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Abstract

This is a shorter version of an article presented in:

Fundamenta Informaticae, vol. 28 (3, 4), pp: 423-430. IOS Press,
1996.

A lot of research on genetic algorithms theory is concentrated on clas-
sical, binary case. However, there are many other types of useful genetic
algorithms (GA), e.g. tree-based (genetic programming), or order-based
ones. This paper shows, that many of classical results can be transferred
into the order-based GAs. The analysis includes the Schema Theorem
and Markov chain modelling of order-based GA.

1 Introduction

Some combinatorical problems can be solved using genetic algorithm (GA) with
order (permutational) representation. The classical example of Travelling Sales-
man Problem [2] is the best known one. This type of genetic algorithms is also
widely used as the driving force of “hybrid algorithms”, a powerful tool for solv-
ing problems such as: graph colouring problem [1], short reduct finding [10] or
template finding in databases [4].

The order-based genetic algorithms are rich in applications. However, there
are still no theoretical analysis of some kinds of order-based GA. Next sections
are the trial of translation of classical theoretical results to the order-based case.
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2 Order-based genetic algorithm

In the order-based genetic algorithms the chromosome is a n-element per-
mutation σ, represented by the sequence of numbers: σ(1) σ(2) σ(3) . . . σ(n).

Mutation of order-based individual means one random transposition of its
genes. There are various methods of recombination considered in literature. In
[2] such methods as PMX (Partially Matched Crossover), CX (Cycle Crossover)
and OX (Order Crossover) are described. But we will use another type of
crossing-over operator for further analyse: MOX (Modified Order Crossover).

This recombination operator affects two parent chromosomes and replaces
them by two children. First, we choose one gene in first parent’s chromosome
at random. This gene will be the end of a matching section, starting at the
beginning of chromosome. Identical matching section is marked on second par-
ent’s chromosome. Then, we leave the matching sections unchanged, but the
rest of genes of the first chromosome is set in the order of appearance in the
second chromosome. We perform the same operation on the second parent. For
example:

1 2 3 | 4 5
4 2 1 | 3 6

6
5

MOX−→ 1 2 3 | 4 6 5
4 2 1 | 3 5 6

Vertical line indicates the end of matching section.

3 Order-based Schema Theorem

Suppose we have the hybrid algorithm similar to these described in [1], [4], [10]
(see section 5). The deterministic, heuristic algorithm is used to finding the
solutions, but its efficiency depends on the order of considering the elements of
the search space. The genetic algorithm is used to generate the optimal order.

The notion of schema should refer to this internal structure of algorithm.
None of the order-based schemata considered in [2] is fitted enough to our situ-
ation. The optimal schema notion should refer only to relative position of genes
in a chromosome, with no respect to the defining length of schema nor to the
relative distances between values. We will consider another type of order-based
schema: relative dispersed (rd), similar to the one described in [1].

Definition 3.1 Relative dispersed schema rdn( a1 a2 . . . ak ) expands to the
set of all individuals of length n with genes a1 . . . ak located in this order (not
necessarily sequentially). The order o(·) of an rd-schema is defined to be equal
to the number k.

In [7] N. J. Radcliffe introduced seven design principles - characteristics of
various schema notions and recombination operators. The MOX operator and
the notion of rd-schema obey the principle of respect (if both of the parents
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match the schema, children will match the schema as well). Moreover, the
MOX operator is in some sense strictly transmitting: if a value x precedes a
value y in the child chromosome, the same order we observe in at least one of its
parents. This is the theoretical reason of usage MOX operator in the discussion
- the practical one will be presented in section 5.

To formulate a theorem similar to the classical Schema Theorem, we should
calculate probability of disruption of schemata by the genetic operators. Let
l = o(S) be an order of given schema S. Suppose that the first parent matches
the schema S. There are two situations in which at least one of children will
match schema S:

a) all values from S are in matching section of first parent;
b) all values from S are beyond matching section of second parent.
These two events are independent. Let 1 − P1 be the probability of a), let

1−P2 be the probability of b). Let Pc be the probability of disruption of schema
S by the MOX operation, let k be the size of matching section. We have:

P1 = 1−
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k
l

)
(
n
l

) =
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l

)
−
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l

)
(
n
l

)
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There are exactly two situations in which schema S will be disrupted by

mutation:
a) both positions chosen during mutation belongs to S;
b) one position is in S, second is placed between the genes from S.
Probability of a) is equal to:

Pa =
l

n
· l − 1

n− 1

Probability of b) is equal to:

Pb =

(
l

n
· n− l
n− 1

+
n− l
n
· l

n− 1

)
P ′
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where P ′ denotes the probability, that between two randomly chosen posi-
tions in chromosome is at least one value from S:

P ′ =

n−2∑
k=1

n− (k + 1)(
n·(n−1)

2

)
 ·

1−

(
n− l − 1

k

)
(
n− 2
k

)


Now, we can calculate the probability Pm of disruption of schema S by the
mutation:

Pm = Pa+Pb =
l

n · (n− 1)

l − 1 +
2 · (n− l)
n · (n− 1)

n−2∑
k=1

2 (n− k − 1)

(
n− 2
k

)
−
(
n− l − 1

k

)
(
n− 2
k

)


Let pcross be the probability of crossing-over, let pmut be the probability
of mutation of individual. Let Nt be the number of individuals matching S
in the population after t steps of evolution, let f be an average value of fitness
function in population, let f be an average value of fitness function of individuals
matching S. The Schema Theorem can be formulated in the way similar to
the classical case:

E (Nt+1) ≥ Nt
f

f
(1− pcross · Pc− pmut · Pm)

In fact, we should take into account that if both parents match the schema,
there is no chance of disruption, so the theorem can be reformulated as follows:

E (Nt+1) ≥ Nt
f

f

(
1− pcross · Pc ·

(
1− Nt

M

)
− pmut · Pm

)
The results are nearly identical with the classical case. Therefore we may

use classical results suchlike the building block hypothesis, the analogy with
k-armed bandit, theory of deceptiveness.

4 Convergence theorems

In this section we will show, that the results described in [5] and [9] can be
generalised to the order-based genetic algorithms.

In [5] authors model a simple genetic algorithm using a Markov chain with N
states - each of it corresponds to one possible population. In case of order-based
GA, number N can be calculated by:

N =

(
M + n!− 1
n!− 1

)
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where M is the number of individuals in population, n - size of chromosome
(permutation). The size of transition matrix Q of the chain is N×N . There are
exact values of elements of Q calculated in [5] for classical case. We do not need
to calculate corresponding values for our case, because the size of transition
matrix is too large for direct analysing. But we need to prove that the chain is
ergodic.

Lemma 4.1 The Markov chain modelling the behaviour of order-based GA is
regular.

Proof 1 We need to prove than for all i, j: Qmi,j > 0, i.e. we can transit
between any two populations with positive probability. Suppose the probability of
mutation and crossover to be greater than 0 and less than 1, and suppose the
fitness function to be positive. Note that since fitness function is positive, the
probability, that the “roulette wheel” algorithm causes no change to a population,
is greater than 0. On the other hand, we can transit from any individual to any
other by no more than n− 1 mutations (transpositions). Therefore, for any i, j
we have Qn−1i,j > 0.

Since the Markov chain is ergodic, there exist a steady state distribution:

πQ = π

In general, the steady state distribution gives positive probability to all
populations - not only to these containing the optimal individual. There are
two methods assuring that the order-based GA will spend asymptotically all
time in population containing the individual with maximum fitness value. The
first method is presented in [5] for classical case and bases on the asymptotic
behaviour of GA with population size going to infinity. These results can be
used for order-based case with small changes. The second method, described in
[9] for classical case, bases on finite population size and assumes some changes
in selection algorithm.

Let us introduce the modified elitist strategy to our model: let the best (by
means of fitness function) individual be copied with no change after each step
of evolution. The population consists of M + 1 individuals now. Let Q be the
transition matrix of Markov chain modelling such an algorithm.

For strictness, let us introduce the priority function on individuals: let the
best (globally) individual has priority value of 1, the next - 2 etc., the worst
individual - n!. We will consider the populations in order of the priority of the
best individual. The shape of Q can be depicted as follows:

Q =


Q (1) 0 · · · 0

+ Q (2) 0
...

. . .
...

+ + · · · Q (n!)


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where Q(s) is the transition submatrix of size N(s) × N(s), corresponding
to the populations with the individual of priority s as the best individual. The
sizeN(s) can be calculated as:

N(s) =

(
M + n!− s
n!− s

)
Now we can observe (as in case of classical GA, [9]) that Q represents the

Markov chain with absorbing class Q(1). Moreover, this is easy to see, that Q(1)
is regular (we can omit (M + 1)-th individual and repeat the proof presented
above). So, the steady state distribution on Q exists and gives positive proba-
bilities only on Q(1) i.e. on populations containing globally optimal individual.

Now we will approximate the algorithm’s convergence rate. Let d(i, j) be
a distance measure on individuals (analogous to Hamming distance) defined as
the minimal number of mutations (transpositions) transforming i-th individual
into j-th one. Let r be the maximal distance in any population. Since every
permutation is a combination of at most n − 1 transpositions, we have r =
n− 1. Now, let Q′ = Qr be a transition matrix of Markov chain describing the
behaviour of our algorithm every r steps. We will continue to analyse Q′ instead
of Q. It is easy to see, that Q′ has the similar form than Q, with submatrices
Q′(s) on its diagonal.

Let pr(i) be a priority value for individual i, or a priority value of the best
individual in case i is a population. In [9] the following fact was proved:∑

pr(k)=1

q
(n)
k ≥ 1− C |λ∗|n

where q(n) is the probability distribution on populations after n steps, C is
a constant, and:

λ∗ = max
s,t

(λs,t), s = 2, . . . n!, t = 1, . . . N(s)

where λs,t is a t-th eigenvalue of Q(s).
We can write the same for Q′. Now we will estimate λ∗, which determines

convergence rate of algorithm.

Lemma 4.2 The value of |λ∗| can be estimated as follows:

|λ∗| ≤ 1−A · n−2δpδmut(1− pmut)r−δ

where A is a constant (irrespective of the mutation probability), and:

δ = max
i∈{1...n!}, pr(i)>1

( min
j∈{1...n!}, pr(j)<pr(i)

d(i, j))
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Proof 2 As in [9] (appendix C), we have:

|λ∗| ≤ max
i=1...N(s∗)

N(s∗)∑
j=1

Q′(s∗)i,j

The sum on the right hand side of the inequality is equal to the probability,
that the population still has the best individual with priority s∗ after one step of
Q′ (i.e. after r steps of Q). This probability can be estimated as follows:

|λ∗| ≤ max
i=1...N(s∗)

(1−AiBi)

where Ai is a probability, that the best individual will not be affected by
crossover and reproduction during r steps of Q, and Bi is a probability, that
this individual will be affected by proper number of proper mutations (so that it
will be transformed into the individual with higher fitness value).

The value of Ai can be estimated irrespective of the probability of mutation
and i value:

Ai ≥ A = (1− pcross)r
(

fmin

M · fmax

)r
where fmin and fmax means the minimal and maximal fitness values (positive

by assumption).
Suppose we know the minimal number of mutations transforming the best

individual in the i-th population into the better one. Let δi be such a number.
Since there are n2 possible transpositions, the value of Bi can be estimated as
follows:

Bi ≥ (n−2)δi · pδimut(1− pmut)r−δi

Since δi ≥ δ , the proof is completed.

We have successfully estimated the convergence rate of order-based GA. Now
we can translate the last result from [9] into the order-based case:

Corollary 1 The optimal (by means of convergence rate) mutation probability
is given by:

pmut =
δ

r
=

δ

n− 1

This evaluation is as useless as in classical case - we should know exactly the
fitness function to evaluate δ.

Note that all these results describe the convergence rate of Q′. The Markov
chain Q converges r times slower.
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5 Example of application and results

The problem of finding a minimal reduct for a given information system
is one of the NP-hard problems (see [8]) used in knowledge discovery. On the
other hand, we can use short reducts to build effective decision algorithms.

We can introduce classical, binary representation for subsets of the set of
attributes and use genetic algorithm to generate reducts. We have performed
such an experiment and obtained good reducts after short time [10]. However,
these results were still not satisfactory and the second method of generating of
short reducts was introduced: a hybrid algorithm.

In the hybrid algorithm [10] we use simple, deterministic method for reduct
generation: we start with the set of all attributes, then we attempt to remove
attributes in some order. If we can find a pair of objects which is not discerned
by any of the remaining attributes, we insert the removed attribute back to
the subset. At last we obtain a subset which is a reduct. This deterministic
algorithm can give any of the reducts of the information system, supposing
the proper order of attributes. The genetic algorithm is used to generate this
proper order. To claculate the function of fitness for a given permutation (order
of attributes) we have to perform one run of the deterministic algorithm and
calculate the lenght of the shortest reduct.

The hybrid algorithm described above performs about four times slower that
the classical one. On the other hand, the reducts obtained by this algorithm
are usually shorter. Moreover, the hybrid algorithm generates from 50 to 500
different reducts in comparison with 5 to 50 reducts generated by the classical
GA at the same time.

The final result of the deterministic algorithm depends only on the order of
attributes, with no respect to the absolute position of any of them. To demon-
strate this properity of the hybrid algorithm, we have compared the average
efficiency (the average lenght of obtained reducts) using three recombination
operators: PMX, OX and MOX. The results obtained using OX and MOX
operator were significantly better, than those obtained using PMX operator
(based on absolute positions of attributes). The difference between OX and
MOX operators was not so significant, although OX operator was susceptible of
premature convergence. These results show, that we should use rather relative
than absolute o-schemata. The high efficiency of MOX operator suggests, that
rd-schemata create a good tool for analysing our hybrid algorithm.

6 Conclusion

This paper shows that the most of theoretical results concerning classical GA
- both the schemata and the Markov chain analysis - can be transferred with
small changes into the order-based case using the notion of rd (relative dispersed)
schemata. We have introduced new MOX operator concerned with this notion
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of schema. This type of schemata was rarely used in literature ([1]) but never
named nor analysed. We can conclude that the order-based genetic algorithms
are based on as reliable theoretical foundations as the classical GAs are. On the
other hand, these foundations are still not satisfactory from the practical point
of view - in both classical and order-based case.
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