
∑

ℓ=0

P(DIS(C(2ẼC(ℓ, δ))))

}

, (2.7)

we can let r0 = rC(n, δ,DXY), where

rC(n, δ,DXY) =
1

m̃C(n, δ,DXY)

m̃C(n,δ,DXY)−1
∑

ℓ=0

diam(C(2ẼC(mC(r′, n, δ), δ))). (2.8)

We use this definition in all of the proofs below. In particular, with this definition, Lemma 2.18 is

never significantly worse than the analogous known result for passive learning (though it can be

significantly better when θ << 1/r0). For the looser bounds (namely, Theorems 2.11 and 2.12),

a larger value of r0 would be more appropriate; however, note that this same general technique

can be employed to define a good value for r0 in these looser bounds as well, simply using upper

bounds on (2.8) analogous to how the theorems themselves are derived from Lemma 2.18 below.

2.7.2 Proofs Relating to Section 2.3

For ℓ ∈ N ∪ {0}, let L(ℓ) and Q(ℓ) denote the sets L and Q, respectively, in step 4 of Algorithm

2, when m− 1 = ℓ; if this never happens during execution, then define L(ℓ) = ∅, Q(ℓ) = Zℓ.

Lemma 2.17. On event EC,δ, ∀ℓ ∈ N ∪ {0},

ÊC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) = ÊC(ℓ, δ)

and

∀ǫ ≥ ÊC(ℓ, δ), ĥ∗
ℓ ∈ Ĉℓ(ǫ;L(ℓ)) ⊆ Ĉℓ(ǫ; ∅).

Proof of Lemma 2.17. Throughout this proof, we assume the event EC,δ occurs. We proceed by

induction on ℓ, with the base case of ℓ = 0 (which clearly holds). Suppose the statements are true

38

for all ℓ′ < ℓ. The case L(ℓ) = ∅ is trivial, so assume L(ℓ) 6= ∅. For the inductive step, suppose

h ∈ Ĉℓ(ÊC(ℓ, δ); ∅).

Then for all ℓ′ < ℓ, we have

erℓ(h)− erℓ(ĥ
∗
ℓ) ≤ ÊC(ℓ′, δ).

In particular, by Lemma 2.16, this implies

er(h)− ν ≤ max
{

2(erℓ(h)− erℓ(ĥ
∗
ℓ)), ÊC(ℓ, δ)

}

≤ 2ÊC(ℓ′, δ),

and thus for any h′ ∈ C,

erℓ′(h)− erℓ′(h
′) ≤ erℓ′(h)− erℓ′(ĥ

∗
ℓ′)

≤ 3

2
max

{

er(h)− ν, ÊC(ℓ′, δ)
}

≤ 3ÊC(ℓ′, δ) = 3ÊC(Q(ℓ′), δ;L(ℓ′)).

Thus, we must have erL(ℓ)(h) = 0, and therefore h ∈ Ĉℓ(ÊC(ℓ, δ);L(ℓ)). Since this is the case

for all such h, we must have that

Ĉℓ(ÊC(ℓ, δ);L(ℓ)) ⊇ Ĉℓ(ÊC(ℓ, δ); ∅). (2.9)

In particular, this implies that

ÛC(ÊC(ℓ, δ), δ;L(ℓ), Q(ℓ)) ≥ ÛC(ÊC(ℓ, δ), δ; ∅,Zℓ) >
1

16
ÊC(ℓ, δ),

where the last inequality follows from the definition of ÊC(ℓ, δ), (which is a power of 2). Thus,

we must have ÊC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) ≥ ÊC(ℓ, δ).

The relation in (2.9) also implies that

ĥ∗
ℓ ∈ Ĉℓ(ÊC(ℓ, δ);L(ℓ)),

and therefore

∀ǫ ≥ ÊC(ℓ, δ), Ĉℓ(ǫ;L(ℓ)) ⊆ Ĉℓ(ǫ; ∅),

39

which implies

∀ǫ ≥ ÊC(ℓ, δ), ÛC(ǫ, δ;L(ℓ), Q(ℓ)) ≤ ÛC(ǫ, δ; ∅,Zℓ).

But this means ÊC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)) ≤ ÊC(ℓ, δ). Therefore, we must have equality. Thus, the

lemma follows by the principle of induction.

Lemma 2.18. Suppose for any n ∈ N, ĥn is the classifier returned by Algorithm 2 with

threshold as in (2.6), when allowed n label requests and given confidence parameter δ > 0, and

suppose further that mn is the value of |Q|+ |L| when Algorithm 2 returns. Then there is an

event HC,δ such that P(HC,δ ∩EC,δ) ≥ 1− δ, such that on HC,δ ∩EC,δ, ∀n ∈ N,

er(ĥn)− ν ≤ ẼC(mn, δ),

and

n ≤ min

{

mn, log2

4m2
n

δ
+ 4eθ

mn−1
∑

ℓ=0

diam(C(2ẼC(ℓ, δ)))

}

.

Proof of Lemma 2.18. Once again, assume event EC,δ occurs. By Lemma 2.16, ∀τ > 0,

er(ĥn)− ν ≤ max
{

2(ermn(ĥn)− ermn(ĥ∗
mn

) + τ), ÊC(mn, δ)
}

.

Letting τ → 0, and noting that erL(ĥ∗
mn

) = 0 (Lemma 2.17) implies ermn(ĥn) = ermn(ĥ∗
mn

),

we have

er(ĥn)− ν ≤ ÊC(mn, δ) ≤ ẼC(mn, δ),

where the last inequality is also due to Lemma 2.16. Note that this ÊC(mn, δ) represents an

interesting data-dependent bound.

To get the bound on the number of label requests, we proceed as follows. For any m ∈ N,

and nonnegative integer ℓ < m, let Iℓ be the indicator for the event that Algorithm 2 requests

the label Yℓ+1 and let Nm =
∑m−1

ℓ=0 Iℓ. Additionally, let I ′
ℓ be independent Bernoulli random

variables with

P[I ′
ℓ = 1] = P

{

DIS(C(2ẼC(ℓ, δ)))
}

.

40

Let N ′
m =

∑m−1
ℓ=0 I ′

ℓ. We have that

P [{Iℓ = 1} ∩EC,δ] ≤ P

[

{Xℓ+1 ∈ DIS(Ĉℓ(ÊC(Q(ℓ) ∪ L(ℓ), δ;L(ℓ)
i);L(ℓ)))} ∩ EC,δ

]

≤ P

[

{Xℓ+1 ∈ DIS(Ĉℓ(ẼC(ℓ, δ); ∅))} ∩ EC,δ

]

≤ P

[

DIS(C(2ẼC(ℓ, δ)))
]

= P[I ′
ℓ = 1].

The second inequality is due to Lemmas 2.17 and 2.16, while the third inequality is due to

Lemma 2.16. Note that

E[N ′
m] =

m−1
∑

ℓ=0

P[I ′
ℓ = 1] =

m−1
∑

ℓ=0

P

{

DIS(C(2ẼC(ℓ, δ)))}
}

Let us name this last quantity qm. Thus, by union and Chernoff bounds,

P

[{

∃m ∈ N : Nm > max

{

2eqm, qm + log2

4m2

δ

}}

∩ EC,δ

]

≤
∑

m∈N

P

[{

Nm > max

{

2eqm, qm + log2

4m2

δ

}}

∩ EC,δ

]

≤
∑

m∈N

P

[{

N ′
m > max

{

2eqm, qm + log2

4m2

δ

}}]

≤
∑

m∈N

δ

4m2
≤ δ

2
.

For any n, we know n ≤ mn ≤ 2n. Therefore, we have that on an event (which includes EC,δ)

occuring with probability≥ 1− δ, for every n ∈ N,

n ≤ max{Nmn , log2 mn} ≤ max

{

2eqmn , qmn + log2

4m2
n

δ

}

≤ log2

4m2
n

δ
+ 2e

mn−1
∑

ℓ=0

P{DIS(C(2ẼC(ℓ, δ)))}.

In particular, this implies m̃n = m̃C(n, δ,DXY) ≤ mn (where m̃C(n, δ,DXY) is defined in (2.7)).

We now use the definition of θ with the r0 in (2.8).

n ≤ log2

4m̃2
n

δ
+ 2e

m̃n−1
∑

ℓ=0

P{DIS(C(2ẼC(ℓ, δ)))}

≤ log2

4m̃2
n

δ
+ 2eθ

m̃n−1
∑

ℓ=0

max{diam(C(2ẼC(ℓ, δ))), rC(n, δ,DXY)}

≤ log2

4m̃2
n

δ
+ 4eθ

m̃n−1
∑

ℓ=0

diam(C(2ẼC(ℓ, δ))) ≤ log2

4m2
n

δ
+ 4eθ

mn−1
∑

ℓ=0

diam(C(2ẼC(ℓ, δ))).

41

Lemma 2.19. On event HC,δ ∩EC,δ (where HC,δ is from Lemma 2.18), under

Tsybakov(C, κ, µ), ∀n ∈ N,

ẼC(mn, δ) ≤















1
δ
· exp

{

−
√

n
cdθ log3 d

δ

}

, if κ = 1

c
(

dθ log2(nd/δ)
n

)
κ

2κ−2
, if κ > 1

,

for some finite constant c (depending on κ and µ), and under

Entropy[](C, α, ρ) ∩ Tsybakov(C, κ, µ), ∀n ∈ N,

ẼC(mn, δ) ≤ c

(

θ log2(n/δ)

n

)

κ
2κ+ρ−2

,

for some finite constant c (depending on κ, µ, ρ, and α).

Proof of Lemma 2.19. We begin with the first case (Tsybakov(C, κ, µ) only).

We know that

ωC(m, ǫ) ≤ K

√

ǫd log 2
ǫ

m

for some constant K [see e.g., Massart and Élodie Nédélec, 2006]. Noting that φC(m, ǫ) ≤

ωC(m, diam(C(ǫ))), we have that

ŨC(m, ǫ, δ) ≤ K̃



K

√

diam(C(c̃ǫ))d log 2
diam(C(c̃ǫ))

m
+

√

sm(δ)diam(C(c̃ǫ))

m
+

sm(δ)

m





≤ K ′ max







√

ǫ1/κd log 1
ǫ

m
,

√

sm(δ)ǫ1/κ

m
,
sm(δ)

m







.

Taking any ǫ ≥ K ′′
(

d log m
δ

m

)
κ

2κ−1
, for some constant K ′′ > 0, suffices to make this latter quantity

≤ ǫ
16

. So for some appropriate constant K (depending on µ and κ), we must have that

ẼC(m, δ) ≤ K

(

d log m
δ

m

)
κ

2κ−1

. (2.10)

Plugging this into the query bound, we have that

n ≤ log2

4m2
n

δ
+ 2eθ

(

2 +

∫ mn−1

1

µ(2K ′)
1
κ

(

d log x
δ

x

)
1

2κ−1

)

. (2.11)

42

If κ > 1, (2.11) is at most K ′′θm
2κ−2
2κ−1
n d log mn

δ
, for some constant K ′′ (depending on κ and

µ). This implies

mn ≥ K(3)

(

n

θd log n
δ

)
2κ−1
2κ−2

,

for some constant K(3). Plugging this into (2.10) and using Lemma 2.18 completes the proof for

this case.

On the other hand, if κ = 1, (2.11) is at most K ′′θd log2 mn

δ
, for some constant K ′′ (depending

on κ and µ). This implies

mn ≥ δexp

{

K(3)

√

n

θd

}

,

for some constant K(3). Plugging this into (2.10), using Lemma 2.18, and simplifying the ex-

pression with a bit of algebra completes this case.

For the bound in terms of ρ, Koltchinskii [2006] proves that

ẼC(m, δ) ≤ K ′ max

{

m− κ
2κ+ρ−1 ,

(

log m
δ

m

)
κ

2κ−1

}

≤ K ′

(

log m
δ

m

)
κ

2κ+ρ−1

, (2.12)

for some constant K ′ (depending on µ, α, and κ). Plugging this into the query bound, we have

that

n ≤ log2

4m2
n

δ
+ 2eθ

(

2 +

∫ mn−1

1

µ(2K ′)
1
κ

(

log x
δ

x

)
1

2κ+ρ−1

)

≤ K ′′θm
2κ+ρ−2
2κ+ρ−1
n log

mn

δ
,

for some constant K ′′ (depending on κ, µ, α, and ρ). This implies

mn ≥ K(3)

(

n

θ log n
δ

)
2κ+ρ−1
2κ+ρ−2

,

for some constant K(3). Plugging this into (2.12) and using Lemma 2.18 completes the proof of

this case.

Proofs of Theorem 2.11 and Theorem 2.12. These theorems now follow directly from Lem-

mas 2.18 and 2.19.

43

2.7.3 Proofs Relating to Section 2.4

Lemma 2.20. For i ∈ N, let δi = δ/(2i2) and min = |Lin|+ |Qin| (for i >
√

n/2, define

Lin = Qin = ∅). For each n, let în denote the smallest index i satisfying the condition on hin in

step 3 of Algorithm 3. Let τn = 2−n and define

i∗n = min
{

i ∈ N : ∀i′ ≥ i, ∀j ≥ i′, ∀h ∈ Ci′(τn), erLjn
(h) = 0

}

,

and

j∗n = arg min
j∈N

νj + ÊCj
(mjn, δj).

Then on the event
∞
⋂

i=1

ECi,δi
,

∀n ∈ N, max
{

i∗n, în

}

≤ j∗n.

Proof of Lemma 2.20. Continuing the notation from the proof of Lemma 2.17, for ℓ ∈ N∪{0},

let L(ℓ)
in and Q

(ℓ)
in denote the sets L and Q, respectively, in step 4 of Algorithm 2, when m− 1 =

ℓ, when run with class Ci, label budget ⌊n/(2i2)⌋, confidence parameter δi, and threshold as

in (2.6); if m− 1 is never ℓ during execution, then define L(ℓ)
in = ∅ and Q

(ℓ)
in = Zℓ.

Assume the event
∞
⋂

i=1

ECi,δi
occurs. Suppose, for the sake of contradiction, that j = j∗n < i∗n

for some n ∈ N. Then there is some i ≥ i∗n − 1 such that, for some ℓ < min, we have some

h′ ∈ Ci∗n−1(τn) ∩ {h ∈ Ci : er
L

(ℓ)
in

(h) = 0} but

erℓ(h
′)−min

h∈Ci

erℓ(h) ≥ erℓ(h
′)− min

h∈Ci:er
L

(ℓ)
in

(h)=0
erℓ(h) > 3ÊCi

(L(ℓ)
in ∪Q

(ℓ)
in , δi;L(ℓ)

in) = 3ÊCi
(ℓ, δi),

where the last equality is due to Lemma 2.17. Lemma 2.16 implies this will not happen for

i = i∗n − 1, so we can assume i ≥ i∗n. We therefore have (by Lemma 2.16) that

3ÊCi
(ℓ, δi) < erℓ(h

′)−min
h∈Ci

erℓ(h) ≤ 3

2
max

{

τn + νi∗n−1 − νi, ÊCi
(ℓ, δi)

}

.

In particular, this implies that

3ÊCi
(min, δi) ≤ 3ÊCi

(ℓ, δi) <
3

2

(

τn + νi∗n−1 − νi

)

≤ 3

2
(τn + νj − νi) .

Therefore,

ÊCj
(mjn, δj) + νj ≤ ÊCi

(min, δi) + νi ≤
1

2
(τn + νj − νi) + νi ≤

τn

2
+ νj.

44

This would imply that ÊCj
(mjn, δj) ≤ τn/2 < 1

mjn
(due to the second return condition in Al-

gorithm 2), which by definition is not possible, so we have a contradiction. Therefore, we must

have that every j∗n ≥ i∗n. In particular, we have that ∀n ∈ N, hj∗nn 6= ∅.

Now pick an arbitrary i ∈ N with i > j = j∗n, and let h′ ∈ Cj(τn). Then

erLin∪Qin
(hjn)− erLin∪Qin

(hin) = ermin
(hjn)− ermin

(hin)

≤ ermin
(hjn)−min

h∈Ci

ermin
(h)

≤ 3

2
max

{

er(hjn)− νi, ÊCi
(min, δi)

}

(Lemma 2.16)

=
3

2
max

{

er(hjn)− νj + νj − νi, ÊCi
(min, δi)

}

≤ 3

2
max































2(ermjn
(hjn)− ermjn

(h′) + τn) + νj − νi

ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

=
3

2
max















ÊCj
(mjn, δj) + νj − νi

ÊCi
(min, δi)

(since j ≥ i∗n)

=
3

2
ÊCi

(min, δi) (by definition of j∗t)

=
3

2
ÊC(Lin ∪Qin, δi;Lin) (by Lemma 2.17).

Lemma 2.21. On the event
∞
⋂

i=1

ECi,δi
, ∀n ∈ N,

er(hînn)− ν∞ ≤ 3 min
i∈N

(

νi − ν∞ + ẼCi
(min, δi)

)

.

Proof of Lemma 2.21. Let h′
n ∈ Cj∗n(τn) for τn ∈ (0, 2−n), n ∈ N.

45

er(ĥn)− ν∞ = er(hînn)− ν∞

= νj∗n − ν∞ + er(hînn)− νj∗n

≤ νj∗n − ν∞ + max















2(ermj∗nn
(hînn)− ermj∗nn

(h′
n) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

≤ νj∗n − ν∞ + max















2(erLj∗nn∪Qj∗nn
(hînn)− erLj∗nn∪Qj∗nn

(hj∗nn)) + τn)

ÊCj∗n
(mj∗nn, δj∗n)

The first inequality follows from Lemma 2.16. The second inequality is due to Lemma 2.20 (i.e.,

j∗n ≥ i∗n). In this last line, we can let τn → 0, and using the definition of în show that it is at most

νj∗n − ν∞ + max

{

2

(

3

2
ÊCj∗n

(Lj∗nn ∪Qj∗nn, δj∗n;Lj∗nn)

)

, ÊCj∗n
(mj∗nn, δj∗n)

}

= νj∗n − ν∞ + 3ÊCj∗n
(mj∗nn, δj∗n) (Lemma 2.17)

≤ 3 min
i

(

νi − ν∞ + ÊCi
(min, δi)

)

(by definition of j∗n)

≤ 3 min
i

(

νi − ν∞ + ẼCi
(min, δi)

)

(Lemma 2.16).

We are now ready for the proof of Theorems 2.13 and 2.14.

Proofs of Theorem 2.13 and Theorem 2.14. These theorems now follow directly from Lem-

mas 2.21 and 2.19. That is, Lemma 2.21 gives a bound in terms of the Ẽ quantities, holding on

event
∞
⋂

i=1

ECi,δi
, and Lemma 2.19 bounds these Ẽ quantities as desired, on event

∞
⋂

i=1

HCi,δi
∩ECi,δi

.

Noting that, by the union bound, P

[

∞
⋂

i=1

HCi,δi
∩ ECi,δi

]

≥ 1 −∑∞
i=1 δi ≥ 1 − δ completes the

proof.

Define c̊ = c̃ + 1, D̊(ǫ) = lim
j→∞

diam(Cj(ǫ)), and

ŮCi
(m, ǫ, δi) = K̃



ωCi
(m, D̊(̊cǫ)) +

√

sm(δi)D̊(̊cǫ)

m
+

sm(δi)

m





46

and

E̊Ci
(m, δi) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j, δi) ≤ 2j−4

}

.

Lemma 2.22. For any m, i ∈ N,

ẼCi
(m, δi) ≤ max

{

E̊Ci
(m, δi), νi − ν∞

}

.

Proof of Lemma 2.22. For ǫ > νi − ν∞,

ŨCi
(m, ǫ, δi) = K̃

(

φCi
(m, c̃ǫ) +

√

sm(δi)diam(Ci(c̃ǫ))

m
+

sm(δi)

m

)

≤ K̃

(

ωCi
(m, diam(Ci(c̃ǫ))) +

√

sm(δi)diam(Ci(c̃ǫ))

m
+

sm(δi)

m

)

.

But diam(Ci(c̃ǫ)) ≤ D̊(c̃ǫ + (νi − ν∞)) ≤ D̊(̊cǫ), so the above line is at most

K̃



ωCi
(m, D̊(̊cǫ)) +

√

sm(δi)D̊(̊cǫ)

m
+

sm(δi)

m



 = ŮCi
(m, ǫ, δi).

In particular, this implies that

ẼCi
(m, δi) = inf

{

ǫ > 0 : ∀j ∈ Zǫ, ŨCi
(m, 2j, δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŨCi
(m, 2j, δi) ≤ 2j−4

}

≤ inf
{

ǫ > (νi − ν∞) : ∀j ∈ Zǫ, ŮCi
(m, 2j, δi) ≤ 2j−4

}

≤ max
{

inf
{

ǫ > 0 : ∀j ∈ Zǫ, ŮCi
(m, 2j , δi) ≤ 2j−4

}

, (νi − ν∞)
}

= max
{

E̊Ci
(m, δi), νi − ν∞

}

.

Proof of Theorem 2.15. By the same argument that lead to (2.10), we have that

E̊Ci
(m, δi) ≤ K2

di log mi
δ

m
,

47

for some constant K2 (depending on µ).

Now assume the event
⋂∞

i=1 HCi,δi
∩ ECi,δi

occurs. In particular, Lemma 2.21 implies that

∀i, n ∈ N,

er(ĥn)− ν∗ ≤ min

{

1, 3 min
i∈N

(

2(νi − ν∞) + E̊Ci
(min, δi)

)

}

≤ K3 min
i∈N

(

(νi − ν∗) + min

{

1,
di log mini

δ

min

})

,

for some constant K3.

Now take i ∈ N. The label request bound of Lemma 2.18, along with Lemma 2.22, implies

that

⌊n/(2i2)⌋ ≤ log
8m2

ini
2

δ
+ K4θi

(

2 +

∫ min−1

1

max

{

νi − ν∗,
di log xi

δ

x

}

dx

)

≤ K5θi max

{

(νi − ν∗)min, di log2(min) log
i

δ

}

Let γi(n) =
√

n
i2θidi log i

δ

. Then

di log mini
δ

min
≤ K6

(

(νi − ν∗)
1 + γi(n)

γi(n)2
+ di log

i

δ
(1 + γi(n)) exp {−c2γi(n)}

)

.

Thus,

min

{

1,
di log mini

δ

min

}

≤ min

{

1, K7

(

(νi − ν∗) + di log
i

δ
(1 + γi(t)) exp {−c2γi(n)}

)}

.

The result follows from this by some simple algebra.

2.8 Time Complexity of Algorithm 2

It is worth making a few remarks about the time complexity of Algorithm 2 when used with

the (2.6) threshold. Clearly the LEARNC subroutine could be at least as computationally hard

as empirical risk minimization (ERM) over C. For most interesting hypothesis classes, this

is known to be NP-Hard – though interestingly, there are some efficient special cases [e.g.,

48

Kalai, Klivans, Mansour, and Servedio, 2005]. Additionally, there is the matter of calculating

Êm(δ; C,L). The challenge here is due to the localization Ĉ(ǫ;L) in the empirical Rademacher

process calculation and the empirical diameter calculation.

However, using a trick similar to that in Bartlett, Bousquet, and Mendelson [2005], we can

calculate or bound these quantities via an efficient reduction to minimization of a weighted em-

pirical error. That is, the only possibly difficult step in calculating φ̂m(ǫ; C,L) requires only

that we identify h1 = argmin
h∈Ĉm(ǫ;L)

erm(h, ξ) and h2 = argmin
h∈Ĉm(ǫ;L)

erm(h,−ξ), where erm(h, ξ) =

1
m

∑m
i=1 1[h(Xi) 6= ξi] and erm(h,−ξ) is the same but with −ξi. Similarly, letting ĥL =

LEARNC(L, Q) for L ∪Q generated from the first m unlabeled examples, we can bound

D̂m(ǫ; C,L) within a factor of 2 by 2erm(h′, ĥL) where h′ = argmin
h∈Ĉm(ǫ;L)

erm(h,−ĥL) and

erm(f, g) = 1
m

∑m
i=1 1[f(Xi) 6= g(Xi)]. All that remains is to specify how this optimization for

h1,h2,and h′ can be performed. Taking the h1 case for example, we can solve the optimization as

follows. We find

ĥ(λ) = arg min
h∈C

m
∑

i=1

1[h(Xi) 6= ξi] +
∑

(x,y)∈Q

λ1[h(x) 6= y] +
∑

(x,y)∈L

2 max{1, λ}m1[h(x) 6= y],

where λ is a Lagrange multiplier; we can calculate ĥ(λ) for O(m2) values of λ in a discrete

grid, and from these choose the one with smallest erm(ĥ(λ), ξ) among those with erL∪Q(ĥ(λ))−

erL∪Q(ĥL) ≤ ǫ. The third term guarantees the solution satisfies erL(ĥ(λ)) = 0, while the value

of λ specifies the trade-off between erL∪Q(ĥ(λ)) and erm(ĥ(λ), ξ). The calculation for h2 and h′

is analogous. Additionally, we can clearly formulate the LEARN subroutine as such a weighted

ERM problem as well.

For each of these weighted ERM problems, a further polynomial reduction to (unweighted)

empirical risk minimization is possible. In particular, we can replicate the examples a number

of times proportional to the weights, generating an ERM problem on O(m2) examples. Thus,

for processing any finite number of unlabeled examples m, the time complexity of Algorithm

2 (substituting the above 2-approximation for D̂m(ǫ; C,L), which only changes constant factors

in the results of Section 2.3.4) should be no more than a polynomial factor worse than the time

49

complexity of empirical risk minimization with C, for the worst case over all samples of size

O(m2).

2.9 A Refined Analysis of PAC Learning Via the Disagree-

ment Coefficient

Throughout this section, we will work in Realizable(C) and denoteD = DXY [X]. In particular,

there is always a target function f ∈ C with er(f) = 0.

Note that the known general upper bound for this problem is that, if the VC dimension of C

is d, then with probability 1− δ, every classifier in C consistent with n random samples has error

rate at most

4
d ln(2en/d) + ln(4/δ)

n
. (2.13)

This is due to Vapnik [1982]. There is a slightly different bound (for a different learning strategy)

of

∝ d log(1/δ)

n
(2.14)

proven by Haussler, Littlestone, and Warmuth [1994]. It is also known that one cannot get a

distribution-free bound smaller than

∝ d + log(1/δ)

n

for any concept space [Vapnik, 1982]. The question we are concerned with here is deriving upper

bounds that are closer to this lower bound than either (2.13) or (2.14) in some cases.

For our purposes, throughout this section we will take r0 = d+log(1/δ)
n

in the definition of the

disagreement coefficient. In particular, recall that θf ≤ 1
r0

always, and this will imply a fallback

guarantee no worse than those above for our analysis below. However, it is sometimes much

smaller, or even constant, in which case our analysis here may be better than those mentioned

above.

50

2.9.1 Error Rates for Any Consistent Classifier

For simplicity and to focus on the nontrivial cases, the results in this section will be stated for

the case where P(DIS(C)) > 0. The P(DIS(C)) = 0 case is trivial, since every h ∈ C has

er(h) = 0 there.

Theorem 2.23. Let d be the VC dimension of concept space C, and let

Vn = {h ∈ C : ∀i ≤ n, h(xi) = f(xi)}, where f ∈ C is the target function (i.e., er(f) = 0),

and (x1, x2, . . . , xn) ∼ Dn is a sequence of i.i.d. training examples. Then for any δ ∈ (0, 1),

with probability≥ 1− δ, ∀h ∈ Vn,

er(h) ≤ 24

n

(

d ln(880θf) + ln
12

δ

)

. (2.15)

Proof. Since P(DIS(C)) > 0 by assumption, θf > 0 (and d > 0 also follows). As above, let

Vm = {h ∈ C : ∀i ≤ m, h(xi) = f(xi)}, and define radius(Vm) = suph∈Vm
er(h). We will

prove the result by induction on n. As a base case, note that the result clearly holds for n ≤ d, as

we always have er(h) ≤ 1.

Now suppose n ≥ d + 1 ≥ 2, and suppose the result holds for any m < n; in particular,

consider m = ⌊n/2⌋. Thus, for any δ ∈ (0, 1), with probability≥ 1− δ/3,

radius(Vm) ≤ 24

m

(

d ln(880θf) + ln
36

δ

)

.

Note that rn < rm, so we can take this inequality to hold for the θf defined with rn as well. If

P(DIS(Vm)) < 8
m

ln 3
δ
≤ 24

n
ln 3

δ
, then (2.15) is valid (as is (2.16) below) since radius(Vn) ≤

radius(Vm) ≤ P(DIS(Vm)). Otherwise, by a Chernoff bound, with probability ≥ 1− δ/3, we

have

|{xm+1, xm+2, . . . , xn} ∩DIS(Vm)| ≥ P(DIS(Vm))⌈n/2⌉/2 =: N.

51

(2.13) tells us that given this event, with probability≥ 1− δ/3,

radius(Vn) = P(DIS(Vm))radius(Vn|DIS(Vm))

≤ P(DIS(Vm))
4

N

(

d ln
2eN

d
+ ln

12

δ

)

≤ 16

n

(

d ln
2eP(DIS(Vm))n

4d
+ ln

12

δ

)

≤ 16

n

(

d ln
eθfradius(Vm)n

2d
+ ln

12

δ

)

.

Applying the inductive hypothesis for radius(Vm) combined with a union bound over these 3

failure events (each of probability δ/3), we have that with probability≥ 1− δ,

radius(Vn) ≤
16

n

(

d ln

(

48eθf

(

ln (880θf) +
1

d
ln

36

δ

))

+ ln
12

δ

)

. (2.16)

If d ≥ 1
e
ln 12

δ
, then the right side of (2.16) is at most

16

n

(

d ln (θf48e ln (880 · 3 · eeθf)) + ln
12

δ

)

≤ 16

n

(

d ln (θf48e ln (40008θf)) + ln
12

δ

)

≤ 16

n

(

d ln
(

26099θ
3/2
f

)

+ ln
12

δ

)

≤ 24

n

(

d ln (880θf) + ln
12

δ

)

.

Otherwise d < 1
e
ln 12

δ
, so that the right side of (2.16) is at most

16

n

(

d ln

(

θf48e ln (880 · 3θf)
1

d
ln

12

δ

)

+ ln
12

δ

)

≤ 16

n

(

d ln
(

6705θ
3/2
f

)

+ d ln

(

1

d
ln

12

δ

)

+ ln
12

δ

)

≤ 24

n

(

d ln (356θf) +
2

3

(

1

e
+ 1

)

ln
12

δ

)

≤ 24

n

(

d ln (880θf) + ln
12

δ

)

.

The theorem now follows by the principle of induction.

With this result in hand, we can immediately get some interesting results, such as the follow-

ing corollary.

52

Corollary 2.24. Suppose C is the space of linear separators in d dimensions that pass through

the origin, and suppose the distribution is uniform on the surface of the origin-centered unit

sphere. Then with probability≥ 1− δ, any h ∈ C consistent with the n i.i.d. training examples

has (for some finite universal c)

er(h) ≤ c
d log d + log 1

δ

n
.

Proof. [Hanneke, 2007b] proves that sup
f∈C

θf ≤ π
√

d for this problem.

This improves over the best previously known bound for consistent classifiers for this problem

in its dependence on n, which was ∝ d
√

log(n/d)+log(1/δ)

n
[Li and Long, 2007] (though we picked

up an extra log d factor in the process).

2.9.2 Specializing to Particular Algorithms

The above analysis is for arbitrary algorithms that select a classifier consistent with the training

data. However, we can modify the disagreement coefficient to be more interesting for more spe-

cific algorithms. Specifically, suppose there are sets Cf such that with high probability algorithm

A will output a classifier in Cf when f is the target function. Then we only need to worry about

the regions of disagreement within these Cf sets, which may be significantly smaller than within

the full space C.

To give a concrete example, consider the Closure algorithm: output the h ∈ C with smallest

P(h(X) = +1) that is consistent with the data. For intersection-closed C, the sets are Cf =

{h ∈ C : h(x) = +1 ⇒ f(x) = +1}. So effectively, this becomes our concept space, and the

disagreement coefficient of f with respect to Cf andD can be significantly smaller than it is with

respect to the full space C. For instance, if C is axis-aligned rectangles, then the disagreement

coefficient of any f ∈ C with respect to Cf and D is at most d. This implies a bound

∝ d log d + log(1/δ)

n
.

53

We already have better bounds than this for using Closure with this concept space. How-

ever, if the d upper bound on disagreement coefficient with respect to Cf is true for general

intersection-closed spaces C, this would match the best known bounds for general intersection-

closed spaces [Auer and Ortner, 2004].

54

Chapter 3

Significance of the Verifiable/Unverifiable

Distinction in Realizable Active Learning

This chapter describes and explores a new perspective on the label complexity of active learning

in the fixed-distribution realizable case. In many situations where it was generally thought that

active learning does not help, we show that active learning does help in the limit, often with

exponential improvements in label complexity. This contrasts with the traditional analysis of

active learning problems such as non-homogeneous linear separators or depth-limited decision

trees, in which Ω(1/ǫ) lower bounds are common. Such lower bounds should be interpreted

carefully; indeed, we prove that it is always possible to learn an ǫ-good classifier with a number

of labels asymptotically smaller than this. These new insights arise from a subtle variation on

the traditional definition of label complexity, not previously recognized in the active learning

literature.

Remark 3.1. The results in this chapter are taken from [Balcan, Hanneke, and Wortman, 2008],

joint work with Maria-Florina Balcan and Jennifer Wortman.

55

3.1 Introduction

A number of active learning analyses have recently been proposed in a PAC-style setting, both for

the realizable and for the agnostic cases, resulting in a sequence of important positive and nega-

tive results [Balcan et al., 2006, 2007, Cohn et al., 1994, Dasgupta, 2004, 2005, Dasgupta et al.,

2005, 2007, Hanneke, 2007a,b]. In particular, the most concrete noteworthy positive result for

when active learning helps is that of learning homogeneous (i.e., through the origin) linear

separators, when the data is linearly separable and distributed uniformly over the unit sphere,

and this example has been extensively analyzed [Balcan et al., 2006, 2007, Dasgupta, 2005,

Dasgupta et al., 2005, 2007]. However, few other positive results are known, and there are sim-

ple (almost trivial) examples, such as learning intervals or non-homogeneous linear separators

under the uniform distribution, where previous analyses of label complexities have indicated that

perhaps active learning does not help at all [Dasgupta, 2005].

In this work, we approach the analysis of active learning algorithms from a different angle.

Specifically, we point out that traditional analyses have studied the number of label requests

required before an algorithm can both produce an ǫ-good classifier and prove that the classifier’s

error is no more than ǫ. These studies have turned up simple examples where this number is

no smaller than the number of random labeled examples required for passive learning. This is

the case for learning certain nonhomogeneous linear separators and intervals on the real line,

and generally seems to be a common problem for many learning scenarios. As such, it has led

some to conclude that active learning does not help for most learning problems. One of the goals

of our present analysis is to dispel this misconception. Specifically, we study the number of

labels an algorithm needs to request before it can produce an ǫ-good classifier, even if there is

no accessible confidence bound available to verify the quality of the classifier. With this type

of analysis, we prove that active learning can essentially always achieve asymptotically superior

label complexity compared to passive learning when the VC dimension is finite. Furthermore,

we find that for most natural learning problems, including the negative examples given in the

56

Best accessible confidence

bound on the error

True error rate of

the learner's hypothesis

Γ polylogH1�ΕL 1�Ε
labels

Ε

Figure 3.1: Active learning can often achieve exponential improvements, though in many cases

the amount of improvement cannot be detected from information available to the learning algo-

rithm. Here γ may be a target-dependent constant.

previous literature, active learning can achieve exponential1 improvements over passive learning

with respect to dependence on ǫ. This situation is characterized in Figure 3.1.

To our knowledge, this is the first work to address this subtle point in the context of active

learning. Though several previous papers have studied bounds on this latter type of label com-

plexity [Castro and Nowak, 2007, Dasgupta et al., 2005, 2007], their results were no stronger

than the results one could prove in the traditional analysis. As such, it seems this large gap

between the two types of label complexities has gone unnoticed until now.

3.1.1 A Simple Example: Intervals

To get some intuition about when these types of label complexity are different, consider the

following example. Suppose that C is the class of all intervals over [0, 1] and D is a uniform

distribution over [0, 1]. If the target function is the empty interval, then for any sufficiently small

ǫ, in order to verify with high confidence that this (or any) interval has error ≤ ǫ, we need to

request labels in at least a constant fraction of the Ω(1/ǫ) intervals [0, 2ǫ], [2ǫ, 4ǫ], . . ., requiring

Ω(1/ǫ) total label requests.

1We slightly abuse the term “exponential” throughout the chapter. In particular, we refer to any polylog(1/ǫ) as

being an exponential improvement over 1/ǫ.

57

However, no matter what the target function is, we can find an ǫ-good classifier with only

a logarithmic label complexity via the following extremely simple 2-phase learning algorithm.

The algorithm will be allowed to make t label requests, and then we will find a value of t that is

sufficiently large to guarantee learning. We start with a large (Ω(2t)) set of unlabeled examples.

In the first phase, on each round we choose a point x uniformly at random from the unlabeled

sample and query its label. We repeat this until we either observe a +1 label, at which point we

enter the second phase, or we use all t label requests. In the second phase, we alternate between

running one binary search on the examples between 0 and that x and a second on the examples

between that x and 1 to approximate the end-points of the interval. Once we use all t label

requests, we output a smallest interval consistent with the observed labels.

If the target h∗ labels every point as −1 (the so-called all-negative function), the algorithm

described above would output a hypothesis with 0 error even after 0 label requests, so any t ≥ 0

suffices in this case. On the other hand, if the target is an interval [a, b] ⊆ [0, 1], where b − a =

w > 0, then after roughly O(1/w) queries (a constant number that depends only on the target), a

positive example will be found. Since only O(log(1/ǫ)) additional queries are required to run the

binary search to reach error rate ǫ, it suffices to have t ≥ O(1/w+log(1/ǫ)) = O(log(1/ǫ)). So in

general, the label complexity is at worst O(log(1/ǫ)). Thus, we see a sharp distinction between

the label complexity required to find a good classifier (logarithmic) and the label complexity

needed to both find a good classifier and verify that it is good.

This example is particularly simple, since there is effectively only one “hard” target function

(the all-negative target). However, most of the spaces we study are significantly more complex

than this, and there are generally many targets for which it is difficult to achieve good verifiable

complexity.

58

3.1.2 Our Results

We show that in many situations where it was previously believed that active learning cannot

help, active learning does help in the limit. Our main specific contributions are as follows:

• We distinguish between two different variations on the definition of label complexity. The

traditional definition, which we refer to as verifiable label complexity, focuses on the num-

ber of label requests needed to obtain a confidence bound indicating an algorithm has

achieved at most ǫ error. The newer definition, which we refer to simply as label complex-

ity, focuses on the number of label requests before an algorithm actually achieves at most

ǫ error. We point out that the latter is often significantly smaller than the former, in con-

trast to passive learning where they are often equivalent up to constants for most nontrivial

learning problems.

• We prove that any distribution and finite VC dimension concept class has active learning

label complexity asymptotically smaller than the label complexity of passive learning for

nontrivial targets. A simple corollary of this is that finite VC dimension implies o(1/ǫ)

active learning label complexity.

• We show it is possible to actively learn with an exponential rate a variety of concept classes

and distributions, many of which are known to require a linear rate in the traditional anal-

ysis of active learning: for example, intervals on [0, 1] and non-homogeneous linear sepa-

rators under the uniform distribution.

• We show that even in this new perspective, there do exist lower bounds; it is possible to

exhibit somewhat contrived distributions where exponential rates are not achievable even

for some simple concept spaces (see Theorem 3.11). The learning problems for which

these lower bounds hold are much more intricate than the lower bounds from the traditional

analysis, and intuitively seem to represent the core of what makes a hard active learning

problem.

59

3.2 Background and Notation

In various places throughout this chapter, we will need notation for a countable dense subset of

a hypothesis class V . For any set of classifiers V , we will denote by Ṽ a countable (or possibly

finite) subset of V s.t. ∀α > 0, ∀h ∈ V , ∃h′ ∈ Ṽ with PDXY [X](h(X) 6= h′(X)) ≤ α. Such

a set is guaranteed to exist under mild conditions; in particular, finite VC dimension suffices to

guarantee its existence. We introduce this notion to avoid certain degenerate behaviors, such as

when DIS(B(h, 0)) = X . For instance, the hypothesis class of classifiers on the [0, 1] interval

that label exactly one point positive has this property under any nonatomic density function.

Since all of the results in this chapter are for the fixed-distribution realizable case, it will be

convenient to introduce the following short-hand notation.

Definition 3.1. A function Λ(ǫ, δ, h∗) is a label complexity for a pair (C,D) if there exists an

active learning algorithmA achieving label complexity Λ(ǫ, δ,DXY) = Λ(ǫ, δ, h∗
DXY

) for all

DXY ∈ Realizable(C,D), where D is a distribution over X and h∗
DXY

is the target function

under DXY .

Definition 3.2. A function Λ(ǫ, δ, h∗) is a verifiable label complexity for a pair (C,D) if there

exists an active learning algorithmA achieving verifiable label complexity

Λ(ǫ, δ,DXY) = Λ(ǫ, δ, h∗
DXY

) for all DXY ∈ Realizable(C,D), where D is a distribution over

X and h∗
DXY

is the target function under DXY .

Let us take a moment to reflect on the difference between the two definitions of label com-

plexity: namely, verifiable and unverifiable. The distinction may appear quite subtle. Both

definitions allow the label complexity to depend both on the target function and on the input dis-

tribution. The only distinction is whether or not there is an accessible guarantee or confidence

bound on the error of the chosen hypothesis that is also at most ǫ. This confidence bound can

only depend on quantities accessible to the learning algorithm, such as the t requested labels. As

an illustration of this distinction, consider again the problem of learning intervals. As described

above, if the target h∗ is an interval of width w, then after seeing O(1/w + log(1/ǫ)) labels, with

60

high probability it is possible for an algorithm to guarantee that it can output a function with

error less than ǫ. In this case, for sufficiently small ǫ, the verifiable label complexity Λ(ǫ, δ, h∗)

is proportional to log(1/ǫ). However, if h∗ is the all-negative function, then the verifiable label

complexity is at least proportional to 1/ǫ for all values of ǫ because a high-confidence guarantee

can never be made without observing Ω(1/ǫ) labels; for completeness, a formal proof of this fact

is included in Section 3.7. In contrast, as we have seen, the label complexity is O(log(1/ǫ)) for

any target in the class of intervals when no such guarantee is required.

A common alternative formulation of verifiable label complexity is to let A take ǫ as an

argument and allow it to choose online how many label requests it needs in order to guarantee

error at most ǫ [Dasgupta, 2005]. This alternative definition is almost equivalent (an algorithm

for either definition can be modified to fit the other definition without significant loss in the

verifiable label complexity values), as the algorithm must be able to produce a confidence bound

of size at most ǫ on the error of its hypothesis in order to decide when to stop requesting labels

anyway.2

3.2.1 The Verifiable Label Complexity

To date, there has been a significant amount of work studying the verifiable label complexity

(though typically under the aforementioned alternative formulation). It is clear from standard re-

sults in passive learning that verifiable label complexities of O ((d/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ))

are easy to obtain for any learning problem, by requesting the labels of random examples. As

such, there has been much interest in determining when it is possible to achieve verifiable la-

2There is some question as to what the “right” formal model of active learning is in general. For instance, we

could instead let A generate an infinite sequence of ht hypotheses (or (ht, ǫ̂t) in the verifiable case), where ht

can depend only on the first t label requests made by the algorithm along with some initial segment of unlabeled

examples (as in [Castro and Nowak, 2007]), representing the case where we are not sure a-priori of when we will

stop the algorithm. However, for our present purposes, such alternative models are equivalent in label complexity

up to constants.

61

bel complexity smaller than this, and in particular, when the verifiable label complexity is a

polylogarithmic function of 1/ǫ (representing exponential improvements over passive learning).

As discussed in previous chapters, there have been a few quantities proposed to measure

the verifiable label complexity of active learning on any given concept class and distribution.

Dasgupta’s splitting index [Dasgupta, 2005], which is dependent on the concept class, data dis-

tribution, target function, and a parameter τ , quantifies how easy it is to make progress toward

reducing the diameter of the version space by choosing an example to query. Another quantity

to which we will frequently refer is the disagreement coefficient [Hanneke, 2007b], defined in

Chapter 2.

The disagreement coefficient is often a useful quantity for analyzing the verifiable label com-

plexity of active learning algorithms. For example, as we saw in Chapter 2, Algorithm 0 achieves

a verifiable label complexity at most θh∗d ·polylog(1/(ǫδ)) when run with hypothesis class C for

target function h∗ ∈ C. We will use it in several of the results below. In all of the relevant results

of this chapter, we will simply take r0 = 0 in the definition of the disagreement coefficient.

We will see that both the disagreement coefficient and splitting index are also useful quantities

for analyzing unverifiable label complexities, though their use in that case is less direct.

3.2.2 The True Label Complexity

This chapter focuses on situations where true label complexities are significantly smaller than

verifiable label complexities. In particular, we show that many common pairs (C,D) have

label complexity that is polylogarithmic in both 1/ǫ and 1/δ and linear only in some finite

target-dependent constant γh∗ . This contrasts sharply with the infamous 1/ǫ lower bounds men-

tioned above, which have been identified for verifiable label complexity [Dasgupta, 2004, 2005,

Freund et al., 1997, Hanneke, 2007a]. The implication is that, for any fixed target h∗, such lower

bounds vanish as ǫ approaches 0. This also contrasts with passive learning, where 1/ǫ lower

bounds are typically unavoidable [Antos and Lugosi, 1998].

62

Definition 3.3. We say that (C,D) is actively learnable at an exponential rate if there exists an

active learning algorithm achieving label complexity

Λ(ǫ, δ, h∗)=γh∗ · polylog (1/(ǫδ))

for all h∗ ∈ C, where γh∗ is a finite constant that may depend on h∗ and D but is independent of

ǫ and δ.

3.3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which active learning can achieve a label complexity

asymptotically superior to passive learning. The results are surprisingly general, indicating that

whenever the VC dimension is finite, essentially any passive learning algorithm is asymptotically

dominated by an active learning algorithm on all targets.

Definition 3.4. A function Λ(ǫ, δ, h∗) is a passive learning label complexity for a pair (C,D) if

there exists an algorithm A(((x1, h
∗(x1)), (x2, h

∗(x2)), . . . , (xt, h
∗(xt))), δ) that outputs a

classifier ht,δ, such that for any target function h∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1), for any

t ≥ Λ(ǫ, δ, h∗),

PD(er(ht,δ) ≤ ǫ) ≥ 1− δ.

Thus, a passive learning label complexity corresponds to a restriction of an active learning

label complexity to algorithms that specifically request the first t labels in the sequence and

ignore the rest. In particular, it is known that for any finite VC dimension class, there is always

an O (1/ǫ) passive learning label complexity [Haussler et al., 1994]. Furthermore, this is often

(though not always) tight, in the sense that for any passive algorithm, there exist targets for which

the corresponding passive learning label complexity is Ω (1/ǫ) [Antos and Lugosi, 1998]. The

following theorem states that for any passive learning label complexity, there exists an achievable

active learning label complexity with a strictly slower asymptotic rate of growth. Its proof is

included in Section 3.11.

Remark 3.2. This result is superceded by a stronger result in Chapter 4; however, the result in

63

Chapter 4 is proven for a different algorithm, so that Theorem 3.5 is not entirely redundant. I

have therefore chosen to include the result, since the construction of the algorithm may be of

independent interest, even if the stated theorem is itself weaker than later results.

Theorem 3.5. Suppose C has finite VC dimension, and let D be any distribution on X . For any

passive learning label complexity Λp(ǫ, δ, h) for (C,D), there exists an active learning

algorithm achieving a label complexity Λa(ǫ, δ, h) such that, for all δ ∈ (0, 1/4) and targets

h∗ ∈ C for which Λp(ǫ, δ, h
∗) = ω(1),

Λa(ǫ, δ, h
∗) = o (Λp(ǫ/4, δ, h∗)) .

In particular, this implies the following simple corollary.

Corollary 3.6. For any C with finite VC dimension, and any distributionD over X , there is an

active learning algorithm that achieves a label complexity Λ(ǫ, δ, h∗) such that for δ ∈ (0, 1/4),

Λ(ǫ, δ, h∗) = o (1/ǫ)

for all targets h ∈ C.

Proof. Let d be the VC dimension of C. The passive learning algorithm of Haussler, Little-

stone & Warmuth [Haussler et al., 1994] is known to achieve a label complexity no more than

(kd/ǫ) log(1/δ), for some universal constant k < 200. Applying Theorem 3.5 now implies the

result.

Note the interesting contrast, not only to passive learning, but also to the known results on the

verifiable label complexity of active learning. This theorem definitively states that the Ω (1/ǫ)

lower bounds common in the literature on verifiable label complexity can never arise in the

analysis of the true label complexity of finite VC dimension classes.

64

3.4 Decomposing Hypothesis Classes

Let us return once more to the simple example of learning the class of intervals over [0, 1] under

the uniform distribution. As discussed above, it is well known that the verifiable label complexity

of the all-negative classifier in this class is Ω(1/ǫ). However, consider the more limited class

C′ ⊂ C containing only the intervals h of width wh strictly greater than 0. Using the simple

algorithm described in Section 3.1.1, this restricted class can be learned with a (verifiable) label

complexity of only O(1/wh + log(1/ǫ)). Furthermore, the remaining set of classifiers C′′ =

C \C′ consists of only a single function (the all-negative classifier) and thus can be learned with

verifiable label complexity 0. Here we have that C can be decomposed into two subclasses C′

and C′′, where both (C′,D) and (C′′,D) are learnable at an exponential rate. It is natural to

wonder if the existence of such a decomposition is enough to imply that C itself is learnable at

an exponential rate.

More generally, suppose that we are given a distribution D and a hypothesis class C such

that we can construct a sequence of subclasses Ci with label complexity Λi(ǫ, δ, h), with C =

∪∞i=1Ci. Thus, if we knew a priori that the target h∗ was a member of subclass Ci, it would be

straightforward to achieve Λi(ǫ, δ, h
∗) label complexity. It turns out that it is possible to learn any

target h∗ in any class Ci with label complexity only O(Λi(ǫ/2, δ/2, h∗)), even without knowing

which subclass the target belongs to in advance. This can be accomplished by using a simple

aggregation algorithm, such as the one given below. Here a set of active learning algorithms

(for example, multiple instances of Dasgupta’s splitting algorithm [Dasgupta, 2005] or CAL) are

run on individual subclasses Ci in parallel. The output of one of these algorithms is selected

according to a sequence of comparisons.

Using this algorithm, we can show the following label complexity bound. The proof appears

in Section 3.8.

65

Algorithm 1 Algorithm 4 : The Aggregation Procedure. Here it is assumed that C = ∪∞i=1Ci,

and that for each i, Ai is an algorithm achieving label complexity at most Λi(ǫ, δ, h) for the pair

(Ci,D). Both the main aggregation procedure and each algorithm Ai take a number of labels t

and a confidence parameter δ as parameters.

Let k be the largest integer s.t. k2 ⌈72 ln(4k/δ)⌉ ≤ t/2

for i = 1, . . . , k do

Let hi be the output of running Ai(⌊t/(4i2)⌋, δ/2) on the sequence {x2n−1}∞n=1

end for

for i, j ∈ {1, 2, . . . , k} do

if PD(hi(x) 6= hj(x)) > 0 then

Let Rij be the first ⌈72 ln(4k/δ)⌉ elements x in the sequence {x2n}∞n=1 s.t. hi(x) 6= hj(x)

Request the labels of all examples in Rij

Let mij be the number of elements in Rij on which hi makes a mistake

else

Let mij = 0

end if

end for

Return ĥt = hi where i = argmin
i∈{1,2,...,k}

max
j∈{1,2,...,k}

mij

Theorem 3.7. For any distributionD, let C1, C2, . . . be a sequence of classes such that for each

i, the pair (Ci,D) has label complexity at most Λi(ǫ, δ, h) for all h ∈ Ci. Let C = ∪∞i=1Ci. Then

(C,D) has a label complexity at most

min
i:h∈Ci

max

{

4i2 ⌈Λi(ǫ/2, δ/2, h)⌉ , 2i2
⌈

72 ln
4i

δ

⌉}

,

for any h ∈ C. In particular, Algorithm 4 achieves this when given as input the algorithms Ai

that each achieve label complexity Λi(ǫ, δ, h) on class (Ci,D).

A particularly interesting implication of Theorem 3.7 is that the ability to decompose C into

66

a sequence of classes Ci with each pair (Ci,D) learnable at an exponential rate is enough to

imply that (C,D) is also learnable at an exponential rate. Since the verifiable label complexity

of active learning has received more attention and is therefore better understood, it is often be

useful to apply this result when there exist known bounds on the verifiable label complexity; the

approach loses nothing in generality, as suggested by the following theorem. The proof of this

theorem. is included in Section 3.9.

Theorem 3.8. For any (C,D) learnable at an exponential rate, there exists a sequence

C1, C2, . . . with C = ∪∞i=1Ci, and a sequence of active learning algorithms A1, A2, . . . such that

the algorithm Ai achieves verifiable label complexity at most γipolylogi (1/(ǫδ)) for the pair

(Ci,D), where γi is a constant independent of ǫ and δ. In particular, the aggregation algorithm

(Algorithm 4) achieves exponential rates when used with these algorithms.

Note that decomposing a given C into a sequence of Ci subsets that have good verifiable label

complexities is not always a simple task. One might be tempted to think a simple decomposi-

tion based on increasing values of verifiable label complexity with respect to (C,D) would be

sufficient. However, this is not always the case, and generally we need to use information more

detailed than verifiable complexity with respect to (C,D) to construct a good decomposition.

We have included in Section 3.10 a simple heuristic approach that can be quite effective, and in

particular yields good label complexities for every (C,D) described in Section 3.5.

Since it is more abstract and allows us to use known active learning algorithms as a black

box, we frequently rely on the decompositional view introduced here throughout the remainder

of the chapter.

3.5 Exponential Rates

The results in Section 3.3 tell us that the label complexity of active learning can be made strictly

superior to any passive learning label complexity when the VC dimension is finite. We now ask

how much better that label complexity can be. In particular, we describe a number of concept

67

classes and distributions that are learnable at an exponential rate, many of which are known to

require Ω(1/ǫ) verifiable label complexity.

3.5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situations in which exponential rates

are trivially achievable; in fact, in each of the cases mentioned in this subsection, the label

complexity is actually O(1).

Clearly if |X | <∞ or |C| <∞, we can always achieve exponential rates. In the former case,

we may simply request the label of every x in the support of D, and thereby perfectly identify

the target. The corresponding γ = |X |. In the latter case, Algorithm 0 can achieve exponential

learning with γ = |C| since each queried label will reduce the size of the version space by at

least one.

Less obvious is the fact that a similar argument can be applied to any countably infinite

hypothesis class C. In this case we can impose an ordering h1, h2, · · · over the classifiers in C,

and set Ci = {hi} for all i. By Theorem 3.7, applying the aggregation procedure to this sequence

yields an algorithm with label complexity Λ(ǫ, δ, hi) = 2i2 ⌈72 ln(4i/δ)⌉ = O(1).

3.5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric concepts in Rn are learnable at an exponential rate if the underlying

distribution is uniform on some subset of Rn. Here we provide some examples; interestingly,

every example in this subsection has some targets for which the verifiable label complexity is

Ω (1/ǫ). As we see in Section 3.5.3, all of the results in this section can be extended to many

other types of distributions as well.

Unions of k intervals under arbitrary distributions: Let X be the interval [0, 1) and let C(k)

denote the class of unions of at most k intervals. In other words, C(k) contains functions de-

68

scribed by a sequence 〈a0, a1, · · · , aℓ〉, where a0 = 0, aℓ = 1, ℓ ≤ 2k + 1, and a0, · · · , aℓ is the

(nondecreasing) sequence of transition points between negative and positive segments (so x is

labeled +1 iff x ∈ [ai, ai+1) for some odd i). For any distribution, this class is learnable at an

exponential rate by the following decomposition argument. First, define C1 to be the set contain-

ing the all-negative function along with any functions that are equivalent given the distribution

D. Formally,

C1 = {h ∈ C(k) : P(h(X) = +1) = 0} .

Clearly C1 has verifiable label complexity 0. For i = 2, 3, . . . , k + 1, let Ci be the set containing

all functions that can be represented as unions of i − 1 intervals but cannot be represented as

unions of fewer intervals. More formally, we can inductively define each Ci as

Ci =
{

h ∈ C(k) : ∃h′ ∈ C(i−1) s.t. P(h(X) 6= h′(X)) = 0
}

\ ∪j<iCj .

For i > 1, within each subclass Ci, for each h ∈ Ci the disagreement coefficient wrt C̃i is

bounded by something proportional to k + 1/w(h), where w(h) is the weight of the smallest

positive or negative interval with nonzero weight. Thus running Algorithm 0 with C̃i achieves

polylogarithmic (verifiable) label complexity for any h ∈ Ci. Since C(k) = ∪k+1
i=1 Ci, by Theo-

rem 3.7, C(k) is learnable at an exponential rate.

Ordinary Binary Classification Trees: Let X be the cube [0, 1]n, D be the uniform distribution

on X , and C be the class of binary decision trees using a finite number of axis-parallel splits

(see e.g., Devroye et al. [Devroye et al., 1996], Chapter 20). In this case, in the same spirit as

the previous example, we let Ci be the set of decision trees in C distance zero from a tree with

i leaf nodes, not contained in any Cj for j < i. For any i, the disagreement coefficient for any

h ∈ Ci (with respect to (C̃i,D)) is a finite constant, and we can choose C̃i to have finite VC

dimension, so each (Ci,D) is learnable at an exponential rate (by running Algorithm 0 with C̃i).

By Theorem 3.7, (C,D) is learnable at an exponential rate.

69

Linear Separators

Theorem 3.9. Let C be the concept class of linear separators in n dimensions, and let D be the

uniform distribution over the surface of the unit sphere. The pair (C,D) is learnable at an

exponential rate.

Proof. There are multiple ways to achieve this. We describe here a simple proof that uses a de-

composition as follows. Let λ(h) be the probability mass of the minority class under hypothesis

h. Let C1 be the set containing only the separators h with λ(h) = 0, let C2 = {h ∈ C : λ(h) =

1/2}, and let C3 = C \ (C1 ∪ C2). As before, we can use a black box active learning algorithm

such as CAL to learn within the class C3. To prove that we indeed get the desired exponential

rate of active learning, we show that the disagreement coefficient of any separator h ∈ C3 with

respect to (C3,D) is finite. The results concerning Algorithm 0 from Chapter 2 then immedi-

ately imply that C3 is learnable at an exponential rate. Since C1 trivially has label complexity

1, and (C2,D) is known to be learnable at an exponential rate [e.g., Balcan, Broder, and Zhang,

2007, Dasgupta, 2005, Dasgupta, Kalai, and Monteleoni, 2005, Hanneke, 2007b] combined with

Theorem 3.7, this would imply the result.

Below, we will restrict the discussion to hypotheses in C3, which will be implicit in notation

such as B(h, r), etc. First note that, to show θh <∞, it suffices to show that

lim
r→0

P(DIS(B(h, r)))

r
<∞, (3.1)

so we will focus on this.

For any h, there exists rh > 0 s.t. ∀h′ ∈ B(h, r), P(h′(X) = +1) ≤ 1/2 ⇔ P(h(X) =

+1) ≤ 1/2, or in other words the minority class is the same among all h′ ∈ B(h, r). Now

consider any h′ ∈ B(h, r) for 0 < r < min{rh, λ(h)/2}. Clearly P(h(X) 6= h′(X)) ≥ |λ(h)−

λ(h′)|. Suppose h(x) = sign(w · x + b) and h′(x) = sign(w′ · x + b′) (where, without loss,

we assume ‖w‖ = 1), and α(h, h′) ∈ [0, π] is the angle between w and w′. If α(h, h′) =

0 or if the minority regions of h and h′ do not intersect, then clearly P(h(X) 6= h′(X)) ≥
2α(h,h′)

π
min{λ(h), λ(h′)}. Otherwise, consider the classifiers h̄(x) = sign(w ·x+ b̄) and h̄′(x) =

70

Figure 3.2: Projection of h̄ and h̄′ into the plane defined by w and w′.

sign(w′ · x + b̄′), where b̄ and b̄′ are chosen s.t. P(h̄(X) = +1) = P(h̄′(X) = +1) and

λ(h̄) = min{λ(h), λ(h′)}. That is, h̄ and h̄′ are identical to h and h′ except that we adjust the

bias term of the one with larger minority class probability to reduce its minority class probability

to be equal to the other’s. If h 6= h̄, then most of the probability mass of {x : h(x) 6= h̄(x)} is

contained in the majority class region of h′ (or vice versa if h′ 6= h̄′), and in fact every point in

{x : h(x) 6= h̄(x)} is labeled by h̄ according to the majority class label (and similarly for h′ and

h̄′). Therefore, we must have P(h(X) 6= h′(X)) ≥ P(h̄(X) 6= h̄′(X)).

We also have that P(h̄(X) 6= h̄′(X)) ≥ 2α(h,h′)
π

λ(h̄). To see this, consider the projection

onto the 2-dimensional plane defined by w and w′, as in Figure 3.5.2. Because the two decision

boundaries must intersect inside the acute angle, the probability mass contained in each of the

two wedges (both with α(h, h′) angle) making up the projected region of disagreement between h̄

and h̄′ must be at least an α(h, h′)/π fraction of the total minority class probability for the respec-

tive classifier, implying the union of these two wedges has probability mass at least
2α(h,h′)

π
λ(h̄).

Thus, we have P(h(X) 6= h′(X)) ≥ max
{

|λ(h)− λ(h′)|, 2α(h,h′)
π

min{λ(h), λ(h′)}
}

. In par-

ticular,

B(h, r) ⊆
{

h′ : max

{

|λ(h)− λ(h′)|, 2α(h, h′)

π
min{λ(h), λ(h′)}

}

≤ r

}

.

The region of disagreement of this set is at most

DIS

({

h′ :
2α(h, h′)

π
(λ(h)− r) ≤ r ∧ |λ(h)− λ(h′)| ≤ r

})

⊆ DIS({h′ : w′ = w∧|λ(h′)−λ(h)| ≤ r})∪DIS({h′ : α(h, h′) ≤ πr/λ(h)∧|λ(h)−λ(h′)| = r}),

71

where this last line follows from the following reasoning. Take ymaj to be the majority class of

h (arbitrary if λ(h) = 1/2). For any h′ with |λ(h)− λ(h′)| < r, the h′′ with α(h, h′′) = α(h, h′)

having P(h(X) = ymaj)− P(h′′(X) = ymaj) = r disagrees with h on a set of points containing

{x : h′(x) 6= h(x) = ymaj}; likewise, the one having P(h(X) = ymaj)−P(h′′(X) = ymaj) = −r

disagrees with h on a set of points containing {x : h′(x) 6= h(x) = −ymaj}. So any point in

disagreement between h and some h′ with |λ(h) − λ(h′)| < r and α(h, h′) ≤ πr/λ(h) is also

disagreed upon by some h′′ with |λ(h)− λ(h′′)| = r and α(h, h′′) ≤ πr/λ(h).

Some simple trigonometry shows that DIS({h′ : α(h, h′) ≤ πr/λ(h)∧|λ(h)−λ(h′)| = r})

is contained in the set of points within distance sin(πr/λ(h)) ≤ πr/λ of the two hyperplanes

representing h1(x) = sign(w ·x+ b1) and h2(x) = sign(w ·x+ b2) defined by the property that

λ(h1)− λ(h) = λ(h)− λ(h2) = r, so that the total region of disagreement is contained within

{x : h1(x) 6= h2(x)} ∪ {x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}.

Clearly, P({x : h1(x) 6= h2(x)}) = 2r. Using previous results [Balcan et al., 2006, Hanneke,

2007b], we know that P({x : min{|w · x + b1|, |w · x + b2|} ≤ πr/λ(h)}) ≤ 2π
√

nr/λ(h)

(since the probability mass contained within this distance of a hyperplane is maximized when the

hyperplane passes through the origin). Thus, the probability of the entire region of disagreement

is at most (2 + 2π
√

n/λ(h))r, so that (3.1) holds, and therefore the disagreement coefficient is

finite.

3.5.3 Composition results

We can also extend the results from the previous subsection to other types of distributions and

concept classes in a variety of ways. Here we include a few results to this end.

Close distributions: If (C,D) is learnable at an exponential rate, then for any distribution D′

such that for all measurable A ⊆ X , λPD(A) ≤ PD′(A) ≤ (1/λ)PD(A) for some λ ∈ (0, 1],

(C,D′) is also learnable at an exponential rate. In particular, we can simply use the algorithm

72

Figure 3.3: Illustration of the proof of Theorem 3.10. The dark gray regions represent BD1(h1, 2r) and

BD2(h2, 2r). The function h that gets returned is in the intersection of these. The light gray regions

represent BD1(h1, ǫ/3) and BD2(h2, ǫ/3). The target function h∗ is in the intersection of these. We

therefore must have r ≤ ǫ/3, and by the triangle inequality er(h) ≤ ǫ.

for (C,D), filter the examples from D′ so that they appear like examples from D, and then any

t large enough to find an ǫλ-good classifier with respect to D is large enough to find an ǫ-good

classifier with respect to D′.

Mixtures of distributions: Suppose there exist algorithms A1 and A2 for learning a class C at

an exponential rate under distributions D1 and D2 respectively. It turns out we can also learn

under any mixture of D1 and D2 at an exponential rate, by using A1 and A2 as black boxes.

In particular, the following theorem relates the label complexity under a mixture to the label

complexities under the mixing components.

Theorem 3.10. Let C be an arbitrary hypothesis class. Assume that the pairs (C,D1) and

(C,D2) have label complexities Λ1(ǫ, δ, h
∗) and Λ2(ǫ, δ, h

∗) respectively, where D1 and D2 have

density functions PrD1 and PrD2 respectively. Then for any α ∈ [0, 1], the pair

(C, αD1 + (1− α)D2) has label complexity at most

2 ⌈max{Λ1(ǫ/3, δ/2, h∗), Λ2(ǫ/3, δ/2, h∗)}⌉.

Proof. If α = 0 or 1 then the theorem statement holds trivially. Assume instead that α ∈ (0, 1).

We describe an algorithm in terms of α,D1, andD2, which achieves this label complexity bound.

Suppose algorithms A1 and A2 achieve the stated label complexities under D1 and D2 re-

73

spectively. At a high level, the algorithm we define works by “filtering” the distribution over

input so that it appears to come from two streams, one distributed according to D1, and one dis-

tributed according to D2, and feeding these filtered streams to A1 and A2 respectively. To do so,

we define a random sequence u1, u2, · · · of independent uniform random variables in [0, 1]. We

then run A1 on the sequence of examples xi from the unlabeled data sequence satisfying

ui <
αPrD1(xi)

αPrD1(xi) + (1− α)PrD2(xi)
,

and runA2 on the remaining examples, allowing each to make an equal number of label requests.

Let h1 and h2 be the classifiers output by A1 and A2. Because of the filtering, the examples

that A1 sees are distributed according to D1, so after t/2 queries, the current error of h1 with

respect to D1 is, with probability 1 − δ/2, at most inf{ǫ′ : Λ1(ǫ
′, δ/2, h∗) ≤ t/2}. A similar

argument applies to the error of h2 with respect to D2.

Finally, let

r = inf{r : BD1(h1, r) ∩BD2(h2, r) 6= ∅} ,

where

BDi
(hi, r) = {h ∈ C : PrDi

(h(x) 6= hi(x)) ≤ r} .

Define the output of the algorithm to be any h ∈ BD1(h1, 2r) ∩ BD2(h2, 2r). If a total of t ≥

2 ⌈max{Λ1(ǫ/3, δ/2, h∗), Λ2(ǫ/3, δ/2, h∗)}⌉ queries have been made (t/2 byA1 and t/2 byA2),

then by a union bound, with probability at least 1 − δ, h∗ is in the intersection of the ǫ/3-balls,

and so h is in the intersection of the 2ǫ/3-balls. By the triangle inequality, h is within ǫ of h∗

under both distributions, and thus also under the mixture. (See Figure 3.3 for an illustration of

these ideas.)

3.5.4 Lower Bounds

Given the previous discussion, one might suspect that any pair (C,D) is learnable at an expo-

nential rate, under some mild condition such as finite VC dimension. However, we show in the

74

...

.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

+

+

+

Figure 3.4: A learning problem where exponential rates are not achievable. The instance space

is an infinite-depth tree. The target labels nodes along a single infinite path as +1, and labels all

other nodes −1. For any φ(ǫ) = o(1/ǫ), when the number of children and probability mass of

each node at each subsequent level are set in a certain way, label complexities of o(φ(ǫ)) are not

achievable for all targets.

following that this is not the case, even for some simple geometric concept classes when the

distribution is especially nasty.

Theorem 3.11. For any positive function φ(ǫ) = o(1/ǫ), there exists a pair (C,D), with the VC

dimension of C equal 1, such that for any achievable label complexity Λ(ǫ, δ, h) for (C,D), for

any δ ∈ (0, 1/4),

∃h ∈ C s.t. Λ(ǫ, δ, h) 6= o(φ(ǫ)).

In particular, taking φ(ǫ) = 1/
√

ǫ (for example), this implies that there exists a (C,D) that is

not learnable at an exponential rate (in the sense of Definition 3.3).

Proof. If we can prove this for any such φ(ǫ) 6= O(1), then clearly this would imply the result

holds for φ(ǫ) = O(1) as well, so we will focus on φ(ǫ) 6= O(1) case. Let T be a fixed infinite

tree in which each node at depth i has ci children; ci is defined shortly below. We consider

learning the hypothesis class C where each h ∈ C corresponds to a path down the tree starting

at the root; every node along this path is labeled 1 while the remaining nodes are labeled −1.

Clearly for each h ∈ C there is precisely one node on each level of the tree labeled 1 by h (i.e.

one node at each depth). C has VC dimension 1 since knowing the identity of the node labeled 1

on level i is enough to determine the labels of all nodes on levels 0, . . . , i perfectly. This learning

problem is depicted in Figure 3.4.

75

Now we defineD, a “bad” distribution for C. Let {ℓi}∞i=1 be any sequence of positive numbers

s.t.
∑∞

i=1 ℓi = 1. ℓi will bound the total probability of all nodes on level i according to D.

Assume all nodes on level i have the same probability according toD, and call this pi. We define

the values of pi and ci recursively as follows. For each i ≥ 1, we define pi as any positive number

s.t. pi⌈φ(pi)⌉
∏i−2

j=0 cj ≤ ℓi and φ(pi) ≥ 4, and define ci−1 = ⌈φ(pi)⌉. We are guaranteed that

such a value of pi exists by the assumptions that φ(ǫ) = o(1/ǫ), meaning limǫ→0 ǫφ(ǫ) = 0, and

that φ(ǫ) 6= O(1). Letting p0 = 1−∑i≥1 pi

∏i−1
j=0 cj completes the definition of D.

With this definition of the parameters above, since
∑

i pi ≤ 1, we know that for any ǫ0 > 0,

there exists some ǫ < ǫ0 such that for some level j, pj = ǫ and thus cj−1 ≥ φ(pj) = φ(ǫ).

We will use this fact to show that ∝ φ(ǫ) labels are needed to learn with error less than ǫ for

these values of ǫ. To complete the proof, we must prove the existence of a “difficult” target

function, customized to challenge the particular learning algorithm being used. To accomplish

this, we will use the probabilistic method to prove the existence of a point in each level i such

that any target function labeling that point positive would have a label complexity ≥ φ(pi)/4.

The difficult target function simply strings these points together.

To begin, we define x0 = the root node. Then for each i ≥ 1, recursively define xi as

follows. Suppose, for any h, the set Rh and the classifier ĥh are, respectively, the random variable

representing the set of examples the learning algorithm would request, and the classifier the

learning algorithm would output, when h is the target and its label request budget is set to t =

⌊φ(pi)/2⌋. For any node x, we will let Children(x) denote the set of children of x, and Subtree(x)

denote the set of x along with all descendants of x. Additionally, let hx denote any classifier in

76

C s.t. hx(x) = +1. Now note that

max
x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{PD(h(X) 6= ĥh(X)) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

inf
h∈C:h(x)=+1

P{PD(h(X) 6= ĥh(X)) > pi}

≥ 1

ci−1

∑

x∈Children(xi−1)

P{∀h ∈ C : h(x) = +1, Subtree(x) ∩Rh = ∅ ∧ PD(h(X) 6= ĥh(X)) > pi}

= E





1

ci−1

∑

x∈Children(xi−1):Subtree(x)∩Rhx=∅

I

[

∀h ∈ C : h(x) = +1, PD

(

h(X) 6= ĥh(X)
)

> pi

]





≥ E



 min
x′∈Children(xi−1)

1

ci−1

∑

x∈Children(xi−1):Subtree(x)∩Rhx=∅

I [x′ 6= x]





≥ 1

ci−1
(ci−1 − t− 1) =

1

⌊φ(pi)⌋
(⌊φ(pi)⌋ − ⌊φ(pi)/2⌋ − 1) ≥ 1

⌊φ(pi)⌋
(⌊φ(pi)⌋/2− 1) ≥ 1/4.

The expectations above are over the unlabeled examples and any internal random bits used by the

algorithm. The above inequalities imply there exists some x ∈ Children(xi−1) such that every

h ∈ C that has h(x) = +1 has Λ(pi, δ, h) ≥ ⌊φ(pi)/2⌋ ≥ φ(pi)/4; we will take xi to be this

value of x. We now simply take the target function h∗ to be the classifier that labels xi positive for

all i, and labels every other point negative. By construction, we have ∀i, Λ(pi, δ, h
∗) ≥ φ(pi)/4,

and therefore

∀ǫ0 > 0, ∃ǫ < ǫ0 : Λ(ǫ, δ, h∗) ≥ φ(ǫ)/4,

so that Λ(ǫ, δ, h∗) 6= o(φ(ǫ)).

Note that this implies that the o (1/ǫ) guarantee of Corollary 3.6 is in some sense the tightest

guarantee we can make at that level of generality, without using a more detailed description of

the structure of the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty distributions, even for a variety of

simple hypothesis classes: for example, linear separators in R2 or axis-aligned rectangles in R2.

We remark that this example can also be modified to show that we cannot expect intersections

of classifiers to preserve exponential rates. That is, the proof can be extended to show that there

77

exist classes C1 and C2, such that both (C1,D) and (C2,D) are learnable at an exponential rate,

but (C, D) is not, where C = {h1 ∩ h2 : h1 ∈ C1, h2 ∈ C2}.

3.6 Discussion and Open Questions

The implication of our analysis is that in many interesting cases where it was previously believed

that active learning could not help, it turns out that active learning does help asymptotically.

We have formalized this idea and illustrated it with a number of examples and general theorems

throughout the chapter. This realization dramatically shifts our understanding of the usefulness

of active learning: while previously it was thought that active learning could not provably help

in any but a few contrived and unrealistic learning problems, in this alternative perspective we

now see that active learning essentially always helps, and does so significantly in all but a few

contrived and unrealistic problems.

The use of decompositions of C in our analysis generates another interpretation of these

results. Specifically, Dasgupta [2005] posed the question of whether it would be useful to de-

velop active learning techniques for looking at unlabeled data and “placing bets” on certain

hypotheses. One might interpret this work as an answer to this question; that is, some of the

decompositions used in this chapter can be interpreted as reflecting a preference partial-ordering

of the hypotheses, similar to ideas explored in the passive learning literature [Balcan and Blum,

Shawe-Taylor et al., 1998, Vapnik, 1998]. However, the construction of a good decomposition

in active learning seems more subtle and quite different from previous work in the context of

supervised or semi-supervised learning.

It is interesting to examine the role of target- and distribution-dependent constants in this

analysis. As defined, both the verifiable and true label complexities may depend heavily on the

particular target function and distribution. Thus, in both cases, we have interpreted these quan-

tities as fixed when studying the asymptotic growth of these label complexities as ǫ approaches

0. It has been known for some time that, with only a few unusual exceptions, any target- and

78

distribution-independent bound on the verifiable label complexity could typically be no better

than the label complexity of passive learning; in particular, this observation lead Dasgupta to for-

mulate his splitting index bounds as both target- and distribution-dependent [Dasgupta, 2005].

This fact also applies to bounds on the true label complexity as well. Indeed, the entire distinc-

tion between verifiable and true label complexities collapses if we remove the dependence on

these unobservable quantities.

One might wonder what the practical implications of the true label complexity of active learn-

ing might be since the theoretical improvements we provide are for an unverifiable complexity

measure and therefore they do not actually inform the user (or algorithm) of how many labels

to allow the algorithm to request. However, there might still be implications for the design of

practical algorithms. In some sense, this is the same issue faced in the analysis of universally

consistent learning rules in passive learning [Devroye et al., 1996]. There is typically no way to

verify how close to the Bayes error rate a classifier is (verifiable complexity is infinite), yet we

still want learning rules whose error rates provably converge to the Bayes error in the limit (true

complexity is a finite function of epsilon and the distribution of (X, Y)), and we often find such

methods quite effective in practice (e.g., k-nearest neighbor methods). So this is one instance

where an unverifiable label complexity seems to be a useful guide in algorithm design. In active

learning with finite-complexity hypothesis classes we are more fortunate, since the verifiable

complexity is finite – and we certainly want algorithms with small verifiable label complexity;

however, an analysis of unverifiable complexities still seems relevant, particularly when the veri-

fiable complexity is large. In general, it seems desirable to design algorithms for any given active

learning problem that achieve both a verifiable label complexity that is near optimal and a true

label complexity that is asymptotically better than passive learning.

Open Questions: There are many interesting open problems within this framework. Perhaps

the most interesting of these would be formulating general necessary and sufficient conditions

for learnability at an exponential rate, and determining for what types of algorithms Theorem 3.5

79

can be extended to the agnostic case or to infinite capacity hypothesis classes. We will discuss

some progress on this latter problem in the next chapter.

3.7 The Verifiable Label Complexity of the Empty Interval

Let h− denote the all-negative interval. In this section, we lower bound the verifiable labels

complexities achievable for this classifier, with respect to the hypothesis class C of interval clas-

sifiers under a uniform distribution on [0, 1]. Specifically, suppose there exists an algorithm A

that achieves a verifiable label complexity Λ(ǫ, δ, h) such that for some ǫ ∈ (0, 1/4) and some

δ ∈ (0, 1/4),

Λ(ǫ, δ, h−) <

⌊

1

24ǫ

⌋

.

We prove that this would imply the existence of some interval h′ for which the value of Λ(ǫ, δ, h′)

is not valid under Definition 3.2. We proceed by the probabilistic method.

Consider the subset of intervals

Hǫ =

{

[3iǫ, 3(i + 1)ǫ] : i ∈
{

0, 1, . . . ,

⌊

1− 3ǫ

3ǫ

⌋}}

.

Let s = ⌈Λ(ǫ, δ, h−)⌉. For any f ∈ C, let Rf , ĥf , and ǫ̂f denote the random variables repre-

senting, respectively, the set of examples (x, y) for which A(s, δ) requests labels (including their

y = f(x) labels), the classifier A(s, δ) outputs, and the confidence bound A(s, δ) outputs, when

f is the target function. Let I be an indicator function that is 1 if its argument is true and 0

otherwise. Then

80

max
f∈Hǫ

P

(

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

)

≥ 1

|Hǫ|
∑

f∈Hǫ

P

(

PX

(

ĥf(X) 6= f(X)
)

> ǫ̂f

)

≥ 1

|Hǫ|
∑

f∈Hǫ

P

(

(Rf = Rh−) ∧
(

PX

(

ĥf(X) 6= f(X)
)

> ǫ̂f

))

= E





1

|Hǫ|
∑

f∈Hǫ:Rf =Rh−

I

[

PX

(

ĥf (X) 6= f(X)
)

> ǫ̂f

]





≥ E





1

|Hǫ|
∑

f∈Hǫ:Rf =Rh−

I

[(

PX

(

ĥf (X) = +1
)

≤ ǫ
)

∧ (ǫ̂f ≤ ǫ)
]



 (3.2)

= E





1

|Hǫ|
∑

f∈Hǫ:Rf =Rh−

I

[(

PX

(

ĥh−(X) 6= h−(X)
)

≤ ǫ
)

∧
(

ǫ̂h− ≤ ǫ
)

]



 (3.3)

≥ E

[(|Hǫ| − s

|Hǫ|

)

I

[

PX

(

ĥh−(X) 6= h−(X)
)

≤ ǫ̂h− ≤ ǫ
]

]

(3.4)

=

(|Hǫ| − s

|Hǫ|

)

P

(

PX

(

ĥh−(X) 6= h−(X)
)

≤ ǫ̂h− ≤ ǫ
)

≥
(|Hǫ| − s

|Hǫ|

)

(1− δ) > δ.

All expectations are over the draw of the unlabeled examples and any additional random bits

used by the algorithm. Line 3.2 follows from the fact that all intervals f ∈ Hǫ are of width

3ǫ, so if ĥf labels less than a fraction ǫ of the points as positive, it must make an error of at

least 2ǫ with respect to f , which is more than ǫ̂f if ǫ̂f ≤ ǫ. Note that, for any fixed sequence of

unlabeled examples and additional random bits used by the algorithm, the sets Rf are completely

determined, and any f and f ′ for which Rf = Rf ′ must have ĥf = ĥf ′ and ǫ̂f = ǫ̂f ′ . In

particular, any f for which Rf = Rh− will yield identical outputs from the algorithm, which

implies line 3.3. Furthermore, the only classifiers f ∈ Hǫ for which Rf 6= Rh− are those for

which some (x,−1) ∈ Rh− has f(x) = +1 (i.e., x is in the f interval). But since there is zero

probability that any unlabeled example is in more than one of the intervals in Hǫ, with probability

1 there are at most s intervals f ∈ Hǫ with Rf 6= Rh− , which explains line 3.4.

This proves the existence of some target function h∗ ∈ C such that P(er(hs,δ) > ǫ̂s,δ) > δ,

81

which contradicts the conditions of Definition 3.2.

3.8 Proof of Theorem 3.7

First note that the total number of label requests used by the aggregation procedure in Algorithm

4is at most t. Initially running the algorithms A1, . . . , Ak requires
∑k

i=1⌊t/(4i2)⌋ ≤ t/2 labels,

and the second phase of the algorithm requires k2⌈72 ln(4k/δ)⌉ labels, which by definition of k

is also less than t/2. Thus this procedure is a valid learning algorithm.

Now suppose that the true target h∗ is a member of Ci. We must show that for any input t

such that

t ≥ max
{

4i2 ⌈Λi(ǫ/2, δ/2, h∗)⌉ , 2i2 ⌈72 ln(4i/δ)⌉
}

,

the aggregation procedure outputs a hypothesis ĥt such that er(ĥt) ≤ ǫ with probability at least

1− δ.

First notice that since t ≥ 2i2 ⌈72 ln(4i/δ)⌉, k ≥ i. Furthermore, since t/(4i2) ≥

⌈Λi(ǫ/2, δ/2, h∗)⌉, with probability at least 1−δ/2, runningAi(⌊t/(4i2)⌋, δ/2) returns a function

hi with er(hi) ≤ ǫ/2.

Let j∗ = argminj er(hj). Since er(hj∗) ≤ er(hℓ) for any ℓ, we would expect hj∗ to make no

more errors that hℓ on points where the two functions disagree. It then follows from Hoeffding’s

inequality, with probability at least 1− δ/4, for all ℓ,

mj∗ℓ ≤
7

12
⌈72 ln (4k/δ)⌉ ,

and thus

min
j

max
ℓ

mjℓ ≤
7

12
⌈72 ln(4k/δ)⌉ .

Similarly, by Hoeffding’s inequality and a union bound, with probability at least 1− δ/4, for any

ℓ such that

mℓj∗ ≤
7

12
⌈72 ln(4k/δ)⌉ ,

82

the probability that hℓ mislabels a point x given that hℓ(x) 6= hj∗(x) is less than 2/3, and thus

er(hℓ) ≤ 2er(hj∗). By a union bound over these three events, we find that, as desired, with

probability at least 1− δ,

er(ĥt) ≤ 2er(hj∗) ≤ 2er(hi) ≤ ǫ .

3.9 Proof of Theorem 3.8

Assume that (C,D) is learnable at an exponential rate. This means that there exists an algorithm

A such that for any target h∗ in C, there exist constants γh∗ and kh∗ such that for any ǫ and δ, for

any t ≥ γh∗(log(1/(ǫδ)))kh∗ , with probability at least 1− δ, after t label requests, A(t, δ) outputs

an ǫ-good classifier.

For each i, let

Ci = {h ∈ C : γh ≤ i, kh ≤ i} .

Define an algorithm Ai that achieves the required polylog verifiable label complexity on (Ci,D)

as follows. First, run the algorithm A to obtain a function hA. Then, output the classifier in Ci

that is closest to hA, i.e., the classifier that minimizes the probability of disagreement with hA. If

t ≥ i(log (2/(ǫδ)))i, then after t label requests, with probability at least 1− δ, A(t, δ) outputs an

ǫ/2-good classifier, so by the triangle inequality, with probability at least 1− δ, Ai(t, δ) outputs

an ǫ-good classifier.

It can be guaranteed that with probability at least 1 − δ, the function output by Ai has error

no more than ǫ̂t = (2/δ) exp
{

−(t/i)1/i
}

, which is no more than ǫ, implying that the expression

above is a verifiable label complexity.

Combining this with Theorem 3.7 yields the desired result.

83

3.10 Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable complexity with respect to (C,D) typ-

ically cannot yield a good decomposition even for very simple problems, such as unions of

intervals. The reason is that the set of classifiers with high verifiable label complexity may itself

have high verifiable complexity.

Although we have not yet found a general method that can provably always find a good

decomposition when one exists (other than the trivial method in the proof of Theorem 3.8), we

find that a heuristic recursive technique is frequently effective. To begin, define C1 = C. Then

for i > 1, recursively define Ci as the set of all h ∈ Ci−1 such that θh = ∞ with respect to

(Ci−1,D). (Here θh is the disagreement coefficient of h.) Suppose that for some N , CN+1 = ∅.

Then for the decomposition C1, C2, . . . , CN , every h ∈ C has θh <∞with respect to at least one

of the sets in which it is contained, which implies that the verifiable label complexity of h with

respect to that set is O(polylog(1/ǫδ)), and the aggregation algorithm can be used to achieve

polylog label complexity.

We could alternatively perform a similar decomposition using a suitable definition of splitting

index [Dasgupta, 2005], or more generally using

lim sup
ǫ→0

ΛCi−1
(ǫ, δ, h)

(

log
(

1
ǫδ

))k

for some fixed constant k > 0.

This procedure does not always generate a good decomposition. However, if N <∞ exists,

then it creates a decomposition for which the aggregation algorithm, combined with an appropri-

ate sequence of algorithms {Ai}, could achieve exponential rates. In particular, this is the case

for all of the (C,D) described in Section 3.5. In fact, even if N = ∞, as long as every h ∈ C

does end up in some set Ci for finite i, this decomposition would still provide exponential rates.

84

3.11 Proof of Theorem 3.5

We now finally prove Theorem 3.5. This section is mostly self-contained, though we do make

use of Theorem 3.7 from Section 3.4 in the final step of the proof.

The proof proceeds according to the following outline. We begin in Lemma 3.12 by de-

scribing special conditions under which a CAL-like algorithm has the property that the more

unlabeled examples it considers, the smaller the fraction of them it asks to be labeled. Since

CAL is able to identify the target’s true label on any example it considers (either the label of

the example is requested or the example is not in the region of disagreement and therefore the

label is already known), we end up with a set of labeled examples growing strictly faster than the

number of label requests used to obtain it. This set of labeled examples can be used as a training

set in any passive learning algorithm. However, the special conditions under which this happens

are rather limiting. In Lemma 3.13, we exploit a subtle relation between overlapping boundary

regions and shatterable sets to show that we can decompose any finite VC dimension class into a

countable number of subsets satisfying these special conditions. This, combined with the aggre-

gation algorithm, and a simple procedure that boosts the confidence level, extends Lemma 3.12

to the general conditions of Theorem 3.5.

Before jumping into Lemma 3.12, it is useful to define some additional notation. For any

V ⊆ C and h ∈ C, define the boundary of h with respect to D and V , denoted ∂V h, as

∂V h = lim
r→0

DIS(BV (h, r)).

Lemma 3.12. Suppose (C,D) is such that C has finite VC dimension d, and

∀h ∈ C, P(∂
C̃
h) = 0. Then for any passive learning label complexity Λp(ǫ, δ, h) for (C,D)

which is nondecreasing as ǫ→ 0, there exists an active learning algorithm achieving a label

complexity Λa(ǫ, δ, h) such that, for any δ > 0 and any target function h∗ ∈ C with

Λp(ǫ, δ, h
∗) = ω(1) and ∀ǫ > 0,Λp(ǫ, δ, h

∗) <∞,

Λa(ǫ, 2δ, h
∗) = o(Λp(ǫ, δ, h

∗)) .

85

Proof. Recall that t is the “budget” of the active learning algorithm, and our goal in this proof is

to define an active learning algorithm Aa and a function Λa(ǫ, δ, h
∗) such that, if t ≥ Λa(ǫ, δ, h

∗)

and h∗ ∈ C is the target function, then Aa(t, δ) will, with probability 1 − δ, output an ǫ-good

classifier; furthermore, we require that Λa(ǫ, 2δ, h
∗) = o(Λp(ǫ, δ, h

∗)) under the conditions on h∗

in the lemma statement.

To construct this algorithm, we perform the learning in two phases. The first is a passive

phase, where we focus on reducing a version space, to shrink the region of disagreement; the

second is a phase where we construct a labeled training set, which is much larger than the number

of label requests used to construct it since all classifiers in the version space agree on many of

the examples’ labels.

To begin the first phase, we simply request the labels of x1, x2, . . . , x⌊t/2⌋, and let

V = {h ∈ C̃ : ∀i ≤ ⌊t/2⌋, h(xi) = h∗(xi)} .

In other words, V is the set of all hypotheses in C̃ that correctly label the first ⌊t/2⌋ examples.

By standard consistency results [Blumer et al., 1989, Devroye et al., 1996, Vapnik, 1982], there

is a universal constant c > 0 such that, with probability at least 1− δ/2,

sup
h∈V

er(h) ≤ c

(

d ln t + ln 1
δ

t

)

.

This implies that

V ⊆ B
C̃

(

h∗, c

(

d ln t + ln 1
δ

t

))

,

and thus P(DIS(V)) ≤ ∆t where

∆t = P

(

DIS

(

B
C̃

(

h∗, c

(

d ln t + ln 1
δ

t

))))

.

Clearly, ∆t goes to 0 as t grows, by the assumption on P(∂
C̃
h∗).

Next, in the second phase of the algorithm, we will actively construct a set of labeled exam-

ples to use with the passive learning algorithm. If ever we have P(DIS(V)) = 0 for some finite

t, then clearly we can return any h ∈ V , so this case is easy.

86

Otherwise, let nt = ⌊t/(24P(DIS(V)) ln(4/δ))⌋, and suppose t ≥ 2. By a Chernoff bound,

with probability at least 1− δ/2, in the sequence of examples x⌊t/2⌋+1, x⌊t/2⌋+2, . . . , x⌊t/2⌋+nt , at

most t/2 of the examples are in DIS(V). If this is not the case, we fail and output an arbitrary h;

otherwise, we request the labels of every one of these nt examples that are in DIS(V).

Now construct a sequence L = {(x′
1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
nt

, y′
nt

)} of labeled examples such

that x′
i = x⌊t/2⌋+i, and y′

i is either the label agreed upon by all the elements of V , or it is

the h∗(x⌊t/2⌋+i) label value we explicitly requested. Note that because infh∈V er(h) = 0 with

probability 1, we also have that with probability 1 every y′
i = h∗(x′

i). We may therefore use

these nt examples as iid training examples for the passive learning algorithm.

Suppose A is the passive learning algorithm that guarantees Λp(ǫ, δ, h) passive label complex-

ities. Then let ht be the classifier returned by A(L, δ). This is the classifier the active learning

algorithm outputs.

Note that if nt ≥ Λp(ǫ, δ, h
∗), then with probability at least 1−δ over the draw of L, er(ht) ≤

ǫ. Define

Λa(ǫ, 2δ, h
∗) = 1 + inf {s : s ≥ 144 ln(4/δ)Λp(ǫ, δ, h

∗)∆s} .

This is well-defined when Λp(ǫ, δ, h
∗) <∞ because ∆s is nonincreasing in s, so some value of s

will satisfy the inequality. Note that if t ≥ Λa(ǫ, 2δ, h
∗), then (with probability at least 1− δ/2)

Λp(ǫ, δ, h
∗) ≤ t

144 ln(4/δ)∆t

≤ nt .

So, by a union bound over the possible failure events listed above (δ/2 for P(DIS(V)) > ∆t, δ/2

for more than t/2 examples of L in DIS(V), and δ for er(ht) > ǫ when the previous failures do

not occur), if t ≥ Λa(ǫ, 2δ, h
∗), then with probability at least 1− 2δ, er(ht) ≤ ǫ. So Λa(ǫ, δ, h

∗)

is a valid label complexity function, achieved by the described algorithm. Furthermore,

Λa(ǫ, 2δ, h
∗) ≤ 1 + 144 ln(4/δ)Λp(ǫ, δ, h

∗)∆Λa(ǫ,2δ,h∗)−2.

If Λa(ǫ, 2δ, h
∗) = O(1), then since Λp(ǫ, δ, h

∗) = ω(1), the result is established. Otherwise, since

Λa(ǫ, δ, h
∗) is nondecreasing as ǫ → 0, Λa(ǫ, 2δ, h

∗) = ω(1), so we know that ∆Λa(ǫ,2δ,h∗)−2 =

87

o(1). Thus, Λa(ǫ, 2δ, h
∗) = o (Λp(ǫ, δ, h

∗)).

As an interesting aside, it is also true (by essentially the same argument) that under the

conditions of Lemma 3.12, the verifiable label complexity of active learning is strictly smaller

than the verifiable label complexity of passive learning in this same sense. In particular, this

implies a verifiable label complexity that is o (1/ǫ) under these conditions. For instance, with

some effort one can show that these conditions are satisfied when the VC dimension of C is 1,

or when the support of D is at most countably infinite. However, for more complex learning

problems, this condition will typically not be satisfied, and as such we require some additional

work in order to use this lemma toward a proof of the general result in Theorem 3.5. Toward this

end, we again turn to the idea of a decomposition of C, this time decomposing it into subsets

satisfying the condition in Lemma 3.12.

Lemma 3.13. For any (C,D) where C has finite VC dimension d, there exists a countably

infinite sequence C1, C2, . . . such that C = ∪∞i=1Ci and ∀i, ∀h ∈ Ci, P(∂
C̃i

h) = 0.

Proof. The case of d = 0 is clear, so assume d > 0. A decomposition procedure is given below.

We will show that, if we let H = Decompose(C), then the maximum recursion depth is at most

d (counting the initial call as depth 0). Note that if this is true, then the lemma is proved, since

it implies that H can be uniquely indexed by a d-tuple of integers, of which there are at most

countably many.

Algorithm 2 Decompose(H)

Let H∞ = {h ∈ H : P(∂H̃h) = 0}

ifH∞ = H then

Return {H}

else

For i ∈ {1, 2, . . .}, let Hi =
{

h∈H : P(∂H̃h)∈((1 + 2−(d+3))−i, (1 + 2−(d+3))1−i]
}

Return
⋃

i∈{1,2,...}

Decompose(Hi) ∪ {H∞}

end if

88

For the sake of contradiction, suppose that the maximum recursion depth of Decompose(C)

is more than d (or is infinite). Thus, based on the first d+1 recursive calls in one of those deepest

paths in the recursion tree, there is a sequence of sets

C = H(0) ⊇ H(1) ⊇ H(2) ⊇ · · ·H(d+1) 6= ∅

and a corresponding sequence of finite positive integers i1, i2, . . . , id+1 such that for each j ∈

{1, 2, . . . , d + 1}, every h ∈ H(j) has

P(∂H̃(j−1)h) ∈
(

(1 + 2−(d+3))−ij , (1 + 2−(d+3))1−ij
]

.

Take any hd+1 ∈ H(d+1). There must exist some r > 0 such that ∀j ∈ {1, 2, . . . , d + 1},

P(DIS(BH̃(j−1)(hd+1, r))) ∈
(

(1 + 2−(d+3))−ij, (1 + 2−(d+2))(1 + 2−(d+3))−ij
]

. (3.5)

In particular, by (3.5), each h ∈ BH̃(j)(hd+1, r/2) has

P(∂H̃(j−1)h) > (1 + 2−(d+3))−ij ≥ (1 + 2−(d+2))−1P(DIS(BH̃(j−1)(hd+1, r))),

though by definition of ∂H̃(j−1)h and the triangle inequality,

P(∂H̃(j−1)h \DIS(BH̃(j−1)(hd+1, r))) = 0.

Recall that in general, for sets Q and R1, R2, . . . , Rk, if P(Ri \Q) = 0 for all i, then P(
⋂

i Ri) ≥

P(Q)−∑k
i=1(P(Q)−P(Ri)). Thus, for any j, any set of≤ 2d+1 classifiers T ⊂ BH̃(j)(hd+1, r/2)

must have

P(∩h∈T ∂H̃(j−1)h) ≥ (1− 2d+1(1− (1 + 2−(d+2))−1))P(DIS(BH̃(j−1)(hd+1, r))) > 0.

That is, any set of 2d+1 classifiers in H̃(j) within distance r/2 of hd+1 will have boundaries with

respect to H(j−1) which have a nonzero probability overlap. The remainder of the proof will

hinge on this fact that these boundaries overlap.

We now construct a shattered set of points of size d + 1. Consider constructing a binary

tree with 2d+1 leaves as follows. The root node contains hd+1 (call this level d + 1). Let hd ∈

89

BH̃(d)(hd+1, r/4) be some classifier with P(hd(X) 6= hd+1(X)) > 0. Let the left child of the root

be hd+1 and the right child be hd (call this level d). Define Ad = {x : hd(x) 6= hd+1(x)}, and

let ∆d = 2−(d+2)P(Ad). Now for each ℓ ∈ {d − 1, d − 2, . . . , 0} in decreasing order, we define

the ℓ level of the tree as follows. Let Tℓ+1 denote the nodes at the ℓ + 1 level in the tree, and let

A′
ℓ =

⋂

h∈Tℓ+1
∂H̃(ℓ)h. We iterate over the elements of Tℓ+1 in left-to-right order, and for each one

h, we find h′ ∈ BH̃(ℓ)(h, ∆ℓ+1) with

PD(h(x) 6= h′(x) ∧ x ∈ A′
ℓ) > 0 .

We then define the left child of h to be h and the right child to be h′, and we update

A′
ℓ ← A′

ℓ ∩ {x : h(x) 6= h′(x)} .

After iterating through all the elements of Tℓ+1 in this manner, define Aℓ to be the final value of

A′
ℓ and ∆ℓ = 2−(d+2)P(Aℓ). The key is that, because every h in the tree is within r/2 of hd+1, the

set A′
ℓ always has nonzero measure, and is contained in ∂H̃(ℓ)h for any h ∈ Tℓ+1, so there always

exists an h′ arbitrarily close to h with PD(h(x) 6= h′(x) ∧ x ∈ A′
ℓ) > 0.

Note that for ℓ ∈ {0, 1, 2, . . . , d}, every node in the left subtree of any h at level ℓ + 1 is

strictly within distance 2∆ℓ of h, and every node in the right subtree of any h at level ℓ + 1 is

strictly within distance 2∆ℓ of the right child of h. Thus,

P(∃h′ ∈ Tℓ, h
′′ ∈ Subtree(h′) : h′(x) 6= h′′(x)) < 2d+12∆ℓ.

Since

2d+12∆ℓ = P(Aℓ) = P(x ∈
⋂

h′∈Tℓ+1

∂H̃(ℓ)h′ and ∀ siblings h1, h2 ∈ Tℓ, h1(x) 6= h2(x)),

there must be some set

A∗
ℓ = {x ∈

⋂

h′∈Tℓ+1

∂H̃(ℓ)h′ s.t. ∀siblings h1, h2 ∈ Tℓ, h1(x) 6=h2(x)

and ∀h ∈ Tℓ, h
′ ∈ Subtree(h), h(x)=h′(x)} ⊆ Aℓ

90

with P(A∗
ℓ) > 0. That is, for every h at level ℓ+ 1, every node in its left subtree agrees with h on

every x ∈ A∗
ℓ and every node in its right subtree disagrees with h on every x ∈ A∗

ℓ . Therefore,

taking any {x0, x1, x2, . . . , xd} such that each xℓ ∈ A∗
ℓ creates a shatterable set (shattered by the

set of leaf nodes in the tree). This contradicts VC dimension d, so we must have the desired

claim that the maximum recursion depth is at most d.

Before completing the proof of Theorem 3.5, we have two additional minor concerns to

address. The first is that the confidence level in Lemma 3.12 is slightly smaller than needed for

the theorem. The second is that Lemma 3.12 only applies when Λp(ǫ, δ, h
∗) < ∞ for all ǫ > 0.

We can address both of these concerns with the following lemma.

Lemma 3.14. Suppose (C,D) is such that C has finite VC dimension d, and suppose

Λ′
a(ǫ, δ, h

∗) is a label complexity for (C,D). Then there is a label complexity Λa(ǫ, δ, h
∗) for

(C,D) s.t. for any δ ∈ (0, 1/4) and ǫ ∈ (0, 1/2),

Λa(ǫ, δ, h
∗) ≤ (k + 2) max















min
{

Λ′
a(ǫ/2, 4δ, h∗), 16d log(26/ǫ)+8 log(4/δ)

ǫ

}

(k + 1)272 log(4(k + 1)2/δ)

,

where k = ⌈log(δ/2)/ log(4δ)⌉.

Proof. Suppose A′
a is the algorithm achieving Λ′

a(ǫ, δ, h
∗). Then we can define a new algorithm

Aa as follows. Suppose t is the budget of label requests allowed of Aa and δ is its confidence

argument. We partition the indices of the unlabeled sequence into k + 2 infinite subsequences.

For i ∈ {1, 2, . . . , k}, let hi = A′
a(t/(k+2), 4δ), each time running A′

a on a different one of these

subsequence, rather than on the full sequence. From one of the remaining two subsequences, we

request the labels of the first t/(k+2) unlabeled examples and let hk+1 denote any classifier in C

consistent with these labels. From the remaining subsequence, for each i, j ∈ {1, 2, . . . , k+1} s.t.

P(hi(X) 6= hj(X)) > 0, we find the first ⌊t/((k + 2)(k + 1)k)⌋ examples x s.t. hi(x) 6= hj(x),

request their labels and let mij denote the number of mistakes made by hi on these labels (if

P(hi(X) 6= hj(X)) = 0, we let mij = 0). Now take as the return value of Aa the classifier hî

91

where î = arg mini maxj mij .

Suppose t ≥ Λa(ǫ, δ, h
∗). First note that, by a Hoeffding bound argument (similar to the

proof of Theorem 3.7), t is large enough to guarantee with probability ≥ 1− δ/2 that er(hî) ≤

2 mini er(hi). So all that remains is to show that, with probability ≥ 1 − δ/2, at least one of

these hi has er(hi) ≤ ǫ/2.

If Λ′
a(ǫ/2, 4δ, h∗) > 16d log(26/ǫ)+8 log(4/δ)

ǫ
, then the classic results for consistent classifiers

(e.g., [Blumer et al., 1989, Devroye et al., 1996, Vapnik, 1982]) guarantee that, with probability

≥ 1 − δ/2, er(hk+1) ≤ ǫ/2. Otherwise, we have t ≥ (k + 2)Λ′
a(ǫ/2, 4δ, h∗). In this case, each

of h1, . . . , hk has an independent ≥ 1− 4δ probability of having er(hi) ≤ ǫ/2. The probability

at least one of them achieves this is therefore at least 1− (4δ)k ≥ 1− δ/2.

We are now ready to combine these lemmas to prove Theorem 3.5.

Theorem 3.5. Theorem 3.5 now follows by a simple combination of Lemmas 3.12 and 3.13,

along with Theorem 3.7 and Lemma 3.14. That is, the passive learning algorithm achieving

passive learning label complexity Λp(ǫ, δ, h) on (C,D) also achieves passive label complexity

Λ̄p(ǫ, δ, h) = minǫ′≤ǫ⌈Λp(ǫ
′, δ, h)⌉ on any (Ci,D), where C1, C2, . . . is the decomposition from

Lemma 3.13. So Lemma 3.12 guarantees the existence of active learning algorithms A1, A2, . . .

such that Ai achieves a label complexity Λi(ǫ, 2δ, h) = o(Λ̄p(ǫ, δ, h)) on (Ci,D) for all δ > 0

and h ∈ Ci s.t. Λ̄p(ǫ, δ, h) is finite and ω(1). Then Theorem 3.7 tells us that this implies the exis-

tence of an active learning algorithm based on these Ai combined with Algorithm 4 , achieving

label complexity Λ′
a(ǫ, 4δ, h) = o(Λ̄p(ǫ/2, δ, h)) on (C,D), for any δ > 0 and h s.t. Λ̄p(ǫ/2, δ, h)

is always finite and is ω(1). Lemma 3.14 then implies the existence of an algorithm achiev-

ing label complexity Λa(ǫ, δ, h) ∈ O(min{Λa(ǫ/2, 4δ, h), log(1/ǫ)/ǫ}) ⊆ o(Λ̄p(ǫ/4, δ, h)) ⊆

o(Λp(ǫ/4, δ, h)) for all δ ∈ (0, 1/4) and all h ∈ C.

Note there is nothing special about 4 in Theorem 3.5. Using a similar argument, it can be made

arbitrarily close to 1.

92

Chapter 4

Activized Learning: Transforming Passive

to Active With Improved Label Complexity

In this chapter, we prove that, in the realizable case, virtually any passive learning algorithm can

be transformed into an active learning algorithm with asymptotically strictly superior label com-

plexity, in many cases without significant loss in computational efficiency. We further explore

the problem of learning with label noise, and find that even under arbitrary noise distributions,

we can still guarantee strict improvements over the known results for passive learning. These are

the most general results proven to date regarding the advantages of active learning over passive

learning.

4.1 Definitions and Notation

As in previous chapters, all of our asymptotics notation in this chapter will be interpretted as

ǫ ց 0, when stated for a function of ǫ, the desired excess error, or as n → ∞ when stated for

a function of n, the allowed number of label requests. In particular, recall that for two functions

φ1 and φ2, we say φ1(ǫ) = o(φ2(ǫ)) iff lim
ǫց0

φ1(ǫ)
φ2(ǫ)

= 0. Throughout the chapter, the o notation, as

well as “O,” “Ω,” “ω,” “≪,” and “≫,” where used, should be interpreted purely in terms of the

93

asymptotic dependence on ǫ or n, with all other quantities held constant, including DXY , δ, and

C, where appropriate.

Definition 4.1. Define the set of functions polynomial in the logarithm of 1/ǫ as follows.

Polylog(1/ǫ) = {φ : [0, 1]→ [0,∞]|∃k ∈ [0,∞) s.t. φ(ǫ) = O(logk(1/ǫ))}.

Definition 4.2. We say an active meta-algorithm Aa activizes a passive algorithm Ap for C

under D if, for any label complexity Λ̄p achieved by Ap, Aa(Ap, ·) achieves label complexity Λ̄a

such that for all D ∈ D,

Λ̄p(ǫ + ν(C,D),D) ∈ Polylog(1/ǫ)⇒ Λ̄a(ǫ + ν(C,D),D) ∈ Polylog(1/ǫ), and if

Λ̄p(ǫ + ν(C,D),D)≪∞ and Λ̄p(ǫ + ν(C,D),D) /∈ Polylog(1/ǫ), then there exists a finite

constant c such that

Λ̄a(cǫ + ν(C,D),D) = o(Λ̄p(ǫ + ν(C,D),D)).

Note that, in keeping with the reductions spirit, we only require the meta-algorithm to suc-

cessfully improve over the passive algorithm under conditions for which the passive algorithm

is itself a reasonable learning algorithm (Λ̄p ≪∞). Given a meta-algorithm satisfying this con-

dition, it is a trivial matter to strengthen it to successfully improve over the passive algorithm

even when the passive algorithm is not itself a reasonable method, simply by replacing the pas-

sive algorithm with an aggregate of the passive algorithm and some reasonable general-purpose

method, such as empiricial error minimization. For simplicity, we do not discuss this matter

further.

We will generally refer to any meta-algorithm Aa that activizes every passive algorithm Ap

for C under D as a general activizer for C under D. As we will see, such general activizers do

exist under Realizable(C), under mild conditions on C. However, we will also see that this is

typically not true for the noisy settings.

94

4.2 A Basic Activizer

In the following, we adopt the convention that any set of classifiers V shatters {} iff V 6= {} (and

otherwise, shattering is defined as in [Vapnik, 1998], as usual). Furthermore, for convenience,

we will define X 0 = {{}}.

Let us begin by motivating the approach we will take below. Similarly to Chapter 3, define the

boundary as ∂CDXY = lim
rց0

DIS(C(r)). If P(∂CDXY) = 0, then methods based on sampling in

the region of disagreement and inferring the labels of examples not in the region of disagreement

should be effective for activizing (in the realizable case). On the other hand, if P(∂CDXY) > 0,

then such methods will fail to focus the sampling region beyond a constant fraction of X , so

alternative methods are needed. To cope with such situations, we might exploit the fact that the

region of disagreement of the set of classifiers with relatively small empirical error rates on a

labeled sample (call this set Ĉ(τ)) converges to ∂CDXY (up to measure-zero differences). So,

for a large enough labeled sample, a random point x ∈ DIS(Ĉ(τ)) will probably be in the

boundary region. We can exploit this fact by using x to split Ĉ(τ) into two subsets: V+ =

{h ∈ Ĉ(τ) : h(x) = +1} and V− = {h ∈ Ĉ(τ) : h(x) = −1}. Now, if x ∈ ∂CDXY ,

then inf
h∈V+

er(h) = inf
h∈V−

er(h) = ν(C,DXY). So, for almost every point x′ ∈ X \ DIS(V+),

we can infer a label for this point, which will agree with some classifier whose error rate is

arbitrarily close to ν(C,DXY), and similarly for V−. In particular, in the realizable case, this

inferred label is the target function’s label, and in the benign noise case, it is the Bayes optimal

classifier’s label (when η(x′) 6= 1/2). We can therefore infer the label of points not in the region

DIS(V+) ∩DIS(V−), thus effectively reducing the region we must request labels in. Similarly,

this region converges to a region ∂V+DXY ∩ ∂V−DXY . If this region has zero probability, then

sampling from DIS(V+) ∩ DIS(V−) effectively focuses the sampling distribution, as needed.

Otherwise, we can repeat this argument; for large enough sample sizes, a random point from

DIS(V+) ∩DIS(V−) will likely be in ∂V+DXY ∩ ∂V−DXY , and therefore splits Ĉ(τ) into four

sets with ν(C,DXY) optimal error rates, and we can further focus the sampling region in this

95

way. We can repeat this process as needed until we get a partition of Ĉ(τ) with a shrinking

intersection of regions of disagreement. Note that this argument can be written more concisely

in terms of shattering. That is, a point in DIS(Ĉ(τ)) is simply a point that Ĉ(τ) can shatter.

Similarly, a point x′ ∈ DIS(V+) ∩DIS(V−) is simply a point s.t. Ĉ(τ) shatters {x, x′}, etc.

The above simple argument leads to a natural algorithm, which effectively improves label

complexity for confidence-bounded error in the realizable case. However, to achieve improve-

ments in the label complexity for expected error, it is not sufficient to merely have the probability

of a random point in DIS(Ĉ(τ)) being in the boundary converging to 1, as this could happen at

a slow rate. To resolve this, we can replace the single sample x with multiple samples, and then

take a majority vote over whether to infer the label, and which label to infer if we do.

The following meta-algorithm, based on these observations, is central to the results of this

chapter. It depends on several parameters, and two types of estimators: ∆̂(k)(·, ·) and Γ̂(k)(·, ·, ·);

one possible definition for these is given immediately after the meta-algorithm, along with a

discussion of the roles of these various parameters and estimators.

Meta-Algorithm 5 : Activizer(Ap, n)
Input: passive algorithmAp, label budget n

Output: classifier ĥ

0. Request the first ⌊n/3⌋ labels and let Q denote these ⌊n/3⌋ labeled examples

1. Let V = {h ∈ C : erQ(h)−min
h′∈C

erQ(h′) ≤ τ}
2. Let U1 be the next mn unlabeled examples, and U2 the next mn examples after that

3. For k = 1, 2, . . . , d + 1
4. Let Lk denote the next ⌊n/(6 · 2k∆̂(k)(U1,U2))⌋ unlabeled examples,

5. For each x ∈ Lk,

6. If ∆̂(k)(x,U2) ≥ 1− γ, and we’ve requested < ⌊n/(3 · 2k)⌋ labels in Lk so far,

7. Request the label of x and replace it in Lk by the labeled one

8. Else, label x with argmax
y∈{−1,+1}

Γ̂(k)(x, y,U2) and replace it in Lk by the labeled one

9. Return ActiveSelect({Ap(L1),Ap(L2), . . . ,Ap(Ld+1)}, ⌊n/3⌋)

Subroutine: ActiveSelect({h1, h2, . . . , hN}, m)
0. For each j, k ∈ {1, 2, . . . , N} : j < k,

1. Take the next ⌊m/
(

N
2

)

⌋ examples x s.t. hj(x) 6= hk(x) (if such examples exist)

2. Let mjk and mkj respectively denote the number of mistakes hj and hk make on these

3. Return hk̂, where k̂ = arg mink maxj mkj

96

The meta-algorithm has several parameters to be specified below.

As with Algorithm 0 and the agnostic generalizations thereof, the set V can be represented

implicitly by simply performing each step on the full space C, subject to the constraint given in

the definition of V , so that we can more easily adapt algorithms that are designed to manipulate

C. Note that, since this is the realizable case, the choice of τ = 0 is sufficient, and furthermore

enables the possibility of an efficient reduction to the passive algorithm for many interesting

concept spaces. The choice of γ is fairly arbitrary; generally, the proof requires only that γ ∈

(0, 1).

The design of the estimators ∆̂(k)(U1,U2), ∆̂(k)(x,U2), and Γ̂(k)(x, y,U2) can be done in

a variety of ways. Generally, the only important feature seems to be that they be converging

estimators of an appropriate limiting values. For our purposes, given any m ∈ N and sequences

U1 = {z1, . . . , zm} ∈ Xm and U2 = {zm+1, zm+2, . . . , z2m} ∈ Xm, the following definitions for

∆̂(k)(U1,U2), ∆̂(k)(z,U2), and Γ̂(k)(x, y,U2) will suffice. Generally, we define

∆̂(k)(U1,U2) =
1

m1/3
+

1

m

∑

z∈U1

1[∆̂(k)(z,U2) ≥ 1− γ]. (4.1)

For the others, there are two cases to consider. If k = 1, the definitions are quite simple:

Γ̂(1)(x, y,U2) = 1[∀h ∈ V, h(x) = y],

∆̂(1)(z,U2) = 1[z ∈ DIS(V)].

For the other case, namely k ≥ 2, we first partition U2 into subsets of size k − 1, and record

how many of those subsets are shattered by V : for i ∈ {1, 2, . . . , ⌊m/(k − 1)⌋}, define S
(k)
i =

{zm+1+(i−1)(k−1), . . . , zm+i(k−1)}, and let Mk = max

{

1,
⌊m/(k−1)⌋
∑

i=1

1 [V shatters S
(k)
i

]

}

. Then

define V(x,y) = {h ∈ V : h(x) = y}, and

Γ̂(k)(x, y,U2) =

⌊m/(k−1)⌋
∑

i=1

1[V shatters S
(k)
i and V(x,−y) does not shatter S

(k)
i

]

. (4.2)

∆̂(k)(z,U2) simply estimates the probability that S ∪ {z} is shatterable by V given S shatterable

97

by V , as follows.

∆̂(k)(z,U2) =
1

M
1/3
k

+
1

Mk

⌊m/(k−1)⌋
∑

i=1

1[V shatters S
(k)
i ∪ {z}]. (4.3)

The following theorem is the main result on activized learning in the realizable case for this

chapter.

Theorem 4.3. Suppose C is a VC class, 0 ≤ τ = o(1), mn ≥ n, and γ ∈ (0, 1) is constant. Let

∆̂(k) and Γ̂(k) be defined as in (4.1), (4.3), and (4.2).

For any passive algorithmAp, Meta-Algorithm 5 activizes Ap for C under Realizable(C).

More concisely, Theorem 4.3 states that Meta-Algorithm 5 is a general activizer for C. We

can also prove the following result on the fixed-confidence version of label complexity.1

Theorem 4.4. Suppose the conditions of Theorem 4.3 hold, and that Ap achieves a label

complexity Λp. Then Activizer(Ap, ·) achieves a label complexity Λa such that, for any

δ ∈ (0, 1) and D ∈ Realizable(C), there is a finite constant c such that

Λp(ǫ, cδ,D) = O(1)⇒ Λa(cǫ, cδ,D) = O(1) and

Λp(ǫ, δ,D) = ω(1)⇒ Λa(cǫ, cδ,D) = o(Λp(ǫ, δ,D)).

The proof of Theorems 4.3 and 4.4 are deferred to Section 4.4.

For a more concrete implication, we immediately get the following simple corollary.

Corollary 4.5. For any VC class C, there exist active learning algorithms that achieve label

complexities Λa and Λ̄a, respectively, such that for all DXY ∈ Realizable(C),

Λ̄a(ǫ,DXY) = o(1/ǫ), and ∀δ ∈ (0, 1), Λa(ǫ, δ,DXY) = o(1/ǫ).

Proof. For d = 0, the result is trivial. For d ≥ 1, Haussler, Littlestone, and Warmuth [1994]

propose passive learning algorithms achieving respective label complexities Λ̄p(ǫ,DXY) = d
ǫ

and Λp(ǫ, δ,DXY) ≤ 70d
ǫ

ln 8
δ
. Plugging this into Theorems 4.3 and 4.4 implies that applying

Meta-Algorithm 5 to these passive algorithms yield combined active learning algorithms with

the stated behaviors for Λ̄a and Λa.

1In fact, this result even holds for a much simpler variant of the algorithm, where Γ̂(k) and ∆̂(k) can be replaced

by an estimator that uses a single random S ∈ X k−1 shattered by V , rather than repeated samples.

98

For practical reasons, it is interesting to note that all of the label requests in Meta-Algorithm

5 can be performed in three batches: the initial n/3, the requests during the d+1 iterations (which

can all be requested in a single batch), and the requests for the ActiveSelect procedure. However,

because of this, we should not expect Meta-Algorithm 5 to have optimal label complexities. In

particular, to get exponential rates, we should expect to need Θ(n) batches. That said, it should

be possible to construct the sets Lk sequentially, updating V after each example added to Lk, and

requesting labels as needed while constructing the set, analogous to Algorithm 0. Some care in

the choice of stopping criterion on each round is needed to make sure the set Lk still represents an

i.i.d. sample. Such a modification should significantly improve the label complexities compared

to Meta-Algorithm 5, while still maintaining the validity of the results proven here.

Note: The restriction to VC classes is not necessary for positive results in activized learning.

For instance, even if the concept space C has infinite VC dimension, but can be decomposed

into a countable sequence of VC class subsets, we can still construct an activizer for C using an

aggregation technique similar to that introduced in Chapter 3.

4.3 Toward Agnostic Activized Learning

We might wonder whether it is possible to state a result as general as Theorem 4.3, even for the

most general setting Agnostic. However, one can construct VC classes C, and passive algorithms

Ap that cannot be activized for C, even under bounded noise distributions (Tsybakov(C, 1, µ)),

let alone Agnostic. These algorithms tend to have a peculiar dependence on the noise distribu-

tion, so that if the noise distribution and h∗ align in just the right way, the algorithm becomes

very good, and is otherwise not very good; the effect is that we cannot lose much information

about the noise distribution if we hope to get these extremely fast rates for these particular dis-

tributions, so that the problem becomes more like regression than classification. However, as

mentioned, these passive algorithms are not very interesting for most distributions, which leads

to an informal conjecture that any reasonable passive algorithm can be activized for C under

99

Agnostic. More formally, I have the following specific conjecture.

Recall that we say h is a minimizer of the empirical error rate for a labeled sample L iff

h ∈ arg min
h′∈C

erL(h′).

Conjecture 4.6. For any VC class C, there exists a passive algorithmAp that outputs a

minimizer of the empirical error rate on its training sample such that some active

meta-algorithmAa activizes Ap for C under Agnostic.

Although, at this writing, this conjecture remains open, the rest of this section may serve as

evidence in its favor.

4.3.1 Positive Results

First, we have the following simple lemma, which allows us to restrict the discussion to the

BenignNoise(C) case.

Lemma 4.7. For any C, if there exists an active algorithmAa achieving label complexities Λ̄a

and Λa, then there exists an active algorithmA′
a achieving label complexities Λ̄′

a and Λ′
a such

that, ∀D ∈ Agnostic and δ ∈ (0, 1), for some functions λ̄(ǫ,D), λ(ǫ, δ,D) ∈ Polylog(1/ǫ),

If D ∈ BenignNoise(C), then

Λ̄′
a(ǫ + ν(C,D),D) ≤ max{2⌈Λ̄a(ǫ/2 + ν(C,D),D)⌉, λ̄(ǫ,D)},

Λ′
a(ǫ + ν(C,D), δ,D) ≤ max{2⌈Λa(ǫ + ν(C,D), δ/2,D)⌉, λ(ǫ, δ,D)},

and if D /∈ BenignNoise(C), then

Λ̄′
a(ǫ + ν(C,D),D) ≤ λ̄(ǫ,D),

Λ′
a(ǫ + ν(C,D), δ,D) ≤ λ(ǫ, δ,D).

Proof. Consider a universally consistent passive learning algorithmAu. Then Au achieves label

complexities Λu and Λ̄u such that for any distribution D on X × {−1, +1}, ∀ǫ, δ ∈ (0, 1),

Λ̄u(ǫ/2+β(D),D) and Λu(ǫ/2+β(D), δ/2,D) are both finite. In particular, if β(D) < ν(C,D),

100

then Λ̄u(ǫ/2 + ν(C,D),D) = O(1) and Λu(ǫ/2 + ν(C,D), δ/2,D) = O(1).

Now we simply run Aa(⌊n/2⌋), to get a classifier ha, and run Au(Z⌊n/3⌋) (after requesting

those first ⌊n/3⌋ labels), to get a classifier hu. Take the next n − ⌊n/2⌋ − ⌊n/3⌋ unlabeled

examples and request their labels; call this set L. If erL(ha)− erL(hu) > n−1/3, return ĥ = hu;

otherwise, return ĥ = ha. I claim that this method achieves the stated result, for the following

reasons.

First, let us examine the final step of this algorithm. By Hoeffding’s inequality, the probability

that er(ĥ) 6= min{er(ha), er(hu)} is at most 2exp{−n1/3/24}.

Consider the case where D ∈ BenignNoise(C). For any n ≥ 2⌈Λ̄a(ǫ/2 + ν(C,D),D)⌉,

E[er(ha)] ≤ ν(C,D) + ǫ/2, so E[er(ĥ)] ≤ ν(C,D) + ǫ/2 + 2exp{−n1/3/24}, which is at most

ν(C,D) + ǫ if n ≥ 243 ln3 4
ǫ
. Also, for any n ≥ 2⌈Λa(ǫ + ν(C,D), δ/2,D)⌉, with probability at

least 1− δ/2, er(ha) ≤ ν(C,D) + ǫ. If additionally, n ≥ 243 ln3 4
δ
, then a union bound implies

that with probability≥ 1− δ, er(ĥ) ≤ er(ha) ≤ ν(C,D) + ǫ.

On the other hand, if D /∈ BenignNoise(C), then for any n ≥ 3⌈Λ̄u(ν(C,D) + ǫ/2,D)⌉,

E[er(ĥ)] ≤ E[min{er(ha), er(hu)}] + 2exp{−n1/3/24} ≤ E[er(hu)] + 2exp{−n1/3/24} ≤

ν(C,D)+ ǫ/2+2exp{−n1/3/24}. Again, this is at most ν(C,D)+ ǫ if n ≥ 243 ln3 4
ǫ
. Similarly,

for any n ≥ 3⌈Λu(ν(C,D)+ǫ, δ/2,D)⌉ = O(1), with probability≥ 1−δ/2, er(hu) ≤ ν(C,D)+

ǫ. If additionally, n ≥ 243 ln3 4
δ
, then a union bound implies that with probability ≥ 1 − δ,

er(ĥ) ≤ er(hu) ≤ ν(C,D) + ǫ.

Thus, we can take λ̄(ǫ,D) = max{243 ln3 4
ǫ
, 3⌈Λ̄u(ν(C,D) + ǫ/2,D)⌉} ∈ Polylog(1/ǫ).

and λ(ǫ, δ,D) = max{243 ln3 4
δ
, 3⌈Λu(ν(C,D) + ǫ, δ/2,D)⌉} ∈ Polylog(1/ǫ).

Because of Lemma 4.7, it suffices to focus our discussion purely on the BenignNoise(C)

case, since any label complexity results for BenignNoise(C) immediately imply almost equally

strong label complexity results for Agnostic, losing only an additive polylogarithmic term. With

this in mind, we state the following active learning algorithm, designed for the BenignNoise(C)

setting.

101

Meta-Algorithm 6: BenignActivizer(Ap, n)

Input: passive algorithmAp, label budget n

Output: classifier ĥ

0. Request the first ⌊n/3⌋ labels and let Q denote these ⌊n/3⌋ labeled examples

1. Let V = {h ∈ C : erQ(h)−min
h′∈C

erQ(h′) ≤ τ}
2. Let U2 be the next mn unlabeled examples

3. For k = 1, 2, . . . , d
4. Qk ← {}
5. For t = 1, 2, . . . , ⌊2n/(3 · 2k)⌋
6. Let x′ be the next unlabeled example for which minj≤k ∆̂(j)(x,U2) ≥ 1− γ
7. Request the label y′ of x′ and let Qk ← Qk ∪ {(x′, y′)}
8. Construct the classifier ĥk, for k ∈ {1, 2, . . . , d + 1} (see description below)

9. Return ĥk̂, for k̂ = max
{

k : maxj<k erQj
(ĥk)− erQj

(ĥj) ≤ Tkj

}

.

The definition of ĥk in Step 8 of Meta-Algorithm 6 is as follows.

Let hk = Ap(Qk), k′(x) = min{k′ : ∆̂(k′)(x,U2) < 1− γ}, and

ĥk(x) =















arg max
y∈{−1,+1}

Γ̂(k′(x))(x, y,U2), if k′(x) ≤ k

hk(x), otherwise

.

For the threshold Tkj in Step 9 of Meta-Algorithm 6, for our purposes, we can take the

following definition.

Tkj = 5

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk|
.

It is interesting to note that this algorithm requires only two batches of label requests, which

is clearly the minimum number for any algorithm that takes advantage of the sequential aspects

of active learning. However, even with this, we have the following general results.

Theorem 4.8. Let τ = 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, δ ∈ (0, 1), and let ∆̂(k) and Γ̂(k) be defined as

in (4.1), (4.3), and (4.2). For any VC class C, by applying Meta-Algorithm 6 with Ap being any

algorithm outputting a minimizer of the empirical error rate from C, the combined active

algorithm achieves a label complexity Λa such that ∀D ∈ BenignNoise(C),

Λa(ǫ + ν(C,D), δ,D) = o(1/ǫ2).

102

The proof of Theorem 4.8 is included in Section 4.4.1. Theorem 4.8, combined with Lemma 4.7,

immediately implies the following quite general corollary.

Corollary 4.9. For any VC class C, and δ ∈ (0, 1), there exists an active learning algorithm

achieving a label complexity Λa such that, ∀D ∈ Agnostic,

Λa(ǫ + ν(C,D), δ,D) = o(1/ǫ2).

Note that this result shows strict improvements over the known worst-case (minimax) label

complexities for passive learning.

4.4 Proofs

4.4.1 Proof of Theorems 4.3, 4.4, and 4.8

Throughout this subsection, we will assume C is a VC class, 0 ≤ τ = o(1), mn ≥ n, γ ∈ (0, 1),

and ∆̂(k) and Γ̂(k) are defined as in (4.1), (4.3) and (4.2), as stated in the conditions of the

theorems. Furthermore, we will define V = {h ∈ C : er⌊n/3⌋(h) − min
h′∈C

er⌊n/3⌋(h
′) ≤ τ}, and

unless otherwise specified, DXY ∈ Agnostic and we will simply discuss the behavior for this

fixed, but arbitrary, distribution.

Also, recall that we are using the convention that X 0 = {{}} and we say a set of classifiers

V shatters {} iff V 6= {}.

Lemma 4.10. For any N ∈ N, and N classifiers {h1, h2, . . . , hN},

ActiveSelect({h1, h2, . . . , hN}, m) makes at most m label requests, and if hk̂ is the classifier

output by ActiveSelect({h1, h2, . . . , hN}, m), then with probability

≥ 1− 2(N − 1)exp{−(m/
(

N
2

)

)/72}, er(hk̂) ≤ 2 mink er(hk).

Proof. This proof is essentially identical to the proof of Theorem 3.7 from Chapter 3.

First note that the total number of label requests used by ActiveSelect is at most m, since

each pair of classifiers uses at most m/
(

N
2

)

requests.

103

Let k∗∗ = argmink er(hk). Now for any j ∈ {1, 2, . . . , N} with P(hj(X) 6= hk∗∗(X)) > 0,

the law of large numbers implies that with probability 1 we will find at least m/
(

N
2

)

exam-

ples remaining in the sequence for which hj(x) 6= hk∗∗(x), and furthermore since er(hk∗∗|{x :

hj(x) 6= hk∗∗(x)}) ≤ 1/2, Hoeffding’s inequality implies that P(mk∗∗j > (7/12)m/
(

N
2

)

) ≤

exp{−(m/
(

N
2

)

)/72}. A union bound implies

P

(

max
j

mk∗∗j > (7/12)m/

(

N

2

))

≤ (N − 1)exp

{

−
(

m/

(

N

2

))

/72

}

.

Now suppose k ∈ {1, 2, . . . , N} has er(hk) > 2er(hk∗∗). In particular, this implies P(hk(X) 6=

hk∗∗(X)) > 0 and er(hk|{x : hk∗∗(x) 6= hk(x)}) > 2/3. By Hoeffding’s inequality, we

have that P(mkk∗∗ ≤ (7/12)m/
(

N
2

)

) ≤ exp{−(m/
(

N
2

)

)/72}. By a union bound, we have that

P(∃k : er(hk) > 2er(hk∗∗) and maxj mkj ≤ (7/12)m/
(

N
2

)

) ≤ (N − 1)exp{−(m/
(

N
2

)

)/72}.

So, by a union bound, with probability≥ 1−2(N−1)exp{−(m/
(

N
2

)

)/72}, for the k̂ chosen

by ActiveSelect,

max
j

mk̂j ≤ max
j

mhk∗∗j ≤ (7/12)m/

(

N

2

)

< min
k:er(hk)>2er(hk∗∗)

max
j

mkj,

and thus er(hk̂) ≤ 2er(hk∗∗) as claimed.

Lemma 4.11. There is an event Hn, holding with probability≥ 1− exp{−√n}, such that for

some C-dependent function φ(n) = o(1), V ⊆ C(φ(n);DXY).

Proof. By the uniform convergence bounds proven by Vapnik [1982], for a C-dependent finite

constant c, with probability ≥ 1 − exp{−n1/2}, V ⊆ C
(

cn−1/4 + τ ;DXY

)

. Thus, the result

holds for φ(n) = cn−1/4 + τ = o(1).

Lemma 4.12. If τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, then there is a strictly positive function φ′(n) = o(1)

such that, with probability≥ 1− 1/n, C(φ′(n);DXY) ⊆ V .

Proof. By the uniform convergence bounds proven by Vapnik [1982], with probability 1− 1/n,

every h ∈ C has |er(h)− er⌊n/3⌋(h)| ≤ τ/3. Therefore, on this event, V ⊇ C(τ/3;DXY). Thus,

we can let φ′(n) = τ/3, which satisfies the desired conditions.

104

Lemma 4.13. For any n ∈ N, there is an event H ′
n for the data sequence Z⌊n/3⌋ with

P(H ′
n) ≥















1, if DXY ∈ Realizable(C)

1− 1/n, if DXY /∈ Realizable(C) but τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n

,

s.t. on H ′
n, for any k ∈ {1, 2, . . . , d + 1} with P(S ∈ X k−1 : lim

rց0
1[C(r) shatters S] = 1) > 0,

P(S ∈ X k−1 : V shatters S| lim
rց0

1[C(r) shatters S] = 1)

= P(S ∈ X k−1 : lim
rց0

1[V (r) shatters S] = 1| lim
rց0

1[C(r) shatters S] = 1) = 1.

Proof. For the case of DXY /∈ Realizable(C) and τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, the result imme-

diately follows from Lemma 4.12, which implies that on an event of probability ≥ 1− 1/n, for

any set S, 1[V shatters S] ≥ lim
rց0

1[V (r) shatters S] = lim
rց0

1[C(r) shatters S].

Next we examine the case where DXY ∈ Realizable(C). We will show this is true for any

fixed k, and the existence of H ′
n then holds by the union bound. Fix any set S ∈ X k−1 s.t.

lim
rց0

1[C(r) shatters S] = 1. Suppose V (r) does not shatter S for some r > 0. Then there is an

infinite sequence of sets {{h(i)
1 , h

(i)
2 , . . . , h

(i)

2k−1}}i with ∀j ≤ 2k−1, P(x : h
(i)
j (x) 6= h∗(x)) ց 0,

such that each {h(i)
1 , . . . , h

(i)

2k−1} ⊆ C(r) and shatters S. Since V (r) does not shatter S, 1 =

inf
i
1[∃j : h

(i)
j /∈ V (r)] = inf

i
1[∃j : h

(i)
j (Z⌊n/3⌋) 6= h∗(Z⌊n/3⌋)]. But

E[inf
i
1[∃j : h

(i)
j (Z⌊n/3⌋) 6= h∗(Z⌊n/3⌋)]] ≤ inf

i
E[1[∃j : h

(i)
j (Z⌊n/3⌋) 6= h∗(Z⌊n/3⌋)]]

≤ lim
i→∞

∑

j≤2k−1

⌊n/3⌋P(x : h
(i)
j (x) 6= h∗(x)) = 0,

where the second inequality follows from the union bound. Therefore, ∀r > 0,

P(Z⌊n/3⌋ ∈ X ⌊n/3⌋ : V (r) does not shatter S) = 0 by Markov’s inequality. Furthermore, since1[V (r) does not shatter S] is monotonic in r, Markov’s inequality and the monotone convergence

105

theorem give us that

P(Z⌊n/3⌋ ∈ X ⌊n/3⌋ : lim
rց0

1[V (r) does not shatter S] = 1)

≤ E[lim
rց0

1[V (r) does not shatter S]] = lim
rց0

P(Z⌊n/3⌋ ∈ X ⌊n/3⌋ : V (r) does not shatter S) = 0.

This implies that

P(Z⌊n/3⌋∈X ⌊n/3⌋ : P(S∈X k−1 : lim
rց0

1[V (r) shatters S] = 0| lim
rց0

1[C(r) shatters S] = 1) > 0)

= lim
ξց0

P(Z⌊n/3⌋∈X ⌊n/3⌋ :P(S∈X k−1 : lim
rց0

1[V (r) shatters S]=0| lim
rց0

1[C(r) shatters S]=1)>ξ)

≤ lim
ξց0

P(Z⌊n/3⌋∈X ⌊n/3⌋ :P(S∈X k−1 : lim
rց0

1[C(r) shatters S]=1 6=lim
rց0

1[V (r) shatters S])>ξ)

≤ lim
ξց0

1

ξ
E[P(S∈X k−1 : lim

rց0
1[C(r) shatters S]=1 6=lim

rց0
1[V (r) shatters S])] (by Markov’s ineq)

= lim
ξց0

1

ξ
E[1[lim

rց0
1[C(r) shatters S]=1]P(Z⌊n/3⌋ : lim

rց0
1[V (r) shatters S]=0)] (by Fubini’s thm)

= lim
ξց0

0 = 0.

Lemma 4.14. Suppose k ∈ N satisfies P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 1) > 0. There is

a function q(n) = o(1) such that, for any n ∈ N, on event Hn ∩H ′
n (defined above),

P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 0|V shatters S) ≤ q(n).

Proof. By Lemmas 4.11 and 4.13, we know that on event Hn ∩H ′
n,

P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 0|V shatters S)

=
P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 0 and V shatters S)

P(S ∈ X k−1 : V shatters S)

≤ P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 0 and V shatters S)

P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 1)

≤ P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 0 and C(φ(n)) shatters S)

P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 1)
.

106

Define q(n) as this latter quantity. Since

P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 0 and C(r′) shatters S) is monotonic in r′,

lim
n→∞

q(n) = lim
r′ց0

P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 0 and C(r′) shatters S)

P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 1)

=
E[1[limrց0 1[C(r) shatters S] = 0] limr′ց0 1[C(r′) shatters S]]

P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 1)
= 0,

where the second equality holds by the monotone convergence theorem. This proves

q(n) = o(1), as claimed.

Lemma 4.15. Let k∗ ∈ N be the smallest index k for which

P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 1) > 0 and

P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shatters S ∪ {x}] = 1) = 0| lim
rց0

1[C(r) shatters S] = 1) > γ.

Such a k∗ ≤ d + 1 exists, and ∀ζ ∈ (0, 1), ∃nζ s.t. ∀n > nζ , if DXY ∈ Realizable(C) or

τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
and DXY ∈ BenignNoise(C), on event Hn ∩H ′

n (defined above),

∀k ≤ k∗,

P(x : η(x) 6=1/2 and P(S∈X k−1 :V(x,h∗(x)) does not shatter S|V shatters S) > ζ) =

P(x : η(x) 6=1/2 and P(S∈X k−1 :V(x,h∗(x)) does not shatter S| lim
rց0

1[V (r) shatters S]=1)>ζ)

= 0.

Proof. First we prove that such a k∗ is guaranteed to exist. As mentioned, by convention any

set of classifiers shatters {}, and {} ∈ X 0, so there exist values of k for which P(S ∈ X k−1 :

lim
rց0

1[C(r) shatters S] = 1) > 0. Furthermore, we will see that for any k ∈ {1, . . . , d + 1}, if

this condition is satisfied for k, but

P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shatters S ∪ {x}] = 1) = 0| lim
rց0

1[C(r) shatters S] = 1) ≤ γ,

then P(S ∈ X k : lim
rց0

1[C(r) shatters S] = 1) > 0. We prove this by contradiction. Suppose the

implication is not true for some k. Then

107

0 < 1− γ

≤ P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shatters S ∪ {x}] = 1) > 0| lim
rց0

1[C(r) shatters S] = 1)

≤ lim
ξց0

P(S ∈ X k−1 : P(x : lim
rց0

1[C(r) shatters S ∪ {x}] = 1) > ξ)

P(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 1)

≤ lim
ξց0

E[P(x : lim
rց0

1[C(r) shatters S ∪ {x}] = 1)]

ξP(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 1)
(by Markov’s inequality)

= lim
ξց0

P(S ∈ X k : lim
rց0

1[C(r) shatters S] = 1)

ξP(S ∈ X k−1 : limrց0 1[C(r) shatters S] = 1)
= lim

ξց0
0 = 0.

This is a contradiction, so it must be true that the implication holds for all k. This establishes the

existence of k∗, since we definitely have

P(S ∈ X d : lim
rց0

P(x : C(r) shatters S ∪ {x}) = 0| lim
rց0

1[C(r) shatters S] = 1) = 1 > γ,

so that some k satisfies both conditions.

Next we prove the second claim. Take k ≤ k∗. Let nζ be s.t. supn>nζ
q(n) < ζ ; it must exist

since q(n) = o(1). By Lemma 4.14, for n > nζ , on Hn ∩H ′
n,

P(x : η(x) 6=1/2 and P(S∈X k−1 :V(x,h∗(x)) does not shatter S|V shatters S) > ζ)

≤ P(x : η(x) 6=1/2 and

P(S ∈ X k−1 : V(x,h∗(x)) does not shatter S| lim
rց0

1[C(r) shatters S] = 1) + q(n) > ζ)

≤ 1
ζ−q(n)

E[1[η(x) 6=1/2]P(S∈X k−1 :V(X,h∗(X)) does not shatter S| lim
rց0

1[C(r) shatters S]=1)]

(by Markov’s inequality)

≤
E[1[lim

rց0
1[C(r) shatters S]=1]P(x:η(x)6=1/2 and V(x,h∗(x)) does not shatter S)]

(ζ−q(n))P(S∈Xk−1: lim
rց0

1[C(r) shatters S]=1)
(by Fubini’s theorem)

≤
E[1[lim

rց0
1[V (r) shatters S]=1]P(x:η(x)6=1/2 and V(x,h∗(x)) does not shatter S)]

(ζ−q(n))P(S∈Xk−1: lim
rց0

1[C(r) shatters S]=1)
(by Lemma 4.13). (4.4)

For any set S ∈ X k−1 for which lim
rց0

1[V (r) shatters S] = 1, there is an infinite sequence of sets

{{h(i)
1 , h

(i)
2 , . . . , h

(i)

2k−1}}i with ∀j ≤ 2k−1, P(x : η(x) 6=1/2 and h
(i)
j (x) 6= h∗(x)) ց 0, such that

108

each {h(i)
1 , . . . , h

(i)

2k−1} ⊆ V and shatters S. If V(x,h∗(x)) does not shatter S, then

1 = inf
i
1[∃j : h

(i)
j /∈ V(x,h∗(x))] = inf

i
1[∃j : h

(i)
j (x) 6= h∗(x)].

In particular, by Markov’s inequality,

P(x : η(x) 6=1/2 and V(x,h∗(x)) does not shatter S)

≤ P(x : η(x) 6=1/2 and inf
i
1[∃j : h

(i)
j (x) 6= h∗(x)] = 1)

≤ E[1[η(X) 6=1/2] inf
i
1[∃j : h

(i)
j (X) 6= h∗(X)]]

≤ inf
i

P(x : η(x) 6=1/2 and ∃j s.t. h
(i)
j (x) 6= h∗(x))

≤
∑

j≤2k−1

lim
i→∞

P(x : η(x) 6=1/2 and h
(i)
j (x) 6= h∗(x)) = 0.

This means (4.4) equals 0.

Lemma 4.16. Suppose k ∈ {1, 2, . . . , d + 1} satisfies

P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 1) > 0 and

αk = P(S ∈ X k−1 : lim
rց0

P(x : C(r) shatters S ∪ {x}) = 0| lim
rց0

1[C(r) shatters S] = 1) > γ.

Then there is a function ∆
(k)
n = o(1) such that, on event Hn ∩H ′

n (defined above),

P(x : P(S ∈ X k−1 : V shatters S ∪ {x}|V shatters S) ≥ 1− (γ + αk)/2) ≤ ∆
(k)
n .

Proof. Let

A = {S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 1 and lim
rց0

P(x : C(r) shatters S ∪ {x}) = 0}.

Then, letting φ(n) be as in Lemma 4.11, on event Hn ∩H ′
n,

P(x : P(S ∈ X k−1 : V shatters S ∪ {x}|V shatters S) ≥ 1− (γ + αk)/2)

≤ P(x : P(S ∈ X k−1 : C(φ(n)) shatters S ∪ {x}| lim
rց0

1[C(r) shatters S] = 1)

+ P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 0|V shatters S) ≥ 1− (γ + αk)/2) (4.5)

By Lemma 4.13, we know there is some finite ñ1 s.t. any n > ñ1 has (on event Hn ∩H ′
n)

P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 0|V shatters S) ≤ (αk − γ)/3.

109

We therefore have that, for n > ñ1, on event Hn ∩H ′
n, (4.5) is at most

P(x :P(S∈X k−1 :C(φ(n)) shatters S∪{x}| lim
rց0

1[C(r) shatters S]=1)+(αk−γ)/3≥1−(γ+αk)/2)

≤ P(x :P(S∈X k−1 :C(φ(n)) shatters S∪{x}|S∈A)αk+(1−αk)+(αk−γ)/3≥1−(γ+αk)/2)

= P(x : P(S ∈ X k−1 : C(φ(n)) shatters S ∪ {x}|S ∈ A) ≥ (αk − γ)/(6αk))

≤ 6αk

αk−γ
E[P(S ∈ X k−1 : C(φ(n)) shatters S ∪ {X}|S ∈ A)] (by Markov’s inequality)

≤ 6αk

αk−γ
E[P(x : C(φ(n)) shatters S ∪ {x})|S ∈ A] (by Fubini’s theorem).

We will define ∆
(k)
n equal to this last quantity for any n > ñ1 (we can take ∆

(k)
n = 1 for

n ≤ ñ1). It remains only to show this quantity is o(1). Since 6αk

αk−γ
E[P(x : C(r) shatters S ∪

{x})|S ∈ A] is monotonic in r,

lim
n→∞

∆(k)
n = lim

rց0

6αk

αk − γ
E[P(x : C(r) shatters S ∪ {x})|S ∈ A].

Since for any S ∈ X k−1, P(x : C(r) shatters S ∪ {x}) is monotonic in r, the monotone conver-

gence theorem implies

lim
rց0

6αk

αk − γ
E[P(x : C(r) shatters S ∪ {x})|S ∈ A]

=
6αk

αk − γ
E[lim

rց0
P(x : C(r) shatters S ∪ {x})|S ∈ A] = 0.

110

Lemma 4.17. ∀n ∈ N, there is an event H̃n ⊆ Hn ∩H ′
n on Z that, if

DXY ∈ BenignNoise(C), has

P(H̃n) ≥ 1− cn4/3 · exp{−c′n1/3} − 1[DXY /∈ Realizable(C)]n−1, for DXY - and

C-dependent constants c, c′ ∈ (0,∞), such that

∀n ∈ N, on H̃n, |{x ∈ Lk∗ : ∆̂(k∗)(x,U2) ≥ 1− γ}| ≤ ⌊n/(3 · 2k∗

)⌋, (4.6)

∃∆̆(k∗)
n = o(1) and ∆̃

(k∗)
n = o(1) s.t. ∀n ∈ N, on H̃n,

∆̄(k∗)(U2) ≤ ∆̆(k∗)
n and ∆̂(k∗)(U1,U2) ≤ ∆̃(k∗)

n , (4.7)

where ∀k, ∆̄(k)(U2) = P(x : ∆̂(k)(x,U2) ≥ 1− γ); also ∃n∗ ∈ N s.t. ∀n > n∗, if

DXY ∈ Realizable(C), on H̃n, ∀x ∈ Lk∗ ,

∆̂(k∗)(x,U2) < 1− γ ⇒ Γ̂(k∗)(x,−h∗(x),U2) < Γ̂(k∗)(x, h∗(x),U2), (4.8)

where Lk∗ is as in Meta-Algorithm 5; also, ∀n > n∗, if DXY ∈ BenignNoise(C) and

τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, then on H̃n,

P(x : η(x) 6=1/2 and ∃k ≤ k∗ s.t. ∆̂(k)(x,U2) < 1− γ and

Γ̂(k)(x, h∗(x),U2) ≤ Γ̂(k)(x,−h∗(x),U2)) ≤ (d + 1)e−c′′n1/3

, (4.9)

for a C- and DXY -dependent finite constant c′′ > 0.

Proof. Since most of this lemma discusses only k = k∗, in the proof I will simplify the notation

by dropping (k∗) superscripts, so that ∆̂(U1,U2) abbreviates ∆̂(k∗)(U1,U2), Γ̂(x, y,U2) abbrevi-

ates Γ̂(k∗)(x, y,U2), and so on. I do this only for k∗, and will include the superscripts for any

other value of k so that there is no ambiguity.

We begin with (4.6). Recall that Lk∗ is initially an independent sample of size ⌊n/(6 ·

2k∗
∆̂(U1,U2))⌋ sampled fromDXY [X] (i.e., before we add labels to the examples). Let ∆̄(U2) =

P(x : ∆̂(x,U2) ≥ 1− γ).

111

By Hoeffding’s inequality, on an event H
(1)
n (U2) on U1 with P(U1 : H

(1)
n (U2)) ≥ 1 − 2 ·

exp{−2m
1/3
n } ≥ 1− 2 · exp{−2n1/3},

|∆̄(U2)−
1

mn

∑

z∈U1

1[∆̂(z,U2) ≥ 1− γ]| ≤ 1

m
1/3
n

,

and therefore

∆̄(U2) ≤ ∆̂(U1,U2).

By a Chernoff bound, there is an event H
(2)
n (U2) on Lk∗ and U1 with

P(Lk∗,U1 :H(2)
n (U2))≥1−exp{−⌊n/(6·2k∗

∆̄(U2))⌋∆̄(U2)/3} ≥ 1−exp{−(n−6·2k∗

)/(18·2k∗

)}

such that, on an event H
(1)
n (U2) ∩H

(2)
n (U2),

|{x ∈ Lk∗ : ∆̂(x,U2) ≥ 1− γ}| ≤ 2⌊n/(6 · 2k∗

∆̄(U2))⌋∆̄(U2) ≤ n/(3 · 2k∗

).

Since the left side of (4.6) is an integer, (4.6) is established.

Next we prove (4.7). If k∗ = 1, the result clearly holds. In particular, we have ∆̄(1)(U2) =

P(DIS(V)), and Hoeffding’s inequality implies that on an event with probability

1 − exp{−2m
1/3
n }, ∆̂(1)(U1,U2) ≤ P(DIS(V)) + 2m

−1/3
n . Combined with Lemma 4.16, we

have bounds of ∆
(1)
n + 2m

−1/3
n = o(1).

Otherwise, we have k∗ ≥ 2. In this case, by Hoeffding’s inequality and a union bound (over

k values), for an event H ′′
n over U2, with P(H ′′

n) ≥ 1 − (d + 1)exp{−2⌊mn/(k∗ − 1)⌋1/3}, on

H ′′
n ∩H ′

n, for all k ∈ {2, . . . , k∗} (by Lemma 4.13)

Mk ≥ P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 1)⌊mn/(k − 1)⌋ − ⌊mn/(k − 1)⌋2/3.

Let us name the right side of this inequality m(n). Recall that for k ≤ k∗,

P(S ∈ X k−1 : lim
rց0

1[C(r) shatters S] = 1) > 0

by definition of k∗, so m(n) diverges. On event H
(1)
n (U2),

∆̂(U1,U2) ≤ ∆̄(U2) +
2

m
1/3
n

≤ ∆̄(U2) +
2

n1/3
. (4.10)

112

Thus, it suffices to bound ∆̄(U2) by a o(1) function. In fact, since we have Mk∗ lower bounded

by a diverging function on H ′′
n ∩H ′

n, so for sufficiently large n, on H ′
n ∩H ′′

n,

∆̄(U2) ≤ P(x : ∆̂(x,U2)−M
−1/3
k∗ ≥ 1− (2γ + α)/3).

Thus, it suffices to bound P(x : ∆̂(x,U2) −M
−1/3
k∗ ≥ 1 − (2γ + α)/3) by a o(1) function. On

event Hn ∩H ′
n ∩H ′′

n, we have that

P(x : ∆̂(x,U2)−M
−1/3
k∗ ≥ 1− (2γ + α)/3)

≤ P(x : P(S ∈ X k∗−1 : V shatters S ∪ {x}|V shatters S) ≥ 1− (γ + α)/2)+

P(x : |P(S∈X k∗−1 :V shattersS∪{x}|V shattersS)− 1
Mk∗

⌊m/(k∗−1)⌋
∑

i=1

1[V shattersSi∪{x}]|>(α−γ)/6)

By Lemma 4.16, on event Hn ∩H ′
n,

P(x : P(S ∈ X k∗−1 : V shatters S ∪ {x}|V shatters S) ≥ 1− (γ + α)/2) ≤ ∆(k∗)
n = o(1).

Thus, it suffices to prove the existence of a o(1) bound on

P(x : |P(S∈X k∗−1 :V shattersS∪{x}|V shattersS)− 1
Mk∗

⌊m/(k∗−1)⌋
∑

i=1

1[V shattersSi∪{x}]|>(α−γ)/6)

For this, we proceed as follows. Define p̂x = 1
Mk∗

∑⌊m/(k∗−1)⌋
i=1 1[V shatters Si ∪ {x}], a random

variable depending on U2, and px = P(S ∈ X k∗−1 : V shatters S ∪ {x}|V shatters S).

P(U2 : Mk∗ ≥ m(n) and P(x : |px − p̂x| > (α− γ)/6) > M
−1/3
k∗)

≤ P

(

U2 : Mk∗ ≥ m(n) and
6

α− γ
E[|pX − p̂X |] > M

−1/3
k∗

)

(by Markov’s inequality)

=

⌊mn/(k∗−1)⌋
∑

m=m(n)

P(U2 : Mk∗ = m)P
(

U2 : E[|pX − p̂X |] > m−1/3(α− γ)/6|Mk∗ = m
)

≤ sup
m≥m(n)

P
(

U2 : exp{tmmE[|pX − p̂X |]} > exp{tmm2/3(α− γ)/6}|Mk∗ = m
)

,

for any values tm > 0. We now proceed as in Chernoff’s bounding technique. By Markov’s

113

inequality, this last quantity is at most

sup
m≥m(n)

E[etmmE[|pX−p̂X |]|Mk∗ = m]exp{−tmm2/3(α− γ)/6}

≤ sup
m≥m(n)

E[E[etmm|pX−p̂X |]|Mk∗ = m]exp{−tmm2/3(α− γ)/6} (by Jensen and Fubini)

≤ sup
m≥m(n)

(sup
p∈[0,1]

E[etmBm,p−tmmp] + sup
p∈[0,1]

E[etmmp−tmBm,p])exp{−tmm2/3(α− γ)/6}

where Bm,p ∼ Binomial(m, p), and the expectation is now over Bm,p. By symmetry, if p is

the maximizer of the first expectation, then 1 − p maximizes the second expectation, and the

maximizing values are identical, so this is at most

2 sup
m≥m(n)

sup
p∈[0,1]

E[exp{tmBm,p − tmmp}]exp{−tmm2/3(α− γ)/6)}.

Following the usual proof for Hoeffding’s inequality [see e.g., Devroye et al., 1996], this is at

most

2 sup
m≥m(n)

exp{t2mm/8}exp{−tmm2/3(α− γ)/6)}.

Taking tm = m−1/32(α− γ)/3, this is

2 sup
m≥m(n)

exp{m1/3(α− γ)2/18−m1/32(α− γ)2/18}

= 2 sup
m≥m(n)

exp{−m1/3(α− γ)2/18} = 2exp{−m(n)1/3(α− γ)2/18}.

Therefore, there is an event H ′′′
n on U2 with

P(H ′′′
n) ≥ 1− 2exp{−m(n)1/3(α− γ)2/18} ≥ 1−

2exp{−(P(S∈X k∗−1 : lim
rց0

1[C(r)shattersS]=1)⌊n/(k∗−1)⌋−⌊n/(k∗−1)⌋2/3)1/3(α−γ)2/18},

such that on H ′′′
n ∩H ′′

n ∩H ′
n,

P(x : |P(S∈X k∗−1 :V shattersS∪{x}|V shattersS)− 1
Mk∗

⌊m/(k∗−1)⌋
∑

i=1

1[V shattersSi∪{x}]|>(α−γ)/6)

≤M
−1/3
K∗ ≤ m(n)−1/3 = o(1).

Finally, we turn to (4.8) and (4.9). If k = 1, then for DXY ∈ Realizable(C), we clearly have

h∗ ∈ V ; otherwise, ifDXY ∈ BenignNoise(C) and τ ≥ 15
n

+7

√

ln(4n)+d ln 2n
d

n
, then Lemma 4.12

114

implies that, on an event over Z⌊n/3⌋ of probability 1 − 1/n, with probability 1 over x such that

η(x) 6= 1/2, if Γ̂(1)(x, y,U2) > Γ̂(1)(x,−y,U2), then y = h∗(x). This implies (4.8) for k∗ = 1

and it covers the k = 1 case for (4.9).

Let us now focus on k ≥ 2 for (4.9), and in particular k∗ ≥ 2 for both (4.9) and (4.8). By

Lemma 4.15, for any x in a set of probability 1, Hoeffding’s inequality and a union bound (over

k values) implies there is an event H iv
n (x) with P(U2 : H iv

n (x)) ≥ 1− (d + 1)exp{−2m(n)1/3}

such that, for n > nγ/4, on the additional event H iv
n (x) ∩ Hn ∩ H ′

n ∩ H ′′
n, if η(x) 6= 1/2,

∀k ∈ {2, . . . , k∗},

1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) does not shatter S
(k)
i and V shatters S

(k)
i]

≤ P(S ∈ X k−1 : V(x,h∗(x)) does not shatter S|V shatters S) + M
−1/3
k

≤ γ/4 + M
−1/3
k ≤ γ/4 + m(n)−1/3.

For sufficiently large n, m(n)−1/3 < γ/4. If k ∈ {2, . . . , k∗} and ∆̂(k)(x,U2) < 1− γ, then

1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V does not shatter S
(k)
i ∪ {x} and V shatters S

(k)
i] > γ,

and thus, if this happens for sufficiently large n on the event H iv
n (x) ∩Hn ∩H ′

n ∩H ′′
n, we must

have

115

1
Mk

Γ̂(k)(x,−h∗(x),U2) =

≤ 1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) does not shatter S
(k)
i and V shatters S

(k)
i]

<γ/2 = −γ/2 + γ

<− γ/2 +
1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V does not shatter S
(k)
i ∪ {x} and V shatters S

(k)
i]

=− γ/2 +
1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) does not shatter S
(k)
i and V shatters S

(k)
i]

+
1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,h∗(x)) shatters S
(k)
i and V(x,−h∗(x)) does not]

≤ 1

Mk

⌊mn/(k−1)⌋
∑

i=1

1[V(x,−h∗(x)) does not shatter S
(k)
i and V shatters S

(k)
i]

=
1

Mk
Γ̂(k)(x, h∗(x),U2).

By a union bound over the elements of Lk∗,

P(U2 :
⋂

x∈Lk∗

H iv
n (x)) ≥ 1− nm1/3

n (d + 1)exp{−2m(n)1/3},

which suffices to prove (4.8).

Also, we have the following.

P(U2 : P(x : H iv
n (x) does not occur) > exp{−m(n)1/3})

≤ exp{m(n)1/3}E[P(x : H iv
n (x) does not occur)] (by Markov’s inequality)

= exp{m(n)1/3}E[P(U2 : H iv
n (X) does not occur)] (by Fubini’s theorem)

≤ exp{m(n)1/3}E[(d + 1)exp{−2m(n)1/3}] = (d + 1)exp{−m(n)1/3}.

This suffices to prove (4.9).

Proof of Theorem 4.3. The result now follows directly from Lemmas 4.17 and 4.10. (4.7) im-

plies |Lk∗| ≥ L(n) for some function L(n) = ω(n), while (4.6)implies we will infer the labels

116

for all but at most ⌊n/(3 · 2k∗
)⌋ of them, and (4.8) implies that, for sufficiently large n, the in-

ferred labels are correct. Lemma 4.10 implies that er(ĥ) is at most twice the error of any of

the d + 1 classifiers. These things happen on an event that only fails with probability at most

exp{−c · n1/χ} for some DXY -dependent constant c > 0, and a universal constant χ > 0.

Defining L−1(m) = min{n : L(n) ≥ m}, we get that, for some distribution over ℓ ∈

{L(n), L(n) + 1, . . .} (independent of the data),

E[er(ĥ)] ≤ EZ [Eℓ[2er(Ap(Zℓ))]]+exp{−c ·n1/χ} ≤ sup
ℓ≥L(n)

EZ [2er(Ap(Zℓ))]+exp{−c ·n1/χ}.

Therefore,

Λ̄a(3ǫ,DXY) ≤ L−1(Λ̄p(ǫ,DXY)) + c−χ lnχ 1

ǫ
.

If Λ̄p(ǫ,DXY) ≫ 1, L−1(Λ̄p(ǫ,DXY)) = o(Λ̄p(ǫ,DXY)), so Λ̄p(ǫ,DXY) /∈ Polylog(1/ǫ) im-

plies the improvements claim, and otherwise Λ̄a(ǫ,DXY) ∈ Polylog(1/ǫ).

Proof of Theorem 4.4. This follows identical reasoning to the proof of Theorem 4.3, except that

instead of adding exp{−c · n1/χ} to the expected error, we simply take Λa(2ǫ, 2δ,DXY) =

max{L−1(Λp(ǫ, δ,DXY)), c−χ lnχ(1/δ)} to ensure the failure probability for the aforementioned

events is at most δ. For Λp(ǫ, δ,DXY) ≫ 1 this is effectively not a restriction at all for small ǫ,

and otherwise we still have Λa(ǫ, 2δ,DXY) = O(1).

Lemma 4.18. Let ĥ be the classifier returned by Meta-Algorithm 6, when

τ ≥ 15
n

+ 7

√

ln(4n)+d ln 2n
d

n
, and DXY ∈ BenignNoise(C). Then for any n ∈ N, there is some

En = o(n−1/2) such that, on an event H̃ ′
n ⊆ H̃n with P(H̃ ′

n) ≥ P(H̃n)− δ/2,

er(ĥ)− ν ≤ En.

Proof. For brevity, we introduce the notation Qk = {x : k′(x) > k}, where as before k′(x) =

min{k′ : ∆̂(k′)(x,U2) < 1− γ}.

First note that, by Alexander’s results on uniform convergence [Alexander, 1984, Devroye et al.,

117

1996], combined with a union bound, on an event H̃ ′′
n of probability 1− δ/2, every h ∈ C has

∀k, |er(h|Qk)− erQk
(h)| ≤

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk|
.

Define H̃ ′
n = H̃n ∩ H̃ ′′

n, and for the remainder of the proof we assume this event holds. In

particular, this implies every ĥk has

er(ĥk|Qk) ≤ inf
h∈C

er(h|Qk) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk|
.

Consider any k ≤ k∗. We have (by Lemma 4.17)

er(ĥk) = P(Qk)er(ĥk|Qk)

+ P((x, y) : x /∈ Qk and η(x) = 1/2 and ĥk(x) 6= y)

+ P((x, y) : x /∈ Qk and η(x) 6= 1/2 and ĥk(x) = h∗(x) 6= y)

+ P((x, y) : x /∈ Qk and η(x) 6= 1/2 and ĥk(x) 6= h∗(x) = y)

≤ P(Qk)

(

er(h∗|Qk) + 2
√

2048d ln(1024d)+ln(32(d+1)/δ)
|Qk|

)

+ (1/2)P(x : x /∈ Qk and η(x) = 1/2)+

P((x, y) : x /∈ Qk and η(x) 6= 1/2 and h∗(x) 6= y) + (d + 1)e−c′′n1/3

≤ P(Qk)

(

er(h∗|Qk) + 2
√

2048d ln(1024d)+ln(32(d+1)/δ)
|Qk|

)

+ er(h∗|X \Qk)P(X \Qk) + (d + 1)e−c′′n1/3

≤ ν + P(Qk)2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋ + (d + 1)e−c′′n1/3

.

Now there are two cases to consider. In the first case, k∗ ≤ k̂. In this case, we have

118

er(ĥk̂)− er(ĥk∗)

= P(Qk∗)
(

er(ĥk̂|Qk∗)− er(ĥk∗|Qk∗)
)

≤ P(Qk∗)

(

erQk∗
(ĥk̂)− erQk∗

(ĥk∗) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk∗|

)

≤ P(Qk∗)7

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qk̂|

Therefore,

er(ĥk̂)− ν ≤ er(ĥk∗)− ν + P(Qk∗)7

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋

≤ P(Qk∗)9

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋
+ (d + 1)e−c′′n1/3

≤ ∆̄(k∗)
n (U2)9

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋
+ (d + 1)e−c′′n1/3

≤ ∆̆(k∗)
n 9

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2d+1)⌋ + (d + 1)e−c′′n1/3

.

Since ∆̆
(k∗)
n = o(1) (by definition in Lemma 4.17), this last quantity is o(n−1/2).

On the other hand, suppose k̂ < k∗. If P(Qk̂) = 0, then the aforementioned bound on excess

error implies the result. Otherwise, for k = k̂ + 1, ∃j ≤ k̂ such that

119

5

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋

< erQj
(ĥk)− erQj

(ĥj)

≤ er(ĥk|Qj)− er(ĥj|Qj) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qj |

= P((x, y) : ĥk(x) 6= y and η(x) 6= 1/2|Qk)P(Qk|Qj)

+ P((x, y) : ĥk(x) 6= y and η(x) 6= 1/2 and x /∈ Qk|x ∈ Qj)

− P((x, y) : ĥj(x) 6= y and η(x) 6= 1/2|x ∈ Qj) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qj|

≤ P(Qk|Qj)P((x, y) : ĥk(x) 6= y and η(x) 6= 1/2|Qk)

+ P((x, y) : ĥk(x) 6= y and η(x) 6= 1/2 and x /∈ Qk|x ∈ Qj)

− P((x, y) : h∗(x) 6= y and η(x) 6= 1/2|x ∈ Qj) + 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

|Qj|

= P(Qk|Qj)(er(ĥk|Qk)− er(h∗|Qk))

+ P((x, y) : ĥk(x) 6= y and η(x) 6= 1/2 and x /∈ Qk|x ∈ Qj)

− P((x, y) : h∗(x) 6= y and η(x) 6= 1/2 and x /∈ Qk|x ∈ Qj)

+ 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2j)⌋

≤ P(Qk|Qj)2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋

+ P(x : ĥk(x) 6= h∗(x) and η(x) 6= 1/2 and x /∈ Qk)/P(Qj)

+ 2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2j)⌋

≤ 4

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k)⌋ + (d + 1)e−c′′n1/3

/P(Qk̂)

120

In particular, this implies

P(Qk̂) ≤ (d + 1)e−c′′n1/3

√

⌊2n/(3 · 2k̂+1)⌋
2048d ln(1024d) + ln(32(d + 1)/δ)

.

Therefore,

er(ĥk̂)− ν ≤ P(Qk̂)2

√

2048d ln(1024d) + ln(32(d + 1)/δ)

⌊2n/(3 · 2k̂)⌋
+ (d + 1)e−c′′n1/3

≤ (1 +
√

2)(d + 1)e−c′′n1/3

= o(n−1/2).

Proof of Theorem 4.8. This result now follows directly from Lemma 4.18. That is, for suffi-

ciently large n (say n > s, for some s ∈ N), P(H̃n) ≤ δ/2, so with probability 1 − δ,

er(ĥ) − ν ≤ En. We can define E′
n = 1 for n ≤ s, and En for n > s. Then we have for

all n, with probability 1 − δ, er(ĥ) − ν ≤ E′
n = o(n−1/2). Thus, the algorithm obtains a label

complexity

Λa(ǫ + ν, δ,DXY) ≤ 1 + sup
n∈N

n1[E′
n ≥ ǫ].

Now define E′′
n = E′

n + 2−n = o(n−1/2). Then

lim
ǫց0

ǫ2Λa(ǫ + ν, δ,DXY) ≤ lim
ǫց0

ǫ2(1 + sup
n∈N

n1[E′′
n ≥ ǫ])

= lim
ǫց0

ǫ2 sup
n∈N,n≥⌊log2(1/ǫ)⌋

n1[E′′
n ≥ ǫ]

≤ lim
ǫց0

ǫ2 sup
n∈N,n≥⌊log2(1/ǫ)⌋

n
(E′′

n)2

ǫ2

= lim
ǫց0

sup
n∈N,n≥⌊log2(1/ǫ)⌋

n(E′′
n)2

= lim sup
n→∞

n(E′′
n)2 =

(

lim sup
n→∞

√
nE

′′
n

)2

= 0.

Therefore, Λa(ǫ + ν, δ,DXY) = o(1/ǫ2), as claimed.

121

Chapter 5

Beyond Label Requests: A General

Framework for Interactive Statistical

Learning

In this chapter, I describe a general framework in which a learning algorithm is tasked with learn-

ing some concept from a known class by interacting with a teacher via questions. Each question

has an arbitrary known cost associated with it, which the learner is required to pay in order to

have the question answered. Exploring the information-theoretic limits of this framework, I de-

fine a notion called the cost complexity of learning, analogous to traditional notions of sample

complexity. I discuss this topic for the Exact Learning setting as well as PAC Learning with a

pool of unlabeled examples. In the former case, the learner is allowed to ask any question, while

in the latter case, all questions must concern the target concept’s behavior on a set of unlabeled

examples. In both settings, I derive upper and lower bounds on the cost complexity of learning,

based on a combinatorial quantity I call the General Identification Cost.

122

5.1 Introduction

The ability to ask questions to a knowledgeable teacher can make learning easier. This fact is no

secret to any elementary school student. But how much easier? Some questions are more difficult

for the teacher to answer than others. How much inconvenience must even the most conscientious

learner cause to a teacher in order to learn a concept? This chapter explores these and related

questions about the fundamental advantages and limitations of learning by interaction.

In machine learning research, it is becoming increasingly apparent that well-designed inter-

active learning algorithms can provide valuable improvements in learning performance while

reducing the amount of effort required of a human annotator. This research has mainly focused

on two formal settings of learning: Exact Learning by queries and pool-based Active PAC Learn-

ing. Informally, the objective in the setting of Exact Learning by queries is to perfectly identify

a target concept (classifier) by asking questions. In contrast, the pool-based Active PAC setting

is concerned only with approximating the concept with high probability with respect to an un-

known distribution on the set of possible instances. In this latter setting, the learning algorithm

is restricted to asking only questions that relate to the concept’s behavior on a particular set of

unannotated instances drawn independently from the unknown distribution.

In this chapter, I study both of these active learning settings under a broad definition. Specif-

ically, I consider a learning protocol in which the learner can ask any question, but each possible

question has an associated cost. For example, a query of the form “what is the label of example

x” might cost $1, while a query of the form “show me a positive example” might cost $10. The

objective is to learn the concept while minimizing the total cost of queries made. One would like

to know how much cost even the most clever learner might be required to pay to learn a concept

from a particular concept space in the worst case. This can be viewed as a generalization of

notions of sample complexity or query complexity found in the learning theory literature. I refer

to this best worst case cost as the cost complexity of learning. This quantity is defined without

reference to computational feasibility, focusing instead on the information-theoretic boundaries

123

of this setting (in the limit of unbounded computation). Below, I derive bounds on the cost com-

plexity of learning, as a function of the concept space and cost function, for both Exact Learning

from queries and pool-based Active PAC Learning.

Section 5.2 formally introduces the setting of Exact Learning from queries, describes some

related work, and defines cost complexity for that setting. It also serves to introduce the notation

and fundamental definitions used throughout this chapter. The section closely parallels the work

of Balcázar et al. [Balcázar et al., 2001]. The primary contribution of Section 5.2 is a derivation

of upper and lower bounds on the cost complexity of Exact Learning from queries. This is

followed, in Section 5.3, by a formal definition of pool-base Active PAC Learning and extension

of the notion of cost complexity to that setting. The primary contributions of Section 5.3 include

a derivation of upper and lower bounds on the cost complexity of learning in that general setting,

as well as an interesting corollary for intersection-closed concept spaces. I know of no previous

work giving general results of this type.

5.2 Active Exact Learning

In this setting, there is an instance space X and concept space C on X such that any h ∈ C is

a distinct function h : X → {0, 1}.1 Additionally, define C∗ = {h : X → {0, 1}}. That is,

C∗ is the most general concept space, containing all possible labelings of X . In particular, any

concept space C is a subset of C∗. For a particular learning problem, there is an unknown target

concept f ∈ C, and the task is to identify f using a teacher’s answers to queries made by the

learning algorithm. Formally, an actual query is any function in Q̃ = {q̃ : C∗ → 2A
∗ \ {∅}},2

for some answer set A∗. By a learning algorithm “making an actual query”, I mean that it selects

1All of the main results easily generalize to multiclass as well.
2The restriction that q̃(f) 6= {} is a bit like an assumption that every valid question has at least one answer for

any target concept. However, we can always define some particular answer to mean “there is no answer,” so this

restriction is really more of a notational convenience than an assumption.

124

a function q̃ ∈ Q̃, passes it to the teacher, and the teacher returns a single answer ã ∈ q̃(f)

where f is the target concept. A concept h ∈ C∗ is consistent with an answer ã to an actual

query q̃ if ã ∈ q̃(h). Thus, I assume the teacher always returns an answer that the target concept

is consistent with; however, when there are multiple such answers, the teacher may arbitrarily

select from amongst them.

Traditionally, the subject of active learning has been studied with respect to specific restricted

query types, such as membership queries, and the learning algorithm’s objective has been to

minimize the number of queries used to learn. However, it is often the case that learning with

these simple types of queries is difficult, but if the learning algorithm is allowed just a few special

queries, learning becomes significantly easier. The reason we are initially reluctant to allow the

learner to ask certain types of queries is that these queries are difficult, expensive, or sometimes

impossible to answer. However, we can incorporate this difficulty level into the framework by

assigning each query type a specific cost, and then allowing the learning algorithm to explicitly

optimize the cost needed to learn, rather than the number of queries. In addition to allowing the

algorithm to trade off between different types of queries, this also gives us the added flexibility to

specify different costs within the same family (e.g., perhaps some membership queries are more

expensive than others).

Formally, in this framework there is a cost function. Let α > 0 be a constant. A cost

function is any c : Q̃→ (α,∞]. In practice, c would typically be defined by the user responsible

for answering the queries, and could be based on the time, resources, or operating expenses

necessary to obtain the answer. Note that if a particular type of query is unanswerable for a

particular application, or if the user wishes to work with a reduced set of possible queries, one

can always define the costs of those undesirable query types to be ∞, so that any reasonable

learning algorithm ignores them if possible.

While the notion of actual query closely corresponds to the actual mechanism of querying in

practice, it will be more convenient to work with the information-theoretic implications of these

125

queries. Define the set of effective queries Q = {q : C∗ → 22C
∗

\ {∅}|∀f ∈ C∗, a ∈ q(f) ⇒

[f ∈ a ∧ ∀h ∈ a, a ∈ q(h)]}. Each effective query corresponds to an equivalence class of actual

queries, defined by mapping any answer to the set of concepts consistent with it. We can thus

define the mapping

E(q) = {q̃|q̃ ∈ Q̃, ∀f ∈ C∗, [∃ã ∈ q̃(f) with a = {h|h ∈ C∗, ã ∈ q̃(h)}]⇔ a ∈ q(f)}.

By an algorithm “making an effective query q,” I mean that it makes an actual query in E(q),3 (a

good algorithm will pick a cheaper actual query). For the purpose of this best-worst-case

analysis, the following definition is appropriate. For a cost function c, define a corresponding

effective cost function (overloading notation) c : Q → [α,∞], such that

∀q ∈ Q, c(q) = inf q̃∈E(q) c(q̃). The following definitions illustrate how query types can be

defined using effective queries.

A positive example query is any q̃ ∈ E(qS) for some S ⊆ X , such that qS ∈ Q is defined by

∀f ∈ C∗ s.t. [∃x ∈ S : f(x) = 1], qS(f) = {{h|h ∈ C∗, h(x) = 1}|x ∈ S : f(x) = 1}, and

∀f ∈ C∗ s.t. [∀x ∈ S, f(x) = 0], qS(f) = {{h|h ∈ C∗ : ∀x ∈ S, h(x) = 0}}.

A membership query is any q̃ ∈ E(q{x}) for some x ∈ X . This special case of a positive

example query can equivalently be defined by ∀f ∈ C∗, q{x}(f) = {{h|h ∈ C∗, h(x) = f(x)}}.

These effectively correspond to asking for any example labeled 1 in S or an indication that there

are none (positive example query), and asking for the label of a particular example in X

(membership query). I will refer to these two query types in subsequent examples, but the

reader should keep in mind that the theorems below apply to all types of queries.

Additionally, it will be useful to have a notion of an effective oracle, which is an unknown

function defining how the teacher will answer the various queries. Formally, an effective oracle

T is any function in T = {T : Q → 2C∗|∀q ∈ Q, T (q) ∈ ∪f∈C∗q(f)}.4 For convenience, I also

3I assume A∗ is sufficiently expressive so that ∀q ∈ Q, E(q) 6= ∅; alternatively, we could define E(q) = ∅ ⇒

c(q) = ∞ without sacrificing the main theorems. Additionally, I will assume that it is possible to find an actual

query in E(q) with cost arbitrarily close to inf q̃∈E(q) c(q̃) for any q ∈ Q using finite computation.
4An effective oracle corresponds to a deterministic stateless teacher, which gives up as little information as

126

overload this notation, defining for a set of queries R ⊆ Q, T (R) = ∩q∈RT (q).

Definition 5.1. A learning algorithm A for C using cost function c is any algorithm which, for

any (unknown) target concept f ∈ C, by a finite number of finite cost actual queries, is

guaranteed to reduce the set of concepts in C consistent with the answers to precisely {f}. A

concept space C is learnable with cost function c using total cost t if there exists a learning

algorithm for C using c guaranteed to have the sum of costs of the queries it makes at most t.

Definition 5.2. For any instance space X , concept space C on X , and cost function c, define

the cost complexity, denoted CostComplexity(C, c), as the infimum t ≥ 0 such that C is

learnable with cost function c using total cost no greater than t.

5Equivalently, we can define cost complexity using the following recurrence. If |C| = 1,

CostComplexity(C, c) = 0. Otherwise,

CostComplexity(C, c) = inf
q̃∈Q̃

c(q̃) + max
f∈C,ã∈q̃(f)

CostComplexity({h|h ∈ C, ã ∈ q̃(h)}, c)

Since

inf
q̃∈Q̃

c(q̃) + max
f∈C,ã∈q̃(f)

CostComplexity({h|h ∈ C, ã ∈ q̃(h)}, c)

= inf
q∈Q

inf
q̃∈E(q)

c(q̃) + max
f∈C,ã∈q̃(f)

CostComplexity(C ∩ {h|h ∈ C∗, ã ∈ q̃(h)}, c)

= inf
q∈Q

c(q) + max
f∈C,a∈q(f)

CostComplexity(C ∩ a, c),

we can equivalently define cost complexity in terms of effective queries and effective cost. That

is, CostComplexity(C, c) is the infimum t ≥ 0 such that there is an algorithm guaranteed to

identify any f ∈ C using effective queries with total of effective costs no greater than t.

possible. It is also possible to analyze a setting in which asking two queries from the same equivalence class, or

asking the same question twice, can possibly lead to two different answers. However, the worst case in both settings

is identical, so the worst case results obtained for this setting also apply to the more general case.
5I have made the dependence of A on the teacher implicit. To be formally correct, A should have the teacher’s

effective oracle T as input, and is guaranteed to output f for any T ∈ T s.t. ∀q ∈ Q, T (q) ∈ q(f). Cost is then a

book-keeping device recording how A uses T during execution.

127

5.2.1 Related Work

There have been a relatively large number of contributions to the study of Exact Learning from

queries. In particular, much interest has been given to settings in which the learning algorithm is

restricted to a few specific types of queries (e.g. membership queries and equivalence queries).

However, these contributions focus entirely on the number of queries needed, rather than cost.

The most relevant work in this area is by Balcázar, Castro, and Guijarro [Balcázar et al., 2001].

Prior to publication of [Balcázar and Castro, 2002], there were a variety of publications in

which the learning algorithm could use some specific set of queries, and which derived bounds

on the number of queries any algorithm might be required to make in the worst case in order to

learn. For example, [Hellerstein et al., 1996] analyzed the combination of membership and

proper equivalence queries, [Hegedüs, 1995] additionally analyzed learning from membership

queries alone, while [Balcázar et al., 1999] considered learning from just proper equivalence

queries. Amidst these various special case analyses, somewhat surprisingly, Balcázar et al.

[Balcázar and Castro, 2002] discovered that the query complexity bounds derived in these

works were all special cases of a single general theorem, applying to the broad class of

sample-based queries. They further generalized this result in [Balcázar et al., 2001], giving

results that apply to any combination of any query types. That work defines an abstract

combinatorial quantity, which they call the General Dimension, which provides a lower bound

on the query complexity, and is within a log factor of it. Furthermore, the General Dimension

can actually be computed for a variety of interesting combinations of query types. Until now

there has not been any analysis I know of that considers learning with all query types, but giving

each query a cost, and bounding the worst-case cost that a learning algorithm might be required

to incur. In particular, the analysis of the next subsection can be viewed as a generalization of

[Balcázar et al., 2001] to add this notion of cost, such that [Balcázar et al., 2001] represents the

special case of cost that is uniformly 1 on a particular set of queries and∞ on all other queries.

128

5.2.2 Cost Complexity Bounds

I now turn to the subject of exploring the fundamental limits of interactive learning in terms of

cost. This discussion closely parallels that of Balcázar, Castro, and Guijarro [Balcázar et al.,

2001].

Definition 5.3. For any instance space X , concept space C on X , and cost function c, define

the General Identification Cost, denoted GIC(C, c), as follows.

GIC(C, c) = inf{t|t ≥ 0, ∀T ∈ T , ∃R ⊆ Q, s.t.[
∑

q∈R
c(q) ≤ t] ∧ [|C ∩ T (R)| ≤ 1]}

We can also express this as GIC(C, c) = supT∈T infR⊆Q:|C∩T (R)|≤1

∑

q∈R
c(q). Note that

calculating this corresponds to a much simpler optimization problem than calculating the cost

complexity. The General Identification Cost is a direct generalization of the General Dimension

of [Balcázar et al., 2001], which itself generalizes quantities such as Extended Teaching

Dimension [Hegedüs, 1995], Strong Consistency Dimension [Balcázar et al., 1999], and the

Certificate Sizes of [Hellerstein et al., 1996]. It can be interpreted as a sort of game. This game

is similar to the usual setting, except that the teacher’s answers are not restricted to be consistent

with a concept. Imagine there is a helpful spy who knows precisely how the teacher will

respond to every query. The spy is able to suggest queries to the learner, and wishes to cause the

learner to pay as little as possible. If the spy is sufficiently clever at suggesting queries, and the

learner follows every suggestion by the spy, then after asking some minimal cost set of queries

the learner can narrow the set of concepts in C consistent with the answers down to at most one.

The General Identification Cost is precisely the worst case limiting cost the learner might be

forced to pay during this process, no matter how clever the spy is at suggesting queries.

Lemma 5.4. For any instance space X , concept space C on X , and cost function c, if V ⊆ C,

then GIC(V, c) ≤ GIC(C, c).

Proof. It clearly holds if GIC(C, c) =∞. If GIC(C, c) < k, then ∀T ∈ T , ∃R ⊆ Q s.t.

∑

q∈R
c(q) < k and 1 ≥ |C ∩ T (R)| ≥ |V ∩ T (R)|, and therefore GIC(V, c) < k. The limit as

k → GIC(C, c) gives the result.

129

Lemma 5.5. For any γ > 0, instance space X , finite concept space C on X with |C| > 1, and

cost function c such that GIC(C, c) <∞, ∃q ∈ Q such that ∀T ∈ T ,

|C \ T (q)| ≥ c(q)
|C| − 1

GIC(C, c) + γ
.

That is, regardless of which answer the teacher picks, there are at least c(q) |C|−1
GIC(C,c)+γ

concepts

in C inconsistent with the answer.

Proof. Suppose ∀q ∈ Q, ∃Tq ∈ T such that |C \ Tq(q)| < c(q) |C|−1
GIC(C,c)+γ

. Then define an

effective oracle T with the property that ∀q ∈ Q, T (q) = Tq(q). We have thus defined an oracle

such that ∀R ⊆ Q,
∑

q∈R
c(q) ≤ GIC(C, c) + γ ⇒

|C ∩ T (R)| = |C| − |C \ T (R)| ≥ |C| −
∑

q∈R

|C \ Tq(q)|

> |C| −
∑

q∈R

c(q)
|C| − 1

GIC(C, c) + γ
≥ |C| − (GIC(C, c) + γ)

|C| − 1

GIC(C, c) + γ
= 1.

In particular, this contradicts the definition of GIC(C, c).

This brings us to the main theorem of this section.

Theorem 5.6. For any instance space X , concept space C on X , and cost function c,

GIC(C, c) ≤ CostComplexity(C, c) ≤ GIC(C, c) log2 |C|

Proof. I begin with the lower bound. Let k < GIC(C, c). By definition of GIC, ∃T ∈ T , such

that ∀R ⊆ Q,
∑

q∈R
c(q) ≤ k ⇒ |C ∩ T (R)| > 1. In particular, this implies that an adversarial

teacher can answer any sequence of queries with cost no greater than k in a way that leaves at

least 2 concepts in C consistent with the answers, either of which could be the target concept f .

This implies CostComplexity(C, c) > k. The limit as k → GIC(C, c) gives the bound.

Next I prove the upper bound. If GIC(C, c) =∞ or |C| =∞, the bound holds vacuously, so

let us assume these are finite. Say the teacher’s answers correspond to some effective oracle

130

T ∈ T . Consider a recursive algorithm Aγ that makes effective queries from Q.6 If |C| = 1,

then Aγ halts and outputs the single remaining concept. Otherwise, let q be an effective query

having the property guaranteed by Lemma 5.5. That is, |C \ T (q)| ≥ c(q) |C|−1
GIC(C,c)+γ

. Defining

V = C ∩ T (q) (a generalized notion of version space), this implies that

c(q) ≤ (GIC(C, c) + γ) |C|−|V |
|C|−1

and |V | < |C|. Say Aγ makes effective query q, and then

recurses on V . In particular, we can immediately see that this algorithm identifies f using no

more than |C| − 1 queries.

I now prove by induction on |C| that CostComplexity(C, c) ≤ (GIC(C, c) + γ)H|C|−1, where

Hn =
∑n

i=1
1
i

is the nth harmonic number. If |C| = 1, then the cost complexity is 0. For

|C| > 1,

CostComplexity(C, c)

≤c(q) + CostComplexity(V, c)

≤(GIC(C, c) + γ)
|C| − |V |
|C| − 1

+ (GIC(V, c) + γ)H|V |−1

≤(GIC(C, c) + γ)

(|C| − |V |
|C| − 1

+ H|V |−1

)

≤(GIC(C, c) + γ)H|C|−1

where the second inequality uses the inductive hypothesis along with the properties of q

guaranteed by Lemma 5.5, and the third inequality uses Lemma 5.4. Finally, noting that

H|C|−1 ≤ log2 |C| and taking the limit as γ → 0 proves the theorem.

One interesting implication of this proof is that the greedy algorithm that chooses q to maximize

min
T∈T

|C\T (q)|
c(q)

has a cost complexity within a log2 |C| factor of optimal.

6I use the definition of cost complexity in terms of effective cost, so that we need not concern ourselves with

how Aγ chooses its actual queries. However, we could define Aγ to make actual queries with cost within γ of the

effective query cost, so that the result still holds as γ → 0.

131

5.2.3 An Example: Discrete Intervals

As a simple example of cost complexity, consider X = {1, 2, . . . , N}, for N ≥ 4,

C = {ha,b : X → {0, 1}|a, b ∈ X , a ≤ b, ∀x ∈ X , [a ≤ x ≤ b⇔ ha,b(x) = 1]}, and define an

effective cost function c that is 1 for membership queries q{x} for any x ∈ X , k for the positive

example query qX where 3 ≤ k ≤ N − 1, and∞ for any other queries. In this case,

GIC(C, c) = k + 1. In the spy game, say the teacher answers effective queries with an effective

oracle T . Let X+ = {x|x ∈ X , T (q{x}) = {h|h ∈ C∗, h(x) = 1}}. If X+ 6= ∅, then let

a = minX+ and b = maxX+. The spy tells the learner to make queries q{a}, q{b}, q{a−1} (if

a > 1), and q{b+1} (if b < N). This narrows the version space to {ha,b}, at a worst-case effective

cost of 4. If X+ = ∅, then the spy suggests query qX . If T (qX) = {f−}, the “all 0” concept,

then no concepts in C are consistent. Otherwise, T (qX) = {h|h ∈ C∗, h(x) = 1} for some

x ∈ X , and the spy suggests membership query q{x}. In this case, T (q{x}) ∩ T (qX) = ∅, so the

worst-case cost is k + 1 (without qX , it would cost N − 1). These are the only cases to consider,

so GIC(C, c) = k + 1. By Theorem 5.6, this implies

k + 1≤CostComplexity(C, c)≤2(k + 1) log2 N .

We can slightly improve this by noting that we only use qX once. Specifically, if a learning

algorithm begins (in the regular setting) by asking qX , revealing that f(x) = 1 for some x ∈ X ,

then we can reduce to two disjoint learning problems, with concept spaces

C′
1 = {hx,b|b ∈ {x, . . . , N}}, and C′

2 = {ha,x|a ∈ {1, 2, . . . , x}}, with cost functions

c1(q) = c(q) for q ∈ {q{x}, q{x+1}, . . . , q{N}} and∞ otherwise, and c2(q) = c(q) for

q ∈ {q{1}, q{2}, . . . , q{x}} and∞ otherwise, and corresponding GIC(C′
1, c) ≤ 2,

GIC(C′
2, c) ≤ 2. So we can say that

CostComplexity(C, c) ≤ k + CostComplexity(C′
1, c1) + CostComplexity(C′

2, c2) ≤ k + 4 log2 N .

One algorithm that achieves this begins by making the positive example query, and then

performs binary search above and below the indicated positive example to find the boundaries.

132

5.3 Pool-Based Active PAC Learning

In many scenarios, a more realistic definition of learning is that supplied by the Probably

Approximately Correct (PAC) model. In this case, unlike the previous section, we are interested

only in discovering with high probability a function with behavior very similar to the target

concept on examples sampled from some distribution. Formally, as above there is an instance

space X , and a concept space C ⊆ C∗ on X ; unlike above, there is also a distributionD over X .

As with Exact Learning, the learning algorithm interacts with a teacher by making queries.

However, in this setting the learning algorithm is given as input a finite sequence7 of unlabeled

examples U , each drawn independently according to D, and all queries made by the algorithm

must concern only the behavior of the target concept on examples in U .Formally, a

data-dependent cost function is any function c : Q̃× 2X → (α,∞]. For a given set of unlabeled

examples U , and data-dependent cost function c, define cU(·) = c(·,U). Thus, cU is a cost

function in the sense of the previous section. For a given cU , the corresponding effective cost

function cU : Q → [α,∞] is defined as in the previous section.

Definition 5.7. Let X be an instance space, C a concept space on X , and U = (x1, x2, . . . , x|U|)

a finite sequence of unlabeled examples. Define ∀h ∈ C, h(U) = (h(x1), h(x2), . . . , h(x|U|)).

Define C[U] ⊆ C as any concept space such that ∀h ∈ C, |{h′|h′ ∈ C[U], h′(U) = h(U)}| = 1.

7I will implicitly overload all notation for sets and sequences, so that if a set is used where a sequence is required,

then an arbitrary ordering of the set is implied (though this ordering should be used consistently), and if a sequence

is used where a set is required, then the set of distinct elements of the sequence is implied.

133

Definition 5.8. A sample-based cost function is any data-dependent cost function c such that

for all finite U ⊆ X , ∀q ∈ Q,

cU(q) <∞⇒ ∀f ∈ C∗, ∀a ∈ q(f), ∀h ∈ C∗, [h(U) = f(U)⇒ h ∈ a].

This corresponds to queries that are about the target concept’s labels on some subset of U .

Additionally, ∀U ⊆ X , x ∈ X , and q ∈ Q, c(q,U ∪ {x}) ≤ c(q,U). That is, in addition to the

above property, adding extra examples to which q’s answers do not refer does not increase its

cost.

For example, membership queries on x ∈ U and positive examples queries on S ⊆ U could

have finite costs under a sample-based cost function. As in the previous section, there is a target

concept f ∈ C, but unlike that section, we do not try to identify f , but instead attempt to

approximate it with high probability.

Definition 5.9. For instance space X , concept space C on X , distributionD on X , target

concept f ∈ C, and concept h ∈ C, define the error rate of h, denoted errorD(h, f), as

errorD(h, f) = PrX∼D {h(X) 6= f(X)}

Definition 5.10. For (ǫ, δ) ∈ (0, 1)2, an (ǫ, δ)-learning algorithm for C using sample-based cost

function c is any algorithm A taking as input a finite sequence of unlabeled examples, such that

for any target concept f ∈ C and finite sequence U , A(U) outputs a concept in C after making

a finite number of actual queries with finite costs under cU . Additionally, any (ǫ, δ)-learning

algorithm A has the property that ∃m ∈ [0,∞) such that, for any target concept f ∈ C and

distributionD on X ,

PrU∼Dm {errorD(A(U), f) > ǫ} ≤ δ.

A concept space C is (ǫ, δ)-learnable given sample-based cost function c using total cost t if

there exists an (ǫ, δ)-learning algorithm A for C using c such that for all finite example

sequences U , A(U) is guaranteed to have the sum of costs of the queries it makes at most t

under cU .

134

Definition 5.11. For any instance space X , concept space C on X , sample-based cost function

c, and (ǫ, δ) ∈ (0, 1)2, define the (ǫ, δ)-cost complexity, denoted CostComplexity(C, c, ǫ, δ), as

the infimum t ≥ 0 such that C is (ǫ, δ)-learnable given c using total cost no greater than t.

As in the previous section, because it is the limiting case, we can equivalently define the

(ǫ, δ)-cost complexity as the infimum t ≥ 0 such that there is an (ǫ, δ)-learning algorithm

guaranteed to have the sum of effective costs of the effective queries it makes at most t.

The main results from this section include a new combinatorial quantity GPIC(C, c, m, τ)

such that if d is the VC-dimension of C, then

GPIC(C, c, Θ(1
ǫ
), δ) ≤ CostComplexity(C, c, ǫ, δ) ≤ GPIC(C, c, Θ̃

(

d
ǫ

)

, 0)Θ̃(d).

5.3.1 Related Work

Previous work on pool-based active learning in the PAC model has been restricted almost

exclusively to uniform-cost membership queries on examples in the unlabeled set U . There has

been some recent progress on query complexity bounds for that restricted setting. Specifically,

Dasgupta [Dasgupta, 2004] analyzes a greedy active learning scheme and derives bounds for the

number of membership queries in U it uses under an average case setting, in which the target

concept is selected randomly from a known distribution. A similar type of analysis was

previously given by Freund et al. [Freund et al., 1997] to prove positive results for the Query by

Committee algorithm. In a subsequent paper, Dasgupta [Dasgupta, 2005] derives upper and

lower bounds on the number of membership queries in U required for active learning for any

particular distribution D, under the assumption that D is known. The results I derive in this

section imply worst-case results (over both D and f) for this as a special case of more general

bounds applying to any sample-based cost function.

5.3.2 Cost Complexity Upper Bounds

I now derive bounds on the cost complexity of pool-based Active PAC Learning.

135

Definition 5.12. For an instance space X , concept space C on X , sample-based cost function c,

and nonnegative integer m, define the General Identification Cost Growth Function, denoted

GIC(C, c, m), as follows.

GIC(C, c, m) = sup
U∈Xm

GIC(C[U], cU)

Definition 5.13. For any instance space X , concept space C on X , and (ǫ, δ) ∈ (0, 1)2, let

M(C, ǫ, δ) denote the sample complexity of C (in the classic passive learning sense), or the

smallest m such that there is an algorithm A taking as input a set of examples L and labels, and

outputting a classifier (without making any queries), such that for any D and f ∈ C,

PrL∼Dm {errorD(A(L, f(L)), f) > ǫ} ≤ δ.

It is known (e.g., [Anthony and Bartlett, 1999]) that

max{d−1
32ǫ

, 1
2ǫ

ln 1
δ
} ≤M(C, ǫ, δ) ≤ 4d

ǫ
ln 12

ǫ
+ 4

ǫ
ln 2

δ

for 0 < ǫ < 1/8, 0 < δ < .01, and d ≥ 2, where d is the VC-dimension of C. Furthermore,

Warmuth has conjectured [Warmuth, 2004] that M(C, ǫ, δ) = Θ(1
ǫ
(d + log 1

δ
)).

With these definitions in mind, we have the following novel theorem.

Theorem 5.14. For any instance space X , concept space C on X with VC-dimension

d ∈ (0,∞), sample-based cost function c, ǫ ∈ (0, 1), and δ ∈ (0, 1
2
), if m = M(C, ǫ, δ), then

CostComplexity(C, c, ǫ, δ) ≤ GIC(C, c, m)d log2
em
d

Proof. For the unlabeled sequence, sample U ∼ Dm. If GIC(C, c, m) =∞, then the upper

bound holds vacuously, so let us assume this is finite. Also, d ∈ (0,∞) implies |U| ∈ (0,∞)

[Anthony and Bartlett, 1999]. By definition of M(C, ǫ, δ), there exists a (passive learning)

algorithm A such that ∀f ∈ C, ∀D,PrU∼Dm{errorD(A(U , f(U)), f) > ǫ} ≤ δ. Therefore any

algorithm that, by a finite sequence of effective queries with finite cost under cU , identifies f(U)

and then outputs A(U , f(U)), is an (ǫ, δ)-learning algorithm for C using c.

Suppose now that there is a ghost teacher, who knows the teacher’s target concept f ∈ C. The

ghost teacher uses the h ∈ C[U] with h(U) = f(U) as its target concept. In order to answer any

136

actual queries q̃ ∈ Q̃ with cU(q̃) <∞, the ghost teacher simply passes the query to the real

teacher and then answers the query using the real teacher’s answer. This answer is guaranteed to

be valid because cU is a sample-based cost function. Thus, identifying f(U) can be

accomplished by identifying h(U), which can be accomplished by identifying h. The task of

identifying h can be reduced to an Exact Learning task with concept space C[U] and cost

function cU , where the teacher for the Exact Learning task is the ghost teacher. Therefore, by

Theorem 5.6, the total cost required to identify f(U) with a finite sequence of queries is no

greater than

CostComplexity(C[U], cU) ≤ GIC(C[U], cU) log2 |C[U]| ≤ GIC(C[U], cU)d log2

|U|e
d

, (5.1)

where the last inequality is due to Sauer’s Lemma (e.g., [Anthony and Bartlett, 1999]). Finally,

taking the worst case (supremum) over all U ∈ Xm completes the proof.

Note that (5.1) also implies a data-dependent bound, which could potentially be useful for

practical applications in which the unlabeled examples are available when bounding the cost. It

can also be used to state a distribution-dependent bound.

5.3.3 An Example: Intersection-Closed Concept Spaces

As an example application, we can use the above theorem to prove new results for any

intersection-closed concept space8 as follows.

8An intersection-closed concept space C has the property that for any h1, h2 ∈ C, there is a concept h3 ∈ C

such that ∀x ∈ X , [h1(x) = h2(x) = 1 ⇔ h3(x) = 1]. For example, conjunctions and axis-aligned rectangles are

intersection-closed.

137

Lemma 5.15. For any instance space X , intersection-closed concept space C with

VC-dimension d ≥ 1, sample-based cost function c such that membership queries in U have

cost ≤ µ (i.e., ∀U ⊆ X , x ∈ U , cU(q{x}) ≤ µ) and positive example queries in U have cost ≤ κ

(i.e., ∀U ⊆ X , S ⊆ U , cU(qS) ≤ κ), and integer m ≥ 0,

GIC(C, c, m) ≤ κ + µd

Proof. Say we have some set of unlabeled examples U , and consider bounding the value of

GIC(C[U], cU). In the spy game, suppose the teacher is answering with effective oracle T ∈ T .

Let U+ = {x|x ∈ U , T (q{x}) = {h|h ∈ C∗, h(x) = 1}}. The spy first tells the learner to make

the qU\U+
query (if U \ U+ 6= ∅). If ∃x ∈ U \ U+ s.t. T (qU\U+

) = {h|h ∈ C∗, h(x) = 1}, then

the spy tells the learner to make effective query q{x} for this x, and there are no concepts in

C[U] consistent with the answers to these two queries; the total effective cost for this case is

κ + µ. If this is not the case, but |U+| = 0, then there is at most one concept in C[U] consistent

with the answer to qU\U+
: namely, the h ∈ C[U] with h(x) = 0 for all x ∈ U , if there is such an

h. In this case, the cost is just κ.

Otherwise, let S̄ be a largest subset of U+ such that ∃h ∈ C with ∀x ∈ S̄, h(x) = 1. If S̄ = ∅,

then making any membership query in U+ leaves all concepts in C[U] inconsistent (at cost µ),

so let us assume S̄ 6= ∅. For any S ⊆ X , define

CLOS(S) = {x|x ∈ X , ∀h ∈ C, [∀y ∈ S, h(y) = 1]⇒ h(x) = 1}

the closure of S. Let S̄ ′ be a smallest subset of S̄ such that CLOS(S̄ ′) = CLOS(S̄), known as

a minimal spanning set of S̄ [Helmbold et al., 1990]. The spy now tells the learner to make

queries q{x} for all x ∈ S̄ ′.

Any concept in C consistent with the answer to qU\U+ must label every x ∈ U \ U+ as 0. Any

concept in C consistent with the answers to the membership queries on S̄ ′ must label every

x ∈ CLOS(S̄ ′) = CLOS(S̄) ⊇ S̄ as 1. Additionally, every concept in C that labels every

x ∈ S̄ as 1 must label every x ∈ U+ \ S̄ as 0, since S̄ is defined to be maximal. This labeling of

138

these three sets completely defines a labeling of U , and as such there is at most one h ∈ C[U]

consistent with the answers to all queries made by the learner. Helmbold, Sloan, and Warmuth

[Helmbold et al., 1990] proved that, for an intersection-closed concept space with

VC-dimension d, for any set S̄, all minimal spanning sets of S̄ have size at most d. This implies

the learner makes at most d membership queries in U , and thus has a total cost of at most

κ + µd.

Corollary 5.16. Under the conditions of Lemma 5.15, if d ≥ 10, then for 0 < ǫ < 1, and

0 < δ < 1
2
,

CostComplexity(C, c, ǫ, δ) ≤ (κ + µd)d log2

(

e

d
max

{

16d

ǫ
ln d,

6

ǫ
ln

28

δ

})

Proof. This follows from Theorem 5.14, Lemma 5.15, and Auer & Ortner’s result

[Auer and Ortner, 2004] that for intersection-closed concept spaces with d ≥ 10,

M(C, ǫ, δ) ≤ max
{

16d
ǫ

ln d, 6
ǫ
ln 28

δ

}

.

For example, consider the concept space of axis-parallel hyper-rectangles in X = Rn,

C = {h : X → {0, 1}|∃((a1, b1), (a2, b2), . . . , (an, bn)) : ∀x ∈ Rn, h(x) = 1⇔ ∀i ∈

{1, 2, . . . , n}, ai ≤ xi ≤ bi}. One can show that this is an intersection-closed concept space

with VC-dimension 2n. For a sample-based cost function c of the form stated in Lemma 5.15,

we have that CostComplexity(C, c, ǫ, δ) ≤ Õ ((κ + nµ)n). Unlike the example in the previous

section, if all other query types have infinite cost, then for n ≥ 2 there are distributions that

force any algorithm achieving this bound for small ǫ and δ to use multiple positive example

queries qS with |S| > 1. In particular, for finite constant κ, this is an exponential improvement

over the cost complexity of PAC active learning with only uniform cost membership queries on

U .

139

5.3.4 A Cost Complexity Lower Bound

At first glance, it might seem that GIC(C, c,
⌈

1−ǫ
ǫ

⌉

) could be a lower bound on

CostComplexity(C, c, ǫ, δ). In fact, one can show this is true for δ < (ǫd
e
)d. However, there are

simple examples for which this is not a lower bound for general ǫ and δ.9 We therefore require a

slight modification of GIC to introduce dependence on δ.

Definition 5.17. For an instance space X , finite concept space C on X , cost function c, and

δ ∈ [0, 1), define the General Partial Identification Cost, denoted GPIC(C, c, δ) as follows.

GPIC(C, c, δ) = inf{t|t ≥ 0, ∀T ∈ T , ∃R ⊆ Q, s.t. [
∑

q∈R
c(q) ≤ t]∧[|C∩T (R)| ≤ δ|C|+1]}

Definition 5.18. For an instance space X , concept space C on X , sample-based cost function

c, non-negative integer m, and δ ∈ [0, 1), define the General Partial Identification Cost Growth

Function, denoted GPIC(C, c, m, δ), as follows.

GPIC(C, c, m, δ) = sup
U∈Xm

GPIC(C[U], cU , δ)

It is easy to see that GIC(C, c) = GPIC(C, c, 0) and GIC(C, c, m) = GPIC(C, c, m, 0), so

that all of the above results could be stated in terms of GPIC.

Theorem 5.19. For any instance space X , concept space C on X , sample-based cost function

c, (ǫ, δ) ∈ (0, 1)2, and any V ⊆ C,

GPIC(V, c,
⌈

1−ǫ
ǫ

⌉

, δ) ≤ CostComplexity(C, c, ǫ, δ)

Proof. Let S ⊆ X be a set with 1 ≤ |S| ≤
⌈

1−ǫ
ǫ

⌉

, and let DS be the uniform distribution on S.

Thus, errorDS
(h, f) ≤ ǫ⇔ h(S) = f(S). I will show that any algorithm A guaranteeing

PrU∼Dm
S
{errorDS

(A(U), f) > ǫ} ≤ δ cannot also guarantee cost strictly less than

GPIC(V [S], cS, δ). If δ|V [S]| ≥ |V [S]| − 1, the result is clear since no algorithm guarantees

cost less than 0, so assume δ|V [S]| < |V [S]| − 1. Suppose A is an algorithm that guarantees,

9The infamous “Monty Hall” problem is an interesting example of this. For another example, consider X =

{1, 2, . . . , N}, C = {hx|x ∈ X , ∀y ∈ X , hx(y) = I[x = y]}, and cost that is 1 for membership queries in U and

infinite for other queries. Although GIC(C, c, N) = N − 1, it is possible to achieve better than ǫ = 1
N+1 with

probability close to N−2
N−1 using cost no greater than N − 2.

140

for every finite sequence U of elements from S, A(U) incurs total cost strictly less than

GPIC(V [S], cS, δ) under cU (and therefore also under cS). By definition of GPIC, ∃T̂ ∈ T

such that for any set of queries R that A(U) makes, |V [S] ∩ T̂ (R)| > δ|V [S]|+ 1. I now

proceed by the probabilistic method. Say the teacher draws the target concept f uniformly at

random from V [S], and ∀q ∈ Q s.t. f ∈ T̂ (q), answers with T̂ (q). Any q ∈ Q such that

f /∈ T̂ (q) can be answered with an arbitrary a ∈ q(f). Let hU = A(U); let RU denote the set of

queries A(U) would make if all queries were answered with T̂ .

Ef [PrU∼Dm
S
{errorDS

(A(U), f) > ǫ}]

=EU∼Dm
S
[Prf{hU(S) 6= f(S)}]

≥EU∼Dm
S
[Prf{hU(S) 6= f(S) ∧ f ∈ T̂ (RU)}]

≥ min
U∈Sm

|V [S] ∩ T̂ (RU)| − 1

|V [S]| > δ.

Therefore, there exists a deterministic method for selecting f and answering queries such that

PrU∼Dm
S
{errorDS

(A(U), f) > ǫ} > δ. In particular, this proves that there are no (ǫ, δ)-learning

algorithms that guarantee cost strictly less than GPIC(V [S], cS, δ). Taking the supremum over

sets S completes the proof.

Corollary 5.20. Under the conditions of Theorem 5.19,

GPIC(C, c,
⌈

1−ǫ
ǫ

⌉

, δ) ≤ CostComplexity(C, c, ǫ, δ).

Equipped with Theorem 5.19, it is straightforward to prove the claim made in Section 5.3.3 that

there are distributions forcing any (ǫ, δ)-learning algorithm for Axis-parallel rectangles using

only membership queries (at cost µ) to pay Ω(µ(1−δ)
ǫ

). The details are left as an exercise.

5.4 Discussion and Open Problems

Note that the usual “query counting” analysis done for Active Learning is a special case of cost

complexity (uniform cost 1 on the allowed queries, infinite cost on the others). In particular,

Theorem 5.14 can easily be specialized to give a worst-case bound on the query complexity for

141

the widely studied setting in which the learner can make any membership queries on examples

in U [Dasgupta, 2005]. However, for this special case, one can derive a slightly tighter bound.

Following the proof technique of Hegedüs [Hegedüs, 1995], one can show that for any

sample-based cost function c such that ∀U ⊆ X , q ∈ Q,

cU(q) <∞⇒ [cU(q) = 1 ∧ ∀f ∈ C∗, |q(f)| = 1], CostComplexity(C, cX) ≤ 2GIC(C,cX) log2 |C|
log2 GIC(C,cX)

.

This implies for the PAC setting that CostComplexity(C, c, ǫ, δ) ≤ 2GIC(C,c,m)d log2 m
log2 GIC(C,c,m)

, for

VC-dimension d ≥ 3 and m = M(C, ǫ, δ). This includes the cost function assigning 1 to

membership queries on U and∞ to all others.

Active Learning in the PAC model is closely related to the topic of Semi-Supervised Learning.

Balcan & Blum [Balcan and Blum, 2005] have recently derived a variety of sample complexity

bounds for Semi-Supervised Learning. Many of the techniques can be transfered to the

pool-based Active Learning setting in a fairly natural way. Specifically, suppose there is a

quantitative notion of “compatibility” between a concept and a distribution, which can be

estimated from a finite unlabeled sample. If we know the target concept is highly compatible

with the data distribution, we can draw enough unlabeled examples to estimate compatibility,

then identify and discard those concepts that are probably highly incompatible. The set of

highly compatible concepts may be significantly less expressive, therefore reducing both the

number of examples for which an algorithm must learn the labels to guarantee generalization

and the number of labelings of those examples the algorithm must distinguish between, thereby

also reducing the cost complexity.

There are a variety of interesting extensions of this framework worth pursuing. Perhaps the

most natural direction is to move into the agnostic PAC framework, which has thus far been

quite elusive for active learning except for a few results [Balcan et al., 2006, Kääriäinen, 2005].

Another possibility is to derive cost complexity bounds when the cost c is a function of not only

the query, but also the target concept. Then every time the learning algorithm makes a query q,

it is charged c(q, f), but does not necessarily know what this value is. However, it can always

142

upper bound the total cost so far by the worst case over concepts in the version space. Can

anything interesting be said about this setting (or variants), perhaps under some benign

smoothness constraints on c(q, ·)? This is of some practical importance since, for example, it is

often more difficult to label examples that occur near a decision boundary.

143

Bibliography

K. Alexander. Probability inequalities for empirical processes and a law of the iterated

logarithm. Annals of Probability, 4:1041–1067, 1984. 4.4.1

M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge

University Press, 1999. 5.3.2, 5.3.2, 5.3.2

A. Antos and G. Lugosi. Strong minimax lower bounds for learning. Machine Learning, 30:

31–56, 1998. 3.2.2, 3.3

P. Auer and R. Ortner. A new PAC bound for intersection-closed concept classes. In 17th

Annual Conference on Learning Theory (COLT), 2004. 2.9.2, 5.3.3

M.-F. Balcan and A. Blum. A PAC-style model for learning from labeled and unlabeled data. In

Conference on Learning Theory, 2005. 5.4

M.-F. Balcan and A. Blum. A PAC-style model for learning from labeled and unlabeled data.

Book chapter in “Semi-Supervised Learning”, O. Chapelle and B. Schlkopf and A. Zien, eds.,

MIT press, 2006. 3.6

M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In Proc. of the 23rd

International Conference on Machine Learning, 2006. 2.1, 2.1.2, 2.2.1, 2.3, 3.1, 3.5.2, 5.4

M.-F. Balcan, A. Broder, and T. Zhang. Margin based active learning. In Proc. of the 20th

Conference on Learning Theory, 2007. 3.1, 3.5.2

M.-F. Balcan, S. Hanneke, and J. Wortman. The true sample complexity of active learning. In

144

Proceedings of the 21st Conference on Learning Theory, 2008. 2.1.2, 3.1

J. L. Balcázar and J. Castro. A new abstract combinatorial dimension for exact learning via

queries. Journal of Computer and System Sciences, 64:2–21, 2002. 5.2.1

J. L. Balcázar, J. Castro, D. Guijarro, and H.-U. Simon. The consistency dimension and

distribution-dependent learning from queries. In Algorithmic Learning Theory, 1999. 5.2.1,

5.2.2

J. L. Balcázar, J. Castro, and D. Guijarro. A general dimension for exact learning. In 14th

Annual Conference on Learning Theory, 2001. 5.1, 5.2.1, 5.2.2, 5.2.2

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local rademacher complexities. The Annals of

Statistics, 33(4):1497–1537, 2005. 2.8

G. Benedek and A. Itai. Learnability by fixed distributions. In Proc. of the First Workshop on

Computational Learning Theory, pages 80–90, 1988. 1.1

A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning, 2009. 1.7,

2.1.2, 2.1.2

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the

vapnik-chervonenkis dimension. Journal of the Association for Computing Machinery, 36(4):

929–965, 1989. 1.1, 2.3.1, 3.11, 3.11

R. Castro and R. Nowak. Upper and lower error bounds for active learning. In The 44th Annual

Allerton Conference on Communication, Control and Computing, 2006. 2.1, 2.1.1, 2.3.3,

2.3.4

R. Castro and R. Nowak. Minimax bounds for active learning. In Proceedings of the 20th

Conference on Learning Theory, 2007. 2.3.4, 3.1, 2

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine

Learning, 15(2):201–221, 1994. 1.2, 1.4, 2.1.2, 3.1

S. Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information

145

Processing Systems 17, 2004. 3.1, 3.2.2, 5.3.1

S. Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural

Information Processing Systems 18, 2005. 1.6, 1.6, 3.1, 3.2, 3.2.1, 3.2.2, 3.4, 3.5.2, 3.6, 3.10,

5.3.1, 5.4

S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of perceptron-based active learning. In

Proc. of the 18th Conference on Learning Theory, 2005. 1.6, 3.1, 3.5.2

S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm.

Technical Report CS2007-0898, Department of Computer Science and Engineering,

University of California, San Diego, 2007. 2.1, 2.1.2, 2.1.2, 2.2.2, 2.3, 2.3.2, 2.9, 3.1

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.

Springer-Verlag New York, Inc., 1996. 2.2.2, 2.4, 3.5.2, 3.6, 3.11, 3.11, 4.4.1, 4.4.1

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by

committee algorithm. Machine Learning, 28:133–168, 1997. 3.2.2, 5.3.1

S. Hanneke. Teaching dimension and the complexity of active learning. In Proceedings of the

20th Conference on Learning Theory, 2007a. 3.1, 3.2.2

S. Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of the

24th International Conference on Machine Learning, 2007b. 2.1, 2.1.2, 2.1.2, 2.2, 2.3, 2.1.2,

2.3.1, 2.3.2, 2.8, 2.9.1, 3.1, 3.2.1, 3.5.2, 3.5.2

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other

learning applications. Information and Computation, 100:78–150, 1992. 1.5

D. Haussler, N. Littlestone, and M. Warmuth. Predicting {0, 1}-functions on randomly drawn

points. Information and Computation, 115:248–292, 1994. 2.9, 3.3, 3.3, 4.2

T. Hegedüs. Generalized teaching dimension and the query complexity of learning. In Proc. of

the 8th Annual Conference on Computational Learning Theory, 1995. 5.2.1, 5.2.2, 5.4

L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How many queries are

146

P. Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34

(5):2326–2366, 2006. 2.1.1, 2.7.2

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization

over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):

1926–1940, 1998. 3.6

A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of

Statistics, 32(1):135–166, 2004. 1.3, 2.1, 2.1.1, 2.3.3, 2.3.4, 2.3.4, 2.4

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, Nov. 1984. 1.3

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer,

1996. 1.3, 1.3, 2.3.4

V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New York,

1982. 2.1.2, 2.2.1, 2.3.1, 2.4, 2.9, 2.9, 3.11, 3.11, 4.4.1, 4.4.1

V. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., 1998. 1.1, 1.3, 2.2.1, 3.6, 4.2

M. Warmuth. The optimal pac algorithm. In Conference on Learning Theory, 2004. 5.3.2

148

Carnegie Mellon University does not discriminate and Carnegie Mellon University is

required not to discriminate in admission, employment, or administration of its programs or

activities on the basis of race, color, national origin, sex or handicap in violation of Title VI

of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section

504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or

administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran

status, sexual orientation or in violation of federal, state, or local laws or executive orders.

However, in the judgment of the Carnegie Mellon Human Relations Commission, the

Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,

lesbian and bisexual students from receiving ROTC scholarships or serving in the military.

Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie

Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the

Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA

15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

	1 Notation and Background
	1.1 Introduction
	1.2 A Simple Example: Thresholds
	1.3 Notation
	1.4 A Simple Algorithm Based on Disagreement
	1.5 A Lower Bound
	1.6 Splitting Index
	1.7 Agnostic Active Learning

	2 Rates of Convergence in Active Learning
	2.1 Introduction
	2.1.1 Tsybakov's Noise Conditions
	2.1.2 Disagreement Coefficient

	2.2 General Algorithms
	2.2.1 Algorithm 1
	2.2.2 Algorithm 2

	2.3 Convergence Rates
	2.3.1 The Disagreement Coefficient and Active Learning: Basic Results
	2.3.2 Known Results on Convergence Rates for Agnostic Active Learning
	2.3.3 Adaptation to Tsybakov's Noise Conditions
	2.3.4 Adaptive Rates in Active Learning

	2.4 Model Selection
	2.5 Conclusions
	2.6 Definition of
	2.7 Main Proofs
	2.7.1 Definition of r0
	2.7.2 Proofs Relating to Section 2.3
	2.7.3 Proofs Relating to Section 2.4

	2.8 Time Complexity of Algorithm 2
	2.9 A Refined Analysis of PAC Learning Via the Disagreement Coefficient
	2.9.1 Error Rates for Any Consistent Classifier
	2.9.2 Specializing to Particular Algorithms

	3 Significance of the Verifiable/Unverifiable Distinction in Realizable Active Learning
	3.1 Introduction
	3.1.1 A Simple Example: Intervals
	3.1.2 Our Results

	3.2 Background and Notation
	3.2.1 The Verifiable Label Complexity
	3.2.2 The True Label Complexity

	3.3 Strict Improvements of Active Over Passive
	3.4 Decomposing Hypothesis Classes
	3.5 Exponential Rates
	3.5.1 Exponential rates for simple classes
	3.5.2 Geometric Concepts, Uniform Distribution
	3.5.3 Composition results
	3.5.4 Lower Bounds

	3.6 Discussion and Open Questions
	3.7 The Verifiable Label Complexity of the Empty Interval
	3.8 Proof of Theorem 3.7
	3.9 Proof of Theorem 3.8
	3.10 Heuristic Approaches to Decomposition
	3.11 Proof of Theorem 3.5

	4 Activized Learning: Transforming Passive to Active With Improved Label Complexity
	4.1 Definitions and Notation
	4.2 A Basic Activizer
	4.3 Toward Agnostic Activized Learning
	4.3.1 Positive Results

	4.4 Proofs
	4.4.1 Proof of Theorems 4.3, 4.4, and 4.8

	5 Beyond Label Requests: A General Framework for Interactive Statistical Learning
	5.1 Introduction
	5.2 Active Exact Learning
	5.2.1 Related Work
	5.2.2 Cost Complexity Bounds
	5.2.3 An Example: Discrete Intervals

	5.3 Pool-Based Active PAC Learning
	5.3.1 Related Work
	5.3.2 Cost Complexity Upper Bounds
	5.3.3 An Example: Intersection-Closed Concept Spaces
	5.3.4 A Cost Complexity Lower Bound

	5.4 Discussion and Open Problems

	Bibliography

