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D
ivide and conquer. This principle is central to
many endeavors, ranging from children
managing inconsistent parents to colonial
powers controlling native peoples. In engi-

neering and computational science it means breaking a big
problem into smaller problems that can be more easily un-
derstood and solved. Putting the pieces back together
gives a modular design, which is advantageous for imple-
mentation, testing, and component reuse.

In signal processing, we are familiar with the divide and
conquer strategy because its recursive application is the es-
sence of fast Fourier transform (FFT) algorithms. Recur-
sive division leads also to efficient algorithms for
searching, sorting, convolutions, and eigenvalue compu-
tations. Thus, in both recursive and nonrecursive forms,
this strategy is fundamental.

Everyday compression problems are unmanageable
without a divide and conquer approach.
Effective compression of images, for ex-
ample, depends on the tendencies of
pixels to be similar to their neighbors or
to differ in partially predictable ways.
These tendencies, arising from the con-
tinuity, texturing, and boundaries of
objects, the similarity of objects in an
image, gradual lighting changes, an art-
ist’s technique and color palette, etc.,
may extend over an entire image with a
quarter million pixels. Yet the most
general way to utilize the probable rela-
tionships between pixels (later de-
scribed as unconstrained source
coding) is infeasible for this many pix-
els. In fact, 16 pixels is a lot for an un-
constrained source code.

To conquer the compression prob-
lem—allowing, for example, more than
16 pixels to be encoded simultaneously—state-of-the-art
lossy compressors divide the encoding operation into a se-
quence of three relatively simple steps: the computation of a
linear transformation of the data designed primarily to pro-
duce uncorrelated coefficients, separate quantization of each
scalar coefficient, and entropy coding. This process is called
transform coding. In image compression, a square image

with N pixels is typically processed with simple linear
transforms (often discrete wavelet transforms) of size

N .
This article explains the fundamental principles of

transform coding; these principles apply equally well to
images, audio, video, and various other types of data, so
abstract formulations are given. Much of the material pre-
sented here is adapted from [14, Chap. 2, 4]. The details
on wavelet transform-based image compression and the
JPEG2000 image compression standard are given in the
following two articles of this special issue [38], [37].

Source Coding
Source coding is to represent information in bits, with the
natural aim of using a small number of bits. When the in-
formation can be exactly recovered from the bits, the

source coding or compression is called
lossless; otherwise, it is called lossy. The
transform codes in this article are lossy.
However, lossless entropy codes appear
as components of transform codes, so
both lossless and lossy compression are
of present interest.

In our discussion, the “information”
is denoted by a real column vector
x N

∈R or a sequence of such vectors. A
vector might be formed from pixel val-
ues in an image or by sampling an audio
signal; K N⋅ pixels can be arranged as a
sequence of K vectors of length N. The
vector length N is defined such that
each vector in a sequence is encoded in-
dependently. For the purpose of build-
ing a mathematical theory, the source
vectors are assumed to be realizations of
a random vector x with a known distri-

bution. The distribution could be purely empirical.
A source code is comprised of two mappings: an en-

coder and a decoder. The encoder maps any vector x N
∈R

to a finite string of bits, and the decoder maps any of these
strings of bits to an approximation ɵx N

∈R . The encoder
mapping can always be factored as γ α� , whereα is a map-
ping from R N to some discrete set I and γ is an invertible
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mapping from I to strings of bits. The former is called a
lossy encoder and the latter a lossless code or an entropy
code. The decoder inverts γ and then approximates x
from the index α( )x ∈I. This is shown in the top half of
Fig. 1. It is assumed that communication between the en-
coder and decoder is perfect. (The last article of this issue
[13] describes techniques that work when some transmit-
ted bits are lost.)

To assess the quality of a lossy source code, we need
numerical measures of approximation accuracy and de-
scription length. The measure for description length is
simply the expected number of bits output by the encoder
divided by N; this is called the rate in bits per scalar sam-
ple and denoted by R. Here we will measure approxima-
tion accuracy by squared Euclidean norm divided by the
vector length

( ) ( )d x x
N

x x
N

x x
i i

i

N

, ɵ ɵ ɵ= − = −
=

∑
1 12 2

1

.

This accuracy measure is conventional and usually leads
to the easiest mathematical results, though the theory of
source coding has been developed with quite general
measures [1]. The expected value of d( ɵ)x,x is called the
mean-squared error (MSE) distortion and is denoted by
D E d= [ ( ɵ)]x,x . The normalizations by N make it possible
to fairly compare source codes with different lengths.

Fixing N, a theoretical concept of optimality is
straightforward: A length-N source code is optimal if no
other length-N source code with at most the same rate
has lower distortion. This concept is of dubious value.
First, it is very difficult to check the optimality of a source
code. Local optimality—being assured that small pertur-
bations ofα andβ will not improve performance—is often
the best that can be attained [16]. Second, and of more
practical consequence, a system designer gets to choose
the value of N. It can be as large as the total size of the data
set—like the number of pixels in an image—but can also
be smaller, in which case the data set is interpreted as a se-
quence of vectors.

There are conflicting motives in choosing N. Com-
pression performance is related to the predictability of
one part of x from the rest. Since predictability can only
increase from having more data, performance is usually
improved by increasing N. (Even if the random variables
producing each scalar sample are mutually independent,
the optimal performance is improved by increasing N;
however, this “packing gain” effect is relatively small
[16].) The conflict comes from the fact that the computa-
tional complexity of encoding is also increased. This is
particularly dramatic if one looks at complexities of opti-
mal source codes. The obvious way to implement an opti-
mal encoder is to search through the entire codebook,
giving running time exponential in N. Other implemen-
tations reduce running time while increasing memory us-
age [29].

State-of-the-art source codes result from an intelligent
compromise. There is no attempt to realize an optimal
code for a given value of N because encoding complexity
would force a small value for N. Rather, source codes that
are good, but plainly not optimal, are used. Their lower
complexities make much larger N’s feasible. A tutorial in
an earlier issue of this Magazine [5] called this “the power
of imperfection.” The paradoxical conclusion is that the
best codes to use in practice are suboptimal.

Constrained Source Coding

Transform codes are the most used
source codes because they are easy to ap-
ply at any rate and even with very large
values of N. The essence of transform
coding is the modularization shown in
the bottom half of Fig. 1. The mapping α
is implemented in two steps. First, an in-
vertible linear transform of the source
vector x is computed, producing y Tx= .
Each component of y is called a trans-
form coefficient. The N transform coeffi-
cients are then quantized independently
of each other by N scalar quantizers. This
is called scalar quantization since each
scalar component of y is treated sepa-
rately. Finally, the quantizer indexes that
correspond to the transform coefficients
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coder is β γ� −1, as shown at top. γ is an entropy code and α and β are the encoder

and decoder of an N-dimensional quantizer. In a transform code, α and β each

have a particular constrained structure. In the encoder, α is replaced with a linear

transform T and a set of N scalar quantizer encoders. The intermediate y i s are

called transform coefficients. In the decoder, β is replaced with N scalar quantizer

decoders and another linear transform U. Usually U T= −1.

The standard theoretical model
for transform coding has strict
modularity , meaning that the
transform, quantization, and
entropy coding blocks operate
independently.



are compressed with an entropy code to produce the se-
quence of bits that represent the data.

To reconstruct an approximation of x, the decoder es-
sentially reverses the steps of the encoder. The action of
the entropy coder can be inverted to recover the quantizer
indices. Then the decoders of the scalar quantizers pro-
duce a vector ɵy of estimates of the transform coefficients.
To complete the reconstruction, a linear transform is ap-
plied to ɵy to produce the approximation ɵx. This final step
usually uses the transform T −1 , but for generality the
transform is denoted U.

Most source codes cannot be implemented in the two
stages of linear transform and scalar quantization. Thus, a
transform code is an example of a constrained source
code. Constrained source codes are, loosely speaking,
source codes that are suboptimal but have low complex-
ity. The simplicity of transform coding allows large values
of N to be practical. Computing the transformT requires
at most N 2 multiplications and N N( )−1 additions. Spe-
cially structured transforms—like discrete Fourier, co-
sine, and wavelet transforms—are often used to reduce
the complexity of this step, but this is merely icing on the
cake. The great reduction from the exponential complex-
ity of a general source code to the (at most) quadratic
complexity of a transform code comes from using linear
transforms and scalar quantization. See Box 1 for more
on constrained source codes.

The Standard Model and Its Components

The standard theoretical model for transform coding looks
like the bottom of Fig. 1. It has the strict modularity shown,
meaning that the transform, quantization and entropy cod-
ing blocks operate independently. In addition, the entropy
coder can be decomposed into N parallel entropy coders so
that the quantization and entropy coding operate independ-
ently on each scalar transform coefficient.

This section briefly describes the fundamentals of en-
tropy coding and quantization to provide background for
our later focus on the optimization of the transform. The
final part of this section addresses the allocation of bits
among the N scalar quantizers. Sources for additional in-
formation include [3], [8], [14], [16].

Entropy Codes
Entropy codes are used for lossless coding of discrete ran-
dom variables. Consider the discrete random variable z

with alphabet I. An entropy code γ assigns a unique bi-
nary string, called a codeword, to each i ∈I. (See Fig. 1.)

Since the codewords are unique, an entropy code is al-
ways invertible. However, we will place more restrictive
conditions on entropy codes so they can be used on se-
quences of realizations of z. The extension of γ maps the
finite sequence ( , , , )z z z

k1 2
… to the concatenation of the

outputs of γ with each input, γ γ γ( ) ( ), , ( )z z z
k1 2

… . A code
is called uniquely decodable if its extension is one-to-one.
A uniquely decodable code can be applied to message se-
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Box 1
Constrained and Unconstrained Source Codes

The difference between constrained and unconstrained
source codes is shown by partition diagrams. In these di-

agrams, the cells indicate which source vectors are encoded
to the same index and the dots are the reconstructions com-
puted by the decoder. Four locally optimal fixed-rate source
codes with 12-element codebooks were constructed. The
two-dimensional, jointly Gaussian source is the same as that
used in Fig. 2 and Box 6.

The upper-left plot shows an unconstrained code. The
partition shares the symmetries of the source density but is
otherwise complicated because the cell shapes are arbitrary.
Encoding is difficult because there is no simple way to get
around using both components of the source vector simulta-
neously in computing the index.

Encoding with a transform code is easier because after the
linear transform the coefficients are quantized separately.
This gives the structured alignment of partition cells and of
reconstruction points in the upper-right plot.

It is fair to ask why the transform is linear. In two dimen-
sions, one might imagine quantizing in polar coordinates.
Two examples of partitions obtained with separate
quantization of radial and angular components are shown in
the lower plots, and these are as elegant as the partition ob-
tained with a linear transform. Yet nonlinear transforma-
tions—even transformations to polar coordinates—are
rarely used in source coding. With arbitrary transformations,
the approximation accuracy of the transform coefficients
does not easily relate to the accuracy of the reconstructed
vectors. This makes designing quantizers for the transform
coefficients more difficult. Also, allowing nonlinear transfor-
mations reintroduces the design and encoding complexities
of unconstrained source codes.

Constrained source codes need not use transforms to
have low complexity. Techniques described in [8] and [16]
include those based on lattices, sorting, and tree-structured
searching; none of these techniques is as popular as trans-
form coding.

D = 0.055

D = 0.116

D = 0.066

D = 0.069



quences without adding any “punctuation” to show
where one codeword ends and the next begins. In a prefix
code, no codeword is the prefix of any other codeword.
Prefix codes are guaranteed to be uniquely decodable.

A trivial code numbers each element of I with a dis-
tinct index in { , , ,| | }0 1 1… I − and maps each element to
the binary expansion of its index. Such a code requires

 log | |
2
I bits per symbol. This is considered the lack of

an entropy code. The idea in entropy code design is to
minimize the mean number of bits used to represent z at
the expense of making the worst-case performance worse.
The expected code length is given by

L E p i i
i

( ) [ ( ( ))] ( ) ( ( ))γ γ γ= =
∈
∑ℓ ℓz

z

I

,

where p i
z
( ) is the probability of symbol i and ℓ( ( ))γ i is the

length of γ( )i . The expected length can be reduced if short
code words are used for the most probable sym-
bols—even if it means that some symbols will have
codewords with more than  log | |

2
I bits.

The entropy code γ is called optimal if it is a prefix code
that minimizes L( )γ . Huffman codes, described in Box 2,
are examples of optimal codes. The performance of an op-
timal code is bounded by

H L H( ) ( ) ( )z z≤ < +γ 1 (1)

where

H p i p i
i

( ) ( )log ( )z
z z

= −
∈
∑
I

2
(2)

is the entropy of z.
The up to one bit gap in (1) is ignored in the remainder

of the article. If H( )z is large, this is justified simply be-
cause one bit is small compared to the code length. Other-
wise note that L H( ) ( )γ ≈ z can attained by coding blocks
of symbols together; this is detailed in any information
theory or data compression textbook.

Quantizers

A quantizer q is a mapping from a source alphabet R N to
a reproduction codebook C

I
= ⊂∈{ ɵ }x

i i

N
R , where I is

an arbitrary countable index set. Quantization can be de-
composed into two operations q = β α� , as shown in Fig.
1. The lossy encoder α:R N → I is specified by a partition
ofR N into partition cellsS x x i

i

N= ∈ ={ | ( ) }R α , i ∈I. The
reproduction decoder β:I→R N is specified by the
codebook C. If N =1, the quantizer is called a scalar
quantizer; for N >1, it is a vector quantizer.

The quality of a quantizer is determined by its distor-
tion and rate. The MSE distortion for quantizing random
vector x ∈R N is

[ ]D E d q N E q= = −−[ ( , ( ))] ( ) .x x x x
1 2

The rate can be measured in a few ways. The lossy en-
coder output α( )x is a discrete random variable that usu-
ally should be entropy coded because the output symbols
will have unequal probabilities. Associating an entropy
code γ to the quantizer gives a variable-rate quantizer
specified by ( , , )α β γ . The rate of the quantizer is the ex-
pected code length of γ divided by N. Not specifying an
entropy code (or specifying the use of fixed-rate binary
expansion) gives a fixed-rate quantizer with rate
R N= −1

2
log | |I . Measuring the rate by the idealized per-

formance of an entropy code gives R N H= −1 ( ( ))α x ; the
quantizer in this case is called entropy constrained.

The optimal performance of variable-rate quantization
is at least as good as that of fixed-rate quantization, and
entropy-constrained quantization is better yet. Entropy
coding adds complexity, however, and variable length
output can create difficulties such as buffer overflows.
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Box 2

Huffman Codes

There is a simple algorithm, due to Huffman [22], for
constructing optimal entropy codes. One starts with

a graph with one node for each symbol and no edges.
These nodes will become the leaves of a tree as edges are
added to make a connected graph.

At each step of the algorithm, the probabilities of the
disconnected sets of nodes are sorted and the two least
probable sets are merged through the addition of a parent
node and edges to each of the two sets. The edges are as-
signed labels of 0 and 1. When a tree has been formed,
codewords are assigned to each leaf node by concatenat-
ing the edge labels on the path from the root to the leaf.

Shown below is a Huffman code tree for symbols {1,
2, 3, 4, 5, 6} with respective probabilities {0.3, 0.26,
0.14, 0.13, 0.09, 0.08}. The codewords are boxed. Com-
puting a weighted sum of the codeword lengths gives the
expected code length

L = ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

=

03 2 0 26 2 014 3 013 3 009 3 008 3

2 44

. . . . . .

. bits.

This is quite close to the entropy of 2.41 bits obtained by
evaluating  (2).
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Furthermore, entropy-constrained quantization is only
an idealization since an entropy code will generally not
meet the lower bound in  (1).

Optimal Quantization

An optimal quantizer is one that minimizes the distortion
subject to an upper bound on the rate or minimizes the
rate subject to an upper bound on the distortion. Because
of simple shifting and scaling properties, an optimal
quantizer for a scalar x can be easily deduced from an opti-
mal quantizer for the normalized random variable
w x

x x
= −( ) /µ σ , whereµ

x
andσ

x
are the mean and stan-

dard deviation of x, respectively. One consequence of this
is that optimal quantizers have performance

D g R= σ 2 ( ), (3)

whereσ 2 is the variance of the source and g R( )is the per-
formance of optimal quantizers for the normalized
source. Equation (3) holds, with a different function g,
for any family of quantizers that can be described by its
operation on a normalized variable, not just optimal
quantizers.

Optimal quantizers are difficult to design, but locally
optimal quantizers can be numerically approximated by
an iteration in which α, β, and γ are separately optimized,
in turn, while keeping the other two fixed. For details on
each of these optimizations and the difficulties and prop-
erties that arise, see [5] and [16].

Note that the rate measure affects the optimal encod-
ing rule becauseα( )x should be the index that minimizes a
Lagrangian cost function including both rate and distor-
tion; for example

α γ λ β( ) ( ( )) ( )x
N

i
N

x i
i

= + −



∈

argmin
I

1 1 2
ℓ

is an optimal lossy encoder for variable-rate quantization.
(By fixing the relative importance of rate and distortion,
the Lagrange multiplier λ determines a rate-distortion
operating point among those possible with the given β
and γ.) Only for fixed-rate quantization does the optimal
encoding rule simplify to finding the index correspond-
ing to the nearest codeword.

In some of the more technical discussions that follow,
one property of optimal decoding is relevant: The opti-
mal decoder β computes

β( ) [ | ]i E S
i

= ∈x x ,

which is called centroid reconstruction. The conditional
mean of the cell, or centroid, is the minimum MSE esti-
mate [31].

High Resolution Quantization

For most sources, it is impossible to analytically express
the performance of optimal quantizers. Thus, aside from
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Box 3
Uniform Quantization

The design of quantizers has a deep and fascinating the-
ory. Nevertheless, the fact remains [16]: “Most

quantizers today are indeed uniform and scalar, but are com-
bined with prediction or transforms.”

Though definitions of uniform quantization vary some-
what, the archetype of rounding is always an example of uni-
form quantization. Shown in (a) is the input-output
relationship of a device that rounds to the nearest integer
multiple of step size∆. To describe this in formal notation, the
encoder could be α( ) ( / )x x= round ∆ , where round()⋅ de-
notes rounding to the nearest integer, with corresponding
decoder β( )i i= ∆.

The other common uniform quantizer is shown in (b).
This is a shifted version of the previous uniform quantizer.
Variations in the definition of uniform quantization some-
times allow only the encoder to have equal length cells or
only the decoder to have evenly spaced outputs and may also
allow the decoder outputs to be shifted from the centers of
the partition cells.

Uniform quantization of a uniform source provides a set-
ting to see the typical trade-off between rate and distortion.
Consider x uniformly distributed on the interval [ , )0 1 . A
fixed-rate uniform quantizer, as on the right above, with K
cells and step size ∆ =1/ K quantizes x m m∈ −[( ) , )1 ∆ ∆ to
( / )m −1 2 ∆ for m K=1 2, , ,… . I t has rate
R N= = −log log2 2 ∆ and distortion

D x x dx x m d
m

m

m

N

= − = − −









∫ ∫∑ −

=

( ɵ)
( )

2

0

1

1
1

2
1

2
∆

∆

∆
x =

1

12
2∆ .

Thus, D R= −( / )1 12 2 2 . When using the MSE distortion mea-
sure, there will almost always be a 2 2− R factor.

− − ∆5
2

− ∆1
2
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using (3), approximations must suffice. Fortunately, ap-
proximations obtained when it is assumed that the
quantization is very fine are reasonably accurate even at
low to moderate rates [10], [40]. Details on this “high
resolution” theory for both scalars and vectors can be
found in [7] and [16] and references therein.

Let f x
x
( ) denote the probability density function

(pdf) of the scalar random variable x. High resolution
analysis is based on approximating f x

x
( )on the intervalS

i

by its value at the midpoint. Assuming f x
x
( ) is smooth,

this approximation is accurate when each S
i

is short.
Optimization of scalar quantizers turns into finding

the optimal lengths for the S
i
s, depending on the pdf

f x
x
( ). One can show that the performance of optimal

fixed-rate quantization is approximately

( )D f x dx R≈ ∫ −1

12
21 3

3
2

x

/ ( )
�

.
(4)

Evaluating this for a Gaussian source with variance σ 2

gives

D R≈ −3

2
22 2π

σ .
(5)

For entropy-constrained quantization, high resolution
analysis shows that it is optimal for each S

i
to have equal

length [9]. A quantizer that partitions with equal-length
intervals is called uniform (see Box 3). The resulting per-
formance is

D h R≈ −1

12
2 22 2( )x ,

(6)

where

h f x f x dx( ) ( )log ( )x
x x

= −∫�
2

is the differential entropy of x. For Gaussian random vari-
ables,  (6) simplifies to

D
e R≈ −π
σ

6
22 2 .

(7)

Summarizing (4)-(7), the lesson from high resolution
quantization theory is that quantizer performance is de-
scribed by

D c R≈ −σ 2 22 , (8)

where σ 2 is the variance of the source and c is a constant
that depends on the normalized density of the source and
the type of quantization (fixed rate, variable rate, or en-
tropy constrained). This is consistent with (3).

The computations we have made are for scalar
quantization. For vector quantization, the best perfor-
mance in the limit as the dimension N grows is given by
the distortion rate function [1] (see [13, Box 3]). For a
Gaussian source this bound is D R= −σ 2 22 . The approxi-
mate performance given by (7) is only worse by a factor
of πe / 6 (≈153. dB). This can be expressed as a redun-
dancy ( / )log ( / ) .1 2 6 0255

2
πe ≈ bits. Furthermore, a nu-

merical study has shown that for a wide range of
memoryless sources, the redundancy of entropy-con-
strained uniform quantization is at most 0.3 bits per sam-
ple at all rates [6].

Bit Allocation

Coding (quantizing and entropy coding) each transform
coefficient separately splits the total number of bits
among the transform coefficients in some manner.
Whether done with conscious effort or implicitly, this is a
bit allocation among the components.

Bit allocation problems can be stated in a single com-
mon form: One is given a set of quantizers described by
their distortion-rate performances as

D g R R i N
i i i i i

= ∈ =( ), , , , ,R 1 2 … .

Each set of available ratesR
i
is a subset of the nonnegative

real numbers and may be discrete or continuous. The prob-

lem is to minimize the average distortion D N D
ii

N
= −

=∑1

1

given a maximum average rate R N R
ii

N
= −

=∑1

1
.

As is often the case with optimization problems, bit al-
location is easy when the parameters are continuous and
the objective functions are smooth. Subject to a few other
technical requirements, parametric expressions for the
optimal bit allocation can be found [27], [35]. The tech-
niques used when the R

i
s are discrete are quite different

and play no role in forthcoming results [36].
If the average distortion can be reduced by taking bits

away from one component and giving them to another,
the initial bit allocation is not optimal. Applying this rea-
soning with infinitesimal changes in the component rates,
a necessary condition for an optimal allocation is that the
slope of each g

i
at R

i
is equal to a common constant

value. A tutorial treatment of this type of optimization
appeared in an earlier issue of this Magazine [30].

The approximate performance given by (8) leads to a
particularly easy bit allocation problem with

g c i N
i i i

R

i
i= = ∞ =−σ 2 22 0 1 2, [ , ), , , ,R … . (9)

Ignoring the fact that each component rate must be
nonnegative, an equal-slope argument shows that the op-
timal bit allocation is
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The motivating principle of
transform coding is that simple
coding may be more effective in
the transform domain than in the
original signal space.



( ) ( )
R R

c

c

i

i

ii

N
N

i

ii

N
N

= + +

= =∏ ∏

1

2

1

22

1

1 2

2

2

1

1
log log

/ /

σ

σ

.

With these rates, all the D
i
s are equal and the average dis-

tortion is

( ) ( )D c
ii

N
N

ii

N
N

R=
= =

−

∏ ∏1

1
2

1

1
22

/ /

σ .
(10)

This solution is valid when each R
i

given above is
nonnegative. For lower rates, the components with
smallest c

i i
⋅σ 2 are allocated no bits and the remaining

components have correspondingly higher allocations.

Bit Allocation with Uniform Quantizers

With uniform quantizers, bit allocation is nothing more
than choosing a step size ∆

i
for each of the N compo-

nents. The equal-distortion property of the analytical bit
allocation solution gives a simple rule: Make all of the step
sizes equal. This will be referred to as
“lazy” bit allocation.

Our development indicates that lazy
allocation is optimal when the rate is
high. Numerical studies have shown that
lazy allocation is nearly optimal as long
as the minimal allocated rate is at least 1
bit [14], [15]. Entropy-constrained uni-
form quantization with lazy bit alloca-
tion is used in the numerical examples in
the following section.

Optimal Transforms

It has taken some time to set the stage,
but we are now ready for the main event
of designing the analysis transform T

and the synthesis transformU. Through-
out this section the source x is assumed
to have mean zero, and R

x
denotes the

covariance matrix E
T[ ]xx , where T de-

notes the transpose. The source is often,
but not always, jointly Gaussian.

A signal given as a vector inR N is im-
plicitly represented as a series with re-
spect to the standard basis. An invertible
analysis transformT changes the basis. A
change of basis does not alter the infor-
mation in a signal, so how can it affect
coding efficiency? Indeed, if arbitrary
source coding is allowed after the trans-
form, it does not. The motivating princi-
ple of transform coding is that simple
coding may be more effective in the
transform domain than in the original
signal space. In the standard model,

“simple coding” corresponds to the use of scalar
quantization and scalar entropy coding.

Visualizing Transforms
Beyond two or three dimensions, it is difficult to visualize
vectors—let alone the action of a transform on vectors.
Fortunately, most people already have an idea of what a
linear transform does: it combines rotating, scaling, and
shearing such that a hypercube is always mapped to a
parallelepiped.

In two dimensions, the level curves of a zero-mean
Gaussian density are ellipses centered at the origin with
collinear major axes, as shown in the left panels of Fig. 2.
The middle panel of Fig. 2(a) shows the level curves of the
joint density of the transform coefficients after a more or
less arbitrary invertible linear transformation. A linear
transformation of an ellipse is still an ellipse, though its
eccentricity and orientation (direction of major axis) may
have changed.
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▲ 2. Illustration of various basis changes. The source is depicted by level curves of the

pdf (left). The transform coefficients are separately quantized with uniform

quantizers (center). The induced partitioning is then shown in the original coordi-

nates (right). (a) A basis change generally induces a nonhypercubic partition.  (b)

A singular transformation gives a partition with unboundedn cells. (c) A Karhunen

-Loève transform is an orthogonal transform that aligns the partitioning with the

axes of the source pdf.



The grid in the middle panel indicates the cell bound-
aries in uniform scalar quantization, with equal step sizes,
of the transform coefficients. The effect of inverting the
transform is shown in the right panel; the source density
is returned to its original form and the quantization parti-
tion is linearly deformed. The partition in the original co-
ordinates, as shown in the right panel, is what is truly
relevant. It shows which source vectors are mapped to the
same symbol, thus giving some indication of the average
distortion. Looking at the number of cells with apprecia-
ble probability gives some indication of the rate.

A singular transform is a degenerate case. As shown in
the middle panel of Fig. 2(b), the transform coefficients
have probability mass only along a line. (A line segment is

an ellipse with unit eccentricity.) Inverting the transform
is not possible, but we may still return to the original co-
ordinates to view the partition induced by quantizing the
transform coefficients. The cells are unbounded in one di-
rection, as shown in the right panel. This is undesirable
unless variation of the source in the direction in which the
cells are unbounded is very small.

Although better than unbounded cells, the parallelo-
gram-shaped partition cells that arise from arbitrary in-
vertible transforms are inherently suboptimal (see Box 4).
To get rectangular partition cells, the basis vectors must
be orthogonal. For square cells, when quantization step
sizes are equal for each transform coefficient, the basis
vectors should in addition to being orthogonal have equal
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Box 4
Shapes of Partition Cells

The quality of a source code depends on the shapes of
the partition cells { ( )α

−1 i , i ∈I} and on varying the
sizes of the cells according to the source density. When
the rate is high, and either the source is uniformly distrib-
uted or the rate is measured by entropy (H( ( ))α x ), the
sizes of the cells should essentially not vary. Then, the
quality depends on having cell shapes that minimize the
average distance to the center of the cell.

For a given volume, a body in Euclidean space that
minimizes the average distance to the center is a sphere.
But spheres do not work as partition cell shapes because
they do not pack together without leaving interstices.
Only for a few dimensions N is the best cell shape known
[2]. One such dimension is N = 2, where the hexagonal
packing shown below (left) is best.

The best packings (including the hexagonal case) cannot
be achieved with transform codes. Transform codes can only
produce partitions into parallelepipeds, as shown for N = 2
in Fig. 2. The best parallelepipeds are cubes. We get a hint of
this by comparing the two rectangular partitions of a
unit-area square shown below. Both partitions have 36 cells,
so every cell has the same area. The partition with square cells
gives distortion 1 432 231 10 3/ .≈ ×

− , while the other gives
97 31104 312 10 3/ .≈ ×

− . (The calculations are easy; see Box
3.)

This simple example can also be interpreted as a prob-
lem of allocating bits between the horizontal and vertical
components. The “lazy” bit allocation arising from equal
quantization step sizes for each component is optimal.
This holds generally for high-rate entropy-constrained
quantization of components with the same normalized
density.

Box 5
Autoregressive Source

Autoregressive models are popular in many branches
of signal processing. Under such a model, a sequence

is generated as

x x z[ ] [ ] [ ]k k k= − +ρ 1

where k is a time index, z[ ]k is a white sequence, and
ρ ∈[ , )0 1 is called the correlation coefficient. It is a crude but
useful model for the samples along any line of a grayscale
image, with ρ ≈0 9. .

An �
N -valued source x can be derived from a scalar

autoregressive source by forming blocks of N consecutive
samples. With normalized power, the covariance matrix
is given elementwise by ( ) | |R ij

i j
x

=
−

ρ . For any particular
N andρ, a numerical eigendecomposition method can be
applied to R

x
to obtain a KLT. (An analytical solution

happens to also be possible [17], [34].) For N =8 and
ρ =0 9. , the KLT can be depicted as below:

Each subplot (value of k) gives a row of the transform
or, equivalently, a vector in the analysis basis. This basis is
superficially sinusoidal and is approximated by a discrete
cosine transform (DCT) basis. There are various asymp-
totic equivalences between KLTs and DCTs for large N
andρ→ 1 [23], [33]. These results are often cited in justi-
fying the use of DCTs.

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

k = 7

k = 8

1 2 3 4 5 6 7 8

m



lengths. When orthogonal basis vectors have unit length,
the resulting transform is called an orthogonal transform.
(It is regrettable that of a matrix or transform, “orthogo-
nal” means orthonormal.)

A Karhunen-Loève transform (KLT) is a particular
type of orthogonal transform that depends on the
covariance of the source. An orthogonal matrix T repre-
sents a KLT of x if TR T T

x
is a diagonal matrix. The diag-

onal matrix TR T T
x

is the covariance of y x=T ; thus, a
KLT gives uncorrelated transform coefficients. KLT is
the most commonly used name for these transforms in
signal processing, communication, and information the-
ory, recognizing the works [24] and [26]; among the
other names are Hotelling transforms [19] and principal
component transforms.

A KLT exists for any source because covariance matri-
ces are symmetric, and symmetric matrices are orthogo-
nally diagonalizable; the diagonal elements of TR T T

x

are the eigenvalues of R
x
. KLT’s are not unique: any row

of T can be multiplied by ±1 without changing TR T T
x

,
and permuting the rows leaves TR T T

x
diagonal. If the

eigenvalues of R
x

are not distinct, there is additional free-
dom in choosing a KLT. An example of a KLT is given in
Box 5.

For Gaussian sources, KLTs align the partitioning
with the axes of the source pdf, as shown in Fig. 2(c). It
appears that the forward and inverse transforms are rota-
tions, though actually the symmetry of the source density
obscures possible reflections.

The Easiest Transform Optimization
Consider a jointly Gaussian source, and assume U and T
are orthogonal and U T= −1 . The Gaussian assumption is
important because any linear combination of jointly
Gaussian random variables is Gaussian. Thus, any analy-
sis transform gives Gaussian transform coefficients.
Then, since the transform coefficients have the same nor-
malized density, for any reasonable set of quantizers, (3)
holds with a single function g R( ) describing all of the
transform coefficients. Orthogonality is important be-
cause orthogonal transforms preserve Euclidean lengths,
which gives d x x d y y( , ɵ) ( , ɵ)= .

With these assumptions, for any rate and bit allocation
a KLT is an optimal transform.

Theorem 1 ([11], [15]): Consider a transform coder
with orthogonal analysis transformT and synthesis trans-
form U T T T= =−1 . Suppose there is a single function g
to describe the quantization of each transform coefficient
through

[ ]E g R i N
i i i i

( ɵ ) ( ), , , ,y y− = =2 2 1 2σ … ,
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Box 6
Optimizing the Synthesis Transform U

From a glance at Fig. 1, it is natural to assume that the
synthesis transform should be U T= −1. Theorem 3

provides sufficient conditions for this to be optimal, but
these are not always satisfied.

As an example, consider a two-dimensional,
zero-mean, jointly Gaussian source with

R
x

=










1

16

13 3 3

3 3 7
.

Level curves of the pdf are shown with dotted ellipses.
Rotating by 30° would give independent transform coef-
ficients, but suppose no transform (or the identity trans-
form) is used. The conditions of Theorem 3 are not
satisfied: Even if the β i ’s (scalar quantizer decoders) are
optimal, a synthesis transform other than T I− =1 may be
optimal.

Withα i ’s (scalar quantizer encoders) that are uniform
with step size ∆ =1, the partitioning is as shown.

The outputs of the scalar quantizers (•) are not at the
centers of the cells, but they still form a separable
codebook; the cell centroids (∗) are not separable. The
optimal synthesis transform

U =










0 970 0089

0083 0 944

. .

. .

gives a better codebook (�) and reduces the distortion by
4.2%.

Transform codes are easy to
implement because of a divide
and conquer strategy; the trans-
form exploits dependencies in
the data so that the quantization
and entropy coding can be
simple.



where σ
i

2 is the variance of y
i
and R

i
is the rate allocated

to y
i
. Then for any bit allocation( , , , )R R R

N1 2
… there is

a KLT that minimizes the distortion. In the typical
case where g is nonincreasing, a KLT that gives

( , , , )σ σ σ
1

2

2

2 2
…

N
sorted in the same order as the bit allo-

cation minimizes the distortion.
Since it holds for any bit allocation and many families

of quantizers, Theorem 1 is stronger than several earlier
transform optimization results. In particular, it subsumes
the low-rate results of Lyons [28] and the high-rate re-
sults that are reviewed presently.

Recall that with a high average rate of R bits per com-
ponent and quantizer performance described by (9), the
average distortion with optimal bit allocation is given by
(10). With Gaussian transform coefficients that are opti-
mally quantized, the distortion simplifies to

( )D c
ii

N N
R=

=

−∏ σ 2

1

1
22

/

,
(11)

where c e= π / 6 for entropy-constrained quantization or
c = 3 2π / for fixed-rate quantization. The choice of an
orthogonal transform is thus guided by minimizing the
geometric mean of the transform coefficient variances.

Theorem 2: The distortion given by (11) is minimized
over all orthogonal transforms by any KLT.

Proof: Applying Hadamard’s Inequality [18, 7.8.1] to
R

y
gives

( )( )( )det det det detT R T RT

i
i

N

x y
= ≤

=
∏σ 2

1

.

Since det T =1, the left-hand side of this inequality is in-
variant to the choice of T . Equality is achieved when a
KLT is used. Thus KLTs minimize the distortion.

Equation (11) can be used to define a figure of merit
called the coding gain. The coding gain of a transform is a
function of its variance vector, ( , , , )σ σ σ

1

2

2

2 2
…

N
, and

the variance vector without a transform, diag( )R x :

( )
( )

coding gain =
=

=

∏

∏

( )
/

/

R xi

N

ii

N

ii

N N

1

1

2

1

1

σ
.

The coding gain is the factor by which the distortion is re-
duced because of the transform, assuming high rate and
optimal bit allocation. The foregoing discussion shows
that KLTs maximize coding gain. Related measures are
the variance distribution, maximum reducible bits, and
energy packing efficiency or energy compaction. All of
these are optimized by KLTs [33].

More General Results

The results of the previous section are straightforward,
and Theorem 2 is well known. However, KLTs are not al-
ways optimal . With some sources, there are
nonorthogonal transforms that perform better than any
orthogonal transform. And, depending on the
quantization, U T= −1 is not always optimal, even for
Gaussian sources. This section provides results that apply
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Box 7
Orthogonality versus Independence

Two qualitative intuitions arise from high resolution
transform coding theory: a) try to have independ-

ent transform coefficients; and b) use orthogonal trans-
forms. Sometimes you can only have one or the other.

Suppose the source x is uniformly distributed on the
rhombus shown below left. For a ≠ 0, there is no or-
thogonal transform that gives independent transform
coefficients. The best orthogonal transform is a 45° ro-
tation (right top) and the nonorthogonal transform

T
a

a

a
=

−

−

−











1

1

1

12

gives independent transform coefficients (right bot-
tom).

By computing differential entropies of the transform
coefficients and using (6), one can show that the opti-
mal high-rate performance using the orthogonal trans-
form is

D e a R= − −1

6
1 22 2( ) .

Computing the effect of nonsquare cells as in Box 4,
one can show that the performance with the
nonorthogonal transform is

D a R= + −1

3
1 22 2( ) .

For a e e( )/( )− +2 2 , it is better to use the
nonorthogonal transform; otherwise, it is better to use
the KLT. The optimal transform is neither orthogonal
nor produces independent transform coefficients.

The situation is yet more complicated if we do not
use high resolution theory. For a =0 and very low rates,
the rotated coordinates are better than the original coor-
dinates even though the components are independent in
the original coordinates [14].

Orthogonal
Transform

Independent
Transform

Coefficients

1 + a

1 + a
−1 + a

−1 + a

1 a−
1 a−

−1 a−

− −1 a

√2(1 a)−

√2(1 a)−−√2(1 + a)

√2(1 a)−−

1

−1 1

−1



without the presumption of Gaussianity or orthogonality
and examples to show the limitations of these results.

The Synthesis Transform U

Instead of assuming the decoder structure shown in the
bottom of Fig. 1, let us consider for a moment the best
way to decode given only the encoding structure of a
transform code. The analysis transform followed by
quantization induces some partition of R N , and the best
decoding is to associate with each partition cell its cen-
troid. Generally, this decoder cannot be realized with a
linear transform applied to ɵy. For one thing, some scalar
quantizer decoderβ

i
could be designed in a plainly wrong

way; then it would take an extraordinary (nonlinear) ef-
fort to fix the estimates.

The difficulty is actually more dramatic because even if
the β

i
s are optimal, the synthesis transform T −1 applied

to ɵy will generally not give optimal estimates. In fact, un-
less the transform coefficients are independent, there may
be a linear transform better suited to the reconstruction
than T −1 .

Theorem 3 ([14]): In a transform coder with invertible
analysis transform T , suppose the transform coefficients
are independent. If the component quantizers reconstruct
to centroids, then U T= −1 gives centroid reconstructions
for the partition induced by the encoder. As a further con-
sequence, T −1 is the optimal synthesis transform.

Examples where the lack of independence of transform
coefficients or the absence of optimal scalar decoding
makes T −1 a suboptimal synthesis transform are given in
[14]. One of these examples is presented in Box 6.

The Analysis Transform T

Now consider the optimization of T under the assump-
tion that U T= −1 . The first result is a counterpart to The-
orem 2. Instead of requiring orthogonal transforms and
finding uncorrelated transform coefficients to be best, it
requires independent transform coefficients and finds or-
thogonal basis vectors to be best. It does not require a
Gaussian source; however, it is only for Gaussian sources
that R

y
being diagonal implies that the transform coeffi-

cients are independent.
Theorem 4 ([14]): Consider a trans-

form coder in which analysis transformT
produces independent transform coeffi-
cients, the synthesis transform is T −1 ,
and the component quantizers recon-
struct to their respective centroids. To
minimize the MSE distortion, it is suffi-
cient to consider transforms with or-
thogonal rows, i.e., T such that TT T is a
diagonal matrix.

The scaling of a row of T is generally
irrelevant because it can be completely
absorbed in the quantizer for the corre-
sponding transform coefficient. Thus,

Theorem 4 implies furthermore that it suffices to con-
sider orthogonal transforms that produce independent
transform coefficients. Together with Theorem 1, it still
falls short of showing that a KLT is necessarily an optimal
transform—even for a Gaussian source.

Heuristically, independence of transform coefficients
seems desirable because otherwise dependencies that would
make it easier to code the source are “wasted.” Orthogonality
is beneficial for having good partition cell shapes. A firm re-
sult along these lines requires high resolution analysis.

Theorem 5 ([14]): Consider a high-rate transform coding
system employing entropy-constrained uniform
quantization. A transform with orthogonal rows that pro-
duces independent transform coefficients is optimal, when
such a transform exists. Furthermore, the norm of the ith
row divided by the ith quantizer step size is optimally a con-
stant. Thus, normalizing the rows to have an orthogonal
transform and using equal quantizer step sizes is optimal.

For Gaussian sources there is always an orthogonal
transform that produces independent transform coeffi-
cients—the KLT. For some other sources there are only
nonorthogonal transforms that give independent trans-
form coefficients, but for most sources there is no linear
transform that does so. Through an example, Box 7 con-
siders whether orthogonality or independent transform
coefficients is more important, when you have to choose
between the two. There is no unequivocal answer.

More examples that explore the limitations of Theo-
rem 5 are given in [14]. In particular, it is demonstrated
that even an orthogonal transform that produces inde-
pendent transform coefficients is not necessarily optimal
when the rate is low.

Departures from the Standard Model

Practical transform coders differ from the standard model
in many ways. This is discussed in detail in two articles of
this Magazine [37], [38]. One particular change has sig-
nificant implications for the relevance of the conventional
analysis and has lead to new theoretical developments:
Transform coefficients are often not entropy coded inde-
pendently.
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▲ 3. An alternative transform coding structure introduced in [12]. The transform T op-

erates on a vector of discrete quantizer indices instead of on the continuous-valued

source vector, as in the standard model. Scalar entropy coding is explicitly indi-

cated. For a Gaussian source, a further simplification with γ γ γ
1 2

= = ⋅⋅⋅ = N can be

made with no loss in performance.



Allowing transform coefficients to be entropy coded
together, as it is drawn in Fig. 1, throws the theory into
disarray. Most significantly, it eliminates the incentive to
have independent transform coefficients. As for the par-
ticulars of the theory, it also destroys the concept of bit al-
location because bits are shared among transform
coefficients.

The status of the conventional theory is not quite so
dire, however, because the complexity of unconstrained
joint entropy coding of the transform coefficients is pro-
hibitive. Assuming an alphabet size of K for each scalar
component, an entropy code for vectors of length N has
K N codewords. The problems of storing this codebook
and searching for desired entries prevent large values of N
from being feasible. Entropy coding without explicit
storage of the codewords—as, for example, in arithmetic
coding—is also difficult because of the number of symbol
probabilities that must be known or estimated.

Analogous to constrained lossy source codes, joint en-
tropy codes for transform coefficients are usually con-
strained in some way. In the original JPEG standard [32],
the joint coding is limited to transform coefficients with
quantized values equal to zero. This type of joint coding
does not eliminate the optimality of the KLT (for a
Gaussian source); in fact, it makes it even more important
for a transform to give a large fraction of coefficients with
small magnitude. The empirical fact that wavelet trans-
forms have this property for natural images (more ab-
stractly, for piecewise smooth functions) is a key to their
current popularity. Another article in this issue [39] dis-
cusses this and related developments at length.

Returning to the choice of a transform assuming joint
entropy coding, the high rate case gives an interesting re-
sult: Quantizing in any orthogonal analysis basis and using
uniform quantizers with equal step sizes is optimal. All the
meaningful work is done by the entropy coder. Given that
the transform has no effect on the performance, it can be
eliminated. There is still room for improvement, however.

Producing transform coefficients that are independent
allows for the use of scalar entropy codes, with the attendant
reduction in complexity, without any loss in performance. A
transform applied to the quantizer outputs, as shown in Fig.
3, can be used to achieve or approximate this. For Gaussian
sources, it is even possible to design the transform so that
the quantized transform coefficients have approximately the
same distribution, in addition to being approximately inde-
pendent. Then the same scalar entropy code can be applied
to each transform coefficient [12]. Some of the lossless
codes used in practice include transforms, but they are not
optimized for a single scalar entropy code.

Historical Notes
Transform coding was invented as a method for conserv-
ing bandwidth in the transmission of signals output by
the analysis unit of a ten-channel vocoder (“voice coder”)
[4]. These correlated, continuous-time, continu-
ous-amplitude signals represented estimates, local in

time, of the power in ten contiguous frequency bands. By
adding modulated versions of these power signals, the
synthesis unit resynthesized speech. The vocoder was
publicized through the demonstration of a related device,
called the Voder, at the 1939 World’s Fair.

Kramer and Mathews [25] showed that the total band-
width necessary to transmit the signals with a prescribed
fidelity can be reduced by transmitting an appropriate set
of linear combinations of the signals instead of the signals
themselves. Assuming Gaussian signals, KLTs are opti-
mal for this application.

The technique of Kramer and Mathews is not source
coding because it does not involve discretization. Thus,
one could ascribe a later birth to transform coding.
Huang and Schultheiss [20], [21] introduced the struc-
ture shown in the bottom of Fig. 1 that we have referred
to as the standard model. They studied the coding of
Gaussian sources while assuming independent transform
coefficients and optimal fixed-rate scalar quantization.
First they showed thatU T=

−1 is optimal and then thatT
should have orthogonal rows. These results are subsumed
by Theorems 3 and 4. They also obtained high-rate bit al-
location results.

Summary
The theory of source coding tells us that performance is
best when large blocks of data are used. But this same the-
ory suggests codes that are too difficult to use—because
of storage, running time, or both—if the block length is
large. Transform codes alleviate this dilemma. They per-
form well, though not optimally, but are simple enough
to apply with very large block lengths.

Transform codes are easy to implement because of a
divide and conquer strategy; the transform exploits de-
pendencies in the data so that the quantization and en-
tropy coding can be simple. For jointly Gaussian sources,
this works perfectly: the transform can produce inde-
pendent transform coefficients, and then little is lost by
using scalar quantization and scalar entropy coding.

As with source coding generally, it is hard to make use
of the theory of transform coding with real-world signals.
Nevertheless, the principles of transform coding certainly
do apply, as evidenced by the dominance of transform
codes in audio, image, and video compression.
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