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ABSTRACT. This paper presents new algorithma for the maximum flow problem, the Hitcheoek
transpartation problem, and the general minimum-cost fiow problem. Upper hounds on the
numbers of steps in these algorithms are derived, and are shown to compate favorably with
upper bounds on the numbers of steps required by earlier algorithms.

Firat, the paperstrates the maximum flow problem, gives the Ford-Fulkerson labeling method
for its solution, and points out that an improper choiee of flow augmenting paths ean lead to
severe computational difliculties. Then rules of choice that avoid these difficultics arc given.
We show that, if vach flow augmentution is made along an augmenting palh having s minimum
nutnber of ares, then & maximum flow in an n-node network will be obtained after no more than
1(#® - n) augmentations; and then we show that if cach flow change is chosen to produce a
maximum inerease in the flow value then, provided the capacities are integral, a maximum flow
will be determined within at most 1 4 logars oy 1y f*(2, 5) augmentations, where f*(i, 3) is the
value of Lhe masimum flow and M is the maximum number of arcs across a cut.

Nex( anew algorithm is given for the iminimum-cost flow problem, in which all shortest-path
compuiations are performed an networks with all weights nonnegative. In particular, this
algorithim solves the w X« assignment problem in O(x®) steps. Following that we explore a
“gealing’’ technigue for solving a minimum-cost flow problem by treating a sequence of derived
problems with “scaled down’ capaeities. Tt is shown that, using this technique, the golution of
a lHitcheoek transporration problem with m sources and » sinks, . < =, and maximum flow X,
requires sl most (7 4+ 2) loge (B/n) Jow angmentations. Similar resulis arve also given for the
general minimum-cost flow prohlem.

An abstraet stating the main results of the preseut paper was presented at the Calgary
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In a paper by Dinie (1970} a result closely related to the main result of Section 1.2 is obtained.
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() {n?p) primitive operations by an algorithm which augmenis along shoriest augmenting paths.
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Theoretical Impravements in Algorithmic Efficiency for Network Flow Problems 249

1. The Mazimum Flow Prablem.

1.1. THE LABELING METHOD. A network N isa finiteset {u, v, - -+ | culled the nodes
and a subsel of the ordered pairs (u, »), » # v, called he arcs. Network N has a
special reburn are (¢, 8). Node s is called the source in N and node ¢ is called the
sink in N, Theset of all arcs of N, except (£, s}, we denote by A. For each (uw, v) € A
there is given a number c¢(u, ©) > 0 ecalled the eapacity ol arce (u, v).

A nonnegative function f{u, v), ranging over all ares (u, v) of ¥, is ealled a flow
in ¥ if

(i} forevery (u,v) € A, [lu,v) < ey, v); and

(1) for every node u,

oSl ey — 2 i, u) =0,

where cach sum is over every ¢ for whieh the summand is defined.

For cach are (u, ) of N, f(u, v) represents the amount of flow in are (u, ¢), and
also represents the net amount of flow from » to » in the rest of the network
“N — (u,v).”

The maximum network flow problem is to find a flow fin & sueh that f(2, s), the
net amount of flow in N — (¢, ) from s to £, is maximum.

Let a4y, s, - -+, i, be a sequence of distinet nodes sueh that, for each i = 1, 2,
-, p — 1, cither (u;, #:.1) or (44, u;) i3 an are. Singling out, for each 7, one of
these possibilities, we eall the resulting scquenec of ares a path from ui to w, . Ares
(#;, ;1) that belong to the path are called forward ares of the path; the other ares
of the path are ealled reverse ares.

Relative to any given flow f in V, a (flow) augmenting path is a path from s to ¢
such that:

Case (a): If (u;, uea) © 4 and (ue, us) & A, then
€ = ey, uen) — flue, upa) > 0;
Case (b): Tf (ur, #en) € A and (i, w;) € 4, then
€ = [, us) > 0;
Case (¢): Lf (i, 1) € A and (wigr, ui) € A, then

"h{’u'y, ?{;”_\J' *' f (_'?.1'.-?'_'.1 » 16.\':] > 0.

o

o s ; Y
€ = (\Ug, Wiy ) —

For 4 given augmenting path P, let ¢ = min ¢; > 0. Call each are (u;, w1} or
{wip1, w: ) in P such that € = ¢ a bolileneck ave relative to P and the flow f.

Now alter the flow f as follows': increase £ by € on the return are (¢, s); in Case
(a), increase the flow on are {(w,, u,.1) by €; in Casc (b), decrease the flow on are
(i, i) by € in Case {e), increase the flow on are (u;, wiy) by
min (€, ¢(u:, i) — f{w:, 2:1)) and deerease the flow on are (uwiy, w;) by
mux (0, € — ¢(us, wip) + flws, usn)). It is easily ehecked that the /' thus defined
is # flow in N. Thus, since /' (t, s) = f(t, s) + ¢ the flow fis not maximum. Tt can
! The method of augmentation presented here differs [in Case (c}] from the method originally

given by Ford and Fulkerson (el [51). The results of this paper apply, with minor changes, to
the Ford Fulkerson method as well.
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250 J. EDMONDS AND R. M. KARP

be shown that, conversely, a flow f in N is not maximum only if there iz an
augmenting path with respect to f.

The labeling method constructs a sequence F = f, f, f*, - -+ of flows in N, starting
with, say, the zero flow, by finding an augmenting path with respeet to f*if one exists,
and then augmenting to obtain f*'. The sequence terminates only when a maximum
flow has been obtained.

Assuming that all the eapacities ¢(w, ) are integers, then clearly for any aug-
menting path P relative to any integer-valued flow f, e is a positive integer. Thus,
since f” is integer-valued, all the later flows f* in the sequence F' are integer-valued.
It follows that the sequence terminates after a number of labelings not greater than
the final value of f(, ).

The following example illustrates that this upper bound on the number of label-
ings can actually oceur.

v

Suppose that the are (u, ») has capaciiy 1, and the capacity of cach of the other ares
in A iz M, a positive integer. Then the maximum value of f{Z, s) is 20, and 2M
labelings will be required if the labeling process alternates between selecting
(s, u)(u, v) (e, t) and (s, ») (v, w) (u, £) as an augmenting path. For, in cach case,
either (u, #) or (v, u) is a bottleneck arc, and e = 1,

Assuming that all the capacities are mutually commensurable, we can obtain an
equivalent integer-valued problem by multiplying all the eapacities by a large con-
stant. Thus, in this case alsa, the sequence F is finite.

Ford and Fulkerson show by an example that if the capacities are not com-
mensurable then the sequence F need not terminate, and in faet, may converge to a
nonmaximum flow.

Since numerical computation is always, in practice, performed on numbers ox-
pressed to a fimte preecigion, this nonfiniteness i= not from a practical viewpoint a
very serious matter. It does serve as another indication of the tendency of the
number of augmentations to grow as the preeision to which the capacitics are ex-
pressed increases,

We will show that these theoretical difficulties, which could conceivably be a
practically serious matter, can be avoided. In particular, by making a certain re-
finement of the labeling method which is so simple that it is likely to be incorporated
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Thearetical Improvements in Algorithmic Efficiency for Network Flow Problems 251

innocently into a computer implementation, we get a bound of at most }(n® — #)
terms in the secuence F (regardless of commensurability ), where » is the number of
nodes. In addition, a second refinement of the labeling method is shown to yield a
bound an the length of F, applicable only in the case of integer capacities, of 1 +
logaye—yy f* (¢, &), where f*(¢, ) is the value of a maximum flow, and M < »°/2.

1.2. A ReFINEMENT. The labeling method requires as a subroutine a labeling
process for finding, if one exists, an augmenting path P relative to a given flow f in
N. This is essentially a methad for finding, in a certain network N’ having the same
nodes as N, a directed path from s to f. A direcled path from s to ¢ is a path such
that, all ares are forward ares. The ordered pair (u, v) is an arc of N7 if and ouly if
either

(,0y € A and e(w,0) — f{u,2) > 0
or
(w,u) € 4 and fl,u) > 0.

The arcs of any directed path P’ from s to ¢ in N7 are in one-one gorrespondence with
the arcs of an augmenting path P in N relative to /. The are of P? corresponding to a
boltleneck are of P is also referred (o as a bottleneck arc,

The labeling process for finding u directed path in ¥7 from s to ¢ is as follows:
First s gets “labeled.” Then al each successive step of the process some labeled bul
“unseanned”” node gets seanned, To scan a labeled node % means to label every node
v not already labeled and such that the are (w, 2) isin N7, If v gets lubeled when u is
scanned, then u is the predecessor of v in the labeling,

As soon as the sink { gets labeled, then ¢, the predecessor of ¢, the predecessor of
that predecessor, und so on back to s, is the reverse sequence of a directed path in
N’ from s to . Ou the other hand, if every labeled node gets seanned without ¢ get-
ting labeled, then there is evidently no direcled path in N7 from s to ¢. Clearly the
labeling process terminates in one or the other of these two situations,

The refinement treated here, which gives an upper bound of 1 (%' — «) un the
number of applications of the labeling process before obtaining s maximum flow,
is the following: In the labeling process, scan on u “first-labeled [lirst-scunned”
busis, That s, before scanning a lubeled node u, scan the nodes that got labeled
before u.

It can be shown that a directed path in N7 from s 10 ¢, obtained by this version of
the labeling process, is one which containg & minimum number of arcs, Thus, the
upper bound can be stated as follows:

Tueorkm 1. [f, in the labeling method for finding a mozimum flow in o network on
n nodes, eack flow augmentation s done along an augmeniing poth having fewest arcs,
then. a maximum flow will be obtained after no more than +(n* — n) augmenlations.

For present purposes, we will regard the number of arcs in a path as its length, The
“distance” from a node w to a node ¢ in N” is the minimum length of & directed path
from % to v in N, or else = if there is no such path.

Let # = f° /', [}, - -+ be any sequence of flows in N such that f*'" is obtained from
f* by an augmentation corresponding to a shortest direcled path P* in N Lel N*
denote N'fk, and let 8 (u, v) denote the distance from w to » in N*.

Luvma 1. Ifk < mand (u, v) s a boltleneck arc relative lo P* and ¥, and also rela-
tve to P™ and [, then, for some [ such that kb < I < m, (s, u) € P

Lemaa 2. Ifk <1, (u,v) € Prand (o, u) € P then 8'(s, 1) > 8(s, 1) + 2.
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252 I. EDMONDS AND K. M. KARP

Jiven these lemmas, the proof of Theorem 1 is at hand. Let {u, v} be any pair of
nodes such that (u, ) € A or (z, u) C A. Let the sequence {4} consist of all indices
k;such that either (w, #) or (v, %) is a bottlencek are relative to P and /¥, By Lemma
1, one can find 4 sequence {1;}, containing {%:} as a subsequence, such that

(u, v) € P9, 7 odd and (v, u) € PY, 7 even
ar

(m,2) € PY,  jeven and (o, ) C P¥,  jodd.
By Temma 2, 891 (s,2) > 8% (s, ¢) + 2, 7 = 1,2, --- . Thus, §7(s, ¢) > 2(j — 1.
But the length of any dirceted path in N* is at most n — 1 so that 89 (s, ) < m — 1
for all 7. The length of the sequence {[;} is therefore at most 3(n — 1) + 1 =
1 (n + 1), and thus the number of occurrences ol (x, v) or (v, u) as a bottleneck are

throughout the entire labeling methed is at most (0 + 1). The number of oe-
currences of bottleneck ares altogether is therefure bounded by

-n—f—l(ﬂ)_n“—n
2 \2) 4

And, since every augmentation determines a bottleneck are, the number of aug-
mentations is also bounded by ¥ (x" — n).

The praof of Lemma 1 cmploys two sitple propositions,

PrapostrioN 1. Tf (u, v) is a bottleneck arc relative to P* ond §*, then (u,v) § N**',

Proor. The augmentation from /* to f*! is such that, if (4, 2) € A then 7 (u, v)
= ¢{u,v), and if (v, %) € A then 0, 1) = 0; hence, (u, v) ¢ NP

ProposttioN 2. If (g, v) € N* then (w,2) ¢ N*¥or (v, u) € P~

Proor. Suppose (1, 0) £ N*™ and (u,2) € N*; then, either £ (e, v) = f* (4, v)
or V" (0, w) # f*(r, %). In cither ease, (w, v} or (v, u) must be in P' But (u, v) € P¥,
gince (w, ») § N*;thus, (s, u) € P

We can now prove Lemma 1, By Proposition 1, {(u, v) § N*™'; sinee (i, v) ¢ P,
(,2) € N". Lot I+ 1 =mini{t]¢t> kand (u,v) € N'l. Then (u, v) € N,
(w, 1) € N';henee, by Proposition 2, (v, 1) € P'. This completes the proof of T.emma
Lo

The proof of Lemma 2 will make use of the following proposition.

Prorositioxn 3. Fork = 0, 1,2, -« | and for all u,

5 (s, u) < 8 (s, u) (1)
and
§ (u, t) < 8 (u, 1). (2)

Proor. We prove (1), the proof of (2) being similar. Tf 8**' (s, u) = =, the 1e-

sult is evident. Assuming &' (s, u) = h is finite, let 8 = wy, uy, -+, wp = u be

the node sequence of w shorlest directed path from s to «. Then 8°(s, ug) = 0 and
we claim that

(s, ey <1+ 8 (qu), =0, h—1 (3)

For, since (w:, u:1) € N, Proposition 2 tells us that {(u:, wia) € N¥ or (i,
w;) C P°. In the former case, 8 (s, uia) < 1 4 8°(s, uy), sinee the ure (us, %ip1)
enables us to get a directed path from ¢ to u. in N* having no more than 1 +
8" (s, u:) ares. In the latter case, 8°(s, u;) = 1 + 5508, uimt), 80 & (s, ui) =
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—14 8"(s,u,) < 1 + 8 (s, w:). Summing the inequalities given in (3),
8 (s, u) < h -+ 8s, u) = h = 5 (s, »),

and (1) is proved. ||

Ta prove Lemma 2 note that, since (u, v) € Pk (s, 1) = 85 (s, u) + 1 + & (n, t).
Ai.’:‘o, F(s,2) =11 8, u,dndo (u,8) =1+ 8 (v ¢). Since (v, %) € P 6 (s, 1) =
6(3 0} = 1 4 8°(x, ). But, by Proposition 3, §°(s, v) > 8 (s, v) and 8'(x, 1) >
#(u, 1), so that 8 (s, z) >, 0) + 1+ Fu 1) = (14 8° (s,u))+ 14+ (1 +
0, 6)) = 2 + (s, 1). Thus, Lemma 2 is proved, and we are done, |

The proof of Theorem 1 can be modified quite simply to supply bounds on the
numbers of augmentations required in certain other refinements of the Ford-
Fulkerson labeling method. Let a(u, #) be a real-valued funetion defined whenever
(u,9) € A or (v,u) € A, such that b (x,v) = alu,») + a(v, u) > 0. Let the weight
of a path P in ¥ huving the node sequenec uy, 2., , Hp be ZF, a(w;:, Ui ).
Consider a variant of the labeling method in which each augmentation is along a
flow —augmentin;, path of minimum weight. Then the number of augmentations can-
not exceed kS‘Z,cu wes 170, 2)]) + A4, where 8 is the maximum weight of apath
from source to sink. Theorem 1 corresponds to the case where a{u, #) = 1 for all
pairs (%, #}. Another ecase, corresponding to the rule: “select o flow-augmenting
path with as few reverse ares as possible,” has a(u, v} = 1 if {», n) £ ,1, .mrl
alu,n) = 0otherwise. A bound on the number of iterations in this casc is 3 1(n' — %),

1.3. A Secoxp REFMINEMENT. In this seetion we consider the following refine-
ment of the labeling method: at each iteration choose a flow.augmenting path
which gives the largest possible augmentation.

Let N be a network in which every capacity is an integer. et 3/ > 1 be a positive
integer such that, for any partition of the nodes of N info two sets, X and X, with
s € X and t € X, the number of ares with one end in X and the other in X is less
than or equal to A7. Tet f* (¢, s} denote the vahie of a maximum flow.

TaEOREM 2. If, in the labeling method for finding o moxtmun floy in N, a nef-
work with all capacities integral, each augmentation is done olong an aupnenting
path yiving the maximum possible augmentation, then a maximum flow will be
oblained afler no more thun 1 + logrwin—y [ (£ §) augnientations.

Before proving Theorem 2, we show how the rule under consideration can be
implemented. Suppose we are seeking a flow-augmenting path in N relative {0 a
flow f. Associate with each arc (w, v) € N7 a number e (v, v) equal fo the value of ¢
that would result if {u, #) were a boltleneck are in a flow-augmeniing path relative
to N and f. Specifically,

() if (w,2) € 4 and (v, u) ¢ A4, then e(u, v) = clw, v) — flw, v),

(ii) if (u, t] ¢ A4 and {r,u)e A, then elw, v) = f(u, v),

fii) if (w,e) € A and (v, u) € 4, then elw, v) = efu, v) — f{u, v) +
JICED

Then the labeling method seeks a directed path from s to ¢ in &7 in which the
mallest value of e(u, #) i8 as large 8s possible. This is a bottlencck problem of the
ype studied in [4]. One method of finding sueh a path is to label s, and then to repeat
he following step until £ is labeled: find an are (', »") € N7 such that %" is labeled,
" is not labeled, and for any are (x, ») from a labeled node to an unlabeled node,
', #") > e(u, v). Label v’ and record @' as the predecessar of »'. When ¢ is labeled,
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254 J. EDMONDS AND R. M. KARP

tracing the sequence of predecessors back from ¢ gives a maximum-¢ flow-augmenting
path. If, at some step, there is no arc from a labeled node to an unlabeled one, then
no flow-augmenting path exists.

Proor or THEoreEM 2. Consider a partition of the nodes of N into two sets, X
and X, such that s € X and t € X. Define

X, X) = 2 elu0), (X, X) = 2, fu, )

wic X £
rE X 'Cf
[uwawlcd fw,pled

and

X X) = E £(u, v).

\u :Je 4
Then, for anv flow f,

c(X, X)) > fIX, X)) - 7(X,X) = j(t, s).

Suppose the labeling method usiug muximum augmentations produces the sequence

of flows [°, f', oo Let € = MY ) — S5(, ). Consider the augmentation

from f* loﬁ . .et the set X consist of s together with all nodes which can be rr;-a.ched
from s by u directed path in N* consisting of ares (u, ») such that e(u, ») > &;
let X denote the remaining nodes. Then ¢ € X and every are (u, v) in N* such that
u € X and v € X satisfies e(y, v) < €.

(X, X) — [/ (X, X) ~ /X, X))

< & (u, ») |lu e X,ve X, (u,0) € Aor (o,u) € A} ' < &M,
Now f¥(t, 5) < ¢(X, XD and f* (4, &) = (X, X) — f[F(X, X), 50
fFlos) = s) < EMy e [T 8) ~ fFl ) <P 8 — £, $IM
Equivalently,

P ) = MY s) 1% s) — P ) — M7,
Thus, by induection,
0 s) — 5 s) < 5,90 — a5

Now, since ull the capacities are integers, cach flow is integral. Thus, if f* is not a
maximum flow, then

sy = ff e, s) > 1,

i) —a'y >1
and
B< —logiya St 8) = logayan /7, 5 ),
s0 the total number of augmentations eannot exeeed
L+ logae e £* (2, s).
Let & denote the average capacity of an arc in 4. Then f* (¢, s) < én”and 3 < 22,

In n'é
In{142/(nt —2))°

10Za/ -1 £ (1, 8) < loguiea—n (2%F) =
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2 2 2 172y

Using these estimates we find that the number of augmentations eannot exceed

But.

Z2lInn+In¢é n' . o
1+ 2(_1);?—_1./_“45 =1+ 575 {(2Inn +Iné)
=n'lhn+in’ine+ 0@ nn+ alne).

Thus, although the present bound depends on the capacities and requires their
integrality, it is superior to the bound of Section 1.2 in approximately the range
0<é< e

8. The Minimum-Cost Flow Problem

2.1. A LaperLixg METHOD. In this section we turn to the problem of finding a
maximum fow of minimum ecost. Given a network N, associate with each arc
(u,v) £ A a nonnegative cost d{u, ») as well as the usual positive capacity ou, v).
Let the cost of a flow fbe 2w e s d{u, v)f(w, ¢) and let its value be f(t, s). We seek
a flow of minimum cost among those with value f*(7, ).

Call a flow f exfreme if it is of minimum cost among flows with value f(¢, ). We
mention some well-known characterizations of extreme flows. In doing so, we make
use of the network N associated with f. We recall that a network, by definition, has
al most one are from one given node to another. For convenience we also agsume that
{u,9) £ A = (v, u) ¢ A. Obvious devices using “‘fictitious nodes” can be used to
enforce this restriction if it does not originally hold. Associate with any are (u, »)
of N a weight A (u, v) as follows:

jd(u, v), {u,v) € A,

Ay, v) = 1—d, u), {n,u) € A.

Define the weight of a subgraph of N7 as the sum of the weights of its arcs. Define a
labeltng function as a function from the nedes to the real numbers.

TueorEM 3.° Let f be a flow. Then the follnving are equivalent:

(1) fis extreme,

(i) every directed eycle in N7 has nonnegative weight,

{iii) there exists a labeling function 7 such that, for cvery are (u, #) of N/,
w{u) + A, ) — =n(@) > 0.

A restatement of (iii) in terms of the network N is: for {u,8) € A,

ar(u)y — () + du,v) > 0= f(u,v) =0, @)
w(u) — w(w) + dlu,») < 0= f(u,v) = clu, v} )

If the flow f and the labeling function 7 together satisfy (4), then f and 7 are
called compatible.
Another basic result is the following.

2 The eguivalence of (i) and (iii), stated in a somewhat different form, can be found in [5,
pp. 114-115],
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256 J. EDVMONDS AND R. M. KARP

TuEorEM 4. ([5, p. 121]). If [ is extreme and P is a path of mintmwm weight in
N7 from s to L, then a flow: §* obtained by augmenting along P is extreme.

For brevity call a path of minimum weight a “shortest path.” Theorem 4 sug-
gests the following method of solving the minimum-cost fow problem: starting with
an extreme flow fn, compute u sequence of extreme flows f°, ff, - - ,fk, | S
obtaining f*'' from f* by augmenting along a shortest path from s to ¢t in N7, A
shortest path can be determined using the following algorithm.

ALGORITHM A: Bhortest-Path Algorithm
Let N7 have the sev of ares A%, and let, Alu, v} be the weight of are (u, ¥} £ A&
(17 Beteols) =0andseta(u) = 4+, u = 5.
(2} Set 8 = {s}].
(3) I 8 = ¢, halt; otherwise choose u* such thal «* € S and ¢{u*) = minu cs efu).
(47 For each v such thal (w* ¢) € A% get
glv) = min (e(v), a(u*) + Alu*, v)).

Il this process decreases (), adjoin » to the set 8.
(8 Delate w* from § and go tn (3).

Algorithm A has the following properties:

(1) Upon its termination, o (») gives the weight of a shortest path from s to u;

(2) If Alu, ») > 0 for every ure {u, #), then cach vertex accessible from s enters
the set N exactly once, so that the total amount of computation is proportional to
the number of ares;

(3) Tf no cyele is of negative weight, then each vertex aceessible from s enters the
set S at most # — 1 times, so that the total ameunt of computation has a bound
proportional o n — 1 times the number of ares;

(4) If there is u negative-weight evele aceessible from s, then the algorithm is
nonterminating. One wuy to deteet this is to keep a subgraph 7 of tentative shortest
paths, T contains arc (i, v) if » last entered S during an application of Step (4) with
u® = u. Any eycle in 7" has negative weight; if a negative-weight eyele is accessible
from s, then such a eyele will occur in 7" by the time any vertex enters S for the sth
time,

The diseussion of the shartest-path algorithm shows the efficiency to be gained
in cases when all weights are nonnegative. Too little attention has been paid to this
essential point in the development of algorithms for minimum-cost flows. We
present in this seetion an algorithm designed so that all shortest-path caleulalions are
done on networks with all weights nonnegative.

Let [ be a flow and let & be a labeling function. Assign each arc (u, #) of ¥’ u
weight Au, v) = 7w (u) + Ay, vy — 7).

Then clearly

(i) if 7 iz a directed cycle, then

> Alw, ey = > Alw,e);

lw,vleC fapied

i)y if P is a directed path from «* to ™, then
Py

> Al r) = W) —r@H 4+ Y Ak ).

{w,mic P (e r

Thus, &7 has a eycle of negative weight with respect to the weights A(u, ») if
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and only if N/ has a eycle of negative weight with respeet to the weights 4 (u, »).
Also, P is a shortest path from s to ¢ with respeet to the weights A (x, #} if and only
if P is a shortest path from s to ¢ with respect to the weights A (u, ). Consider the
implications of these facts when f and 7 arc compatible. Then Ay, #} > 0, and a
minimum-weight flow-augmenting path (relative to the weights A, »)) can be
found by a shortest-path ealeulation using the nonnegative weights A(wu, v).

A variant of the algorithm suggested by Theorem 4 is now apparent which per-
forms all shortest-path caleulations on networks with all weights nonnegative.

ALGORITEM 1 Minimum-Cost Flow Algorithm

{1) Set /* equal to the zero flow, and set = equal to the identically zero labeling function;
{2) Given f% and «*, determine /1 by nugmenting along » minimum-weight path from & Lo £
in N** with respect to the (nonnegative) weighis

Ak(u, v) = wF(u) + A, v) — xh().

Tf several minimum-weight paths exist, choose one with the fewest ares.

3 If e*{u) denotes the weight of a shorteat path from s to & with respect to the weights
A% set w¥ (i) = oFlu) | of(w); take o¥(u) = ¥y} = + = if u is inaceessible from s in
Wi

{1} TIlalt when, for some %, no flow-augmenting path exists with respect to f*.

Some properties of the algorithm are given in the following theorem.

TaeoreM 5. For each k, [* and 7* are compatible. For each k and u, 7" (u) gives
the weight of a shortest patk from s lo w in N” * with respect to the weights A{u, v) and
) > T (u).

We present two bounds on the number of flow sugimentations reguired by the
minimum-cost flow algorithm,

Tnrorey 6. [f all the copacilies ave integers, then the compulniion lerminates ajter
at most [*(t, 8) flow augmentations.

Proor. Each flow §* is integral, and each augmentation increases the flow by a
positive integer. ||

Tueorex 7. Suppose the costs d (u, v) are inlegers less than or equal to an tnleger D,
Then the computation terminales afler at most 1 + L' ~ nY(n — 1)D flow augmenta-
Hons.

Proor. We show that the overall computation can be regarded as a sequence of
at mast (n — 1)D + 1 phases, each consisting of a maximum flow computation.
Each phase corresponds to a period during whieh 7° (£) remains constant, Suppose
a () is eonstant for by < k& < k.. Then the How augmentalions involved in passing
from f** to 5*¢ arc along directed paths in the subnetwork N” containing those ares
(u, ») in N7 sueh that #*' () 4+ A, v) ~ 7' () = 0. Hence, these augmentations
are part of a maximum-flow computation in N'. The bound of Section 1.2 is appli-
eable, sinee the algorithm selects, at each step, a path with fewest ares among those
of minimum weight. Henee, the number of augmentations per phase is at most
(" -~ n). Now, cxcept at the last step, when ¢ is inaceessible by a flow-asugmenting
path and #* &) = =, #*(t) is the weight of some puth in N from s (0 ¢, und hence is
an integer between 0 and (n — 1)D. Thus, noting that 7 (1) is nondecreasing with
&, we see that the number of phases, excluding the lust step, 1= al most (v — 1)D,
ind the theorem follows, ||

Corornary 1, Algorithm B solves any minimum-cost flow problem in o finite nym-
er of steps (even when netther the capacities nor the costs are commensurable).
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Proor. The first half of the proof of Theorem 7 is applicable in this ease, and
shows that there is a finite bound on the number of successive flow augmentations
without an inerease in #*(¢). But, for any k, 7' (¢} is the weight of some directed
path from s to ¢ in Nﬁ‘, corresponding to some path without repeated vertices in N.
Sinee the number of such paths is finite 7% (¢} increases only a finite number of times,
so that the ontirc process must be finite. ||

Although it is comforting to know that the minimum-cost flow algorithm ter-
minates, the bounds on the number of augmentations are most unfavorable. The
sealing method of the next two sections is a variant of this algorithm in which the
bound depends logarithmieally, rather than lincarly, on the eapacities, A challeng-
ing open problem is to emulate the results of Seetion 1.2 for the maximum-flow prob-
lem by giving a method for the minimum-cost flow problem having a bound on
computation which is a polynomial in the number of nedes, and is independent of
both costs and capacities.

2.2. A Scanine MrTHOD FOR THE HIiTcHCOCK TRANSPORTATION PROBLEM. In
this seetion and the following one, we present a technique for solving a minimum-
cost flow problem by treating a sequence of problems with the same cost as the
given problem, but with “scaled down” capacities which approximate those of the
given problem to successively more digits of precision. The efficieney of this sealing
method is based on the following two features:

(1) the capacities, and hence the flow augmentations, in the approximate prob-
lems are on a coarser scale than in the original problem;

(2} the final solution of each approximate problem yields & good initial flow for
the next approximate problem.

‘We prove that the number of computation steps required by the scaling method
is proportional not to the capacities (as in the method of Section 2.1) but to the
numbers of digits in the binary representations of the capacities. Roughly speaking,
the scaling method is related to the original method as binary arithmetie is to
unary arithmetic (i.e. counting).

First we consider a special case in which the scaling technique is particularly
simple. The Hitehcock transportation protilem asks for a maximum flow of minimum
cost through a network of the type shown in Figure 1.

The costs and capacities are as follows:

arc (s, &) has cost 0 and eapacity a;, 7 = 1,2, -- -, m;
arc (¢, t) has cost 0 and eapacity b;, 7 = 1,2, --- , n;
arc (s:, {;) has eost d;; and capacity 4, 1= 1,2, -+ ,m, 5= 1,2, -+, n;

the return are (¢, ¢) has cost 0 and capacity + =.

I‘%is assumed that D mja; = 2 sab;. The value of a maximum flow is clearly
=10 .

The standard interpretation of this problem is well known. Each vertex s; cor-
responds to a “source” at which a; units of a commodity are available; each vertex
{; corresponds to a ‘‘destination’ which demands b, units of the commadity. The
cost per unit of shipping from s; to ¢; is di;, and a shipping pattern is sought which
minimizes the cost of meeting the demands at the destinations from the supplies
at the sources.

In the following spocialization of the criteria for an extreme flow given in eq.
(1), u; denotes 7 (s;) and v; denotes x ({;); also, fi; denotes f{s:, ;) when 7 > 1
and j > 1; fo;: denotes £(s, s:) and f; denotes f(&,, t).
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1 1
. = .
/82 th
5 * - 9 ..._--.-__-v- -t
Sm : t
L] : —

Fra. 1

THeEOorEM 8 The flow [ is extreme among maxtmum flows for the network of Figure
1, if and only of there exist uo, Wy, -+, Um ONA Vo, V1, - -, D SUch that
uy— i+ di; 20, =L, 2, - myj=1,2, -, 5, (3a)

w, — 1 +d; >0=Ff=0¢i{=1,2,--- m;j=1,2---,n, (5b]

o > Uy = Jo; = 0, {5¢)
g << Ui = for = a;, {ad)
v; > w=>fpn =0, (5e)
vy <o = = b (51)

Call a flow f for the Hiteheock problem pseudo-extreme if there cxist u; and v;
satisfying {(5a) and (5b). A pscudo-extreme maximum flow is extreme; for a maxi-
mum flow has fo, = a;, 7 = 1,2, -« ,mand fo = b;,j = 1, ---, n. Thus, if (5a)
and (5b) arc satisfied, we may satisfy (5e}—(5f) by setting wy = minm o o
and ty = Max,;ya,...., ;. For a problem of the Hitcheock type with 2. a, = 3. b,,
a pseudo-exireme maximum flow is not, in gencral, extreme.

Alporithm B can, of course, be used to solve the Hitchcock problem. An alternate
melhod is based on the fact that a maximum pseudo-extreme flow is exireme. A
sequence of pairs (f°, #), (', #), ---, (f*, #*) is computed where, for each k,
(/" #*) satisfies (5a) and (5b), so that §* is pseudo-extreme. The determination
of (/¥7, #*'") from (%, ') differs from the corresponding step in the previous
algorithm in only one respect: if fi; < a, then are (s, s;) in N s assigned cost
Als, 8:) = 0, regardless of 7*; similarly A(¢;, £) = 0if fin < b;. It is easily checked
that, if (f*, 7%) satisfies (5a) and (5b), then so does (1, #°'"); thus, /' is pseudo-
extreme if J¥ is, If the cupacities @; and b; are integers then an upper bound on the
number of flow augmentations is 2 _re1 ;.

Now woe are prepared to present the scaling method. For any nonnegative integer
p, define 'roblem p to have the same nodes, arcs, and costs as the given problem,
but with the capacities changed as follows: the capacily of (s, s;) is [a;/27] and the
capacity of ({;,1) s [6;/27].2 Thus, the original problem is Problem 0 and, in general,
the eapacitics in Problem p are obtained by deleting the p low-order digits in the
binary representations ol lhe original eapacities.

34 (2] means‘‘greatest integer less than or equal to 2.
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Levsma 3. If f o5 a pseudo-cxtreme flow in Problem p, then 2f is a pseudo-extreme
fow in Problem p — 1.

Choose { such that every finite capacity has at most [ digits in its binary expan-
sion; e a; <2, i=1,2 - mandb; < 2, J=1,2, .-+, n Then the scaling
method ecomputes maximum pseudo-extreme flows sueecssively for Problems [ — |,
£ =2, «++, 0. If fis the maximum pseudo-extreme flow ecomputed in Preblem p,
and 7 is the associated labeling function, then 2f is taken as the initial pseudo-
extreme flow in Problem p — 1, with 7 as its associated labeling function,

The lollowing theorem bounds the number of flow augmentations in the soiution
of a transportation problem by the sealing method.

TuEorEM 9. The number of flow augmentaiions in applying the scaling method to
a lransporiation problem with tntegral “supplies” ay, az, - -+, @, and infegral “de-
mands' by, ba, -+ -, b, is less than or equal to

e
2 o
=1

max (m, n)\2 4| logy ———
max (m, n)

Proor. Let £, denote the value of a maximum flow in Problem p. The initial
flow in Problem 7 — 1is 0 and, for p < I, the initial flow in Problem p — 1is 2f,".
Reealling that each augmentation gives a positive integral increase in the fow, the
total number of augmentations is bounded above by

i1 1—1
ﬁ1+2ﬂ4-%ﬂwﬁ—§£- {6)
= =

Now

oemn(Zlz] B[3])=0

We ean write a; = 2pla;/?*] + ryp, where 0 < ryp < 27 — 1, Hence,

W m L
N IRTED UEED DE 3
Z I:%il - f'.—l—";jh“l ! > : ;-,. — M.
i=1 |2 =

Himilarly,

= T, ; by
21 [Fil > M—ZP‘ — ¥i-

Let B denote the common value of . iga; and 2., b;, and let L denote
[log: (B/max (m, n)}]. Then

f" > max (0,.% ~— max (m, 'ﬂ))

and

=1 =1 \27

i fp* >3 (fi — max (m, n})
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Applying this inequality to (6), and noting that ,* = B, we find that an upper
bound on the total number of flow augmentations is

B/2* + L max (m, n) < (L 4+ 2) max (m, n).

This eompletes the proof. |

We remark that this bound on the number of flow augmentations is approxi-
mately equal to the number of binary digits required to ecncode the data of the
transportation problem. Fach augmentation requires O{m, n) computation steps,
so that the number of eomputation steps in the entire process is bounded by a low-
degree polynomial in the size of the problem, us measured by the length of the input
text, Tn this sense the scaling method is a “good” algorithm.*

23. A Scarrng METrHOD FOR THE MINtMUM-ClosT FLow ProruEw.  References
[6]and {7 give a simple method of converting any minimum-cost flow problem haying
| A | ares and 2 nodes into an “equivalent” Hitcheock rransportation problem with
'A | sourecs, # destinations, and & maximum flow of qu wica e(w, v). By Theorem 9,
the application of the scaling method to such a derived transportation problem
requires at most

(L + 2) 4]

ow augmentations where L = log (2 wmelu, z;),-—"| A ). Thus, the approach of
converting to an equivalent transportution problem which is solved by the sealing
method vields a good algorithm for the minimum-cost fow problem.

In this seetion, we consider the direct application of the scaling method 1o the
minimum-eost flow problem. The general approach is clear. Given a minimum-
cost Aow Problem on a network N with costs d {u, ») and capacities ¢(u, #), define
Problem p as a problem identical with the given one except that the eapacity of arc
{u, ) is given by [e(x, v)/2%]. Chouvse [ as the least integer such that 2" > ofu, )
for all (u, #) € A. Then the plan is to solve Problems { — 1,{ — 2, ---, 0 succes-
sively using Algorithm B, taking twice the final How in Problem p as the initial
flow in Prablem p — 1. There iz a major difficulty, however. Iff;,* iz a minimum-enst.
maximum flow in Problem p, then 2f,* is a flow in Problem » — 1, but not, in general,
an extreme flow, In the case of the transportation problem this diffieulty was not.
seripus, since it was possible to work with pscudo-extreme flows instead of extreme
flows. For general minimum-cost flow problems the remedy for this diffieulty is
somewhat more complex.

We begin by showing that if f is extreme in Problem p, then 2fis “almost extreme"”
in Problem » — 1. Since f is extreme in Problem p, there is a labeling funetion o

guch that

I

0 (u, 2) € A,

i) + dlu, ) — 7)) > 0= f(u,¢)

a(u) + A, 0) — (@) < 0=l ) = [elu, 0)/27,  (u,2) € 4,
Using the inequalities

Glelu, 23] . [elu, o) o 1 ela, v)
o[ s [ ] <[5 ]+

t The coneept of 1 good algorithm’ is discussed in detail in |2
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we have
w(u) +dw,2) —wlw) >0=2f(w,v) =0,
() +d ) — w@) < 0=, v) < el v)/2" 1 < 2w, 0) + 1.
But compatibility of f and 7 in Problem p — 1 requires
7w () + diu,v) — 7@) < 0= 2 (u,v) = [elu, v)/2"7].

Thus, 2f and « fail to be compatible in P'roblem p — 1 by at most one unit of low
on any arc. We give an efficient method of transforming 2f to a flow which has the
saine value and is extreme in Problem p — 1. The method ean be regarded as a
variunt of the Fulkerson out-of-kilter algorithm [5] in which the “How change”
and “‘polential change'’ phases are combined into a single computation.

We state the method as it applies to an arbitrary integral feasible flow ¢ in Prob-
lem p — 1, and an arbitrary labeling function 0. Define du, ») = 8{u) +
d(u,2) — 0(v). Define K, ¢ (u,v), the kilter number of are (2,¢) relative to ¢ and 8, us

glu, v, i dlu, v) >0,
0, if  dfu, v) = 0,

W, ) ) . i .. .
l:%g—_—i—:l — glu, v), it d(w, ) <O

Thus, ¢y and 8 are compatible il and only if each are hus kilter number zero. Also,
relative to 2f and 6, the kilter number of each are is Q or 1.

The following algorithm derives, [rom an incompatible pair {g, #), a new pair
(¢, 8), in such & way that

() Kpow,v) < Kiolu,v),  (u,2) € A,
and

() Ppmes Koo (, 2) < Dtumes Koolu, ) — 1.

sLgoriTHEM c: Kilter Number Reduction

{1} Form the augmentation nelwork ¥, having 47 as iis sel of arcs, For each are {u, »} € A%

define

s = 1500, RO EE m pem s
Label each are (u, v) £ A" with the weight
Blu, v) = max {5('&, v), O).
(2) Choose an arc {(u*, *) of & such 1hat

() (u*, v*) ¢ A4, diw, v) < 0 and glu, v) < (e, v}/2P7,
o1
(b} (»*,u*) € 4, d(u, ») >0 and g{u, v) > 0.

(3) Let ¥* = {z | & — v™ or N* has a directed path from #* to z}. For x € N™, set 5(z) equal
to the minimum weight of a directed path from ¢* to z. For g & N* set

5(x) = max [Bu) ~ ale, wl.
Pl ul CAR | vEN® wEN]
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For each node z, let 8'(z) = #(z) + 3(x).

4) IHu*q N* theng' = g
If u* ¢ N*, choose a cycle ' of N consisting of (u*, v*) together with & minimum-weight
path from v* to w*. Obtain ¢’ from g by performing a flow augmentation around the cyele
C.

We make the following assertions (omitting proofs):
(i} For cach are (u, v), Ky o (u,0) < K,9(u, v);
i) if (¥, 0™) € 4,
Koo (¥, 0") < Ko, 0") ~ 1
i) if (@* u*) € 4,
Kyg 0%, u*) < K, 00", u™) — 1.

By iteration of Algorithm C, the pair (2f, ) ean be converted to an extreme flow
for Prablem p — 1 having the same value as 2f, Since each iteration reduces the
sum of the kilter numbers by an integer, the number of iterations will not exceed
E@.,,,e,{ Ky .- ((u, 2)). Bat, since Ko » (u, #) € {0, 1}, the number of iterations is
bounded by | 4 |.

We are now in a position ta give a complete statement of the sealing algorithm.

aLGOoRITHM D: Scaling Algorithm for Minimum-Cost Flows

(1) Setf = 0and r = 0. Choose ! such that, for all {u,v) € A, clu,v) <2 Setp=1—1.

12) Solve Problem p by the algorithm of Section 2.1, using f as the initial flow and » as the
initia} labeling function. After this step f is a maximum flow of minimum cost in Problem
p, and r is compatible with f in Problem p.

(3) If p = 0, halt. Otherwise replace p by p — 1 and replace f by 2f.

(4) Apply Algorithm C repeatedly, starting with the pair (f, »), until a compatible pair (g, )
is obtained. Set f = gand 7 = 8. Go tn 2.

The number of steps required in applying this algorithm can easily be bounded.
The number of executions of Algorithm C in Step (4) is at most | 4| (I — 1).

The number of flow augmentations (each requiring an application of Algorithm
A to a network with nonnegative weights) is bounded above by

-1 -1
flat+ X fia=2" =5" ~ 25" (8)
=1 =1
The number of applications of Algorithm A to networks with nonnegative weights
to verify that a maximum flow has been reached is [,

To put an upper bound on (8) we establish a lower bound on f,*. Let T be an
upper bound on the number of arcs in a cut-set separating s from ¢; i.c. if the nodes
are partitioned into sets X and X such that s € S and ¢ € X, then the number of
ares dirceted from a node in X to a node in X is less than or equal to T'. According to
the max-flow min-cut theorem ((5))

5" =min 5 [E.(%; v_}] -3 [c_@;;_ﬁz}

ug ug
v

X Y
X el

for some partition (¥, ¥). Now

elu, v) elu, v)
Fy]eoga
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B0
f*>izf'('a ) ----T:’lf* - T
eSS = 907" ’
ve;

Substituting this inequality in (8) gives, as an upper bound on the number of flow
augmentations,

(=
-3 (ifu* 7‘) Ll s -nr<ar
=1 \27 2n
The following theorem sums up our conclusions.

Turorew 10. et N be a network with # nodes, | A | arcs, and af most T ares in a
cul-sef separating 8 from t. Let | be the number of binary digits needed fo represent the
targest arc capacity. Then the scaling method solves the mintmuii-cost flow problem
for N using not more than ' A | (I — L) applications of Algerithm C and not wnore than
I — | + IT applications of Algorithm A to networks with nonnegative weights. Each
network: considered in the algorithm has n nodes and at most | A ' ares.
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