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ABSTRACT

The post-Newtonian limit of Rosen's theory of gravity is
evaluated and is shown to be identical to that of general
relativity, except for the PPN parameter @, (which is related
to the difference in propagation speeds .Jor gravitational and
electromagnetic waves). Both the value of 02 and the value of
the Newtonian gravitational constant depend on the present
cosmological structure of the Universe. If the cosmological
structure has a specific (but rresumably special) form, the
Newtonian gravitational conscant assumes its current value,

@, is zero, the post-Newtonian limit of Rosen's theory is

" 5
identical to that of general relativity--and standard solar

system experiments cannot distinguish between the two theories.




1. INTRODUCTION

Nathan Rosen (1973, 1974) has recently devised a new theory of
gravity., It is a bimetric theory in the sense that it possesses two
metric fields--a flat metric nij with "light cones'" along which weak
gravitational waves propagate, and a curved metric sij with "light
cones" along which light propagates., It is also a "metric theory"
in the sense that the Einstein equivalence principle holds in the
local Lorentz frames of the "physical metric" sij (cf. § 39.2 of
Misner, Thorne, and Wheeler 1973--cited henceforth as MIW}, The field
equations of the theory are derivable from a variational principle. In
forthcoming papevs Rosen and his colleagues will use the theory to
analyze cosmology and neutron stars,

In this paper we evaluate the post-Newtonian limit of Rosen's
theory by considering an isolated system with weak internal gravity
(such as the solar system). We express our results in the language
of "he Nordtvedt-Will Parametrized Post-Newtonian (PPN) Formalism
(see Chapter 39 of MIW; also the review by Will 1974). At any particular
epoch in the evolution of the Universe, the boundary conditions in the
asymptotically flat region far outside the system are determined by the
cosmological structure of the Universe «t that epoch, We assume
boundary conditions which are appropriate for a homogeneous, isotropic
cosmological model. We find that the Newtonian gravitational constant
and the value of the PPN parameter 02 depend on the cosmological
boundary values. For a particular choice of cosmological boundary

values, the Newtonian gravitational constant assumes its present value,

ale




@, is zero, and the post-Newtonian limit is identical to that of
general relativity,
The notation and format of this paper will be the same as in

Ni's (1972) compendium of metric theories of gravity,

I1. EVALUATION OF POST-NEWIONIAN LIMIT

a, Principal References: Rosen (1973, 1974)

b, Cravitational Fields: g, 7

A semicolon ";" and a slash "|" denote covariant derivatives with

respect to @ and 7, respectively.
c, Field Equations:

1 .kl 1

kl _mn J-g 1 k1
Rl sijlkl - 27 B gmilkgn_lll -8).\/_-_1-1 Go(Tij‘;'gijB Tkl) (1)

Riem(mn) = 0 (2)

The field equations are written in units with the speed of light
c=1, Gn is a coupling constant with the dimensions of the Newtonian

gravitational constant, The field equations are invariant under the
" = 8* g d
i iy Bij 3= b1p

*
G0 - Go = AGO, wherc A is a constant; therefore, Go can be chosen to

rescaling given by nij - = AT
have any convenient value. We choose Go to be the Newtonian gravitational
constant in the solar system today. In his original presentation Rosen
chose units such that Gc = 1.
d. The Post-Newtonian Solution:

Consider an isolated system with weak internal gravity. As in

general relativity (MIW, Chapter 19), so also in Rose: s theory, there

«2a




exist coordinate systems [xi} in which gij is asymptotically Minkowskiian:
”BIjH = diag(l, -1, -1, -1) far from source. (3)

However, the cosmological structure of the Universe at the epoch of

interest will typically force 7, 6 to have a non-Minkowskiian form in

i)

these coordinates. To avoid this complication, we shall compute in

]
coordinates lx1 } with

Ingegell = diag@, -1, -1, -1, (4a)
(B)

Hsi.j.H - ||81.j.n # diag(l, -1, -1, ~1) far from source, (4b)
By definition the cosmological background metric (eq. [4b]) changes only
on cosmological time scules. Since cosmological time scales are so much
longer than the dynamical time scales of a system such as the solar
system, we can ignore the variation of the cosmological background metric
in calculating the post-Newtonian limit,

We can simplify the cosmological background metric, without

destroying the form (eq. [4&]) of ?i'j" by performing an appropriate

Lorentz transformation. More specifically, by an appropriate boost we

can set gii&. = 0, and by a subsequent rotation we can diagonalize
g(ﬁﬁg., thereby obtaining
(B) | . s Sy

In general the four constants ¢, will be different. However, for

J

the simple case of a homogeneous, isutropic cosmological model, a further

simplification of the cosmological background metric is possible (Rosen

1975, Caves 1975). 1In the universal rest frame of such a cosmological



model (frame comoving with the cosmological fluid; frame in which the
black=body background radiation i. isotropic), equation (5) holds with

iy e, = c3 . Heoceforth, we will restrict ourselves to this case:

(B)

1!]! -5

lg}yill = diag(e , =¢

1! 1! -cl) . (6)

The simple form of equation (6) will be maintained under boosts if and
only if € = € - Therefore, if <, ¥ € assuming equation (6) is
equivalent to assuming that our calculation of the post-Newtonian limit
is carried out in the universal rest frame,

We first solve the field eauations (1) to Newtonian order. The

solution is

1/2

Byt * co‘:1 - 2c1(c°c1) GOU'] ’ (7a)
8y igr = 0, (7b)
Byrgr = 'clbaﬁ ; (7¢)
where U' is the Newtonian potential:
v (xt,e) = [ PELED gp (8)
| ='<2" |
where P is the rest mass density in the proper rest frame of the material

[frame with llgff” = diag(l, -1, -1, -1) and u1 = 6; , where u:l is
the 4-velocity of the material].
In order to compare with the correct Newtonian limit, we introduce

coordinates {xi} in which gij is asymptotically Minkowskiian:




x » (9a)

X = c% X » (9b)

In these new "unprimed" coordinates the metric (eqs. [7)) becomes

3

soo =] - Z(cocl) GOU 5 (1C.)

B * o, (10b)

gb'p = -éaﬂ ’ (10c)
where we have rescaled the New potential appropriately, i.e.,

P54

PN

U(x,t) = ¢, U"(x",t") = . (11)
It follows from equations (10) that, at any given epoch in the evolution
of the Universe, the Newtonian gravitational constant is given by
1
G = (ee) G . (12)

For the remainder of the calculation we choose units such that, at the
particular epoch of interest, G = 1,

We now use standard procelures to solve the field equations (1) to
post-Newtonian order. In the standard post-Newtonian gauge the solution
is

Byrgr = €L 1 = 20" + 2ci W% - 4p'], (13a)




- 1% 1%
Bgry = € [(4 2°n)v‘;'+2°1"‘;’]'

Syrgr = ¢ 603[1 . 2clU'] :

where the potentials V' , ﬂ; are as on page 1085 of MIW, where

p(E',t" )P (R',t")
g, ¢’) = Jr ag’
' = §'|

2
c
s | 2 2., 4,1 3 B
¢ e, (v)" +cjU' + 2cln +t3¢% 0o

and where p and Tl are pressure and specific internal energy in the
proper rest frame cf the material and 3' is the coordinate velocity
of the material, v' = dg'/dxo'.

In order to compare with the PPN formalism, we now transiorm the
metric (eqs. [13]) to the "unprimed" coordinates (egs. [9]). After

rescaling the various potentials accordingly, e.g.,
1
V,(x,t) = cl(cI/cor vox',t')

the transformed solution is

2

g =1-20+20° -4 ,
00
c c
L B 1l o
B = (4 =3 & ) Vo * 32 ¢ Wy

gaB = -603(1 +20) ,

where the potentials U, V,, W_, $ are all as on page 1085 of MIW. By

(13b,

(13c)

(l4a)

(14b)

(15)

(l16a)

(16b)

(16¢c)




comparing equations (16) with the standard PPN metric (see, e.g.,
MIW $39.8 and eg. [4] of Will 1973), we obtain the following values

for the PPN parameters of Rosen's theory:
Y.B-l; bl- %- Cj' Cl.. CH-GI-QJ-O;
a = (e /e)) -1 . (17)

The PPN parameters of Rosen's theory are identical to those of
general relativity, except for the preferred frame parameter az which
is nonzero whenever s ¥ ¢, . The value of ﬂz can be related to the

relative propagation sve«ds of electromagnetic and weak gravitational

waves in Rosen's theory. In the "unprimed" coordinates the physical

me! ric has the asymptotic form llgijll -+ diag(l, -1, =1, ~-1), while
-1 _~-1 -1 -1
the flat metric M has the form llnij” dilg(co ,-c1 2 -c1 » =€ ).
Thus the vacuum, linearized equations for Blj (wave equations for
weak gravitational waves) take the form
(cfe)8yi o0 = T 83y =0 (18)

whose solution is a « ave propagating with speed v /2. In

21
the "unprimed" coordinates, electromagnetic waves propagate with speed

- (cllco)1

unity. Thus the PPN parameter @, measures the relative difference
in ;peeds (as measured by an observer at rest in the universal rest
frame) between electromagnetic and gravitational waves in Rosen's

theory, and is given by




a, - (l/vi) 3 (19)

(see Will 1971 for another example of a the.:y with this property).

Earth-tide measurements place an upper limit on uh given by (Will 1971)

la,| = |(1,’v§) -1 <3 x10°°, (20)

) |
Equations (12) and (17) show that, in Rosen's theory, the values

of both the Newtonian g-av tational constant and the PPN parameter dz

depend on the cosmological boundary values., In general, both will

change as the Universe evolves, In a separate paper, Caves (1975)

will analyze the liomogeneous, isotropic cosmologies of Rosen's theory.

He will show that there exists a special epoch in such cosmologies

at which £ By ik 1. At thar epoch the Newtonian gravitational constant

has its current value, and the PPN parameters are precisely the same

as those of general relativity.

Notice that the constants co and cl can bhe written in terms of

scalars constructed from m and 9 :

ap

c + 3c1 = 1 g“B : (21a)
) 3. . o
=t e Top 8 : (21b)

where the expressions on the right are to be evaluated in the asymptotically

flat region outside the solar system,

afe
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