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Abstract
It is shown that neoclassical theory explains quite well the origin of the co-current toroidal rotation velocity measured
in the core of stationary Alcator C-Mod edge localized mode (ELM)-free Ohmic high confinement (H)-mode
discharges. Both edge and core toroidal rotation velocity profiles are determined to a good approximation by the
edge ion temperature and density pedestals, where the gradients are large and the plasma is in the high collisionality
regime. Under these conditions, the predicted radial electric field profile is similar to those measured in the DIII-D
tokamak whereas the usual expression for the poloidal velocity is modified by finite Larmor radius (FLR) effects.
Over the entire plasma cross section, the expression of the toroidal velocity can approximately be cast as the product
of a dimensionless non-local functional of the pedestal normalized profiles Ti(r)/Ti(rinf) and Ni(r)/Ni(rinf) with
powers of the plasma density, temperature, safety factor and magnetic field at the pedestal inflexion point rinf

provided the FLR related corrections are independent of the latter parameters. The collapse of the core toroidal
rotation velocity when either an internal transport barrier forms (that leads to impurity accumulation), or the plasma
experiences a transition from the H- to the low confinement (L)-mode, or ELMs appear, and the spin up at the
L–H transition are also explained. In the edge region, power balance is consistent with the prediction from sub-
neoclassical ion energy transport theory at high collisionality. The role of charge exchange neutrals is discussed and
the critical density above which they are expected to noticeably slow down the rotation is estimated. The toroidal
velocity gradient predicted by theory at the edge of the ELM-free Ohmic H-mode discharge mainly under study
(qs = 3.4) is near the onset value for the Kelvin–Helmholtz (K–H) parallel velocity shear (PVS) instability; this
result is very interesting since a transition from ELM-free to enhanced Dα (EDA) H-modes occurs at q ∼= 3.5–4;
the PVS K–H instability appears to have the characteristics of the ‘quasi-coherent’ mode that is present in all EDA
plasmas, but not in ELM-free H-modes.

PACS numbers: 52.55

1. Introduction

In a liquid in contact with a heat source, the temperature

gradient generates ascending Benard cells which transfer the

energy to the surface in contact with the cooling atmosphere.

Similarly, in a magnetically confined plasma, the inherent

temperature and density gradients are free energy sources

which generate micro-instabilities resulting in propagating

turbulence and anomalous energy transport to the edge.

Anomalous transport has plagued the performance of tokamaks

since they went into operation. The discovery of the high

confinement (H)-mode [1] was thus a major step in fusion

research. This regime is characterized by temperature and
density pedestals which, usually, about double the energy
content of the discharge. H-mode plasmas are almost
exclusively observed in tokamaks with axisymmetric magnetic
divertors; moreover, the transition from the low confinement
(L)-mode to the H-mode requires a minimum power input and
thus a minimum energy flux through the edge. This constraint
explains why the H-mode has first been obtained in discharges
with auxiliary heating.

It has long been recognized that radial electric fields
and, therefore, plasma rotation play an important role in the
L- to H-mode transition [2–7]. External momentum input and
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torques are associated with neutral beam injection heating,

but negligibly so with ion cyclotron radio frequency (ICRF)

wave heating [8]. Realization of the H-mode in ICRF-heated

plasmas [9] thus rules out that momentum input should be

necessary to trigger the transition. It has been argued that ICRF

waves can give rise to an inward shift of energetic ion orbits

and, therefore, to charge separation, a radial electric field and

E × B rotation [10]. Realization of the H-mode in high-power

density Ohmic Alcator C-Mod plasmas [11], however, shows

that plasma rotation can develop spontaneously: the toroidal

rotation velocity of impurities measured on the magnetic axis is

actually observed to jump from a negligible negative to a large

positive (∼35 km s−1) value at the transition (the toroidal axis

is oriented in the direction of the plasma current). Explaining

that intrinsic toroidal rotation may shed light on the mechanism

of the L- to H-mode transition by confirming some hypothesis

or denying others.

We show in this paper that the neoclassical equations

which were derived in [12] for the toroidal and the poloidal

rotation velocities in high collisionality plasmas explain quite

accurately the experimental results in edge localized mode

(ELM)-free Ohmic H-mode discharges [11]. Moreover,

the sub-neoclassical heat flux predicted in [6, 7] is quite close

to the heat flux calculated from power balance at the plasma

edge and the profile of the radial electric field obtained from

the radial momentum balance equation is similar to those

measured in DIII-D [13, 3].

The theory [12] predicts that the toroidal velocity at a

position r inside the plasma is proportional to the integral

from the last closed flux surface (LCFS) up to r of the product

Uθ,i∂r ln Ti, i.e. to �d[(T ′
i )

2(Ti)
−1LTi

]d ≈ �d[T ′
i ]d; here, Uθ,i

is the poloidal velocity, a factor [LTi
]d has been introduced

as the measure of the successive integration domains d (edge

pedestal, core) and we have assumed Uθ,i ∝ T ′
i /eBϕ for

the estimation (this expression conforms with conventional

neoclassical theory [14], but is modified at the plasma edge

due to the large gradients and finite Larmor radius (FLR)

effects; the latter are also responsible for the reduction of

the neoclassical heat flux). Plasma viscosity does not enter

the equations if the system is stationary, neutrals play a

negligible role, and there is no momentum source. In H-mode

plasmas, T ′
i is much larger in the pedestal region than in the

core; the contribution from the latter to the above integral

is thus negligible. As a result, the toroidal rotation velocity

measured in the plasma centre is determined by the temperature

gradient in the pedestal if the relation between the toroidal

and poloidal velocities obtained in the framework of the

neoclassical theory for the high collisionality regime remains

valid, order of magnitude wise, in the other collisionality

regimes or in the presence of turbulence. (This is likely to

be the case as (i) that relation is independent of the transport

coefficients (it reflects, rather, the plasma anisotropy in the

directions parallel and perpendicular to B) and (ii) trapped

particles do not participate in the toroidal velocity (they

contribute, however, to magnetic pumping; thus the different

proportionality coefficients between the poloidal velocity and

the temperature gradient in the different collisionality regimes;

they may similarly affect the toroidal velocity if field ripple is

important).) The core rotation will be in the direction of the

plasma current provided the H-mode pedestal is in the high

or intermediate collisionality regime. (The proportionality

coefficient between Uθ,i and T ′
i indeed changes sign in the

low collisionality regime [14].) The excellent agreement

between theory and experiment has therefore the following

consequences:

(a) in the ELM-free Ohmic H-mode discharge discussed

in [11], edge plasma ions indeed behave according to

neoclassical (or, rather, sub-neoclassical) predictions;

they are moreover in the high collisionality regime,

for neoclassical heat losses would otherwise exceed the

Ohmic power input;

(b) at the LCFS, the radial electric field is necessarily negative

if the toroidal velocity vanishes (the latter is a reasonable

assumption for Ohmic discharges), as shown by the radial

momentum balance equation in the high collisionality

regime;

(c) in H-mode discharges, anomalous Reynolds stresses and

anomalous viscosity in the plasma core, if any, have a

negligible impact on the toroidal rotation.

Another important outcome of the comparison between

theory and experiment concerns an H-mode discharge

with formation of an internal transport barrier (ITB) and

concomitant impurity accumulation [15]. An extension of the

theory developed in [12] (an extension which had already then

been deemed necessary under the following circumstances)

shows that the large neoclassical outward main ion radial flow

now necessary to balance the impurity influx should lead, as

observed, to a reduction of the toroidal rotation velocity in

the core. Spin down and spin up on the energy confinement

timescale at the H–L and L–H transitions as well as during

ELMs can be explained similarly (although particle and energy

transport is here anomalous).

Fitting the toroidal and poloidal rotation velocities by

products of powers of the local plasma parameters is possible

only if the width of the temperature pedestal satisfies a certain

scaling relation, which is obtained. Consequences of this

hypothesis are compared to some experimental results [16].

In the pedestal of the ELM-free discharge discussed in

[11], the product of the density length scale with the toroidal

velocity gradient predicted by theory is close to the sound

speed. This implies that the Kelvin–Helmholtz (K–H) parallel

velocity shear (PVS) instability [17] is close to being excited

and clearly suggests that the latter is the triggering mechanism

for the transition from ELM-free to enhanced Dα (EDA)

operation [18]. The properties of the K–H PVS instability are

actually consistent with the ‘quasi-coherent’ mode observed in

all EDA discharges and with the edge safety factor being the

decisive parameter for the transition from ELM-free to EDA

H-modes at qs
∼= 3.5–4.

Charge-exchange neutrals will slow down the toroidal

rotation above a critical density, which is estimated.

The paper is organized as follows. The relevant

experimental results are summarized in section 2. The

theoretical model is described in section 3 and the analytical

and numerical procedures of integration in section 4. The

theoretical velocity and radial electric field profiles for

the ELM-free Ohmic H-mode discharge are obtained in

section 5.1; the suppression of the core toroidal rotation after

formation of an ITB leading to impurity accumulation and its
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spin down or spin up after an H–L or an L–H transition or in

association with an ELM are discussed in sections 5.2 and 5.3,

respectively; power scaling laws are the object of section 5.4.

Sub-neoclassical energy transport is estimated and compared

to the input power in section 6. Our results are summarized in

section 7, where we also discuss the roles of charge-exchange

neutrals and divertor geometry, show that the counter rotation

velocity observed in some other tokamaks is compatible with

an extension of the theory to the low collisionality regime,

and note that the PVS K–H instability is near its instability

threshold in the region of the pedestal. A preliminary version

of this work was presented in [19].

2. Summary of experimental results

The experimental results presented here were obtained from the

Alcator C-Mod tokamak, a compact (major radiusR = 0.67 m,

typical minor radius of 0.22 m and elongation κ < 1.8),

high magnetic field device (2.5 T < BT < 8 T) in the

lower single null configuration. The plasma current is driven

in the direction of the toroidal magnetic field. Although

5 MW of ICRF heating power are available, the scope of this

paper will only include purely Ohmic plasmas. High spatial

resolution electron temperature profiles have been obtained

with an edge Thomson scattering system (spatial resolution

of 1 mm) and from electron cyclotron emission. Similarly,

electron density profiles have been obtained by edge Thomson

scattering and from the visible continuum using a high spatial

resolution (1.5 mm) imaging CCD system. For high-density

Alcator C-Mod discharges, the edge ion temperature profile

(not measured) is taken to be the same as the electron

temperature profile. Representative edge electron temperature

and density profiles are shown in figure 1, for an Ohmic

H-mode discharge from [11]. Core toroidal rotation velocities

have been obtained from the Doppler shifts of argon x-ray lines

and, when available, from sawtooth precursors from magnetic

measurements [20]. For Ohmic L-mode discharges, the central

Figure 1. Comparison between the measured (——) and model
(- - - -) temperature and density profiles in the pedestal of the
reference discharge [11].

impurity rotation velocity is small, typically <104 m s−1, and

in the counter current direction [21]. During Ohmic H-modes,

strong edge pedestals appear (figure 1) and the core toroidal

rotation velocity increases to values as large as 6×104 m s−1, in

the co-current direction [20, 11], in the absence of any external

momentum input. The timescale for the spin up in the plasma

core after the H-mode transition (and the spin down after the

H–L transition) is of the order of the energy confinement time,

about 50 ms. The edge pedestals appear and collapse on a

much shorter timescale, of order 5 ms. The rotation velocity

during the H-mode is proportional to the increase in the plasma

stored energy following the H-mode transition, and inversely

proportional to the plasma current [20, 11, 15]. Very similar

behaviour is observed during ICRF-induced H-modes [15].

Some H-mode plasmas undergo ITB formation, which occurs

in conjunction with a decrease and reversal of the core toroidal

rotation velocity [15].

3. Description of the theoretical model

Since the gradient of the toroidal velocity is proportional to

Uθ,i∂r ln Ti and, in the H-mode, the temperature gradient is

much larger in the edge region than in the plasma core—so

that the latter does not contribute significantly to the toroidal

velocity (cf section 1)—it will be sufficient in the following to

approximate the temperature profile by

Ti(r) = Ti(rinf)

[

1 − tanh(r − rinf)

�T

]

(1)

(see figure 1). In the equatorial plane, the radius of the

pedestal’s inflexion point of the reference discharge [11] is

rinf
∼= 20.8 × 10−2 m and the local temperature gradient scale

�T
∼= 0.6×10−2 m. For convenience, we further approximate

the density profile by

Ni(r) ∝ [Ti(r)]
1/ηi , (2)

where ηi ≡ ∂r ln Ti/∂r ln Ni
∼= 1.6 is considered as being

constant. (That simplifying assumption does not quite reflect

the observation, as the density pedestal is slightly shifted

inward of the temperature pedestal; the shape of the density

profile does not play a crucial role in what follows however, so

that a mean value of ηi suffices.)

The ion temperature and density at the inflexion point are

about 165 eV and 1.87×1020 m−3, respectively. Accordingly,

the ion collision frequency νi (as defined by Braginskii [22])

and the collisionality parameter

ν̂i = qRνi

ci

(3)

are ∼=0.44Zeff,i × 105 s−1 and ∼=0.33qZeff,i at that position

(Zeff,i is the effective charge entering the ion collision

frequency in the presence of impurities, q the safety factor

and ci = (Ti/mi)
1/2 the ion thermal velocity). According

to [23], the H-mode pedestal must then be considered as

being highly collisional, for ν̂i � 0.22. (It is difficult to

determine with precision where the boundaries between the

various collisionality regimes actually are; to our knowledge,

[23] is the only reference where this has been attempted.)
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Furthermore, the features of edge turbulence observed in the

H-mode being compatible with unstable electron drift waves

but not with ion temperature gradient modes [5], we assume

anomalous ion edge transport to be negligible; that hypothesis

is actually the only one which is consistent with power balance

as shown in section 6. The equations providing the toroidal

and poloidal velocity profiles Uϕ,i(r) and Uθ,i(r) are then

∂r

[

η2,i

(

∂Uϕ,i

∂r
− 0.107q2

1 + Q2/S2

∂ ln Ti

∂r

Bϕ

Bθ

Uθ,i

)

−miNiUϕ,iUr,i

]

= mi(∂t − νi,z + νcx)NiUϕ,i (4)

and

eBϕ

∂rTi

Uθ,i + 1.83 = 0.45
2

1 + Q2/S2

×
[

eBθ

∂rTi

∂Uϕ,i

∂ ln Ti

+
1

2

(

eBθ

∂rTi

Uϕ,i

)2

− eBθ

∂rTi

Uϕ,i

(

eBθ

∂rTi

Uθ,i − (1 + 2η−1
i )

)

+1.90

(

eBθ

∂rTi

Uθ,i − 0.8(1 + 1.6η−1
i )

)2 ]

. (5)

Here, η2,i = 1.2NiTiνi/�2
i is the classical perpendicular

viscosity coefficient [22], �i the ion cyclotron frequency,

νcxNiUϕ,i the rate at which toroidal momentum is transferred

to the walls via charge exchange neutrals, νi,z the neutral

ionization frequency,


 ≡ ν̂i(ai)p

LT

(6)

the dimensionless parameter associated with FLR effects,

LT ≡ (∂r ln Ti)
−1 the temperature gradient length scale,

(ai)p = (Bϕ/Bθ )ai and ai = ci/�i the Larmor radii calculated

with respect to the poloidal and toroidal fields, respectively,

and, finally,

Q

S
= 0.51


[(

eBϕ

∂rTi

)

Uθ,i − 0.625(1 + 2η−1
i )

]

. (7)

Equations (4) and (5) are identical to equations (1) and (4) of

[12], except for the following simplifications and respective

generalization:

(a) the terms describing the effects of a polarization current

and of acceleration by a beam have been left out;

(b) the effect of ion inertia on toroidal momentum transport

has now been taken into account: thus the last term inside

the square bracket on the left-hand side of equation (4);

the term miUϕ,i(∂t − νi,z)Ni on the right-hand side

balances the contribution −miUϕ,i∂r(NiUr,i) on the left.

The role of inertia was neglected in equation (1) of [12] on

the grounds that (see below equation (8′)) ‘With the ordering

adopted here. . . , the contribution arising from the density

evolution and from the radial flux of angular momentum are

negligible in the framework of the neoclassical theory of a one

ion species plasma.’ The situation is quite different in a plasma

with accumulating impurities, as is the H-mode discharge of

[15] after formation of the ITB; the reason is that neoclassical

particle transport is now enhanced, being governed by the ion,

instead of the electron, Larmor radius and collision frequency.

This term, which corresponds to a convective transport process

of toroidal momentum, will also play an essential role in the

interpretation of the spin up or down observed in the plasma

core in conjunction with equilibrium bifurcation.

Equation (4) also reduces to the toroidal momentum

diffusion equation derived by Hinton and Wong [24] and by

Connor et al [25] to describe the relaxation of initial rotation

profiles satisfying the conditions Uϕ,i ≫ (Bϕ/Bθ )Uθ,i and

Ur,i = 0. It is important to note that the momentum diffusion

coefficient is classical in contradiction with earlier assertions

by Hogan [26], who obtained a neoclassical enhancement

factor proportional to q2, and by Stacey [27] and Stacey and

Sigmar [28], who claimed that η2,i should be substituted by the

much larger gyro-viscous coefficient η4,i
∼= (�i/νi)η2,i.

Equation (5) yields the usual neoclassical result Uθ,i =
−1.83∂rTi/eBϕ [14] in the limit 
 → 0 considered in all

earlier theoretical works on neoclassical transport [29, 23].

Introducing the experimental data quoted above and noting

that q = 3.4, Bϕ = 5.2 T, κ = 1.62—so that Bθ =
Bϕκ0.5a/qR = 0.625 T (a = 0.215 m is the plasma minor

radius in the equatorial plane; the effective minor radius is

κ0.5a)—and LT (rinf) = κ0.5�T , we estimate 
 ∼= 0.43Zeff,i at

the inflexion point of the temperature pedestal of the discharge

discussed in [11]. Under these conditions, the poloidal velocity

at the edge is considerably different from that predicted by

the conventional theory due to FLR effects: in this respect it

is worth noting that the ratio (ai)p/LT
∼= 0.38 at r = rinf

((ai)p
∼= 0.29 cm).

Equation (4) can readily be integrated from the magnetic

axis (where Ur,i ≡ ∂r ≡ 0; we assume that the

diffusive character of the equation remains valid in the core,

where viscosity might, however, be anomalous) up to the edge

coordinate r; thus

∂r(uϕ,i∂rTi) − miη
−1
2,i NiUr,iuϕ,i∂rTi

= 0.107q2

(

1 +
Q2

S2

)−1

(uθ,i∂rTi)∂r ln Ti

+eBθη
−1
2,i mi

∫ r

0

(∂t − νi,z + νcx)NiUϕ,i dr ′, (8)

where uϕ,i = (eBθ/∂rTi)Uϕ,i and uθ,i = (eBϕ/∂rTi)Uθ,i are

suitably normalized toroidal and poloidal velocities.

Equation (8) can further be integrated to yield

(uϕ,i∂rTi)
r
rs

=
∫ r

rs

exp

( ∫ r

r ′
η−1

2,i miNiUr,i dr ′′
)

×
[

0.107q2

(

1 +
Q2

S2

)−1

(uθ,i∂r ′Ti)∂r ′ ln Ti

+eBθη
−1
2,i mi

∫ r ′

0

(∂t − νi,z + νcx)NiUϕ,i dr ′′
]

dr ′, (8′)

where rs is the radius of the LCFS. It is appropriate recalling at

this point that equations (4) and (5) of [12] were derived taking

into account that the variation length scales (L⊥) of density,

temperature, rotation velocities and radial electric field are,

at the plasma edge of H-mode discharges, much smaller than

those (∼r or R) of the magnetic field components and of the

safety factor.
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4. Integration of the system of equations

The detailed evaluations related to the stationary reference

discharge discussed in [11] are made assuming negligible

radial particle flow velocity (Ur,i = 0) as well as

negligible ionization and momentum loss rates. Inserting

∂rUϕ,i (equation (8)) into (5) yields, under these conditions,

uθ,i

[

1 + 0.048q2
2

(

1 +
Q2

S2

)−2]

+ 1.83

= 0.45
2

(

1 +
Q2

S2

)−1

{0.5u2
ϕ,i − uϕ,i[uθ,i − (1 + 2η−1

i )]

+1.90[uθ,i − 0.8(1 + 1.6η−1
i )]2}. (9)

4.1. Boundary conditions

Equation (8′) provides the toroidal velocity in the plasma

relative to its value at the LCFS; information on the latter is thus

required. In the absence of precise experimental information,

we shall assume Uϕ,i(rs) = 0 for Ohmic discharges.

The edge gradients being steep and the position of the

LCFS unknown within ∼=2–3 mm, there is a considerable

uncertainty on the LCFS values of the temperature Ti,s ≡ Ti(rs)

and density Ni,s ≡ Ni(rs). This affects, in turn, the value 
s of

the parameter 
 at rs which further suffers from uncertainties

on the profile of Zeff,i; obviously, the latter cannot indeed be

resolved on the scale of the pedestal width. Since the poloidal

velocity depends on 
 (cf equation (9)), we investigate, under

these circumstances, whether one of the following hypotheses

is compatible with experimental data:

(a) the radial electric field vanishes at the LCFS;

(b) the poloidal velocity Uθ,i vanishes at the LCFS.

Since (uϕ,i)s = 0 by hypothesis, equation (9) yields

(uθ,i)s + 1.83 = 
2
s

1 + (Q2/S2)s

×
[

0.855[(uθ,i)s − 0.8(1 + 1.6η−1
i )]2

−0.048q2(uθ,i)s

1 + (Q2/S2)s

]

(10)

at rs. Noting that

Q

S
= 0.51
[uθ,i − 0.625(1 + 2η−1

i )] (11)

for all r values, we are led to the following conclusions.

(a) The hypothesis Er(rs) = 0 would imply (uθ,i)s =
(1 + η−1

i ), in view of the radial momentum balance

equation. Accordingly, 
2
s would be one of the

solutions of


2
s = (2.83 + η−1

i ){1 + [0.51(0.375 − 0.25η−1
i )]2
2

s }

×
[

0.855(0.2 − 0.28η−1
i )2

− 0.048q2(1 + η−1
i )

1 + [0.51(0.375 − 0.25η−1
i )]2
2

s

]−1

.

The right-hand side being negative for 
2
s < 2 × 105 if

ηi = 1.6, we conclude that the hypothesis that the radial

electric field vanishes at the LCFS must be rejected. We

note also that equation (10) cannot be satisfied in the limit


s → 0 if Er(rs) = 0; the ‘conventional’ neoclassical

theory indeed yields uθ,i = −1.83, which is incompatible

with uθ,i = (1 + η−1
i ).

(b) If the poloidal velocity Uθ,i vanishes at the LCFS, the value

of 
2
s must be, according to equation (10) where ηi = 1.6;


2
s = [0.299(1 + 1.6η−1

i )2 − 0.102(1 + 2η−1
i )2]−1

∼= 1.47 (12)

This turns out to be compatible, within error bars, with

the measured temperature and density at the LCFS if

Zeff,i(rs) = 1. We shall assume Uθ,i(rs) = 0 and


2
s = 1.47 in the following: we note that this implies, on

the grounds of a continuity argument, that the parallel flow

is directed symmetrically into both divertor legs beyond

the LCFS.

4.2. Analytical evaluation

We shall approximate the solution of equation (9) in the

range (
2 = 0 (corresponding to the core); 
2 = 
2
s =

1.47 (corresponding to the LCFS)) by the linear interpolation

formula

uθ,i = −1.83

(

1 − 
2


2
s

)

. (13)

The denominator 1 + Q2/S2 is now a cubic function of 
2

which will be replaced by a quadratic form for the purpose of

the analytical integration in (8′); thus, defining f = 
/
s,

one has

1 +
Q2

S2
= 1 + αf 2 + βf 4, (14)

where α and β are obtained by matching (14) to the exact

expression obtained from (7) for 
 = 
s and 
 = 
M, the

latter corresponding to the maximum value. Thus

α = 0.87
2
s f

2
M(9f 2

M − 1) (15a)

and

β = −0.87
2
s (5f 2

M − 1), (15b)

where

f 2
M = 1

3

[

1 +

(

0.625

1.83

)

(1 + 2η−1
i )

]

. (15c)

We must finally specify the analytical form of the function


2(r). Assuming Zeff,i(r) ∝ [Ti(r)]
z, we have


2(r) = 
2
inf

(

Ti

Ti,inf

)−2(c+1)[
∂rTi

(∂rTi)inf

]2

= 
2
inf T̂

−2c(2 − T̂ )2, (16a)

where Ti,inf is the value of Ti at the pedestal inflexion point,

T̂ = Ti/Ti,inf and

2c = 3 − 2η−1
i − 2z (16b)

(we note that LT = −κ0.5�(2 − T̂ )−1). The integral in (8′)
can be performed easily if c = 0; indeed, (∂r ln Ti) dT ∝ df 2
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in that case, so that

uϕ,i∂rTi = 0.196q2

2(α2 − 4β)1/2


2
s


2
inf

(∂rTi)inf

×
[

ln

[


2
inf


2
s

(2 − T̂ )2 − a−

]1−a−

×
[

a+ − 
2
inf


2
s

(2 − T̂ )2

]a+−1

− ln(1 − a−)1−a−(a+ − 1)a+−1

]

, (17)

where

a∓ = −α ± (α2 − 4β)1/2

2β
. (15d)

4.3. Numerical evaluation

The full time-dependent equations (4) and (5) have also been

solved numerically, without introducing any simplification, but

retaining the form (16a) of 
2(r). Comparing with the above

analytical result for c = 0 has allowed validation of both the

numerical and the approximate analytical schemes.

5. Determination of the velocity and electric field
profiles

5.1. H-mode discharge without ITB

Introducing ηi = 1.6 and 
2
s = 1.47 in equations (15a)–(15d),

we find successively f 2
M = 0.59, α = 3.25, β = −2.49,

a− = −0.26 and a+ = 1.56. Due to the large ion to electron

mass ratio, the effective charge entering the ion collision

frequency in the presence of impurities,

Zeff,i = 1 +
√

2
∑

I

(

NI

Ni

)

Z2
I ,

is larger than the effective charge appropriate to the electrical

resistivity,

Zeff,e = 1 +
∑

I

(

NI

Ne

)

Z2
I .

The latter is found experimentally to be ∼=1.4; we assume,

therefore, Zeff,i(rinf) = 1.57 and 
2
inf = (0.43Zeff,i)

2 = 0.46.

Equation (16a) then yields T̂i,s = 2 − 
s/
inf = 0.21 if

c = 0; thus Ti,s = 35 eV, which corresponds roughly to the

value measured at the radius of the nominal LCFS. Introducing

q = 3.4 and the ratio 
2
inf/


2
s = 0.46/1.47 = 0.31 in

equation (17) yields the toroidal velocity profile marked by

squares in figure 2(b). (The temperature profile, equation (1),

is given in figure 2(a) up to the radius where Uθ,i = 0 assumed

to correspond to the LCFS); in particular, the velocity in the

core (where T̂ = 2) predicted by the approximate analytical

model is

Uϕ,r (r → 0) = 1.14
(Ti,inf/eBθ )



√

κ
= 38 km s−1. (18)

Numerical integration of the exact equations (9) and (8′) yields,

still for c = 0, the profile marked by triangles; here,

Uϕ,i (r → 0) = 34 km s−1. (18′)

(a)

(b)

(c)

(d)

Figure 2. Edge profiles of the toroidal and poloidal velocity
components and of the radial electric field predicted by theory,
assuming that the dimensionless parameter 
2 is of the form (16a)
with c = 0; the model ion temperature profile (equation (1)) is also
shown; the position of the LCFS corresponds to Uθ,i = 0. Triangles
correspond to the exact numerical solution of the full equations (9)
and (8′), squares to the simplified analytical estimates (17) and (13).

Both results agree quite well with the measured value of about

35 km s−1 and are, as observed, in the co-current direction.

Figure 2(c) shows the poloidal velocities according to the

interpolation formula (13) and the exact numerical integration.

Finally, figure 2(d) shows the corresponding radial electric

fields

Er = BθUϕ,i − BϕUθ,i + (eNi)
−1∂rPi. (19)

The excellent agreement between the two sets of curves

confirms the validity of both methods.

According to equation (16b), c = 0 andηi= 1.6 correspond

to z = 0.875; this leads to a value of Zeff,i smaller than unity at

the LCFS if, indeed, Zeff,i(rs) = 1.57. The numerical solution

of the equations has thus been extended to the case c = 0.24

to which correspond z = 0.635 and Zeff,i(rs) = 1; the results

are shown in figure 3. Inside of the temperature pedestal, the

toroidal velocity now reaches asymptotically the value

Uϕ,i(r → 0) = 29 km s−1, (18′′)

still in good agreement with experiment. The temperature Ti,s

is, however, 81 eV in that case, i.e. about a factor 2 larger than

that reported (∼=40 eV) at the nominal LCFS. As mentioned

earlier, the position of the latter cannot be defined with an

accuracy better than 2–3 mm. Within the framework of the

hyperbolic tangent model (equation (1)), Ti,s = 40 eV and

Ti,inf = 165 eV correspond to a distance rs − rinf = 5.9 mm

in the equatorial plane if � = 6 mm whereas Ti,s = 80 eV

correspond to rs − rinf = 3.4 mm. The difference between

these two values is within the error bars and does not allow

invalidation of the prescription (12) for 
2
s . (We recall

that the latter is a consequence of the boundary condition

Uθ,i(rs) = 0 that we assumed on the ground that the flow

beyond the LCFS should be directed into both divertor legs.)
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(a) (c)

(b) (d)

Figure 3. Exact numerical solution of equations (4) and (5) with 
2

given by (16a) with c = 0.24; this value of c corresponds Zeff,i = 1
at the LCFS.

The numerical results could also be optimized by varying the

fitting parameters ηi and � within an acceptable range and a

larger value of Zeff,i(rinf) would lead to a smaller value of Ti,s

(keeping Zeff,i(rs) unchanged). In any case, the assumption

on the value of the poloidal velocity at the boundary is by

no means essential for demonstrating that the theory of [12]

is able to explain the toroidal velocity measured in Alcator

C-Mod [11]; it is rather to be seen as a test that the value of

the poloidal velocity at the LCFS may be imposed by physical

processes.

The radial electric field just inside the separatrix has been

inferred from measurements of plumes of carbon radiation

emanating from a gas injection tube mounted on a reciprocating

probe [30]. For an Ohmic discharge with parameters similar

to that shown in figure 1, Er at 5 mm inside of the nominal

separatrix was found to change from +4 kV m−1 during

L-mode to −17 kV m−1 at the beginning of the H-mode period.

These observations are in agreement with the calculations

shown in figures 2(d) and 3(d). Most interestingly, the electric

field profiles shown in figures 2(d) and 3(d) resemble closely

these measured in DIII-D H-mode discharges [13, 3] with

neutral beam injection.

5.2. H-mode discharge with ITB

To describe adequately the toroidal rotation in a plasma with

accumulating impurities, the radial flux of angular momentum

which appears in equation (8′) of [12] must be retained due

to the enhanced main ion outward flow; this gives rise to

the exponential weight factor appearing in the integrand of

equation (8′) of this paper. The variable r ′ being in the

interval r < r ′ < rs, ion inertia thus leads to a reduction

of the toroidal velocity if Ur,i > 0, as must be the case

in the H-mode discharge of [15] after formation of the ITB

since the observed core electron density increase does not

compensate for the positive charge increase associated with

impurity accumulation. The reduction of the core toroidal

rotation velocity will be important if

−
∫ r≪rinf

rinf

η−1
2,i miNiUr,i dr ′ ≈ Ur,iκ

0.5�

1.2a2
i νi

� 1, (20)

where the various factors can, for example, be evaluated at

the inflexion point of the temperature pedestal. Introducing

νi = 0.69 × 105 s−1 and ai = 0.35 × 10−3 m, this condition

then reduces to Ur,i > 1.33 m s−1 (to which corresponds

a timescale κ0.5a/Ur,i shorter than 13 ms). As a point of

comparison, the experimental value of the edge radial velocity

estimated from the rate of electron accumulation in the core is

Ur,e
∼= −0.2 m s−1.

These considerations show that our theoretical model can

explain the collapse of the central toroidal rotation velocity

measured in Ohmic H-mode discharges after formation of

an ITB, if the related impurity accumulation rate leads to a

sufficiently large outward deuterium flux. For a more precise

analysis, one must be aware that the contribution arising from

the evolution of the density can be neglected in equation (8′)
only to the extent that the gradient of the radial particle flux

is also negligible; only the pedestal region is concerned here,

since the drive of the toroidal rotation originates there.

5.3. Toroidal spin down and spin up associated with H–L and

L–H transitions and with ELMs

In Alcator C-Mod, the timescales of toroidal rotation spin

up and spin down after the L–H and H–L transitions are

of the order of 50 ms, which is comparable to the energy

confinement time. As in section 5.2, these observations can

be explained on the basis of equation (4), taking the role of

ion inertia into account. Different scenarios can be envisaged

for the H-mode collapse or its development. One might

assume, for example, that (i) the H–L transition is triggered

by impurity accumulation and enhanced radiation in the core

leading to progressive erosion, from core to edge, of the energy

and density profiles, and (ii) the L–H transition results from

progressive extension of the pedestal shoulder from edge to

core, after formation of the edge transport barrier. Under these

circumstances, for t > 0, equation (4) could be replaced by

the following model equations:

(∂t + Ur,i∂r)Uϕ,i − Dr−1∂r(r∂rUϕ,i)

= −s0∂r [δ(r − Ur,it) − δ(r − rs)], (21)

where Ur,i > 0, or

(∂t + Ur,i∂r)Uϕ,i − Dr−1∂r(r∂rUϕ,i)

= −s0∂r [δ(r − rs − Ur,it) − δ(r − rs)], (22)

where Ur,i < 0. The Dirac functions model the strong

localization of the product Uθ,i∂r ln Ti,

s0 =
∫ r=rs

r=0

0.107q2D

(

1 +
Q2

S2

)−1(
BϕUθ,i

Bθ

)

∂r ln Ti dr ′.

(23)

we have assumed that the velocity of the energy and particle

fronts are identical to the radial flow velocity, and D = 1.2νia
2
i .

In equation (21), the distance between the negative erosion

front and the positive edge pedestal reduces in the interval

0 � t � rs/Ur,i until annihilation occurs; in equation (22),
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the distance between the propagating front moving from edge

to centre increases from 0 to rs in the time interval 0 � t �

rs/ − Ur,i. For t � 0, the equations are, instead,

∂tUϕ,i − Dr−1∂r(r∂rUϕ,i) = s0∂rδ(r − rs) (21′)

or

∂tUϕ,i − Dr−1∂r(r∂rUϕ,i) = 0. (22′)

Those admit the stationary solutions Uϕ,i(r) = (s0/D)

[1 − Ŵ(r − rs)] and Uϕ,i(r) = 0 corresponding to the H- and

L-modes, respectively; Ŵ(r−rs) is the Heaviside step function.

Solving equations (21) and (22) will be left for later

work, but we point out that two timescales are involved in

the equations:

(a) the solution of the ‘homogeneous equation’ (drop the

right-hand side of either equation (21) or (22)) evolves

on the (long) diffusion timescale r2/Dt ; the latter enters

the description of the relaxation of any arbitrary initial

profile;

(b) the particular solution of the ‘inhomogeneous equation’

evolves on the timescale of the ‘source term’ (the right-

hand side of either equation (21) or (22)).

As a consequence, the timescale for core rotation spin up

or spin down is closely related to the time rs/|Ur,i| required

by the moving energy and particle fronts (those are described

by the time-dependent Dirac functions) to cross the discharge;

the latter is itself of the order of the energy confinement time.

One may argue, on the same grounds, that ELMs also

trigger a partial or full collapse of the toroidal rotation. During

all these events (L–H, H–L and ELM transitions), particle

and energy transport is, however, anomalous, rather than

neoclassical; this should neither modify the structure of the

convection transport term Ur,i∂rUϕ,i arising from ion inertia in

equation (4), nor our conclusions.

5.4. Scaling properties

Equations (8′) and (9′) show that uθ,i and uϕ,i are complex

functions of Q2/S2, and therefore of 
2 (cf equation (7)).

Power scaling laws of the toroidal and poloidal rotation

velocities with respect to the local plasma parameters (Ti)inf ,

(Ni)inf , q and B can therefore be established only if 
2 is

independent of the latter, which requires that

(LT )inf ∝
[

q2

(

νi

�i

)]

inf

R2

a
(24)

(cf equations (6) and (3)). Equations (9′), (8′) and the

definitions uθ,i = (eBϕ/∂rTi)Uθ,i and uϕ,i = (eBθ/∂rTi)Uϕ,i

then lead to

Uθ,i(r) ∝ (∂rTi)inf

Bϕ

, (25)

or, equivalently,

Uθ,i(r) ∝
[

(Bθ/Bϕ)ci

ν̂i

]

inf

(25′)

and

Uϕ,i(r) ∝
(

q2∂rTi

Bθ

)

inf

, (26)

or, equivalently,

Uϕ,i(r) ∝
(

q2ci

ν̂i

)

inf

. (26′)

In equations (25)–(26′), the proportionality coefficients are

functional of the pedestal T̂ (r) and N̂(r) only. Equation (24)

implies that �T is not an independent parameter in

equation (1), but rather is related to Tinf , Ninf , etc. We stress

that the above considerations and conclusions assume that the

poloidal and toroidal velocities verify power scaling laws.

In ICRF-heated discharges, it has been observed that

the pedestal temperature (Tped
∼= 2Tinf) and density are

proportional to P 0.4 and (Ne,L/B)0.4I , respectively, P being

the power flowing through the scrape layer [16]. Ohmic

discharges have similar properties; here, moreover, P ∝ I

if the loop voltage is invariant. Under those conditions,

equations (24) and (26) lead to

[LT ]inf ∝ (qR)1.6a−0.2(Ne,L)0.4Zeff,iAiB
−1 (24′)

and

RUϕ,i ∝
(

q

AiZeff,i

) (

B

Ne,L

)0.4

, (26′′)

where Ai is the main ion atomic mass. The latter

result, equation (26′′), agrees well with other observations

from Alcator C-Mod showing that the toroidal rotation

velocity measured in the H-mode is approximately inversely

proportional to the plasma current (figure 5 of [9]). The former,

equation (24′), provides the scaling of the temperature pedestal

width.

6. Sub-neoclassical heat transport

It is interesting to compare the heat flux obtained from

power balance at the plasma edge with the prediction of sub-

neoclassical theory [6, 7] in the high collisionality regime:

Qi,s-n = −2π2R(1 + κ)a

[

1 + 1.6q2

(

1 +
Q2

S2

)−1
]

X⊥,i∂rTi

(27)

where X⊥,i = 2NiTiνi/mi�
2
i is the classical perpendicular

heat conduction coefficient [22]. Introducing in (27) the

values of the different parameters at the inflexion point of the

temperature pedestal of the reference discharge [11] and noting

that the sub-neoclassical factor

1 +
Q2

S2
= 1 + αf 2

inf + βf 4
inf

= 1 + 3.25 × 0.31 − 2.49 × 0.312 = 1.77 (28)

(cf equation (14)) yields

2π2 × 0.67 × 2.62 × 0.208[1 + 1.6 × 3.42/1.77]

×2(1.87 × 1020)(0.69 × 105)

×(0.352 × 10−6)(1/
√

1.62 × 0.6 × 10−2)

×(1.65 × 102)(1.6 × 10−19) = 0.90 MW. (27′)

The sub-neoclassical energy flux thus accounts for about half

of the Ohmic input power (POH = 1.84 MW; the energy

confinement time is 57 ms and the stored energy 105 kJ), which
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confirms the important role of neoclassical transport in the

edge pedestal. The second half of the input power is partly

radiated (PRad
∼= 0.5 MW) and partly transported via the

electron channel. To the extent that the above estimate Qi,s-n =
0.90 MW is a conservative one, the neoclassical ion heat flux

would be very close to, or even above, the difference between

input and radiated power, if it were not for the sub-neoclassical

reduction factor (1.77)! The high spatial resolution

(1 mm for the electron temperature profile, respectively

1.5 mm for the density profile) gives further confidence that

the sub-neoclassical factor predicted by theory represents

well the reality, although the ion temperature is actually

needed.

A point of concern in neoclassical transport theory is that

the heat flux is proportional to N2
i Zeff,iT

1/2
i /LT , which

typically decreases towards the edge. This behaviour may

be balanced by an increase of the anomalous electron heat

flux, but also by a decrease of the sub-neoclassical reduction

factor which, as discussed earlier, has a maximum for f ≡

/
s = fM (equation (15c)). The precise values of the

collisionality parameter at the boundaries between the various

regimes is another question of concern; on the mere ground of

power balance, we can safely conclude that the pedestal plasma

must here be in the high collisionality regime, in agreement

with the limits given in [23], since the theoretical expressions

of the transport rate at intermediate and low collisionalities

would lead to larger values of the fluxes (for identical plasma

parameters).

7. Summary of results, discussion and suggestions
for further work (origin of ELMs)

7.1. Summary of results

7.1.1. Plasma rotation and electric field. We have

shown that the neoclassical theory of plasma rotation and

electric field presented earlier [12] explains well the large

(∼=35 km s−1) co-current toroidal velocity measured in the

core of Alcator C-Mod ELM-free high-confinement discharges

[11] (cf section 5.1 and, in particular, figures 2 and 3). The

characteristic electric field profiles reported by the DIII-D

group [13, 3] are also recovered. Further, the velocity

reduction observed in discharges with an ITB and concomitant

impurity accumulation [15] can be explained by an appropriate

extension of the theory, which is presented here (section 5.2);

the toroidal spin up and spin down observed during L–H and

H–L transitions or ELM events can be explained similarly

(section 5.3). It is worth noting that the necessity of that

extension in the presence of enhanced radial main ion flows

(in order to balance the impurity influx, or due to anomalous

losses) had already been recognized in [12].

Under stationary conditions, the toroidal rotation velocity

at a position r within the plasma is proportional to the integral

from the last closed magnetic surface up to r of the product

Uθ,i∂r ln Ti (section 3). Toroidal rotation is therefore a global

(rather than a local) property. In the H-mode, the rotation

velocity of the core is primarily determined by the edge

temperature pedestal where both Uθ,i and ∂r ln Ti are largest; in

Alcator C-Mod, the core toroidal rotation is in the co-current

direction because the edge pedestal is in the high collisionality

regime.

The situation is quite different in low-confinement

discharges: here, the temperature and density gradients are

weaker at the edge, so that comparable contributions to the

above mentioned integral may arise from both core and edge;

the core toroidal rotation velocity will clearly be smaller in

absolute value; it may, moreover, be in the counter-current

direction, as often observed, since the core is usually in the low

colllisionality regime. The very relevance of the neoclassical

results of [12] needs to be questioned here and other effects,

such as those considered by Kim et al [31] and by Shaing [32],

may become competitive.

7.1.2. Scaling laws. The requirements to validate scaling

laws of the poloidal and toroidal rotation velocities as products

of powers of the local plasma parameters or of the control

parameters and the implications of such scaling laws have

been discussed and compared to some experimental data [16]

(section 5.3).

7.1.3. Power balance. We have also shown that the sub-

neoclassical energy flux through the temperature pedestal

calculated on the assumption of high collisionality [6, 7]

accounts for at least half the input power, leaving little room

for anomalous ion transport. The sub-neoclassical factor

being ∼=1.77, the standard neoclassical flux would account for

almost the full input power! (section 6). As the neoclassical

expressions for the other regimes would lead to higher energy

fluxes, this result shows without any doubt that the pedestal

plasma must be in the high collisionality regime.

7.2. Discussion of the results

The range of applicability of the theory is limited by various

assumptions that we now review; examples of discharges

where those are not satisfied are also briefly considered.

7.2.1. The region which determines the core toroidal velocity

is in the high collisionality regime. In Ohmic PLT [33]

and PDX [34] discharges, in JIPP-TIIU discharges heated

by perpendicular neutral beam injection [35] and in JFT-2M

discharges with balanced injection [36], the central toroidal

velocity was measured to be in the counter direction with

respect to the plasma current. The observations made in

[33] have been justified earlier [12]. The results reported in

[34–36] can be explained similarly. First of all, in the second

case, Ne ≈ 2.8 × 1019 m−3 and Ti ≈ 220 eV at the plasma

edge (R = 1.11 m; see figure 1), which yields 0.045qZeff,i

for the collisionality parameter defined in equation (3); that

value is approximately a factor 10 lower than that estimated

for Alcator C-Mod, justifying the direction reversal of the

core toroidal rotation velocity; these conditions in JIPP-TIIU

[35] are actually similar to those in PLT [33]. In the first

case, the line-average density is ≈2.5 × 1019 m−3 and, in

the third, Ne(0) ≈ (3.5–4.4) × 1019 m−3; these values are

again an order of magnitude lower than those in Alcator

C-Mod and too small for the plasma to be in the high

collisionality regime. Since the poloidal velocity changes

sign at low collisionalities [14], the toroidal velocity predicted

by equation (8′) must indeed be in the counter direction

if, as mentioned in section 1, the relation between toroidal
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and poloidal velocities obtained in the framework of the

high collisionality neoclassical theory remains approximately

valid in the other neoclassical collisionality regimes or in the

presence of turbulence.

It is interesting to note, in this respect, that analysis of the

JFT-2M discharges [36] has unveiled the existence of a non-

diffusive term in the transport matrix [37]; the latter results in

a spontaneous source of toroidal momentum in the direction

anti-parallel to the plasma current. Equation (8) is compatible

with that finding in the limit Ur,i → 0, the first term on the

right-hand side playing the role of the toroidal momentum

source. If we write equation (8) in a form similar to the

expression of the radial momentum flux given in the text of

[36], we find that the ratio of the diagonal and off-diagonal

coefficients for momentum transport µϕ and µϕ/�T can be

identified with

µϕ/�T

µϕ

= −0.107q2

(

1 +
Q2

S2

)−1
BϕUθ,i

Bθci

(∂rTi)∂r(miNiUϕ,i)

(∂rUϕ,i)∂(miNiTi)

≈ −0.107q2 BϕUθ,i

Bθci

;

this is negative if Uθ,i > 0 (high collisionality regime) and

positive otherwise; in the pedestal of the Alcator C-Mod ELM-

free H-mode, it reaches a minimum value of about −0.7.

7.2.2. The role of charge exchange neutrals is negligible.

The loss of momentum via charge exchange neutrals has been

neglected in this paper. The critical neutral density below

which this is permissible can be estimated as follows. We

multiply equation (4) (where we set Ur,i ≡ ∂t ≡ νi,z ≡ 0)

by Uϕ,i and integrate over the minor radius of the discharge.

Since Uϕ,i(rs) = 0 and ∂rUϕ,i|r=0 = ∂rTi|r=0 = 0,

we obtain
∫ rs

0

[

miνcxNiU
2
ϕ,i + η2,i(∂rUϕ,i)

2
]

dr

=
∫ rs

0

η2,i(∂rUϕ,i)0.107q2

(

1 +
Q2

S2

)−1

×(∂r ln Ti)

(

Bϕ

Bθ

)

Uθ,i dr. (29)

In view of the positive sign in the square bracket on the

left-hand side, equation (29) shows that the toroidal rotation

velocity gradient and, therefore, the toroidal velocity are

reduced in the presence of neutrals; the role of these will be

negligible only if

(

νcx

νi

)

inf

�
1.2(a2

i )inf

κ�2
(30a)

(the charge exchange collision frequency is evaluated at the

temperature pedestal inflexion point, as the toroidal rotation

velocity is appreciable only inside that point). Introducing

the characteristic parameters of the reference discharge [11]

and νcx
∼= 1

3
〈σv〉N0 (where N0 is the neutral density, 1

3

the approximate fraction of charge exchange neutrals leaving

the plasma and 〈σv〉 ∼= 0.5 × 10−13 m−3 s−1 the charge

exchange rate) yields the condition

(N0)inf � 1.05 × 1016 m−3 ≡ 0.57 × 10−4(Ni)inf . (30b)

The neutrals mean free path is approximately 0.68 × 10−2 m

if their temperature is (Ti)inf/2; this is comparable to the

characteristic width κ0.5� ∼= 0.76×10−2 m of the temperature

pedestal. To the above critical neutral density at the inflexion

radius thus corresponds a density of ∼=2.85 × 1016 m−3 at

the LCFS.

It is worth noting that the heat flux carried to the walls by

the charge exchange neutrals is only 5% of the sub-neoclassical

heat flux (27′) when the neutral density reaches the critical

value given in (30b).

7.2.3. The role of the geometry. The ellipticity of the

cross section has been approximately taken into account by

multiplying the length scales measured or mapped in the

equatorial plane by the square root of the elongation. We

show now that this approximation yields quantitatively correct

estimates also for divertor geometry. Equations (4) and (5)

are the result of large aspect ratio expansions of equations of

the form
∮

F(�, χ) dχ = 0, (31)

where ψ(r) is the flux function defined by ∇ψ = eψRBχ

(eψ is the unit vector perpendicular to the flux surface) and

χ a generalized poloidal angle. In the kernel of (31), radial

derivatives should be replaced by RBχ∂ψ and the safety

factor q(r) by the local pitch angle of the magnetic field line

ν(�, χ) = hχBϕ/RBχ , where hχ
∼= r . The poloidal magnetic

field Bχ vanishes and the local pitch angle diverges at the

location of the magnetic separatrix. As a consequence, the

ratio ν2/(1 + Q2/S2), where Q/S ∝ 
 ∝ h−1
ψ ν/Bχ ∝ ν

(see equation (6)), remains finite and the integrand in (8′) well

behaved. Since the coils creating the separatrix are only acting

over a short range, it becomes evident that our predictions will

be barely affected by the divertor geometry.

7.3. On the PVS K–H instability as a possible origin of the

transition to EDA operation

We divide both sides of equation (8) by eBθ

√
2ci∂r ln Ni and

obtain

∂rUϕ,i√
2ci∂r ln Ni

= 0.076q2

(

1 +
Q2

S2

)−1

ηi

(

BϕUθ,i

Bθci

)

. (32)

(We again consider stationary discharges and neglect effects

related to neutrals.) If the parameters at the pedestal inflexion

point of the reference discharge [11] are introduced, the

numerical value on the right-hand side of equation (32) is

0.98/1.77 = 0.55 (see section 6), leading to the conclusion

that this edge plasma is only barely stable according to the

ideal K–H PVS instability threshold criterion [17]. In the

fluid approximation, the ratio of the parallel and perpendicular

mode numbers of the wave which becomes firstly unstable is

(assuming Te/Ti = 1)

kz

ky

= − ai√
2LN

(33)

whereas the linear growth rate maximizes for

kyai ≈ 0.5. (34)
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In Alcator C-Mod, the H-mode plasma frequently shows

the characteristics referred to as EDA operation [38, 39, 18]:

in this state, there is still a pronounced pedestal, but the edge

particle and impurity fluxes are increased relative to the ELM-

free H-mode. The apparent mechanism giving rise to EDA

is a narrow band quasi-coherent oscillation; its frequency

generally settles around 120 kHz and its poloidal wave number

is about 400 m−1. With the ion Larmor radius being of the order

of 0.25 × 10−3 m at the inflexion point of the temperature

pedestal of the reference discharge, we obtain kθai ≈ 0.1;

this figure may be reconciled with the prediction of the two-

fluid theory [17] of the K–H instability by noting that Landau

damping shifts the short wavelength onset to smaller values of

kθ (and decreases the maximum growth rate) [40]. (It is noted

here that the PVS K–H instability is not stabilized by magnetic

shear unless the shear length Ls = qR/ŝ is comparable to or

smaller than the density length scale LN [41], a condition not

satisfied in tokamaks, and particularly not at the edge.) In the

plasma frame of reference, the frequency is essentially the ion

diamagnetic frequency: f = ω/2π = (2π)−1kθTi/eBϕLN ;

introducing Ti ≈ 100 eV (the temperature is slightly smaller

in the EDA than in ELM-free H-mode), Bϕ ≈ 5 T and

LN ≈ 10−2 m yields f ≈ 127 kHz, in good agreement

with the experimental value if kθai = 0.1; the corresponding

propagation velocity ω/kθ ≈ 2 km s−1 also agrees with the

measured value of 1.5 km s−1. Experimentally, the edge safety

factor is the critical variable which determines which regime

a discharge will be in: when qs > 4.0 for standard shaped

plasmas, the discharge is almost always EDA, while when

qs < 3.5, the plasma is almost always ELM-free [38, 39].

These experimental results fit perfectly with equation (32),

which shows that the ratio ∂rUϕ,i/
√

2ci∂r ln Ni relevant to PVS

K–H instability onset increases rapidly with q, and with our

above estimate for the ELM-free discharge with qs = 3.4.

In view of the pedestal sharp gradients, a careful study of

the interplay between the PVS K–H instability and the EDA

operation must take the non-local character of the mode into

account.
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