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ABSTRACT. This  paper  presents  new algori thms for the  maximum flow problem, the  Hitchcock 

t r anspo r t a t i on  problem, and the  general min imum-cos t  flow problem. Upper  bounds on the 

numbers  of steps in these  algori thms are derived,  and are shown to compale  favorably  with 

upper  bounds on the  numbers  of steps required by earlier algori thms.  

Firs t ,  the paper  s ta tes  the maximum flow problem, gives the Ford-Fulkerson labeling method 

for its solution,  and points  out  t h a t  an improper  choice of flow augment ing  pa ths  can lead to 

severe computa t iona l  difficulties. Then  rules of choice t h a t  avoid these difficulties are given. 

We show tha t ,  if each flow augmenta t ion  is made along an augment ing  pa th  having  a minimum 

number  of arcs, then  a maximum flow in an n-node network will be obta ined  af te r  no more than  

~(n a - n) augmenta t ions ;  and then  we show tha t  if each flow change is chosen to produce a 

maximum increase in the  flow value then,  provided the capacit ies are integral ,  a maximum flow 

will be de te rmined  wi thin  at  most  1 + logM/(M--1) if(t, S) augmenta t ions ,  wheref*(t, s) is the 

value of the  maximum flow and M is the maximum number  of arcs across a cut. 

Next  a new algor i thm is given for the  minimum-cos t  flow problem, in which all shor tes t -pa th  

computa t ions  are performed on networks wi th  all weights nonnegat ive .  In par t icular ,  this 

a lgor i thm solves the  n X n ass igmnent  problem in O(n 3) steps.  Following t h a t  we explore a 

" sca l ing"  technique for solving a minimum-cost  flow problem by t r ea t ing  a sequence of derived 

problems wi th  "scaled down"  capacit ies.  I t  is shown tha t ,  using this  technique,  the solution of 

a I i i tchcock t r anspor t a t ion  problem wi th  m sources and n sinks, m ~ n, and maximum flow B, 

requires at most  (n + 2) log2 (B/n) flow augmenta t ions .  Similar results  are also given for the 

general minimum-cost  flow problem. 

An abs t rac t  s t a t ing  the  main  results  of the present  paper  was presented at  the  Calgary 

In te rna t iona l  Conference on Combinator ia l  S t ruc tures  and Thei r  Applicat ions,  J u n e  1969. 

In a paper  by  l)inic (1970) a resul t  closely related to the main  resul t  of Section 1.2 is obtained.  

Dinic shows tha t ,  in a network wi th  n nodes and p arcs, a maximum flow can be computed in 

0 (n2p) pr imi t ive  operat ions by  an a lgor i thm which augments  along shor tes t  augment ing  paths.  
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1. The Maximum Flow Problem 

1.1. THE LABELING METHOD. A network N is a finiteset {u, v, - • • } called the nodes 

and a subset of the  ordered pairs (u, v), u # v, called the arcs. Network  N has a 

special return arc (t, s). Node s is called the source in N and node t is called the 

sink in N. T he  set of all arcs of N, except (t, s), we denote  by  A. For  each (u, v) ~ A 

there is given a number  c(u, v) > 0 called the  capacity of arc (u, v). 

A nonnegat ive function f (u ,  v), ranging over all arcs (u, v) of N,  is called a flow 

in N if 

(i) for every (u, v) C A, f (u ,  v) < c(u, v); and 

(ii) for every node u, 

f (u ,  v) -- ~ f(v, u)  = O, 
v v 

where each sum is over every v for which the summand  is defined. 

For each arc (u, v) of N, f (u ,  v) represents the amount  of flow in arc (u, v), and 

also represents the net  amoun t  of flow from v to u in the rest of the network 

" N  - (u, v ) . "  

The max imum network flow problem is to find a flow f in N such that  f(t,  s), the 

net amount  of flow in N - (t, s) f rom s to t, is maximum. 

Let u~, u2, • • • , u ,  be a sequence of distinct nodes such that ,  for each i = l, 2, 

• .. , p - 1, either (u~, u~+~) or (u~+~, u~) is an arc. Singling out, for each i, one of 

these possibilities, we call the resulting sequence of arcs a path f rom Ul to Up. Arcs 

(u~, u~+~) tha t  belong to the pa th  are called forward ares of the pa th ;  the other  arcs 

of the pa th  are called reverse arcs. 

Relative to any  given flow f in N,  a (flow) augme~ti~tg path is a pa th  from s to t 

such that  : 

Case (a): If  (ui, ui+l) C A and (ui+i, ui)  ~ A, then 

~i ~" C ( U i ,  Ui+i)  - -  f ( u i ,  ui+l) > 0; 

Case (b): If  (ui, ui+l) C A and (ui+l, ui) C A, then 

ei = f(ui+l,  ui)  > 0; 

Case (c): If  (u,., ui+l) ~ A and (ui+l, u,.) C A, then 

~i = e ( u i ,  n iT1 )  - -  f ( u i ,  Ui+1) -~ f(ui+,,  u~) > O. 

For a given augment ing  pa th  P ,  let e = rain e, > 0. Call each arc (ui,  u~+~) or 

(u~+~, u~) in P such tha t  ei = e a bottleneck arc relative to P and the flow f. 

Now alter the flow f as follows I : increase f by  e on the re turn  arc (t, s) ; in Case 

(a), increase the flow on arc (ui,  Ui+l) by e; in Case (b), decrease the flow on arc 

(ui+~, u~) by e; in Case (c), increase the flow on arc (ui, ui+i) by 

min (e, c(ui ,  ui+i) - f ( u l ,  ui+l)) and decrease the flow on arc (ui+l, ui) by 

max (0, e - c (ui, u~+l) + f (u i ,  ui+l)). I t  is easily checked that  t h e f  ~ thus defined 

is a flow in N.  Thus,  since f~ (t, s) = f(t,  s) + e, the flow f is not  maximum. I t  can 

1 The method of augmentation presented here differs [in Case (c)] from the method originally 
given by Ford and Fulkerson (cf. [5]). The results of this paper apply, with minor changes, to 
the Ford-Fulkerson method as well. 
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be shown that, conversely, a flow f in N is not maximum only if there is an 

augmenting path with respect to f. 

The labeling method constructs a sequence F = fo, fl, f2, . . .  of flows in N, starting 

with, say, the zero flow, by finding an augmenting path with respect to f if one exists, 

and then augmenting to obtain fk+l. The sequence terminates only when a maximum 

flow has been obtained. 

Assuming that  all the capacities c (u, v) are integers, then clearly for any aug- 

menting path P relative to any integer-valued flow f, e is a positive integer. Thus, 

since f0 is integer-valued, all the later flows fk in the sequence F are integer-valued. 

I t  follows that  the sequence terminates after a number of labelings not greater than 

the final value of f (t, s). 

The following example illustrates that  this upper bound on the number of label- 

ings can actually occur. 

11 

s t 

V 

Suppose that  the arc (u, v) has capacity 1, and the capacity of each of the other arcs 

in A is M, a positive integer. Then the maximum value of f(t, s) is 2M, and 2M 

labelings will be required if the labeling process alternates between selecting 

(s, u)(u ,  v)(v, t) and (s, v)(v, u) (u ,  t) as an augmenting path. For, in each case, 

either (u, v) or (v, u)  is a bottleneck arc, and e = 1. 

Assuming that  all the capacities are mutually commensurable, we can obtain an 

equivalent integer-valued problem by multiplying all the capacities by a large con- 

stant. Thus, in this case also, the sequence F is finite. 

Ford and Fulkerson show by an example that  if the capacities are not com- 

mensurable then the sequence F need not terminate, and in fact, may converge to a 

nonmaximum flow. 

Since numerical computation is always, in practice, performed on numbers ex- 

pressed to a finite precision, this nonfiniteness is not from a practical viewpoint a 

very serious matter. I t  does serve as another indication of the tendency of the 

number of augmentations to grow as the precision to which the capacities are ex- 

pressed increases. 

We will show that  these theoretical difficulties, which could conceivably be a 

practically serious matter, can be avoided. In particular, by making a certain re- 

finement of the labeling method which is so simple that  it is likely to be incorporated 
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innocently into a computer  implementat ion,  we get  a bound of at  most  ~ (Q - n)  

terms in the sequence F (regardless of commensurabi l i ty) ,  where n is the number  of 

nodes. In addition, a second refinement of the labeling method is shown to yield a 

bound on the length of F, applicable only in the case of integer capacities, of 1 

10gM/(M--:) f*(t, S), where f*(t,  s) is the value of a max imum flow, and M < n2/2. 

1.2. A REFINEMENT. The  labeling method  requires as a subrout ine  a labeling 

process for finding, if one exists, an augment ing  pa th  P relative to a given flow f in 

N. This is essentially a method  for finding, in a certain ne twork  N I hav ing  the same 

nodes as N, a directed pa th  f rom s to t. A directed path f rom s to t is a pa th  such 

that all arcs are forward arcs. The  ordered pair  (u, v) is an arc of N I if and only if 

either 

(u ,v )  C A and c ( u , v )  - f ( u , v )  > 0 

or 

(v ,u )  ~ A and f ( v , u )  > 0. 

The arcs of any  directed pa th  p I  f rom s to t in N i are in one-one correspondence with 

the arcs of an augment ing  pa th  P in N relative to f. The arc of p I  corresponding to a 

bottleneck arc of P is also referred to as a bot t leneck arc. 

The labeling process for finding a directed pa th  in N I f rom s to t is as follows: 

First s gets "labeled."  Then  at  each successive step of the process some labeled bu t  

"unscanned" node gets scanned. To scan a labeled node u means to label every node 

v not already labeled and such tha t  the arc (u, v) is in N I. I f  v gets labeled when u is 

scanned, then u is the predecessor of v in the labeling. 

As soon as the sink t gets labeled, then t, the predecessor of t, the predecessor of 

that predecessor, and so on back to s, is the reverse sequence of a directed pa th  in 

N I from s to t. On the other  hand,  if every labeled node gets scanned wi thout  t get- 

ting labeled, then there is evident ly  no directed pa th  in N I f rom s to t. Clearly the 

labeling process terminates  in one or the other  of these two situations. 

The refinement t reated here, which gives an upper  bound  of [ (n 3 -- n)  on the 

number of applications of the labeling process before obtaining a max imum flow, 

is the following: In  the labeling process, scan on a "first-labeled first-scanned" 

basis. T h a t  is, before scanning a labeled node u, scan the nodes tha t  got  labeled 

before u. 

I t  can be shown tha t  a directed pa th  in N l f rom s to t, obta ined by  this version of 

the labeling process, is one which contains a min imum number  of arcs. Thus,  the 

upper bound can be s ta ted as follows: 

THEORE~I 1. If, in the labeling method for finding a maximum flow in a network on 

n nodes, each flow augmentation is done along an augmenting path having fewest arcs, 
1 3 then a maximum flow will be obtained after no more than : (n - n)  augmentations. 

For present purposes, we will regard the number  of arcs in a pa th  as its length. The  

"distance" f rom a node u to a node v in N I is the min imum length of a directed pa th  

from u to v in N I, or else ~ if there is no such path.  

Let F = fo, fl,  f2, . . .  be any  sequence of flows in N such tha t  fk+l is obtained from 

by an augmenta t ion  corresponding to a shortest  directed pa th  pk in N Ik. Let  N k 
S k  k • • k 

denote N , and let 5 (u, v) denote the distance from u to v m N . 

LEMMA 1. I f  k < m and (u, v) is a bottleneck arc relative to pk and fk, and also rela- 

tive to pm and f f  , then, for some 1 such that k < 1 < m, (v, u)  C pZ. 

LEMMA 2. I l k  < l, (u, v) ~ pk and (v, u)  C pt,  then ~(s,  t) > ~k(s, t) + 2. 
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Given these lemmas, the proof of Theorem 1 is at  hand. Let  {u, v} be any pair of 

nodes such tha t  (u, v) ~ A or (v, u)  ~ A. Le t  the sequence {ki} consist of all indices 

ki such tha t  either (u, v) or (v, u )  is a bot t leneck arc relative to P ~  a n d f  ~. By  Lemma 

1, one can find a sequence {l~}, containing {kl} as a subsequence, such tha t  

o r  

(u, v) ~ P*~, j odd and (v, u )  ~ Pt~, j even 

(u, v) ~ P*~, j even and (v, u)  ~ Pt~, j odd. 

By  Lemma  2, 6 zj+'(s, t) > 6 Zj(s, t) + 2, j = 1, 2, • • • . Thus,  ~t *j(s, t) > 2 ( j  - 1). 

Bu t  the length of any directed pa th  in N k is at most  n - 1 so tha t  6 *j (s, t) < n - 1 

for all j .  The  length of the sequence {/j} is therefore at  most ½ (n - 1) + 1 = 

½ (n -+ 1), and thus the number  of occurrences of (u, v) or (v, u)  as a bot t leneck arc 

th roughout  the entire labeling method  is at  most ½ (~ + 1). The  number  of oc- 

currences of bot t leneck arcs al together  is therefore bounded by 

n+2 l ( n  12 - n 3 - n 4  

And, since every  augmenta t ion  determines a bot t leneck arc, the number  of aug- 
1 3 

mentat ions  is also bounded by  z (n - n) .  

The  proof of L e m m a  1 employs two simple propositions. 

PROPOSITION 1. I f  (u, v) is a bottleneck arc relative to pk and f~, then (u, v) ~ N k+l. 

PROOF. The  augmenta t ion  f r o m f  k t o f  k+l is such that ,  if (u, v) C A t h e n f  k+l (u, v) 

= c (u, v), and if (v, u)  ~ A then  fk+l (y, U) = 0; hence, (u, v) ~ N *+1. II 

PROPOSITmN2. I f  (U,V) C N k+lthen (u,v) ~ N kor (v,u) C pk. 
PROOF. Suppose (u, v) C N k+l and (u, v) ~ Nk; then, ei ther fk+1(u, v) ~ fk(u, v) 

orffl +~ (v, u)  ~ fk (v, u). In  ei ther case, (u, v) or (v, u)  must be in pk. But  (u, v) ~ pk, 

since (u, v) ~ N*; thus, (v, u)  ~ pk. 
We can now prove Lemma  1. By  Proposi t ion 1, (u, v) C Nk+I; since (u, v) ~ p,n, 

( u , v )  C N m. Let  1 + 1 = m i n { t  I t > /~and (u,v)  ~ N t } .Then  ( u , v )  ~ N ~+~, 

(u, v) ~ N~; hence, by  Proposi t ion 2, (v, u)  ~ P~. This completes the proof of Lemma 

1. II 
The proof of Lemma 2 will make use of the following proposition. 

PROPOSITION" 3. For t~ = O, 1, 2, • • • , and for all u, 

~(s ,  u) < ~+~(s, u) (1) 

and 

6~ (u, t) < /t ~+~ (u, t). (2) 

PROOF. We prove (1), the proof of (2) being similar. If 6 k+~ (s, u)  = ~ ,  the re- 

sult is evident.  Assuming 6k+~(s, u)  = h is finite, let s = u0, u~, . . .  , uh = u be 

the node sequence of a shortest  directed pa th  from s to u. Then  6 k (s, u0) = 0 and 

we claim that  

6k(s, ui+l) _~ 1 + 6k(s, ui), i = 0 , - " ,  h - 1. (3) 

For, since (ui, u~+~) ~ N ~+1, Proposi t ion 2 tells us that  (u,, ui+~) ~ N ~ or (ui+~, 
u~) ~ P~. In  the former case, fi~(s, u~+~) < 1 + 6~(s, ui) ,  since the arc (ui, ui+~) 

enables us to get a directed pa th  from s to Ui+l in N ~ having no more than  1 + 

6~(s, u~) arcs. In the la t ter  case, ~i~(s, ui) = 1 + 6~(s, ui+~), so fi~(s, u~+i) = 
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- 1  + ~(s, ul) < 1 -F 5k (s, ui). Summing the inequalities given in (3), 

~k(s,u) < h + g ( s ,  u0) = h =  g+1(s,u), 

and (1) is proved. II 

To prove Lemma 2 note that, since (u, v) ~ pk, ~k (s, t) = ~k (s, u) + 1 -b (3 k (v, t). 

Also, ~k(s, v) = 1 + ~tk (s, u) and/tk (u, t) = 1 + ~k(v, t). Since (v, u) C pZ, ~tl(s, t) = 

~Z(s, v) ÷ 1 + ~tZ(u, t). But, by Proposition 3, St(s, v) _> ~*(s, v) and 5Z(u, t) _> 

~k(u, t), so that ~l(s, t) > ~ik(s,v) -t- 1 -t- ~k(u,t) = (1 + ~k(s,u)) + 1 -I- (1 + 

~k(v, t)) = 2 + ~t k (s, t). Thus, Lemma 2 is proved, and we are done. I I 

The proof of Theorem 1 can be modified quite simply to supply bounds on the 

numbers of augmentations required in certain other refinements of the Ford- 

Fulkcrson labeling method. Let a (u, v) be a real-valued function defined whenever 

(u, v) C A or (v, u) C A, such that  b (u, v) = a(u, v) + a(v, u) > 0. Let theweight 

of a path P in N having the node sequence ul ,  u2, . ."  , % be ~_--~ a(ui ,  Ui+l). 

Consider a variant of the labeling method in which each augmentation is along a 

flow-augmenting path of minimum weight. Then the number of augmentations can- 

not exceed (S ,'~(u.v)c a 1/[b (u, v )] ) -I- I A [, where S is the maximum weight of a path 

from source to sink. Theorem 1 corresponds to the ease where a (u, v) = 1 for all 

pairs (u, v). Another ease, corresponding to the rule: "select a flow-augmenting 

path with as few reverse ares as possible," has a(u, v) = 1 if (v, u)  C A, and 
1 3 a(u, v) = 0 otherwise. A bound on the number of iterations in this ease is ~ (n -- n2). 

1.3. A SECOND REFINEMENT. In this section we consider the following refine- 

ment of the labeling method: at each iteration choose a flow-augmenting path 

which gives the largest possible augmentation. 

Let N be a network in which every capacity is an integer. Let M > 1 be a positive 

integer such that, for any partition of the nodes of N into two sets, X and X, with 

s C X and t { 2 ,  the number of ares with one end in X and the other in 2 is less 

than or equal to M. Let f* (t, s) denote the value of a maximum flow. 

THEORmr 2. If, in the labeling method for finding a maximun flow in N, a net- 

work with all capacities integral, each augmentation is done along an augmenting 

path giving the maximum possible augmentation, then a maximum flow will be 

obtained after no more than 1 -~- lOgM/(M--1) f* (t, S) augmentations. 

Before proving Theorem 2, we show how the rule under consideration can be 

implemented. Suppose we arc seeking a flow-augmenting path in N relative to a 

flow f. Associate with each arc (u, v) C N f a number e (u, v) equal to the value of e 

that would result if (u, v) were a bottleneck arc in a flow-augmenting path relative 

to N and f. Specifically, 

(i) if (u,v) C A and (v,u) ~, A, then e (u , v )  = c (u , v )  - f ( u , v ) ,  

(it) if (u,v) ~ A and (v ,u)  C A, then e(u ,v )  = f ( u , v ) ,  

(iii) if (u,v) C A and (v,u) ~ A, then e(u ,v )  = e (u ,v )  - f ( u , v )  q- 

/(v, u). 

Then the labeling method seeks a directed path from s to t in N z in which the 

mallest value of e (u, v) is as large as possible. This is a bottleneck problem of the 

ype studied in [4]. One method of finding such a path is to label s, and then to repeat 

he following step until t is labeled: find an are (u', v') ~ N I such that u' is labeled, 

' is not labeled, and for any are (u, v) from a labeled node to an unlabeled node, 

(u', v') _> e (u, v ). Label v' and record u' as the predecessor of v'. When t is labeled, 
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tracing the sequence of predecessors back from t gives a maximum-e flow-augmenting 

path. If, at some step, there is no arc from a labeled node to an unlabeled one, then 

no flow-augmenting path exists. 

PROOF OF THEOREM 2. Consider a partition of the nodes of N into two sets, X 

and 2 ,  such that  s E X and t E X. Define 

c(X, 2 )  = ~ c ( u , v ) , f ( X , X )  = ~ f ( u , v )  
uE._" uEx 
vE X v E X  

(u , v )  EA ( u , v )  E A 

and 

f ( X , X )  = ~ f (u , v ) .  
u E £  
v E X  

( u , v ) E A  

Then, for any flow f, 

c(X,  X )  > f ( X ,  X )  -- f ( X ,  X )  = f(t ,  s). 

Suppose the labeling method using maximum augmentations produces the sequence 

of flows f0, fl, . . .  , fk, . . . .  Let e k = f + l  (t, s) - fk (t, s). Consider the augmentation 

fromff  to f+~. Let the set X consist of s together with all nodes which can be reached 

from s by a directed path in N k consisting of arcs (u, v) such that  e(u, v) > k; 

let X denote the remaining nodes. Then t C 2 and every arc (u, v) in N k such that 

u E X a n d v  E 2 s a t i s f i e s e ( u , v )  < e k.  

c(X, 2 )  - [f*(X, 2 )  -- f~ (2 ,  X)] 

_< ~kl { (u ,v)  lu  E X , v  C 2 ,  (u,v)  ~ A or (v,u)  C A]} 1 _< ekM. 

Now f* (t, s) < c (X, 2 )  and ~ (t, s) = fk (X, 2 )  - fk (2, X),  so 

f*(t, s) - fk(t, S) < cAM; i.e. f*(t, s) -- fk(t, s) < [fk+'(t, s) -- fk(t, s)]M. 

Equivalently, 

f*(t, s) -- f~+~(t, s) < [f*(t, s) -- fk(t, s)](1 - -  / ~ - 1 ) .  

Thus, by induction, 

f*(t, s) -- f f ( t ,  s) < f*(t,  s)(1 -- M-l )  k. 

Now, since all the capacities are integers, each flow is integral. Thus, if f is not a 

maximum flow, then 

f* ( t , s )  - f ( t , s )  >_ 1, 

SO 

and 

f*(t, s)(1 -- M-l )  k >_ 1 

k _~ --logl--1/Mf* (t, S) ---- IOgM/(M--1)f* (t, S ), 

SO the total number of augmentations cannot exceed 

1 -t- IOgM/(M--1)f (t, S). 
1 2 Let 6 denote the average capacity of an arc in A. Then f* (t, s) < 6n 2 and M < ~n, 

SO 

iOgM/(M--1) f*(t, S) < logl+2/(~2-2)(n26) = in n26 
In (1 + 2/(n  ~ -- 2))" 
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But 

( 2 ) >  i n ( i +  2 ) 2 1 ( 2 )  2 
In 1--~-n~---- ~ _ ~ >n--~-- ~ ~ . 

Using these estimates we find that  the number of augmentations cannot exceed 

2 In n + In 5 n 4 
1 -t- = 1 + - -  ( 2 1 n n  -k ln~) 

2(1/n 2 - 1/n 4) 2n 2 - 2 

= n 2 1 n n +½n 2 1 n S - t - O ( n  21nn+n 2 1 n o ) .  

Thus, although the present bound depends on the capacities and requires their 

integrality, it is superior to the bound of Section 1.2 in approximately the range 

0 < g < e ~/4. 

2. The Minimum-Cost Flow Problem 

2.1. A LABELING METHOD. In this section we turn to the problem of finding a 

maximum flow of minimum cost. Given a network N, associate with each arc 

(u, v) E A a nonnegative cost d(u, v) as well as the usual positive capacity c(u, v). 

Let the cost of a flow f be ~(~,,)e ~ d(u, v)f(u, v) and let its value be f(t, s). We seek 

flow of minimum cost among those with value f*(t, s). 

Call a flow f extreme if it is of minimum cost among flows with value f(t ,  s). We 

mention some well-known characterizations of extreme flows. In doing so, we make 

use of the network N s associated with f. We recall that  a network, by definition, has 

at most one are from one given node to another. For convenience we also assume that 

(u, v) C A ~ (v, u) ~ A. Obvious devices using "fictitious nodes" can be used to 

enforce this restriction if it does not originally hold. Associate with any arc (u, v) 

of N s a weight ~ (u, v) as follows: 

~d(u, v), (u, v) C A, 
A(u, v) = ~ - d ( v ,  u),  (v, u )  E A. 

Define the weight of a subgraph of N s as the sum of the weights of its arcs. Define a 

labeling function as a function from the nodes to the real numbers. 

THEORE~I 3. 2 Let f be a flow. Then the following are equivalent: 

(i) f is extreme, 
(ii) every directed cycle in N s has nonnegative weight, 

(iii) there exists a labeling function 7r such that, for every arc (u, v) of N s, 

~(u) + ~(u,  v) - ~r(v) _> 0. 

A restatement of (iii) in terms of the network N is: for (u, v) ~ A, 

~r(u) -- 7r(v) + d(u, v) > 0 ~ f (u ,  v) = O, 
(4) 

7r(u) -- z'(v) + d(u, v) < 0 ~ f (u ,  v) = c(u, v). 

If the flow f and the labeling function 7r together satisfy (4), then f and 7r are 

called compatible. 

Another basic result is the following. 

2 The equiva lence  of (i) and (iii), s t a t ed  in a s o m e w h a t  different  form,  can be found in [5, 

pp. 114-115]. 
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THEORE:U 4. ([5, p. 121]). I f  f i8 extreme and P is a path of m in imum weight in 

N s from 8 to t, then a flow f '  obtained by augmenting along P is extreme. 

For brevity call a path  of minimum weight a "shortest  pa th . "  Theorem 4 sug- 

gests the following method of solving the minimum-cost flow problem: starting with 

an extreme flow f0, compute a sequence of extreme flows J~, fl, . . .  , fk, fk+l, . . .  

obtaining fk+l from fk by augmenting along a shortest path  from 8 to t in N sk. A 

shortest path  can be determined using the following algorithm. 

ALGORITHM A : S h o r t e s t - P a t h  Algor i thm 

Let N fk have the set  of arcs A k, and let A(u, v) be the  weight  of arc (u, v) C A k. 

(1) Set a(s)  = 0 and set ~(u) = -k-~, u ~ s. 

(2) Set S = {s}. 

(3) If  S = 4~, ha l t ;  o therwise  choose u* such  tha t  u* E S and or(u*) = minu  Es,r(u)-  

(4) Fo r  each v such  t h a t  (u*, v) C A k, se t  

,r(v) = rain (a(v), a ( u * )  A- A(u*, v)). 

If this process decreases a(v), adjoin v to the set S. 
(5) Delete u* from S and go to (3). 

Algorithm A has the following properties: 

(1) Upon its termination, a (u )  gives the weight of a shortest path  from s to u; 

(2) If  A (u, v) >_ 0 for every arc (u, v), then each vertex accessible from s enters 

the set S exactly once, so that  the total amount  of computat ion is proportional to 

the number  of ares; 

(3) If no cycle is of negative weight, then each vertex accessible from 8 enters the 

set S at most n - 1 times, so that  the total amount of computat ion has a bound 

proportional to n - 1 times the number  of ares; 

(4) If  there is a negative-weight cycle accessible from 8, then the algorithm is 

nonterminating. One way to detect this is to keep a subgraph T of tentative shortest 

paths. T contains arc (u, v) if v last entered S during an application of Step (4) with 
$ 

u = u. Any cycle in T has negative weight; if a negative-weight cycle is accessible 

from 8, then such a cycle will occur in T by the time an5' vertex enters S for the nth 

time. 

The discussion of the shortest-path algorithm shows the efficiency to be gained 

in eases when all weights are nonnegative. Too little at tention has been paid to this 

essential point in the development of algorithms for minimum-cost flows. We 

present in this section an algorithm designed so that  all shortest-path calculations are 

done on networks with all weights nonnegative. 

Let f be a flow and let ~- be a labeling function. Assign each arc (u, v) of N ] a 

weight X(u ,v )  = ~r(u) -4- A ( u , v )  -- 7r(v). 

Then clearly 

(i) if C is a directed cycle, then 

5(u,~)= ~ a(u,~); 
(u ,v)  ~ C (u,v)  CC 

(ii) if P is a directed p a t h f r o m  u* to v*, then 

~(u, ~) = ~-(u*) - ~-(~*) + ~ ~(u, ~). 
(u ,v)  ~P (u ,v )  EP 

Thus, N s has a cycle of negative weight with respect to the weights A (u, v) if 
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and only if N I has a cycle of negative weight with respect to the weights A (u, v). 

Also, P is a shortest path  from s to t with respect to the weights A (u, v) if and only 

if P is a shortest path from s to t with respect to the weights A (u, v). Consider the 

implications of these facts when f and ~r are compatible. Then A (u, v) > 0, and a 

minimum-weight flow-augmenting pa th  (relative to the weights A(u, v))  can be 

found by a shortest-path calculation using the nonnegative weights A(u, v). 

A variant of the algorithm suggested by Theorem 4 is now apparent  which per- 

forms all shortest-path calculations on networks with all weights nonnegative. 

ALGORITHM B: Minimum-Cost Flow Algorithm 

(1) Set f0 equal to the zero flow, and set 7r ° equal to the identically zero labeling function; 
(2) Given fk and 7r k, determine fk+l by augmenting along a minimum-weight path from s to t 

in N/k with respect to the (nonnegative) weights 

ak(u, v) = ~-k(u) + ,~(u, v) - ~-k(v). 

If several m i n i m u m - w e i g h t  pa th s  exist ,  choose one wi th  the fewest  arcs.  

(3) If ak(u) denotes  the  weight  of a sho r t e s t  p a t h  f rom s to u w i th  respect  to the weights  

A k, set  lr~+l(u) = ~k(u) + aS(u); t ake  ¢k(u) = 7rk+l(u) = -]-~ if u is inaccessible f rom s in 
N/k . 

(4) Halt when, for some k, no flow-augmenting path exists with respect to fk 

Some properties of the algorithm are given in the following theorem. 

THEORE~ 5. For each k, fk and 7rE are compatible. For eaeh k and u, 7r k (u ) gives 

the weight of a shortest path from s to u in N Ik with respect to the weights A (u, v) and 
~'~÷ ' (u ) _> ~'~ (u ). 

We present two bounds on the number  of flow augmentations required by the 

minimum-cost flow algorithm. 

THEOREM 6. /f  all the capacities are integers, then the computation terminates after 

at most f* (t, s) flow augmentations. 

PROOF. Each flow fk is integral, and each augmentat ion increases the flow by a 

positive integer. [r 

THEORE~r 7. Suppose the costs d (u, v) are integers less than or equal to an integer D. 

Then the computation terminates after at most 1 + ~ (n 3 - n ) (n - 1 )D flow augmenta- 

tions. 

PROOF. We show that  the overall computat ion can be regarded as a sequence of 

at most (n - 1)D + 1 phases, each consisting of a maximum flow computation. 

Each phase corresponds to a period during which 7r k (t) remains constant. Suppose 

7r k (t) is constant for k~ < k < k2. Then the flow augmentations involved in passing 

from fk~ to fk: are along directed paths in the subnetwork N '  containing those arcs 

(u, v) i n N  Ik' such that  ~r k~ (u) + A(u, v) -- 7r ~ (v) = 0. Hence, these augmentations 

Ltre part  of a maximum-flow computat ion in N ' .  The bound of Section 1.2 is appli- 

cable, since the algorithm selects, at each step, a path  with fewest arcs among those 

of minimum weight. Hence, the number of augmentations per phase is at most 

(n 3 - n). Now, except at the last step, when t is inaccessible by a flow-augmenting 

9ath and ~rk~) = oc, 7r k (t) is the weight of some path  in N from s to t, and hence is 

~n integer between 0 and (n - 1 )D. Thus, noting that  7r k (t) is nondecreasing with 

~, we see that  the number  of phases, excluding the last step, is at most (n -- 1)D, 

md the theorem follows. [I 

COROLLARY 1. Algorithm B solves any minimum-cost flow problem in a finite nTm- 

)er of steps (even when neither the capacities nor the costs are commensurable). 
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PROOF. The first half of the proof of Theorem 7 is applicable in this case, and 

shows that  there is a finite bound on the number of successive flow augmentations 

without an increase in ~r k (t). But,  for any k, ~.k (t) is the weight of some directed 

path from s to t in N f~, corresponding to some path without repeated vertices in N. 

Since the number of such paths is finite ~-~ (t) increases only a finite number of times, 

so that  the entire process must be finite. I] 

Although it is comforting to know that  the minimum-cost flow algorithm ter- 

minates, the bounds on the number of augmentations are most unfavorable. The 

scaling method of the next two sections is a variant of this algorithm in which the 

bound depends logarithmically, rather than linearly, on the capacities. A challeng- 

ing open problem is to emulate the results of Section 1.2 for the maximum-flow prob- 

lem by giving a method for the minimum-cost flow problem having a bound on 

computation which is a polynomial in the number of nodes, and is independent of 

both costs and capacities. 

2.2. A SCALING METHOD FOR THE HITCHCOCK TRANSPORTATION PROBLEM. In 

this section and the following one, we present a technique for solving a minimum- 

cost flow problem by treating a sequence of problems with the same cost as the 

given problem, but  with "scaled down" capacities which approximate those of the 

given problem to successively more digits of precision. The efficiency of this scaling 

method is based on the following two features: 

(1) the capacities, and hence the flow augmentations, in the approximate prob- 

lems are on a coarser scale than in the original problem; 

(2) the final solution of each approximate problem yields a good initial flow for 

the next approximate problem. 

We prove that  the number of computation steps required by the scaling method 

is proportional not to the capacities (as in the method of Section 2.1) but  to the 

numbers of digits in the binary representations of the capacities. Roughly speaking, 

the scaling method is related to the original method as binary arithmetic is to 

unary arithmetic (i.e. counting). 

First we consider a special case in which the scaling technique is particularly 

simple. The Hitchcock transportation problem asks for a maximum flow of minimum 

cost through a network of the type shown in Figure 1. 

The costs and capacities are as follows: 

arc (s, si) has cost 0 and capacity al ,  i = 1, 2, • • • , m; 

arc (t~., t) has cost 0 and capacity bj, j = 1, 2, . . .  , n; 

arc (sl, tj) has cost d~j and capacity % oo, i = 1, 2, • .. , m, j = 1, 2, • • • , n; 

the return arc (t, s) has cost 0 and capacity + ~o. 

I t  is assumed that  ~i'21 al = ~ - 1  bj. The value of a maximum flow is clearly 

The standard interpretation of this problem is well known. Each vertex s~ cor- 

responds to a "source" at which ai units of a commodity are available; each vertex 

t~. corresponds to a "desffnation" which demands b~. units of the commodity. The 

cost per unit of shipping from s~ to tj is dlj, and a shipping pat tern is sought which 

minimizes the cost of meeting the demands at the destinations from the supplies 

at the sources. 

In the following specialization of the criteria for an extreme flow given in eq. 

(4), ui denotes 7r(s~) and vj denotes lr(tj); also, fii denotes f(s~, tj) when i >_ 1 

a n d j  > 1; foi denotes f (s, si) and fio denotes f ( t j ,  t). 
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FIG,  1 

T H E O R E M  N. 

1, i f  a~d  on ly  i f  there ex is t  uo , u l  , • •. ,Um a n d  vo , vl , • • • , v~ such  that  

u~--  wj-t-d~j_> 0, i = ~,2, . . - , m ; j  = 1,2,  . . - , n ,  (5a) 

ui -- v; -~- di; > 0 ~ L j  = 0, i = 1, 2, . . .  , m ; j  = 1, 2, . . .  ,~t, (5b) 

Uo > u i  ~ foi = 0, (5c) 

Uo < u i  ~ f 0 i  = a , ,  (Sd) 

vi > Vo ~f~o  = O, (5e) 

vj < Vo ~ j~o  = b; (5f) 

The  f l o w  f is  ex t reme a m o n g  m a x i m u m  f l o w s  f o r  the ne twork  o f  F i g u r e  

Call a flow f for the Hitchcock problem pseudo-ex t reme  if there exist ui and v; 

satisfying (5a) and (5b). A pseudo-extreme maximum flow is extreme; for a maxi- 

mum flow has f0i = ai ,  i = 1, 2, . . .  , m andfj0 = b i , j  = 1, . . .  , n.  Thus, if (5a) 

and (5b) are satisfied, we may satisfy (5c)-(5f)  by setting Uo = mini=l.2.., mU~ 

and w0 = maxj=l.2....,,, v;. For a problem of the Hitchcock type with ~ a~ ~ ~ bj, 

a pseudo-extreme maximum flow is not, in general, extreme. 

Algorithm B can, of course, be used to solve the Hitchcock problem. An alternate 

method is based on the fact that  a maximum pseudo-extreme flow is extreme. A 

sequence of pairs (f0, ~.0), (fl, ~.1), " " ,  (fk, ~.k) is computed where, for each k, 

(fk. ~_k) satisfies (Sa) and (Sb), so that  fk is pseudo-extreme. The determination 

of (fk+l, ~_k+l) from (fk, ~.k) differs from the corresponding ste~ in the previous 

algorithm in only one respect: if f~i < ai then arc (s, s~) in N j is assigned cost 

(s, s~) = 0, regardless of ~.k similarly ~ (tj, t) = 0 iffj0 < b;. I t  is easily checked 

that, if (fk, ~.k) satisfies (5a) and (Sb), then so does (f~+~, ~_k+~) ; thus, fk+~ is pseudo- 

extreme if fk is. If the capacities a~ and bj are integers then an upper bound on the 

number of flow augmentations is ~ l a ~ .  

Now we are prepared to present the scaling method. For any nonnegative integer 

p, define Problem p to have the same nodes, arcs, and costs as the given problem, 

but with the capacities changed as follows: the capacity of (s, s~) is [ai/2 p] and the 

capacity of (re, t) is [bff2v]. 3 Thus, the original problem is Problem 0 and, in general, 

the capacities in Problem p are obtained by deleting the p low-order digits in the 

binary representations of the original capacities. 

3 ,, [x]" m e a n s  " g r e a t e s t  i n t e g e r  l e s s  t h a n  o r  e q u a l  t o  x." 
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LEMMA 3. I f  f is a pseudo-extreme flow in Problem p, then 2f  is a pseudo-extreme 

flow in Problem p - 1. 

Choose 1 such that  every finite capacity has at most 1 digits in its binary expan- 

sion; i.e.a~ < 2 *, i = 1,2, - . - , m ,  andbi  < 2 t, j = 1,2,  . . . , n .  Then  the scaling 

method computes maximum pseudo-extreme flows successively for Problems l -- 1, 

1 - 2, • • • , 0. If f is the maximum pseudo-extreme flow computed in Problem p, 

and 7r is the associated labeling function, then 2f is taken as the initial pseudo- 

extreme flow in Problem p - l, with rr as its associated labeling function. 

The following theorem bounds the number of flow augmentations in the solution 

of a transportation problem by the scaling method. 

THEOREM 9. The number of flow augmentations in applyi~g the scaling method to 

a transportation problem with integral "supplies" a~, a~, . . .  , am and integral "de- 

mands"  bl, b2, • • • , bn is less than or equal to 

(I • = a i  

max (m, n)  2 + logs ,na~'~.7, n) " 

PROOF. Let fv* denote the value of a maximum flow in Problem p. The initial 

flow in Problem 1 - 1 is 0 and, for p < 1, the initial flow in Problem p - 1 is 2fp*. 

Recalling that  each augmentation gives a positive integral increase in the flow, the 

total number of augmentations is bounded above by 

l--1 l--1 

ft*-i q- ~_, (f*-~ -- '2fp*) = fo* -- E f p * "  (6) 
p = l  p = l  

Now 

fv" = m i n ( ~ I a ~  1 ~ I b 3 1 )  ,:=, ~7 ' ,_57 >_o. 
j = l  

We can write ai = 2p[ai/2 ~] + ri~,, where 0 _< rip < 2 p - 1. Hence, 

~ a i -  ~ r i p  ~ a l  
~ [ a ~ ]  i=l i=1 >i=1  

i=x 2P -- '2P 

Similarly, 

i = l  

~ b j  
j = l  

2v 

Let B denote the common value of 

[log2 (B/max (m, n))].  Then 

, >  ( B 
f p / -  max 0, 2--7 

and 

n .  

~ i ~ ,  ai and Ejn=l bj, and let L denote 

- max (m, n ) )  

) fp* >_ -- max (m, n) . 
p = l  p = l  
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Applying this inequality to (6), and noting that  fo* = B, we find that  an upper 

bound on the total number of flow augmentations is 

B/2  L + L m a x  (re, n) _< (L + 2) max (re, n). 

This completes the proof, ll 

We remark that this bound on the number of flow augmentations is approxi- 

mately equal to the number of binary digits required to encode the data of the 

transportation problem. Each augmentation requires O(m, n) computation steps, 

so that the number of computation steps in the entire process is bounded by a low- 

degree polynomial in the size of the problem, as measured by the length of the input 

text. In this sense the scaling method is a "good" algorithm. 4 

2.3. A SCALING METHOD FOR THE ~'~INIMUM-CosT FLOW PROBLEM. R e f e r e n c e s  

[6] and [7] give a simple method of converting any minimum-cost flow problem having 

I A I arcs and n nodes into an "equivalent" Hitchcock transportation problem with 

I A [ sources, n destinations, and a maximum flow of ~(~.,)c i C (U, V). By Theorem 9, 

the application of the scaling method to such a derived transportation problem 

requires at most 

(L + 2)[ A I 

flow augmentations where L = log2 (~(u.~.)c(u, v)/[ A I). Thus, the approach of 

converting to an equivalent transportation problem which is solved by the scaling 

method yields a good algorithm for the minimum-cost flow problem. 

In this section, we consider the direct application of the scaling method to the 

minimum-cost flow problem. The general approach is clear. Given a minimum- 

cost flow Problem on a network N with costs d (u, v) and capacities c (u, v), define 

Problem p as a problem identical with the given one except that  the capacity of arc 

(u, v) is given by [e(u, v)/2v]. Choose 1 as the least integer such that  2 l > e(u, v) 

for all (u, v) C A. Then the plan is to solve Problems 1 - 1, 1 - 2, . . .  , 0 succes- 

sively using Algorithm B, taking twice the final flow in Problem p as the initial 

flow in Problem p - 1. There is a major difficulty, however. If.fp* is a minimum-cost 

maximum flow in Problem p, then 2fv* is a flow in Problem p - l, but not, in general, 

an extreme flow. In the case of the transportation problem this difficulty was not 

serious, since it was possible to work with pseudo-extreme flows instead of extreme 

flows. For general minimum-cost flow problems the remedy for this difficulty is 

somewhat more complex. 

We begin by showing that if f is extreme in Problem p, then 2fis "almost extreme" 

in Problem p - 1. Since f is extreme in Problem p, there is a labeling function 7r 

such that 

~-(u) + d(u,  v) - ~-(v) > 0 ~ f (u ,  v) = 0, (u, v) C A, 

~'(u) + d(u, v) - ~'(v) < 0 ~ f(u,  v) = [c(u, v)/2P], (u, v) C A. 

Using the inequalities 

Fe(u, ) 1 Fe( ,v)l 
2 L - ~ - - J  -< L~T- ' -J  -< 2 L2G- -J  + 1, 

4 The concept  of a " g o o d  a l g o r i t h m "  is discussed in detai l  in [2]. 
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we have  

~r(u) + d(u, v) -- ~'(v) > 0 ~ 2f(u, v) = O, (7) 

7r(u) + d(u, v) -- ~r(v) < 0 ~ 2f(u, v) < [c(u, v) /2  p-'] < 2f(u, v) + 1. 

But  compat ib i l i ty  of f and ~r in P rob l em p - 1 requires 

~r(u) + d(u, v) - ~r(v) < 0 ~ 2f(u, v) = [c(u, v)/2P-1]. 

Thus,  2f and ~r fail to be compat ib le  in P rob lem p - 1 by  a t  most  one uni t  of flow 

on any  arc. We give an efficient me thod  of t ransforming 2f to a flow which has  the 

same value and is ex t reme in P rob lem p -- 1. The  me thod  can be regarded as a 

va r i an t  of the Fulkerson out-of-ki l ter  a lgor i thm [5] in which the "flow change"  

and "po ten t ia l  change"  phases  are combined  into a single computa t ion .  

We s ta te  the me thod  as it appl ies  to an a rb i t r a ry  integral  feasible flow g in Prob-  

lem p -- 1, and an a rb i t r a ry  labeling funct ion 0. Dcfine el(u, v) = O ( u ) +  

d(u,  v) -- 0 (v). Define Kg.o (u, v), the kilter number of ~rc (u, v) relat ive to g and 0, as 

g(u, v), if d(u,  v) > 0, 

0, if d ( u , v )  = 0, 

I 
c(u, ~)~ 
- ~ - j  - g(u, v), if d(u, v) < 0. 

Thus ,  g and 0 are compat ib le  if and  only if each arc has ki l ter  number  zero. Also, 

relat ive to 2f and 0, the kil ter  number  of each arc is 0 or 1. 

The  following a lgor i thm derives, f rom an incompat ib le  pai r  (g, 0), a new pair  

(gt, 0'), in such a way  tha t  

(i) Kg,,o,(U, v) < Ko,o(U, v), (u, v) E A, 

and 

(ii) ~_,(u,~)caKo,,o,(U, v) < ~_,(u,v)caK~,o(u, v) - 1. 

ALGORITHM C: K i l t e r  N u m b e r  R e d u c t i o n  

(1) F o r m  the  a u g m e n t a t i o n  ne twork  N °, hav ing  A rJ as i ts  set  of arcs.  Fo r  each  arc (u, v) E A g' 

define 

~ ( u ,  v), if (u, v) E A and g(u, v) < [c(u, v)/2p-ll,  
7~(u,v) = [ - d ( u , v ) ,  if ( v , u )  E A and g(v,u)  > O. 

Label  each  are (u, v) E A g w i t h  the  we igh t  

B(u, v) = max  (~(u,  v), 0). 

(2) Choose  an arc (u*, v*) of N g such  t h a t  

(a) (u*, v*) E A,  a(u ,  v) < 0 and  g(u, v) < [~(u, v)/2P-l], 

or 

(b) (v* ,u*)  E A,  ~ ( u , v )  > 0 and  g(u, v) > O. 

(3) Le t  N* = {x [ x = v* or N* has a d i r ec t ed  p a t h  f rom v* to x}. F o r x  E N*,  set  6(x) equal  

to t he  m i n i m u m  weigh t  of a d i r ec t ed  p a t h  f rom v* to x. Fo r  x (~ N* set  

~(x) = max [0(u) - ~(v, u)]. 
{(v,u)EAOIv~:N*, uEN*} 
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(4) 

For each node z, let O' (x) = O(x) + 8(x). 
If u* ~ N*, then q' = g. 
If u* C N*, choose a cycle C of N g consisting of (u*, v*) together with a minimum-weight 
path from v* to u*. Obtain g' from g by performing a flow augmentation around the cycle 
C. 

We make  the following assert ions (omit t ing  proofs) :  

(i) For  each arc (u, v), Kg,,v (u, v) < Kg,0 (u, v) ; 

(ii) if (u*, v*) C A, 

Ko,,v(u*, v*) _< Ko,e(u*, v*) - 1; 

(iii) if (v*, u*)  C A, 

Ko,.o' (v*, u*) < Ko,e(v*, u*) - 1. 

By i terat ion of Algor i thm C, the pa i r  (2f, ~-) can be conver ted  to an ex t reme flow 

for P rob lem p - 1 hav ing  the  same value as 2f. Since each i tera t ion reduces the 

sum of the ki l ter  numbers  by  an integer,  the  n u m b e r  of i terat ions will no t  exceed 

~(~ , , )ea  K i n ,  ((u, v ) ) .  But ,  since K2i . ,  (u, v) C {0, 1}, the n u m b e r  of i terat ions is 

bounded by  ]A [. 

We are now in a posit ion to give a complete  s t a t e m e n t  of the scaling algori thm. 

ALGORZTHM n: Scal ing A l g o r i t h m  for  M i n i m u m - C o s t  F lows 

(1) Set f = 0 and ~- = 0. Choose ! such that, for all (u, v) E A, c(u, v) < 2 Z. Set p = 1 - 1. 
(2) Solve Problem p by the algorithm of Section 2.1, using f as the initial flow and ~r as the 

initial labeling function. After this s tep]  is a maximum flow of minimum cost in Problem 
p, and ~r is compatible with f in Problem p. 

(3) If p = 0, halt. Otherwise replace p by p - 1 and replace f by 2f. 
(4) Apply Algorithm C repeatedly, starting with the pair (f, ~r), until a compatible pair (g, 8) 

is obtained. Set f = g and ~- = 0. Go to 2. 

The  n u m b e r  of s teps required in app ly ing  this a lgor i thm can easily be bounded.  

The  n u m b e r  of executions of Algor i thm C in Step (4) is a t  mos t  ] A l ( l  - 1). 

T h e  n u m b e r  of flow augmen ta t ions  (each requir ing an appl icat ion of Algor i thm 

A to a ne twork  wi th  nonnegat ive  weights )  is bounded  above  b y  

1--1 l--1 

fz*-i + ~ * -- = fv-1 2fp* f 0 * - -  ~ f v * .  (8) 

The number of applications of Algorithm A to networks with nonnegative weights 

to verify that a maximum flow has been reached is I. 

To put an upper bound on (8) we establish a lower bound on fp*. Let T be an 

upper bound on the number of arcs in a cut-set separating s from t; i.e. if the nodes 

are partitioned into sets X and X such that s C S and t E X, then the number of 

arcs directed from a node in X to a node in X is less than or equal to T. According to 

the max-flow rain-cut theorem ([5]) 

fv* = min  E P(u")l P(u")l 
. ~ L  2~ J=~7"YL 2p J 

for some par t i t ion  (Y, 1~). Now 

e(u, ")7 > e(u, ,) 
- - - ~ - - A  -- 2P 1, 
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so 

1 1 , 
fp* >_ ~ ~ c(u, v) -- T _> ~ f o  -- T. 

uEY 

vET" 

Subs t i tu t ing  this inequal i ty  in (8) gives, as an  upper  bound  on the n u m b e r  of flow 

augmenta t ions ,  

~ - ~ ( 1 ,  ) 1 , 
]0-- ~p=l ~ f o  -- T = : ~ f o  + ( l - -  1 ) T  < 1T. 

The  following theorem sums up our conclusions. 

THEOREM 10. Let N be a network with n nodes, I A [ arcs, and at most T arcs in a 

cut-set separating s f rom t. Let l be the number of binary digits needed to represent the 

largest arc capacity. Then the scaling method solves the minimw~t-cost flow problem 

for N using not more than I A I (l - 1) applications of Algorithm C and not more than 

l -- 1 + lT applications of Algorithm A to networks with ~wnnegative weights. Each 

network considered in the algorithm has n nodes and at most I A [ arcs. 
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