
Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems

J A C K E D M O N D S

University of Waterloo, Waterloo, Ontario, Canada

AND

R I C H A R D M. K A R P

University of California, Berkeley, California

ABSTRACT. This paper presents new algori thms for the maximum flow problem, the Hitchcock

t r anspo r t a t i on problem, and the general min imum-cos t flow problem. Upper bounds on the

numbers of steps in these algori thms are derived, and are shown to compale favorably with

upper bounds on the numbers of steps required by earlier algori thms.

Firs t , the paper s ta tes the maximum flow problem, gives the Ford-Fulkerson labeling method

for its solution, and points out t h a t an improper choice of flow augment ing pa ths can lead to

severe computa t iona l difficulties. Then rules of choice t h a t avoid these difficulties are given.

We show tha t , if each flow augmenta t ion is made along an augment ing pa th having a minimum

number of arcs, then a maximum flow in an n-node network will be obta ined af te r no more than

~(n a - n) augmenta t ions ; and then we show tha t if each flow change is chosen to produce a

maximum increase in the flow value then, provided the capacit ies are integral , a maximum flow

will be de te rmined wi thin at most 1 + logM/(M--1) if(t, S) augmenta t ions , wheref*(t, s) is the

value of the maximum flow and M is the maximum number of arcs across a cut.

Next a new algor i thm is given for the minimum-cos t flow problem, in which all shor tes t -pa th

computa t ions are performed on networks wi th all weights nonnegat ive . In par t icular , this

a lgor i thm solves the n X n ass igmnent problem in O(n 3) steps. Following t h a t we explore a

" sca l ing" technique for solving a minimum-cost flow problem by t r ea t ing a sequence of derived

problems wi th "scaled down" capacit ies. I t is shown tha t , using this technique, the solution of

a I i i tchcock t r anspor t a t ion problem wi th m sources and n sinks, m ~ n, and maximum flow B,

requires at most (n + 2) log2 (B/n) flow augmenta t ions . Similar results are also given for the

general minimum-cost flow problem.

An abs t rac t s t a t ing the main results of the present paper was presented at the Calgary

In te rna t iona l Conference on Combinator ia l S t ruc tures and Thei r Applicat ions, J u n e 1969.

In a paper by l)inic (1970) a resul t closely related to the main resul t of Section 1.2 is obtained.

Dinic shows tha t , in a network wi th n nodes and p arcs, a maximum flow can be computed in

0 (n2p) pr imi t ive operat ions by an a lgor i thm which augments along shor tes t augment ing paths.

KEY WOl¢l)S AND PHP~ASES: network flows, t r anspor t a t ion problem, analysis of algori thms

CR CATEGOI{.IES: 5.3, 5.4, 8.3

Copyr ight © 1972, Association for Comput ing Machinery, Inc.

General permission to republish, bu t not for profit, all or par t of this mater ia l is granted,

provided t ha t reference is made to this publ ica t ion, to its date of issue, and to the fact tha t

r epr in t ing privileges were granted by permission of the Association for Comput ing Machinery.

Authors ' addresses : J . Edmonds, Depa r tmen t of Combinator ics and Optimizat ion, Univers i ty

of Waterloo, Waterloo, Ontario, Canada; R. M. Karp, College of Engineering, Operations

Research Center , Univers i ty of California, Berkeley, CA 94720; the l a t t e r au thor ' s research has

been par t ia l ly suppor ted by the Nat iona l Science Founda t ion raider Gran t GP-15473 with the

Univers i ty of California.

Jc~urnal of the Association for Computing Machinery, Vol. 19, No. 2, Apri| 1972. pp. 248-264.

Theoretical Improvements in Algorithmic E~ciency for Network Flow Problems 249

1. The Maximum Flow Problem

1.1. THE LABELING METHOD. A network N is a finiteset {u, v, - • • } called the nodes

and a subset of the ordered pairs (u, v), u # v, called the arcs. Network N has a

special return arc (t, s). Node s is called the source in N and node t is called the

sink in N. T he set of all arcs of N, except (t, s), we denote by A. For each (u, v) ~ A

there is given a number c(u, v) > 0 called the capacity of arc (u, v).

A nonnegat ive function f (u , v), ranging over all arcs (u, v) of N, is called a flow

in N if

(i) for every (u, v) C A, f (u , v) < c(u, v); and

(ii) for every node u,

f (u , v) -- ~ f(v, u) = O,
v v

where each sum is over every v for which the summand is defined.

For each arc (u, v) of N, f (u , v) represents the amount of flow in arc (u, v), and

also represents the net amoun t of flow from v to u in the rest of the network

" N - (u, v) . "

The max imum network flow problem is to find a flow f in N such that f(t, s), the

net amount of flow in N - (t, s) f rom s to t, is maximum.

Let u~, u2, • • • , u , be a sequence of distinct nodes such that , for each i = l, 2,

• .. , p - 1, either (u~, u~+~) or (u~+~, u~) is an arc. Singling out, for each i, one of

these possibilities, we call the resulting sequence of arcs a path f rom Ul to Up. Arcs

(u~, u~+~) tha t belong to the pa th are called forward ares of the pa th ; the other arcs

of the pa th are called reverse arcs.

Relative to any given flow f in N, a (flow) augme~ti~tg path is a pa th from s to t

such that :

Case (a): If (ui, ui+l) C A and (ui+i, ui) ~ A, then

~i ~" C (U i , Ui+i) - - f (u i , ui+l) > 0;

Case (b): If (ui, ui+l) C A and (ui+l, ui) C A, then

ei = f(ui+l, ui) > 0;

Case (c): If (u,., ui+l) ~ A and (ui+l, u,.) C A, then

~i = e (u i , n iT1) - - f (u i , Ui+1) -~ f(ui+,, u~) > O.

For a given augment ing pa th P , let e = rain e, > 0. Call each arc (ui, u~+~) or

(u~+~, u~) in P such tha t ei = e a bottleneck arc relative to P and the flow f.

Now alter the flow f as follows I : increase f by e on the re turn arc (t, s) ; in Case

(a), increase the flow on arc (ui, Ui+l) by e; in Case (b), decrease the flow on arc

(ui+~, u~) by e; in Case (c), increase the flow on arc (ui, ui+i) by

min (e, c(ui , ui+i) - f (u l , ui+l)) and decrease the flow on arc (ui+l, ui) by

max (0, e - c (ui, u~+l) + f (u i , ui+l)). I t is easily checked that t h e f ~ thus defined

is a flow in N. Thus, since f~ (t, s) = f(t, s) + e, the flow f is not maximum. I t can

1 The method of augmentation presented here differs [in Case (c)] from the method originally
given by Ford and Fulkerson (cf. [5]). The results of this paper apply, with minor changes, to
the Ford-Fulkerson method as well.

Journal of the Association for Comput ing Maclainery, Vol. 19, No. 2, April 1972

2 5 0 J . E D M O N D S AND R . M. K A R P

be shown that, conversely, a flow f in N is not maximum only if there is an

augmenting path with respect to f.

The labeling method constructs a sequence F = fo, fl, f2, . . . of flows in N, starting

with, say, the zero flow, by finding an augmenting path with respect to f if one exists,

and then augmenting to obtain fk+l. The sequence terminates only when a maximum

flow has been obtained.

Assuming that all the capacities c (u, v) are integers, then clearly for any aug-

menting path P relative to any integer-valued flow f, e is a positive integer. Thus,

since f0 is integer-valued, all the later flows fk in the sequence F are integer-valued.

I t follows that the sequence terminates after a number of labelings not greater than

the final value of f (t, s).

The following example illustrates that this upper bound on the number of label-

ings can actually occur.

11

s t

V

Suppose that the arc (u, v) has capacity 1, and the capacity of each of the other arcs

in A is M, a positive integer. Then the maximum value of f(t, s) is 2M, and 2M

labelings will be required if the labeling process alternates between selecting

(s, u)(u , v)(v, t) and (s, v)(v, u) (u , t) as an augmenting path. For, in each case,

either (u, v) or (v, u) is a bottleneck arc, and e = 1.

Assuming that all the capacities are mutually commensurable, we can obtain an

equivalent integer-valued problem by multiplying all the capacities by a large con-

stant. Thus, in this case also, the sequence F is finite.

Ford and Fulkerson show by an example that if the capacities are not com-

mensurable then the sequence F need not terminate, and in fact, may converge to a

nonmaximum flow.

Since numerical computation is always, in practice, performed on numbers ex-

pressed to a finite precision, this nonfiniteness is not from a practical viewpoint a

very serious matter. I t does serve as another indication of the tendency of the

number of augmentations to grow as the precision to which the capacities are ex-

pressed increases.

We will show that these theoretical difficulties, which could conceivably be a

practically serious matter, can be avoided. In particular, by making a certain re-

finement of the labeling method which is so simple that it is likely to be incorporated

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

Theoretical hnprovements in, Algorithmic E~ciency for Network Flow Problems 251

innocently into a computer implementat ion, we get a bound of at most ~ (Q - n)

terms in the sequence F (regardless of commensurabi l i ty) , where n is the number of

nodes. In addition, a second refinement of the labeling method is shown to yield a

bound on the length of F, applicable only in the case of integer capacities, of 1

10gM/(M--:) f*(t, S), where f*(t, s) is the value of a max imum flow, and M < n2/2.

1.2. A REFINEMENT. The labeling method requires as a subrout ine a labeling

process for finding, if one exists, an augment ing pa th P relative to a given flow f in

N. This is essentially a method for finding, in a certain ne twork N I hav ing the same

nodes as N, a directed pa th f rom s to t. A directed path f rom s to t is a pa th such

that all arcs are forward arcs. The ordered pair (u, v) is an arc of N I if and only if

either

(u ,v) C A and c (u , v) - f (u , v) > 0

or

(v ,u) ~ A and f (v , u) > 0.

The arcs of any directed pa th p I f rom s to t in N i are in one-one correspondence with

the arcs of an augment ing pa th P in N relative to f. The arc of p I corresponding to a

bottleneck arc of P is also referred to as a bot t leneck arc.

The labeling process for finding a directed pa th in N I f rom s to t is as follows:

First s gets "labeled." Then at each successive step of the process some labeled bu t

"unscanned" node gets scanned. To scan a labeled node u means to label every node

v not already labeled and such tha t the arc (u, v) is in N I. I f v gets labeled when u is

scanned, then u is the predecessor of v in the labeling.

As soon as the sink t gets labeled, then t, the predecessor of t, the predecessor of

that predecessor, and so on back to s, is the reverse sequence of a directed pa th in

N I from s to t. On the other hand, if every labeled node gets scanned wi thout t get-

ting labeled, then there is evident ly no directed pa th in N I f rom s to t. Clearly the

labeling process terminates in one or the other of these two situations.

The refinement t reated here, which gives an upper bound of [(n 3 -- n) on the

number of applications of the labeling process before obtaining a max imum flow,

is the following: In the labeling process, scan on a "first-labeled first-scanned"

basis. T h a t is, before scanning a labeled node u, scan the nodes tha t got labeled

before u.

I t can be shown tha t a directed pa th in N l f rom s to t, obta ined by this version of

the labeling process, is one which contains a min imum number of arcs. Thus, the

upper bound can be s ta ted as follows:

THEORE~I 1. If, in the labeling method for finding a maximum flow in a network on

n nodes, each flow augmentation is done along an augmenting path having fewest arcs,
1 3 then a maximum flow will be obtained after no more than : (n - n) augmentations.

For present purposes, we will regard the number of arcs in a pa th as its length. The

"distance" f rom a node u to a node v in N I is the min imum length of a directed pa th

from u to v in N I, or else ~ if there is no such path.

Let F = fo, fl, f2, . . . be any sequence of flows in N such tha t fk+l is obtained from

by an augmenta t ion corresponding to a shortest directed pa th pk in N Ik. Let N k
S k k • • k

denote N , and let 5 (u, v) denote the distance from u to v m N .

LEMMA 1. I f k < m and (u, v) is a bottleneck arc relative to pk and fk, and also rela-

tive to pm and f f , then, for some 1 such that k < 1 < m, (v, u) C pZ.

LEMMA 2. I l k < l, (u, v) ~ pk and (v, u) C pt, then ~(s, t) > ~k(s, t) + 2.

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

252 J . E D M O N D S A N D R. M. K A R P

Given these lemmas, the proof of Theorem 1 is at hand. Let {u, v} be any pair of

nodes such tha t (u, v) ~ A or (v, u) ~ A. Le t the sequence {ki} consist of all indices

ki such tha t either (u, v) or (v, u) is a bot t leneck arc relative to P ~ a n d f ~. By Lemma

1, one can find a sequence {l~}, containing {kl} as a subsequence, such tha t

o r

(u, v) ~ P*~, j odd and (v, u) ~ Pt~, j even

(u, v) ~ P*~, j even and (v, u) ~ Pt~, j odd.

By Lemma 2, 6 zj+'(s, t) > 6 Zj(s, t) + 2, j = 1, 2, • • • . Thus, ~t *j(s, t) > 2 (j - 1).

Bu t the length of any directed pa th in N k is at most n - 1 so tha t 6 *j (s, t) < n - 1

for all j . The length of the sequence {/j} is therefore at most ½ (n - 1) + 1 =

½ (n -+ 1), and thus the number of occurrences of (u, v) or (v, u) as a bot t leneck arc

th roughout the entire labeling method is at most ½ (~ + 1). The number of oc-

currences of bot t leneck arcs al together is therefore bounded by

n+2 l (n 12 - n 3 - n 4

And, since every augmenta t ion determines a bot t leneck arc, the number of aug-
1 3

mentat ions is also bounded by z (n - n) .

The proof of L e m m a 1 employs two simple propositions.

PROPOSITION 1. I f (u, v) is a bottleneck arc relative to pk and f~, then (u, v) ~ N k+l.

PROOF. The augmenta t ion f r o m f k t o f k+l is such that , if (u, v) C A t h e n f k+l (u, v)

= c (u, v), and if (v, u) ~ A then fk+l (y, U) = 0; hence, (u, v) ~ N *+1. II

PROPOSITmN2. I f (U,V) C N k+lthen (u,v) ~ N kor (v,u) C pk.
PROOF. Suppose (u, v) C N k+l and (u, v) ~ Nk; then, ei ther fk+1(u, v) ~ fk(u, v)

orffl +~ (v, u) ~ fk (v, u). In ei ther case, (u, v) or (v, u) must be in pk. But (u, v) ~ pk,

since (u, v) ~ N*; thus, (v, u) ~ pk.
We can now prove Lemma 1. By Proposi t ion 1, (u, v) C Nk+I; since (u, v) ~ p,n,

(u , v) C N m. Let 1 + 1 = m i n { t I t > /~and (u,v) ~ N t } .Then (u , v) ~ N ~+~,

(u, v) ~ N~; hence, by Proposi t ion 2, (v, u) ~ P~. This completes the proof of Lemma

1. II
The proof of Lemma 2 will make use of the following proposition.

PROPOSITION" 3. For t~ = O, 1, 2, • • • , and for all u,

~(s , u) < ~+~(s, u) (1)

and

6~ (u, t) < /t ~+~ (u, t). (2)

PROOF. We prove (1), the proof of (2) being similar. If 6 k+~ (s, u) = ~ , the re-

sult is evident. Assuming 6k+~(s, u) = h is finite, let s = u0, u~, . . . , uh = u be

the node sequence of a shortest directed pa th from s to u. Then 6 k (s, u0) = 0 and

we claim that

6k(s, ui+l) _~ 1 + 6k(s, ui), i = 0 , - " , h - 1. (3)

For, since (ui, u~+~) ~ N ~+1, Proposi t ion 2 tells us that (u,, ui+~) ~ N ~ or (ui+~,
u~) ~ P~. In the former case, fi~(s, u~+~) < 1 + 6~(s, ui) , since the arc (ui, ui+~)

enables us to get a directed pa th from s to Ui+l in N ~ having no more than 1 +

6~(s, u~) arcs. In the la t ter case, ~i~(s, ui) = 1 + 6~(s, ui+~), so fi~(s, u~+i) =

Journal of the Association for Comput ing Machinery, Vol. 19, No. 2, April 1972

Theoretical Improvements in, Algorithmic Ei~ciency for Network Flow Problems 253

- 1 + ~(s, ul) < 1 -F 5k (s, ui). Summing the inequalities given in (3),

~k(s,u) < h + g (s , u0) = h = g+1(s,u),

and (1) is proved. II

To prove Lemma 2 note that, since (u, v) ~ pk, ~k (s, t) = ~k (s, u) + 1 -b (3 k (v, t).

Also, ~k(s, v) = 1 + ~tk (s, u) and/tk (u, t) = 1 + ~k(v, t). Since (v, u) C pZ, ~tl(s, t) =

~Z(s, v) ÷ 1 + ~tZ(u, t). But, by Proposition 3, St(s, v) _> ~*(s, v) and 5Z(u, t) _>

~k(u, t), so that ~l(s, t) > ~ik(s,v) -t- 1 -t- ~k(u,t) = (1 + ~k(s,u)) + 1 -I- (1 +

~k(v, t)) = 2 + ~t k (s, t). Thus, Lemma 2 is proved, and we are done. I I

The proof of Theorem 1 can be modified quite simply to supply bounds on the

numbers of augmentations required in certain other refinements of the Ford-

Fulkcrson labeling method. Let a (u, v) be a real-valued function defined whenever

(u, v) C A or (v, u) C A, such that b (u, v) = a(u, v) + a(v, u) > 0. Let theweight

of a path P in N having the node sequence ul , u2, . ." , % be ~_--~ a(ui , Ui+l).

Consider a variant of the labeling method in which each augmentation is along a

flow-augmenting path of minimum weight. Then the number of augmentations can-

not exceed (S ,'~(u.v)c a 1/[b (u, v)]) -I- I A [, where S is the maximum weight of a path

from source to sink. Theorem 1 corresponds to the ease where a (u, v) = 1 for all

pairs (u, v). Another ease, corresponding to the rule: "select a flow-augmenting

path with as few reverse ares as possible," has a(u, v) = 1 if (v, u) C A, and
1 3 a(u, v) = 0 otherwise. A bound on the number of iterations in this ease is ~ (n -- n2).

1.3. A SECOND REFINEMENT. In this section we consider the following refine-

ment of the labeling method: at each iteration choose a flow-augmenting path

which gives the largest possible augmentation.

Let N be a network in which every capacity is an integer. Let M > 1 be a positive

integer such that, for any partition of the nodes of N into two sets, X and X, with

s C X and t { 2 , the number of ares with one end in X and the other in 2 is less

than or equal to M. Let f* (t, s) denote the value of a maximum flow.

THEORmr 2. If, in the labeling method for finding a maximun flow in N, a net-

work with all capacities integral, each augmentation is done along an augmenting

path giving the maximum possible augmentation, then a maximum flow will be

obtained after no more than 1 -~- lOgM/(M--1) f* (t, S) augmentations.

Before proving Theorem 2, we show how the rule under consideration can be

implemented. Suppose we arc seeking a flow-augmenting path in N relative to a

flow f. Associate with each arc (u, v) C N f a number e (u, v) equal to the value of e

that would result if (u, v) were a bottleneck arc in a flow-augmenting path relative

to N and f. Specifically,

(i) if (u,v) C A and (v,u) ~, A, then e (u , v) = c (u , v) - f (u , v) ,

(it) if (u,v) ~ A and (v ,u) C A, then e(u ,v) = f (u , v) ,

(iii) if (u,v) C A and (v,u) ~ A, then e(u ,v) = e (u ,v) - f (u , v) q-

/(v, u).

Then the labeling method seeks a directed path from s to t in N z in which the

mallest value of e (u, v) is as large as possible. This is a bottleneck problem of the

ype studied in [4]. One method of finding such a path is to label s, and then to repeat

he following step until t is labeled: find an are (u', v') ~ N I such that u' is labeled,

' is not labeled, and for any are (u, v) from a labeled node to an unlabeled node,

(u', v') _> e (u, v). Label v' and record u' as the predecessor of v'. When t is labeled,

Journal of the Association for Comput ing Machinery, Vol. 19, No. 2, April 1972

254 J . EDMONDS AND R. M. KARP

tracing the sequence of predecessors back from t gives a maximum-e flow-augmenting

path. If, at some step, there is no arc from a labeled node to an unlabeled one, then

no flow-augmenting path exists.

PROOF OF THEOREM 2. Consider a partition of the nodes of N into two sets, X

and 2 , such that s E X and t E X. Define

c(X, 2) = ~ c (u , v) , f (X , X) = ~ f (u , v)
uE._" uEx
vE X v E X

(u , v) EA (u , v) E A

and

f (X , X) = ~ f (u , v) .
u E £
v E X

(u , v) E A

Then, for any flow f,

c(X, X) > f (X , X) -- f (X , X) = f(t , s).

Suppose the labeling method using maximum augmentations produces the sequence

of flows f0, fl, . . . , fk, Let e k = f + l (t, s) - fk (t, s). Consider the augmentation

fromff to f+~. Let the set X consist of s together with all nodes which can be reached

from s by a directed path in N k consisting of arcs (u, v) such that e(u, v) > k;

let X denote the remaining nodes. Then t C 2 and every arc (u, v) in N k such that

u E X a n d v E 2 s a t i s f i e s e (u , v) < e k.

c(X, 2) - [f*(X, 2) -- f~ (2 , X)]

_< ~kl { (u ,v) lu E X , v C 2 , (u,v) ~ A or (v,u) C A]} 1 _< ekM.

Now f* (t, s) < c (X, 2) and ~ (t, s) = fk (X, 2) - fk (2, X), so

f*(t, s) - fk(t, S) < cAM; i.e. f*(t, s) -- fk(t, s) < [fk+'(t, s) -- fk(t, s)]M.

Equivalently,

f*(t, s) -- f~+~(t, s) < [f*(t, s) -- fk(t, s)](1 - - / ~ - 1) .

Thus, by induction,

f*(t, s) -- f f (t , s) < f*(t, s)(1 -- M-l) k.

Now, since all the capacities are integers, each flow is integral. Thus, if f is not a

maximum flow, then

f* (t , s) - f (t , s) >_ 1,

SO

and

f*(t, s)(1 -- M-l) k >_ 1

k _~ --logl--1/Mf* (t, S) ---- IOgM/(M--1)f* (t, S),

SO the total number of augmentations cannot exceed

1 -t- IOgM/(M--1)f (t, S).
1 2 Let 6 denote the average capacity of an arc in A. Then f* (t, s) < 6n 2 and M < ~n,

SO

iOgM/(M--1) f*(t, S) < logl+2/(~2-2)(n26) = in n26
In (1 + 2/(n ~ -- 2))"

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

Theoretical Improvements in Algorithmic E~ciency for Network Flow Problems 255

But

(2) > i n (i + 2) 2 1 (2) 2
In 1--~-n~---- ~ _ ~ >n--~-- ~ ~ .

Using these estimates we find that the number of augmentations cannot exceed

2 In n + In 5 n 4
1 -t- = 1 + - - (2 1 n n -k ln~)

2(1/n 2 - 1/n 4) 2n 2 - 2

= n 2 1 n n +½n 2 1 n S - t - O (n 21nn+n 2 1 n o) .

Thus, although the present bound depends on the capacities and requires their

integrality, it is superior to the bound of Section 1.2 in approximately the range

0 < g < e ~/4.

2. The Minimum-Cost Flow Problem

2.1. A LABELING METHOD. In this section we turn to the problem of finding a

maximum flow of minimum cost. Given a network N, associate with each arc

(u, v) E A a nonnegative cost d(u, v) as well as the usual positive capacity c(u, v).

Let the cost of a flow f be ~(~,,)e ~ d(u, v)f(u, v) and let its value be f(t, s). We seek

flow of minimum cost among those with value f*(t, s).

Call a flow f extreme if it is of minimum cost among flows with value f(t , s). We

mention some well-known characterizations of extreme flows. In doing so, we make

use of the network N s associated with f. We recall that a network, by definition, has

at most one are from one given node to another. For convenience we also assume that

(u, v) C A ~ (v, u) ~ A. Obvious devices using "fictitious nodes" can be used to

enforce this restriction if it does not originally hold. Associate with any arc (u, v)

of N s a weight ~ (u, v) as follows:

~d(u, v), (u, v) C A,
A(u, v) = ~ - d (v , u), (v, u) E A.

Define the weight of a subgraph of N s as the sum of the weights of its arcs. Define a

labeling function as a function from the nodes to the real numbers.

THEORE~I 3. 2 Let f be a flow. Then the following are equivalent:

(i) f is extreme,
(ii) every directed cycle in N s has nonnegative weight,

(iii) there exists a labeling function 7r such that, for every arc (u, v) of N s,

~(u) + ~(u, v) - ~r(v) _> 0.

A restatement of (iii) in terms of the network N is: for (u, v) ~ A,

~r(u) -- 7r(v) + d(u, v) > 0 ~ f (u , v) = O,
(4)

7r(u) -- z'(v) + d(u, v) < 0 ~ f (u , v) = c(u, v).

If the flow f and the labeling function 7r together satisfy (4), then f and 7r are

called compatible.

Another basic result is the following.

2 The equiva lence of (i) and (iii), s t a t ed in a s o m e w h a t different form, can be found in [5,

pp. 114-115].

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

256 J. EDMONDS AND R. M. KARP

THEORE:U 4. ([5, p. 121]). I f f i8 extreme and P is a path of m in imum weight in

N s from 8 to t, then a flow f ' obtained by augmenting along P is extreme.

For brevity call a path of minimum weight a "shortest pa th . " Theorem 4 sug-

gests the following method of solving the minimum-cost flow problem: starting with

an extreme flow f0, compute a sequence of extreme flows J~, fl, . . . , fk, fk+l, . . .

obtaining fk+l from fk by augmenting along a shortest path from 8 to t in N sk. A

shortest path can be determined using the following algorithm.

ALGORITHM A : S h o r t e s t - P a t h Algor i thm

Let N fk have the set of arcs A k, and let A(u, v) be the weight of arc (u, v) C A k.

(1) Set a(s) = 0 and set ~(u) = -k-~, u ~ s.

(2) Set S = {s}.

(3) If S = 4~, ha l t ; o therwise choose u* such tha t u* E S and or(u*) = minu Es,r(u)-

(4) Fo r each v such t h a t (u*, v) C A k, se t

,r(v) = rain (a(v), a (u *) A- A(u*, v)).

If this process decreases a(v), adjoin v to the set S.
(5) Delete u* from S and go to (3).

Algorithm A has the following properties:

(1) Upon its termination, a (u) gives the weight of a shortest path from s to u;

(2) If A (u, v) >_ 0 for every arc (u, v), then each vertex accessible from s enters

the set S exactly once, so that the total amount of computat ion is proportional to

the number of ares;

(3) If no cycle is of negative weight, then each vertex accessible from 8 enters the

set S at most n - 1 times, so that the total amount of computat ion has a bound

proportional to n - 1 times the number of ares;

(4) If there is a negative-weight cycle accessible from 8, then the algorithm is

nonterminating. One way to detect this is to keep a subgraph T of tentative shortest

paths. T contains arc (u, v) if v last entered S during an application of Step (4) with
$

u = u. Any cycle in T has negative weight; if a negative-weight cycle is accessible

from 8, then such a cycle will occur in T by the time an5' vertex enters S for the nth

time.

The discussion of the shortest-path algorithm shows the efficiency to be gained

in eases when all weights are nonnegative. Too little at tention has been paid to this

essential point in the development of algorithms for minimum-cost flows. We

present in this section an algorithm designed so that all shortest-path calculations are

done on networks with all weights nonnegative.

Let f be a flow and let ~- be a labeling function. Assign each arc (u, v) of N] a

weight X(u ,v) = ~r(u) -4- A (u , v) -- 7r(v).

Then clearly

(i) if C is a directed cycle, then

5(u,~)= ~ a(u,~);
(u ,v) ~ C (u,v) CC

(ii) if P is a directed p a t h f r o m u* to v*, then

~(u, ~) = ~-(u*) - ~-(~*) + ~ ~(u, ~).
(u ,v) ~P (u ,v) EP

Thus, N s has a cycle of negative weight with respect to the weights A (u, v) if

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems 257

and only if N I has a cycle of negative weight with respect to the weights A (u, v).

Also, P is a shortest path from s to t with respect to the weights A (u, v) if and only

if P is a shortest path from s to t with respect to the weights A (u, v). Consider the

implications of these facts when f and ~r are compatible. Then A (u, v) > 0, and a

minimum-weight flow-augmenting pa th (relative to the weights A(u, v)) can be

found by a shortest-path calculation using the nonnegative weights A(u, v).

A variant of the algorithm suggested by Theorem 4 is now apparent which per-

forms all shortest-path calculations on networks with all weights nonnegative.

ALGORITHM B: Minimum-Cost Flow Algorithm

(1) Set f0 equal to the zero flow, and set 7r ° equal to the identically zero labeling function;
(2) Given fk and 7r k, determine fk+l by augmenting along a minimum-weight path from s to t

in N/k with respect to the (nonnegative) weights

ak(u, v) = ~-k(u) + ,~(u, v) - ~-k(v).

If several m i n i m u m - w e i g h t pa th s exist , choose one wi th the fewest arcs.

(3) If ak(u) denotes the weight of a sho r t e s t p a t h f rom s to u w i th respect to the weights

A k, set lr~+l(u) = ~k(u) + aS(u); t ake ¢k(u) = 7rk+l(u) = -]-~ if u is inaccessible f rom s in
N/k .

(4) Halt when, for some k, no flow-augmenting path exists with respect to fk

Some properties of the algorithm are given in the following theorem.

THEORE~ 5. For each k, fk and 7rE are compatible. For eaeh k and u, 7r k (u) gives

the weight of a shortest path from s to u in N Ik with respect to the weights A (u, v) and
~'~÷ ' (u) _> ~'~ (u).

We present two bounds on the number of flow augmentations required by the

minimum-cost flow algorithm.

THEOREM 6. /f all the capacities are integers, then the computation terminates after

at most f* (t, s) flow augmentations.

PROOF. Each flow fk is integral, and each augmentat ion increases the flow by a

positive integer. [r

THEORE~r 7. Suppose the costs d (u, v) are integers less than or equal to an integer D.

Then the computation terminates after at most 1 + ~ (n 3 - n) (n - 1)D flow augmenta-

tions.

PROOF. We show that the overall computat ion can be regarded as a sequence of

at most (n - 1)D + 1 phases, each consisting of a maximum flow computation.

Each phase corresponds to a period during which 7r k (t) remains constant. Suppose

7r k (t) is constant for k~ < k < k2. Then the flow augmentations involved in passing

from fk~ to fk: are along directed paths in the subnetwork N ' containing those arcs

(u, v) i n N Ik' such that ~r k~ (u) + A(u, v) -- 7r ~ (v) = 0. Hence, these augmentations

Ltre part of a maximum-flow computat ion in N ' . The bound of Section 1.2 is appli-

cable, since the algorithm selects, at each step, a path with fewest arcs among those

of minimum weight. Hence, the number of augmentations per phase is at most

(n 3 - n). Now, except at the last step, when t is inaccessible by a flow-augmenting

9ath and ~rk~) = oc, 7r k (t) is the weight of some path in N from s to t, and hence is

~n integer between 0 and (n - 1)D. Thus, noting that 7r k (t) is nondecreasing with

~, we see that the number of phases, excluding the last step, is at most (n -- 1)D,

md the theorem follows. [I

COROLLARY 1. Algorithm B solves any minimum-cost flow problem in a finite nTm-

)er of steps (even when neither the capacities nor the costs are commensurable).

Journal of the Association for Computing Machinery, Vol. 19. No. 2, April 1972

258 J. EDMONDS AND R. M. KARP

PROOF. The first half of the proof of Theorem 7 is applicable in this case, and

shows that there is a finite bound on the number of successive flow augmentations

without an increase in ~r k (t). But, for any k, ~.k (t) is the weight of some directed

path from s to t in N f~, corresponding to some path without repeated vertices in N.

Since the number of such paths is finite ~-~ (t) increases only a finite number of times,

so that the entire process must be finite. I]

Although it is comforting to know that the minimum-cost flow algorithm ter-

minates, the bounds on the number of augmentations are most unfavorable. The

scaling method of the next two sections is a variant of this algorithm in which the

bound depends logarithmically, rather than linearly, on the capacities. A challeng-

ing open problem is to emulate the results of Section 1.2 for the maximum-flow prob-

lem by giving a method for the minimum-cost flow problem having a bound on

computation which is a polynomial in the number of nodes, and is independent of

both costs and capacities.

2.2. A SCALING METHOD FOR THE HITCHCOCK TRANSPORTATION PROBLEM. In

this section and the following one, we present a technique for solving a minimum-

cost flow problem by treating a sequence of problems with the same cost as the

given problem, but with "scaled down" capacities which approximate those of the

given problem to successively more digits of precision. The efficiency of this scaling

method is based on the following two features:

(1) the capacities, and hence the flow augmentations, in the approximate prob-

lems are on a coarser scale than in the original problem;

(2) the final solution of each approximate problem yields a good initial flow for

the next approximate problem.

We prove that the number of computation steps required by the scaling method

is proportional not to the capacities (as in the method of Section 2.1) but to the

numbers of digits in the binary representations of the capacities. Roughly speaking,

the scaling method is related to the original method as binary arithmetic is to

unary arithmetic (i.e. counting).

First we consider a special case in which the scaling technique is particularly

simple. The Hitchcock transportation problem asks for a maximum flow of minimum

cost through a network of the type shown in Figure 1.

The costs and capacities are as follows:

arc (s, si) has cost 0 and capacity al , i = 1, 2, • • • , m;

arc (t~., t) has cost 0 and capacity bj, j = 1, 2, . . . , n;

arc (sl, tj) has cost d~j and capacity % oo, i = 1, 2, • .. , m, j = 1, 2, • • • , n;

the return arc (t, s) has cost 0 and capacity + ~o.

I t is assumed that ~i'21 al = ~ - 1 bj. The value of a maximum flow is clearly

The standard interpretation of this problem is well known. Each vertex s~ cor-

responds to a "source" at which ai units of a commodity are available; each vertex

t~. corresponds to a "desffnation" which demands b~. units of the commodity. The

cost per unit of shipping from s~ to tj is dlj, and a shipping pat tern is sought which

minimizes the cost of meeting the demands at the destinations from the supplies

at the sources.

In the following specialization of the criteria for an extreme flow given in eq.

(4), ui denotes 7r(s~) and vj denotes lr(tj); also, fii denotes f(s~, tj) when i >_ 1

a n d j > 1; foi denotes f (s, si) and fio denotes f (t j , t).

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

Theoret ical I m p r o v e m e n t s i n A l g o r i t h m i c E gic iency f o r N e t w o r k F l o w P r o b l e m s

_ _ . _ _ _ _ _ . . o ~ , ° ~ t

259

FIG, 1

T H E O R E M N.

1, i f a~d on ly i f there ex is t uo , u l , • •. ,Um a n d vo , vl , • • • , v~ such that

u~-- wj-t-d~j_> 0, i = ~,2, . . - , m ; j = 1,2, . . - , n , (5a)

ui -- v; -~- di; > 0 ~ L j = 0, i = 1, 2, . . . , m ; j = 1, 2, . . . ,~t, (5b)

Uo > u i ~ foi = 0, (5c)

Uo < u i ~ f 0 i = a , , (Sd)

vi > Vo ~f~o = O, (5e)

vj < Vo ~ j~o = b; (5f)

The f l o w f is ex t reme a m o n g m a x i m u m f l o w s f o r the ne twork o f F i g u r e

Call a flow f for the Hitchcock problem pseudo-ex t reme if there exist ui and v;

satisfying (5a) and (5b). A pseudo-extreme maximum flow is extreme; for a maxi-

mum flow has f0i = ai , i = 1, 2, . . . , m andfj0 = b i , j = 1, . . . , n. Thus, if (5a)

and (5b) are satisfied, we may satisfy (5c)-(5f) by setting Uo = mini=l.2.., mU~

and w0 = maxj=l.2....,,, v;. For a problem of the Hitchcock type with ~ a~ ~ ~ bj,

a pseudo-extreme maximum flow is not, in general, extreme.

Algorithm B can, of course, be used to solve the Hitchcock problem. An alternate

method is based on the fact that a maximum pseudo-extreme flow is extreme. A

sequence of pairs (f0, ~.0), (fl, ~.1), " " , (fk, ~.k) is computed where, for each k,

(fk. ~_k) satisfies (Sa) and (Sb), so that fk is pseudo-extreme. The determination

of (fk+l, ~_k+l) from (fk, ~.k) differs from the corresponding ste~ in the previous

algorithm in only one respect: if f~i < ai then arc (s, s~) in N j is assigned cost

(s, s~) = 0, regardless of ~.k similarly ~ (tj, t) = 0 iffj0 < b;. I t is easily checked

that, if (fk, ~.k) satisfies (5a) and (Sb), then so does (f~+~, ~_k+~) ; thus, fk+~ is pseudo-

extreme if fk is. If the capacities a~ and bj are integers then an upper bound on the

number of flow augmentations is ~ l a ~ .

Now we are prepared to present the scaling method. For any nonnegative integer

p, define Problem p to have the same nodes, arcs, and costs as the given problem,

but with the capacities changed as follows: the capacity of (s, s~) is [ai/2 p] and the

capacity of (re, t) is [bff2v]. 3 Thus, the original problem is Problem 0 and, in general,

the capacities in Problem p are obtained by deleting the p low-order digits in the

binary representations of the original capacities.

3 ,, [x]" m e a n s " g r e a t e s t i n t e g e r l e s s t h a n o r e q u a l t o x."

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

2 6 0 J . E D M O N D S A N D R . M. K A R P

LEMMA 3. I f f is a pseudo-extreme flow in Problem p, then 2f is a pseudo-extreme

flow in Problem p - 1.

Choose 1 such that every finite capacity has at most 1 digits in its binary expan-

sion; i.e.a~ < 2 *, i = 1,2, - . - , m , andbi < 2 t, j = 1,2, . . . , n . Then the scaling

method computes maximum pseudo-extreme flows successively for Problems l -- 1,

1 - 2, • • • , 0. If f is the maximum pseudo-extreme flow computed in Problem p,

and 7r is the associated labeling function, then 2f is taken as the initial pseudo-

extreme flow in Problem p - l, with rr as its associated labeling function.

The following theorem bounds the number of flow augmentations in the solution

of a transportation problem by the scaling method.

THEOREM 9. The number of flow augmentations in applyi~g the scaling method to

a transportation problem with integral "supplies" a~, a~, . . . , am and integral "de-

mands" bl, b2, • • • , bn is less than or equal to

(I • = a i

max (m, n) 2 + logs ,na~'~.7, n) "

PROOF. Let fv* denote the value of a maximum flow in Problem p. The initial

flow in Problem 1 - 1 is 0 and, for p < 1, the initial flow in Problem p - 1 is 2fp*.

Recalling that each augmentation gives a positive integral increase in the flow, the

total number of augmentations is bounded above by

l--1 l--1

ft*-i q- ~_, (f*-~ -- '2fp*) = fo* -- E f p * " (6)
p = l p = l

Now

fv" = m i n (~ I a ~ 1 ~ I b 3 1) ,:=, ~7 ' ,_57 >_o.
j = l

We can write ai = 2p[ai/2 ~] + ri~,, where 0 _< rip < 2 p - 1. Hence,

~ a i - ~ r i p ~ a l
~ [a ~] i=l i=1 >i=1

i=x 2P -- '2P

Similarly,

i = l

~ b j
j = l

2v

Let B denote the common value of

[log2 (B/max (m, n))]. Then

, > (B
f p / - max 0, 2--7

and

n .

~ i ~ , ai and Ejn=l bj, and let L denote

- max (m, n))

) fp* >_ -- max (m, n) .
p = l p = l

Journal of tile Association for Comput ing Machinery, Vol. 19, No. 2, April 1972

Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems 261

Applying this inequality to (6), and noting that fo* = B, we find that an upper

bound on the total number of flow augmentations is

B/2 L + L m a x (re, n) _< (L + 2) max (re, n).

This completes the proof, ll

We remark that this bound on the number of flow augmentations is approxi-

mately equal to the number of binary digits required to encode the data of the

transportation problem. Each augmentation requires O(m, n) computation steps,

so that the number of computation steps in the entire process is bounded by a low-

degree polynomial in the size of the problem, as measured by the length of the input

text. In this sense the scaling method is a "good" algorithm. 4

2.3. A SCALING METHOD FOR THE ~'~INIMUM-CosT FLOW PROBLEM. R e f e r e n c e s

[6] and [7] give a simple method of converting any minimum-cost flow problem having

I A I arcs and n nodes into an "equivalent" Hitchcock transportation problem with

I A [sources, n destinations, and a maximum flow of ~(~.,)c i C (U, V). By Theorem 9,

the application of the scaling method to such a derived transportation problem

requires at most

(L + 2)[A I

flow augmentations where L = log2 (~(u.~.)c(u, v)/[A I). Thus, the approach of

converting to an equivalent transportation problem which is solved by the scaling

method yields a good algorithm for the minimum-cost flow problem.

In this section, we consider the direct application of the scaling method to the

minimum-cost flow problem. The general approach is clear. Given a minimum-

cost flow Problem on a network N with costs d (u, v) and capacities c (u, v), define

Problem p as a problem identical with the given one except that the capacity of arc

(u, v) is given by [e(u, v)/2v]. Choose 1 as the least integer such that 2 l > e(u, v)

for all (u, v) C A. Then the plan is to solve Problems 1 - 1, 1 - 2, . . . , 0 succes-

sively using Algorithm B, taking twice the final flow in Problem p as the initial

flow in Problem p - 1. There is a major difficulty, however. If.fp* is a minimum-cost

maximum flow in Problem p, then 2fv* is a flow in Problem p - l, but not, in general,

an extreme flow. In the case of the transportation problem this difficulty was not

serious, since it was possible to work with pseudo-extreme flows instead of extreme

flows. For general minimum-cost flow problems the remedy for this difficulty is

somewhat more complex.

We begin by showing that if f is extreme in Problem p, then 2fis "almost extreme"

in Problem p - 1. Since f is extreme in Problem p, there is a labeling function 7r

such that

~-(u) + d(u, v) - ~-(v) > 0 ~ f (u , v) = 0, (u, v) C A,

~'(u) + d(u, v) - ~'(v) < 0 ~ f(u, v) = [c(u, v)/2P], (u, v) C A.

Using the inequalities

Fe(u,) 1 Fe(,v)l
2 L - ~ - - J -< L~T- ' -J -< 2 L2G- -J + 1,

4 The concept of a " g o o d a l g o r i t h m " is discussed in detai l in [2].

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

262 z. EDMONDS AND R. M. KARP

we have

~r(u) + d(u, v) -- ~'(v) > 0 ~ 2f(u, v) = O, (7)

7r(u) + d(u, v) -- ~r(v) < 0 ~ 2f(u, v) < [c(u, v) /2 p-'] < 2f(u, v) + 1.

But compat ib i l i ty of f and ~r in P rob l em p - 1 requires

~r(u) + d(u, v) - ~r(v) < 0 ~ 2f(u, v) = [c(u, v)/2P-1].

Thus, 2f and ~r fail to be compat ib le in P rob lem p - 1 by a t most one uni t of flow

on any arc. We give an efficient me thod of t ransforming 2f to a flow which has the

same value and is ex t reme in P rob lem p -- 1. The me thod can be regarded as a

va r i an t of the Fulkerson out-of-ki l ter a lgor i thm [5] in which the "flow change"

and "po ten t ia l change" phases are combined into a single computa t ion .

We s ta te the me thod as it appl ies to an a rb i t r a ry integral feasible flow g in Prob-

lem p -- 1, and an a rb i t r a ry labeling funct ion 0. Dcfine el(u, v) = O (u) +

d(u, v) -- 0 (v). Define Kg.o (u, v), the kilter number of ~rc (u, v) relat ive to g and 0, as

g(u, v), if d(u, v) > 0,

0, if d (u , v) = 0,

I
c(u, ~)~
- ~ - j - g(u, v), if d(u, v) < 0.

Thus , g and 0 are compat ib le if and only if each arc has ki l ter number zero. Also,

relat ive to 2f and 0, the kil ter number of each arc is 0 or 1.

The following a lgor i thm derives, f rom an incompat ib le pai r (g, 0), a new pair

(gt, 0'), in such a way tha t

(i) Kg,,o,(U, v) < Ko,o(U, v), (u, v) E A,

and

(ii) ~_,(u,~)caKo,,o,(U, v) < ~_,(u,v)caK~,o(u, v) - 1.

ALGORITHM C: K i l t e r N u m b e r R e d u c t i o n

(1) F o r m the a u g m e n t a t i o n ne twork N °, hav ing A rJ as i ts set of arcs. Fo r each arc (u, v) E A g'

define

~ (u , v), if (u, v) E A and g(u, v) < [c(u, v)/2p-ll,
7~(u,v) = [- d (u , v) , if (v , u) E A and g(v,u) > O.

Label each are (u, v) E A g w i t h the we igh t

B(u, v) = max (~(u, v), 0).

(2) Choose an arc (u*, v*) of N g such t h a t

(a) (u*, v*) E A, a(u , v) < 0 and g(u, v) < [~(u, v)/2P-l],

or

(b) (v* ,u*) E A, ~ (u , v) > 0 and g(u, v) > O.

(3) Le t N* = {x [x = v* or N* has a d i r ec t ed p a t h f rom v* to x}. F o r x E N*, set 6(x) equal

to t he m i n i m u m weigh t of a d i r ec t ed p a t h f rom v* to x. Fo r x (~ N* set

~(x) = max [0(u) - ~(v, u)].
{(v,u)EAOIv~:N*, uEN*}

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

Theoretical Improvements in Algorithmic E~ciency for Network Flow Problems 263

(4)

For each node z, let O' (x) = O(x) + 8(x).
If u* ~ N*, then q' = g.
If u* C N*, choose a cycle C of N g consisting of (u*, v*) together with a minimum-weight
path from v* to u*. Obtain g' from g by performing a flow augmentation around the cycle
C.

We make the following assert ions (omit t ing proofs) :

(i) For each arc (u, v), Kg,,v (u, v) < Kg,0 (u, v) ;

(ii) if (u*, v*) C A,

Ko,,v(u*, v*) _< Ko,e(u*, v*) - 1;

(iii) if (v*, u*) C A,

Ko,.o' (v*, u*) < Ko,e(v*, u*) - 1.

By i terat ion of Algor i thm C, the pa i r (2f, ~-) can be conver ted to an ex t reme flow

for P rob lem p - 1 hav ing the same value as 2f. Since each i tera t ion reduces the

sum of the ki l ter numbers by an integer, the n u m b e r of i terat ions will no t exceed

~(~ , ,)ea K i n , ((u, v)) . But , since K2i . , (u, v) C {0, 1}, the n u m b e r of i terat ions is

bounded by]A [.

We are now in a posit ion to give a complete s t a t e m e n t of the scaling algori thm.

ALGORZTHM n: Scal ing A l g o r i t h m for M i n i m u m - C o s t F lows

(1) Set f = 0 and ~- = 0. Choose ! such that, for all (u, v) E A, c(u, v) < 2 Z. Set p = 1 - 1.
(2) Solve Problem p by the algorithm of Section 2.1, using f as the initial flow and ~r as the

initial labeling function. After this s tep] is a maximum flow of minimum cost in Problem
p, and ~r is compatible with f in Problem p.

(3) If p = 0, halt. Otherwise replace p by p - 1 and replace f by 2f.
(4) Apply Algorithm C repeatedly, starting with the pair (f, ~r), until a compatible pair (g, 8)

is obtained. Set f = g and ~- = 0. Go to 2.

The n u m b e r of s teps required in app ly ing this a lgor i thm can easily be bounded.

The n u m b e r of executions of Algor i thm C in Step (4) is a t mos t] A l (l - 1).

T h e n u m b e r of flow augmen ta t ions (each requir ing an appl icat ion of Algor i thm

A to a ne twork wi th nonnegat ive weights) is bounded above b y

1--1 l--1

fz*-i + ~ * -- = fv-1 2fp* f 0 * - - ~ f v * . (8)

The number of applications of Algorithm A to networks with nonnegative weights

to verify that a maximum flow has been reached is I.

To put an upper bound on (8) we establish a lower bound on fp*. Let T be an

upper bound on the number of arcs in a cut-set separating s from t; i.e. if the nodes

are partitioned into sets X and X such that s C S and t E X, then the number of

arcs directed from a node in X to a node in X is less than or equal to T. According to

the max-flow rain-cut theorem ([5])

fv* = min E P(u")l P(u")l
. ~ L 2~ J=~7"YL 2p J

for some par t i t ion (Y, 1~). Now

e(u, ")7 > e(u, ,)
- - - ~ - - A -- 2P 1,

Journal of the Association for Computing Machinery, Vol. 19, No. 2, April 1972

2 6 4 J. EDMONDS AND R. M. KARP

so

1 1 ,
fp* >_ ~ ~ c(u, v) -- T _> ~ f o -- T.

uEY

vET"

Subs t i tu t ing this inequal i ty in (8) gives, as an upper bound on the n u m b e r of flow

augmenta t ions ,

~ - ~ (1 ,) 1 ,
]0-- ~p=l ~ f o -- T = : ~ f o + (l - - 1) T < 1T.

The following theorem sums up our conclusions.

THEOREM 10. Let N be a network with n nodes, I A [arcs, and at most T arcs in a

cut-set separating s f rom t. Let l be the number of binary digits needed to represent the

largest arc capacity. Then the scaling method solves the minimw~t-cost flow problem

for N using not more than I A I (l - 1) applications of Algorithm C and not more than

l -- 1 + lT applications of Algorithm A to networks with ~wnnegative weights. Each

network considered in the algorithm has n nodes and at most I A [arcs.

REFERENCES

(Note. References [1, 3, 6, 7] are not cited in the text.)

1. DINIC, E.A. Algorithm for solution of a problem of maximum flow in a network with
power estimation. Soy. Math. Dokl. 11 (1970), 1277-1280.

2. EDMONDS, J. Paths, trees and flowers. Canadian J. Math. 17 (1965), 449 467.
3. EDMONDS, J., AND KARP, R .M. Theoretical improvements in algorithmic efficiency for

network flow problems. Combinatorial Structures and Their Applications. Gordon and
Breach, New York, 1970, pp. 93-96 (abstract presented at Calgary International Conference
on Combinatorial Structures and Their Applications, June 1969).

4. EDMONDS, J., AND FULKERSON, D. R. Bottleneck extrema. RAND Corp. Memorandum
RM-5375-PR (Jan. 1968).

5. FORD, L. I{., AND FULKERSON, I). R. Flows in Networks. Princeton U. Press, Princeton,
N.J., 1962.

6. FULKERSON, D. ll. On the equivalence of the capacity-constrained transshipment prob-
lem and the Hitchcock problems. RAND Corp. Memorandum RM-2480 (Jan. 1960).

7. WAGNER, H.M. On a class of capacitated transportation problems. Manag. Sci. 5 (1959),
304 318.

RECEIVED SEPTEMBER 1970; REVISED AUGUST 1971

Journal of the Association for Computing Machinery, Vo|. 19, No. 2, April 1972

