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Abstract—In this paper, the theoretical foundations of near-field-far-
field transformations with spiral scannings are revisited and a unified
theory is provided. This is accomplished by introducing a sampling
representation of the radiated electromagnetic field on a rotational
surface from the knowledge of a nonredundant number of its samples
on a spiral wrapping the surface. The obtained results are general,
since they are valid for spirals wrapping on quite arbitrary rotational
surfaces, and can be directly applied to the pattern reconstruction
via near-field-far-field transformation techniques. Numerical tests are
reported for demonstrating the accuracy of the approach and its
stability with respect to random errors affecting the data.

1. INTRODUCTION

As well-known, far-field (FF) range size limitations, transportation
and mounting problems can make impossible or impractical the
measurement of antenna radiation patterns on a conventional FF
range. In such a case, it is convenient to exploit near-field (NF)
measurements to recover the FF patterns via NF-FF transformation
techniques. Development and spreading of NF-FF transformations
employing planar, cylindrical or spherical scanning systems are
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Figure 1. Planar spiral scanning.

justified from the fact that each approach has its particular advantages
and limitations.

As suggested in [1], complexity and cost of the measurement set-
up, as well as the time needed for data acquisition, can be reduced
by means of continuous movements of the positioning systems of
the probe and the antenna under test (AUT). This has induced the
authors to develop innovative spiral scanning techniques. In particular,
a planar spiral arrangement of samples has been considered in [2]
(see Fig. 1), an innovative cylindrical NF-FF transformation with
helicoidal scanning (Fig. 2) has been developed in [3, 4] and an efficient
NF-FF transformation with spherical spiral scanning (Fig. 3) has
been proposed in [5]. In all the cases, a nonredundant sampling
representation of the voltage data acquired by the measurement
probe on the considered curve (spiral or helix) has been developed
by applying the theoretical results relevant to the representations of
electromagnetic (EM) fields [6] and assuming the AUT enclosed in
a ball of radius a. In addition, the choice of the elevation step of
the curve equal to the sample spacing required to interpolate the
data along the corresponding meridian curve (radial line, generatrix,
meridian) has allowed one to obtain a two-dimensional optimal
sampling interpolation (OSI) formula for reconstructing the voltage
at any point on the surface. In such a way, the NF data needed by
the NF-FF transformations employing the corresponding conventional
scans [7] can be determined.

The aim of this paper is to unify the theoretical analysis of such
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Figure 3. Spherical spiral scanning.

spiral scans and to apply the results to the FF reconstruction via NF-
FF transformation techniques. This is achieved by proving that the
radiated EM field and, as a consequence, the voltage acquired by a
nondirective probe can be reconstructed on a quite arbitrary rotational
surface from the knowledge of a nonredundant number of their samples
lying on a proper spiral wrapping the surface. The only required
condition is that such a surface is obtained by rotating a meridian
curve always external to the cone of vertex at the observation point
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and tangent to the AUT ball. This proof is achieved by starting from
the results in [6] and revisiting the approach for obtaining the optimal
phase function to extract from the field expression and the parameter
to be used for describing the scanning curve.

It must be stressed that the field (voltage) can be reconstructed by
using always the same interpolation scheme, even if the spiral lies on
surfaces very different from the geometrical viewpoint. In light of the
above discussion, the analysis of spiral scannings results to be unified.

2. NONREDUNDANT SAMPLING REPRESENTATION
OF THE EM FIELD

The goal of this Section is to develop a sampling representation of
the radiated EM field on a rotational surface from the knowledge of a
nonredundant number of its samples on a spiral wrapping the surface.
Such an arbitrary surface is obtained by rotating a meridian curve
(a radial line allows one to construct a plane) always external to the
cone tangent to the AUT ball and having the vertex at the observation
point. The spiral can be viewed as intersection of the surface with the
line from the origin to the point which moves on a spiral wrapping,
with constant step in θ, a sphere of unit radius. The first step to
achieve the proposed target is represented by the development of a
nonredundant sampling representation of the field on the spiral, based
on the theoretical results in [6]. Once this step is achieved, the required
two-dimensional interpolation formula can be obtained by choosing the
angular step of the spiral coincident with the sample spacing needed
to interpolate the field along the meridian curve.

According to the theoretical results in [6], if the AUT is enclosed
in a sphere with radius a and the spiral is described by an analytical
parameterization r = r(ξ), it is possible to consider the “reduced
electric field”

F (ξ) = E(ξ)ejγ(ξ) (1)

where γ(ξ) is a phase function to be determined. The bandlimitation
error, occurring when F is approximated by a spatially bandlimited
function, becomes negligible as the bandwidth exceeds the critical value

Wξ = max
ξ

[w(ξ)] = max
ξ

[
max

r′

∣∣∣∣dγ(ξ)
dξ

− β
∂R(ξ, r′)

∂ξ

∣∣∣∣
]

(2)

where r′ denotes the source point, R(ξ, r′) = |r(ξ) − r′| and β is the
wavenumber. Accordingly, such an error can be controlled by choosing
a bandwidth equal to χ′Wξ, χ′ > 1 being an excess bandwidth factor.
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A nonredundant sampling representation of the EM field on the
spiral can be obtained by using the following expressions for the
optimal phase function and parameterization [6]:

γ(s) =
β

2

s∫
0

[
max

r′
R̂ · t̂ + min

r′
R̂ · t̂

]
ds (3)

ξ = ξ(s) =
β

2Wξ

s∫
0

[
max

r′
R̂ · t̂− min

r′
R̂ · t̂

]
ds (4)

where s is the arclength of the spiral, t̂ is the unit vector tangent to it
at the observation point P , and R̂ is the unit vector pointing from the
source point to P .

The coordinates of P are given by:


x = r(ϑ) sinϑ cosϕ
y = r(ϑ) sinϑ sinϕ

z = r(ϑ) cosϑ
(5)

where r(ϑ) is specified by the meridian curve generating the rotational
surface, and ϕ is the angular parameter describing the spiral. It is
worthy to note that the spiral angle ϑ = kϕ, unlike the zenithal angle
θ, can assume negative values. In fact, when the spiral describes a
complete round on the surface, ϑ varies in the range [−π, π]. Moreover,
the spiral angle ϕ is always continuos, whereas, according to (5), the
azimuthal angle φ exhibits a discontinuity jump of π when the spiral
crosses the poles.

The angular elevation step of the spiral must be chosen equal to
the sample spacing needed to interpolate the field along the meridian
curve. Then, the parameter k is such that the angular step, determined
by the consecutive intersections P (ϕ) and P (ϕ+2π) of the spiral with
the meridian curve, is ∆θ = 2π/(2M + 1), with M = Int[χM ′] + 1
and M ′ = Int[χ′βa] + 1. Accordingly, being ∆θ = 2πk, it follows that
k = 1/(2M + 1). The function Int[x] gives the integer part of x and
χ > 1 is an oversampling factor.

Note that when the surface is a plane at distance d (planar spiral)
then r(ϑ) = d/ cosϑ, if such a surface is a cylinder of radius d (helix)
then r(ϑ) = d/ sinϑ, whereas r(ϑ) = d when a spiral wrapping a sphere
of radius d is considered.

Practically, it can be convenient to impose the passage of the spiral
through a given point P0 of the meridian curve at φ = 0. In such a
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Figure 4. Geometry in the plane t̂, r̂.

case the coordinates of P become:


x = r(ϑ) sinϑ cos(ϕ− ϕi)
y = r(ϑ) sinϑ sin(ϕ− ϕi)
z = r(ϑ) cosϑ

(6)

ϕi being the value of ϕ at P0.
It can be verified that the extreme values of R̂ · t̂ in (3) and (4)

are determined by considering the intersection of the plane defined by
t̂ and the unit vector r̂ (pointing from the origin to P ) with the cone
with the vertex at P and the generatrices coincident with the tangents
to the AUT ball. Denoting by R̂1,2 the related unit vectors and by ε

the angle between r̂ and t̂ (Fig. 4), it results:(
R̂1 + R̂2

)
/2 = r̂ sin δ = r̂

√
1 − a2/r2 (7)(

R̂1 − R̂2

)
· t̂/2 = cos δ sin ε = (a/r) sin ε (8)

By substituting (7) in (3), and taking into account that dr =
r̂ · t̂ds, we get:

γ = β

r∫
0

√
1 − a2/r2 dr = β

√
r2 − a2 − βa cos−1

(
a

r

)
(9)

On the other hand,

ds =
√

r2 sin2 ϑ + k2r2 + k2ṙ2 dϕ (10)
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being ṙ = dr/dϑ. Moreover,

sin ε =
√

1 − (r̂ · t̂)2 (11)

wherein

r̂ · t̂ =
dr
ds

=
dr
dϕ

dϕ
ds

=
[

dr
dϑ

dϑ
dϕ

]
dϕ
ds

= kṙ
dϕ
ds

=
kṙ√

r2 sin2 ϑ + k2r2 + k2ṙ2
(12)

By taking into account (11) and substituting relations (8) and (10)
in (4), it results:

ξ =
βa

Wξ

ϕ∫
0

√
k2 + sin2 kϕ′ dϕ′ (13)

As can be seen, the optimal parameter ξ is proportional to the
curvilinear abscissa along the spiral wrapping the sphere of unit radius.
Since such a spiral is a closed curve, it is convenient to choose the
bandwidth Wξ such that ξ covers a 2π range when the whole curve on
the sphere is described. As a consequence,

Wξ =
βa

π

(2M+1)π∫
0

√
k2 + sin2 kϕ′ dϕ′ (14)

According to these results, the field at any point of the spiral can
be reconstructed [6] by means of the following OSI formula of central
type:

F (ξ) =
n0+q∑

n=n0−q+1

F (ξn)ΩN ′′(ξ − ξn)DN (ξ − ξn) (15)

where n0 = Int[(ξ − ξ(ϕi))/∆ξ] is the index of the sample nearest (on
the left) to the output point, 2q is the number of retained samples and

ξn = ξ(ϕi) + n∆ξ = ξ(ϕi) + 2πn/(2N + 1) (16)

with N = Int[χN ′] + 1 and N ′ = Int[χ′Wξ] + 1. Moreover,

DN (ξ) =
sin[(2N + 1)ξ/2]
(2N + 1) sin(ξ/2)

(17)

ΩN ′′(ξ) =
TN ′′

[
2(cos(ξ/2)/ cos(ξ0/2))2 − 1

]
TN ′′ [2/ cos2(ξ0/2) − 1]

(18)
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are the Dirichlet and Tschebyscheff Sampling functions, respectively,
wherein N ′′ = N − N ′ is the Tschebyscheff polynomial degree and
ξ0 = q∆ξ.

It is worthy to note that, when interpolating the field in the
neighbourhood of the poles (θ = 0 and θ = π), it is necessary to
increase the excess bandwidth factor χ′ in order to avoid a significant
growth of the bandlimitation error. This is mainly due to the fact that
small variations of ξ correspond to very large changes of ϕ in these
zones.

Expansion (15) can be properly employed to evaluate the field at
any point P on the considered surface. As a matter of fact, it allows
the evaluation of the “intermediate” samples, namely the field values
at the intersection points of the spiral with the meridian curve passing
through P . Once these samples have been determined, because of the
particular choice of ∆θ, the field can be reconstructed via the OSI
expansion:

F (θ, φ) =
m0+p∑

m=m0−p+1

F (θm)DM (θ − θm)ΩM ′′(θ − θm) (19)

where
θm = θm(φ) = θ(ϕi) + kφ + m∆θ = θ0 + m∆θ (20)

F (θm) are the intermediate samples, m0 = Int[(θ − θ0)/∆θ], M ′′ =
M −M ′ and the other symbols have the same meaning as in (15).

Since the voltage measured by a nondirective probe has the
same effective spatial bandwidth of the field [8], the above OSI
expansions can be used also to interpolate the “reduced voltage”
Ṽ (ξ) = V (ξ)ejγ(ξ).

3. THE HELICOIDAL SCANNING CASE

The algorithm described in the previous Section can be applied to
efficiently reconstruct the NF data, needed for the classical probe
compensated NF-FF transformation [9], from the voltage samples
acquired on a helix wrapping a cylinder. It must be stressed that,
unlike the approach in [4], the helix originates now from a given point at
the top of the cylinder, thus simplifying the realization of the scanning
from the practical viewpoint. Accordingly, the parametric equations
of the helix, when imposing the passage through such a point on the
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generatrix at φ = 0 and taking into account that r(ϑ) = d/ sinϑ, are:


x = d cos(ϕ− ϕi)
y = d sin(ϕ− ϕi)
z = d cotϑ

(21)

As shown in [9], the modal coefficients aυ and bυ of the cylindrical
wave expansion of the field radiated by the AUT are related to: a) the
two-dimensional Fourier transforms Iυ and I ′υ of the output voltages
V and V ′ of the probe for two independent sets of measurements
(the probe is rotated 90◦ about its longitudinal axis in the second
set); b) the modal coefficients of the cylindrical wave expansion of
the field radiated by the probe and the rotated probe, when used
as transmitting antennas. The key relations are summarized in the
following for reader’s convenience:

aυ(η) =
β2

Λ2∆υ(η)

[
Iυ(η)

∞∑
m=−∞

d′m(−η)H(2)
υ+m(Λd)

− I ′υ(η)
∞∑

m=−∞
dm(−η)H(2)

υ+m(Λd)

]
(22)

bυ(η) =
β2

Λ2∆υ(η)

[
I ′υ(η)

∞∑
m=−∞

cm(−η)H(2)
υ+m(Λd)

− Iυ(η)
∞∑

m=−∞
c′m(−η)H(2)

υ+m(Λd)

]
(23)

where Λ =
√

β2 − η2, H
(2)
υ (·) is the Hankel function of second kind

and order υ,

Iυ(η) =
∞∫

−∞

π∫
−π

V (φ, z)e−jυφejηz dφdz;

I ′υ(η) =
∞∫

−∞

π∫
−π

V ′(φ, z)e−jυφejηz dφdz

(24)

and

∆υ(η) =
∞∑

m=−∞
cm(−η)H(2)

υ+m(Λd)
∞∑

m=−∞
d′m(−η)H(2)

υ+m(Λd)

−
∞∑

m=−∞
c′m(−η)H(2)

υ+m(Λd)
∞∑

m=−∞
dm(−η)H(2)

υ+m(Λd) (25)
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The modal coefficients associated to the probe (cm, dm) and
the rotated probe (c′m, d′m) can be determined from the measured
amplitude and phase of the field radiated by them in the FF region.

In the classical approach, the FFT is employed to evaluate
efficiently the modal coefficients, and the sample spacings of the NF
data [9] are ∆z ≤ λ/2 and ∆φ ≤ λ/(2a′), a′ being the radius of the
smallest cylinder enclosing the AUT and λ the wavelength.

Once the modal coefficients are determined, the FF components
of the electric field in the spherical coordinate system (R,Θ,Φ) can be
evaluated by:

EΘ = −j2β
e−jβR

R
sin Θ

∞∑
υ=−∞

jυbυ(β cos Θ)ejυΦ (26)

EΦ = −2β
e−jβR

R
sin Θ

∞∑
υ=−∞

jυaυ(β cos Θ)ejυΦ (27)

It is useful to note that the summations in the above equations
can be efficiently performed via the FFT algorithm.

Some numerical tests assessing the effectiveness of the technique
are reported in the following. The simulations refer to a uniform planar
circular array (see Fig. 2) symmetric with respect to the plane z = 0
and having radius a = 16λ. Its elements are λ/2 spaced elementary
Huygens sources polarized along the z axis. An open-ended WR-
90 rectangular waveguide, operating at the frequency of 10 GHz, is
chosen as probe. The NF data are collected on a helix wrapping the
cylinder with radius d = 25λ and height h = 220λ. Figures 5 and
6 show the reconstruction of the amplitude and phase of the output
voltage V on the cylinder generatrix at φ = 90◦. As can be seen, the
reconstruction is everywhere very accurate. The accuracy of the NF
interpolation process is also confirmed by the values of the maximum
and mean-square errors (normalized to the voltage maximum value
on the cylinder) reported in Figs. 7 and 8, respectively. They have
been obtained by comparing the interpolated values of V with those
directly evaluated on a close grid in the central zone of the cylinder, so
that the existence of the guard samples is assured. As expected, the
errors decrease up to very low values on increasing the oversampling
factor and/or the number of the retained samples. The stability of the
algorithm has been investigated by adding random errors to the exact
samples. These errors simulate a background noise, bounded to ∆a
(dB) in amplitude and with arbitrary phase, and an uncertainty on
the data of ±∆ar (dB) in amplitude and ±∆α (degrees) in phase. As
shown in Fig. 9, the algorithm is stable.
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Figure 5. Helicoidal scanning. Amplitude of V on the generatrix at
φ = 90◦. Solid line: exact. Crosses: interpolated.

-200

-150

-100

-50

0

50

100

150

200

0 10 20 30 40 50 60

O
ut

pu
t v

ol
ta

ge
 p

ha
se

 (
de

gr
ee

s)

z (wavelengths)

p = q = 6

χ = 1.20

χ' = 1.20

Figure 6. Helicoidal scanning. Phase of V on the generatrix at
φ = 90◦. Solid line: exact. Crosses: interpolated.

The reconstructions of the antenna FF pattern in the principal
planes are reported in Figs. 10 and 11. As can be seen, the
exact and recovered fields are practically indistinguishable, thus
assessing the effectiveness of the proposed probe compensated NF-FF
transformation technique.

It is worthy to note that the number of employed samples (guard
samples included) for reconstructing the NF data on the considered
cylinder is 26 552, less than half of that (59 265) needed by the
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Figure 8. Helicoidal scanning. Mean-square reconstruction error of
V.

approach in [3] and significantly less than that (112 640) required by
the approach in [9].

4. THE PLANAR SPIRAL CASE

A fast and accurate NF-FF transformation technique with planar spiral
scanning, which compensates for the effects of the measurement probe,
is briefly described in this Section. For a planar spiral r(ϑ) = d/ cosϑ,
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Figure 10. Helicoidal scanning. E-plane pattern. Solid line: exact.
Crosses: reconstructed from probe compensated NF measurements.

so that the coordinates of a point lying on it are given by:


x = d tanϑ cosϕ = ρ cosϕ
y = d tanϑ sinϕ = ρ sinϕ

z = d

(28)

Also in such a case, the algorithm proposed in Section 2 can
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Figure 11. Helicoidal scanning. H-plane pattern. Solid line: exact.
Crosses: reconstructed from probe compensated NF measurements.

be properly applied to efficiently reconstruct the NF data, needed
by the probe compensated NF-FF transformation employing the
corresponding conventional scan, from the knowledge of the voltage
samples acquired on the spiral.

The basic theory of probe compensated NF-FF transformation
with plane-rectangular scanning as proposed by Paris et alii in [10] is
based on the application of the Lorentz reciprocity theorem. The key
relations in the here used reference system are:

EΘ(Θ,Φ) =
(
IHE′

ΦV
(Θ,−Φ) − IV E′

ΦH
(Θ,−Φ)

)
/∆ (29)

EΦ(Θ,Φ) =
(
IHE′

ΘV
(Θ,−Φ) − IV E′

ΘH
(Θ,−Φ)

)
/∆ (30)

where

∆ = E′
ΘH

(Θ,−Φ)E′
ΦV

(Θ,−Φ) − E′
ΘV

(Θ,−Φ)E′
ΦH

(Θ,−Φ) (31)

IV,H = C cos Θejβd cos Θ

+∞∫
−∞

+∞∫
−∞

VV,H(x, y)ejβx sin Θ cos Φejβy sin Θ sin Φ dxdy

(32)

C being a constant. Namely, the antenna far field is related to: i) the
two-dimensional Fourier transforms IV and IH of the output voltages
VV and VH of the probe for two independent sets of measurements
(the probe is rotated by 90◦ in the second set); ii) the FF components
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E′
ΘV

, E′
ΦV

and E′
ΘH

, E′
ΦH

radiated by the probe and the rotated probe,
when used as transmitting antennas.

In order that equations (29) and (30) are valid, the probe must
maintain its orientation with respect to the AUT and this requires
its co-rotation with the AUT. Obviously, the positioning system is
remarkably simplified when this is avoided. Probes exhibiting only a
first-order azimuthal dependence in their radiated far field (such as,
f.i., an open-ended circular waveguide excited by a TE11 mode) can be
used without co-rotation, since VV and VH can be evaluated from the
knowledge of the measured voltages Vφ and Vρ, through the relations:

VV = Vφ cosφ− Vρ sinφ; VH = Vφ sinφ + Vρ cosφ (33)

In the following we report some numerical tests, which assess
the effectiveness of the technique. They refer to a uniform planar
circular array (see Fig. 1) having diameter 2a = 33.6λ. Its elements
are elementary Huygens sources linearly polarized along the y axis
and are radially and azimuthally spaced of 0.7λ. An open-ended
circular waveguide with radius a′ = 0.338λ is chosen as probe. The
measurement plane is 20λ away from the AUT center and the samples
of the probe voltages Vφ and Vρ are collected on a spiral that covers a
circular zone of radius ≈ 71λ, without considering the guard samples.
Figure 12 shows the reconstruction of the amplitude of the output
voltage VV (the most significant one) on the radial line at φ = 90◦.
As can be seen, there is an excellent agreement between the exact
voltage and the reconstructed one. It is worthy to note that, in the
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Figure 13. Planar spiral scanning. Normalized reconstruction errors
of VV .

zone of the spiral determined by the 23 “regular” samples centered
on the pole, we have adopted an excess bandwidth factor such that
the sample spacing is reduced by a factor 5. The accuracy of the
algorithm is also confirmed by the values of the maximum and mean-
square errors (normalized to the voltage maximum value on the plane)
in the reconstruction of VV . Those reported in Fig. 13 are relevant to
χ′ = χ = 1.20 and have been obtained by comparing the interpolated
values of VV with those directly evaluated on a close grid in the central
zone of the plane, so that the existence of the guard samples is assured.

The E-plane pattern, reconstructed from the recovered plane-
rectangular data lying in a 100λ× 100λ square grid, is shown (crosses)
in Fig. 14. The pattern reconstructed (via the uncompensated NF-FF
transformation) from the exact plane-rectangular field samples lying in
the same grid is reported as reference (solid line) in the same figure. As
can be seen, also the FF reconstruction is very accurate, thus assessing
the effectiveness of the technique.

Note that the number of samples over the spiral is 12 823,
practically the same than that (13 309) needed by the plane-polar NF-
FF transformation [11]. In particular, the number of “regular” samples
at spacing ∆ξ is 12 735, whereas the number of “extra” samples at
reduced spacing ∆ξ/5 is only 88. It may be interesting to compare
the number of data needed by the proposed technique also with those
required by applying other planar scanning techniques. With reference
to the considered example, this number is 126 665 for the plane-polar
NF-FF transformation [12] and becomes 40 000 for the classical plane-
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Figure 14. Planar spiral scanning. E-plane pattern. Solid line:
reference. Crosses: reconstructed from probe compensated NF
measurements.
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Figure 15. Planar spiral scanning. E-plane pattern of a
Tschebyscheff-like planar circular array. Solid line: reference. Crosses:
reconstructed from probe compensated NF measurements.

rectangular NF-FF transformation [10] at λ/2 spacings.
At last, the algorithm performance has been tested in more severe

conditions by changing the excitations of the array elements in order
to obtain a Tschebyscheff-like behaviour with SLR = 40 dB in the FF
region. Also in this case (see Fig. 15) the reconstruction is very good.
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5. THE SPHERICAL SPIRAL CASE

Also in such a case, the NF data required by one of the available probe
compensated NF-FF transformations with spherical scanning can be
accurately recovered from the voltage samples collected on the spiral
by employing the algorithm described in Section 2. It must be stressed
that, unlike the approach in [5], the spiral originates now from the
pole at θ = 0. Accordingly, by taking into account that r(ϑ) = d, the
coordinates of a point lying on the spherical spiral are:


x = d sinϑ cosϕ
y = d sinϑ sinϕ

z = d cosϑ
(34)

To make more efficient the FF reconstruction, the theoretical
aspects of the classical method [13] have been re-examined in [14, 15]
by taking into account the spatial bandlimitation properties of the
radiated EM fields [16]. In particular, the choice of the highest
spherical wave has been rigorously fixed by the bandlimitation
properties and the number of data on the parallels has resulted to
be decreasing towards the poles. The key relations are here reported
for reader’s convenience.

The tangential electric field in the FF region can be expressed via
the truncated spherical wave expansion:

Et(R → ∞,Θ,Φ) =

e−jβR

R

Nmax∑
n=1

n∑
m=−n

[
jn+1b1nmf̃

1nm
(Θ)+jnb2nmf̃

2nm
(Θ)

]
ejmΦ (35)

wherein the highest spherical wave is rigorously fixed [14] by

Nmax = Int[χ′βa] + 1. (36)

The expansion coefficients b1nm and b2nm can be evaluated from the
knowledge of the voltages V and V ′ measured by the probe and rotated
probe, respectively. The explicit expressions of the modal coefficients
and vector wave functions f̃

1nm
, f̃

2nm
can be found in [15].

By inverting the summation order in (35), it can be rewritten [14]
as follows:

Et(R → ∞,Θ,Φ) =
e−jβR

R

Mφ∑
m=−Mφ

cm(Θ)ejmΦ (37)
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Figure 16. Spherical spiral scanning. Amplitude of V ′ on the
meridian at φ = 90◦. Solid line: exact. Crosses: interpolated.

where Mφ = Int[χ′βa sin θ] + 1. Relation (37) allows an efficient
evaluation of the AUT far field at the considered elevation angle Θ
by performing the summation via FFT.

Many numerical tests have been performed to confirm the validity
of the proposed technique. The reported simulations refer to a uniform
planar circular array (see Fig. 3) symmetric with respect to the plane
z = 0 and having radius a = 18λ. Its elements, elementary Huygens
sources linearly polarized along the z axis, are radially and azimuthally
spaced of 0.6λ. The radius of the spherical scanning surface is 30λ.
An open-ended circular waveguide, having radius a′ = 0.338λ, is
considered as measurement probe. Figure 16 shows the reconstruction
of the amplitude of the probe voltage V ′ on the meridian at φ = 90◦.
As can be seen, the reconstruction is everywhere accurate. It is useful
to note that we have adopted, in the zones of the spiral determined by
the 40 samples around the poles, an excess bandwidth factor such that
the sample spacing is reduced exactly by a factor 9. This has allowed
to reconstruct accurately the intermediate samples nearby the poles
and, as a consequence, the voltage. To assess in a more quantitative
way the algorithm performances, the maximum and mean-square errors
(normalized to the voltage maximum value on the sphere) have been
evaluated. Those reported in Fig. 17 are relevant to χ′ = χ = 1.20 and
have been obtained by comparing the interpolated values of V ′ with
those directly evaluated on a close grid.

At last, the proposed sampling technique has been used to recover
the data required by the probe compensated NF-FF transformation
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with spherical scanning as modified in [15]. A representative
reconstruction example relevant to the FF Θ-component in the E plane
is reported in Fig. 18.

It is useful to note that the number of samples over the spiral
is 34 782, about half of that (69 282) needed by the aforementioned
modified version of the NF-FF transformation and significantly less
than that (130 562) required by the classical one [13]. In particular,
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the number of “regular” samples at spacing ∆ξ is 34 142, whereas the
number of “extra” samples at reduced spacing is 640.

6. CONCLUSIONS

A unified theory for the NF-FF transformation techniques with spiral
scannings has been provided in this paper. To this end, a fast, accurate
and stable sampling representation, which allows the reconstruction of
the radiated EM field (probe voltage) on a quite arbitrary rotational
surface from the knowledge of a nonredundant number of its samples
on a spiral wrapping it, has been developed. The obtained results
are general, since they are valid for spirals lying on surfaces obtained
by rotating a meridian curve always external to the cone of vertex at
the observation point and tangent to the AUT sphere. Some numerical
tests relevant to both the cases of planar and spherical spiral scannings,
as well as to the helicoidal scan, have assessed the accuracy and the
stability of the approach.
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