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 A new approach is described here for Continuous Wave Nuclear Magnetic Resonance (CW NMR) application to 
quantification of blood flow in human blood vessels. To study the time dependence of the flow signal generated by the 
flowing blood spins, a simple model of CW NMR excitation scheme is used for an accurate estimation of blood steady 

velocity, V0, the peak pusatile velocity, 0PulseV  and the blood vessel cross-section. Starting with the time dependent Bloch 

equations, we have generated an equation that presents a CW NMR blood signal, whose profile corresponds to the human 
cardiac cycle. Using  a spin-spin relaxation time of 0.1 s, blood steady velocity of 20 cm/s (typical of a healthy human) and a 
peak pulse velocity of 30 cm/s, our model provides results very close to those obtained by conventional NMR pulse 
machines and other modality like the Ultrasound Doppler (US) technique. The application of our CW NMR model technique 
for the determination of blood flow parameters of importance covers a wide range of variations seen in human patients. 

 
 
 

1.     Introduction 

Although pulsed methods using conventional 
imagers provides useful theoretical and 
experimental information of blood flow rates, such 
instrumentation are expensive when only 
knowledge of blood flow rate [1,2,3,4,5] and other 
relevant parameters are desired. 
 MRI modalities essentially rely on the strong 
influence of spins on the amplitude and phase of 
MR imaging signal. Unfortunately, the results 
obtained from many MRI blood flow velocity 
techniques are difficult to interpret since the factors 
that affect the MRI signal dependence flow pattern 
may not be completely identified. Subsequently, 
the complex flow patterns measured by emerging 
methods of MRI can possibly be confused with 
ever-present measurement of artifacts [6]. The 
accuracy of the flow measurement depends 
strongly on the artifact suppression and the phase 
correction procedure applied to the data after its 
acquisition. 
 It is desirable to find a suitable, simple and 
easily affordable NMR technique so that the 
measurement of NMR signal strength can yield 
knowledge of the blood flow rates in human 
patients despite the finite size of blood vessels, 
small magnetic field inhomogeneity (≈ 1 mG), 
static tissue signal from tissue surrounding the 
blood vessel, variation of effective T2 relaxation 
time from patient to patient, and such factors.   
_________________ 
*For all correspondence. 

Using such techniques, one should be able to obtain 
a reliable estimate of blood flow rates and other 
medically relevant parameters, such as blood vessel 
cross-sections and T2 relaxation times.  
 It has been stated before that in pulse flow 
method, it is difficult to correlate the detected 
signal strength with the flow rates because of the 
presence of magnetic field inhomogeneities. CW 
NMR has an advantage over the pulse flow NMR 
in that the field inhomogeneity (FI) of the order of 
1 mG for B0 ≈ 0.1 – 1 T is not critical to the 
accuracy of the method [7,8,9,10,11]. For accurate 
estimation of blood flow rates from pulsed NMR 
signal, the homogeneity requirement is 1 part in 
108. The cost implication of such a highly 
homogenous magnet is too high. 
 However, in a CW NMR system that uses a 
single detector coil overlapping the excitor coil (or 
the single excitor-detector coil), the estimation of 
steady blood flow is impeded by the overwhelming 
influence of static tissue signal on the time-
independent steady flow signal. Such systems 
cannot separate the contribution of the steady flow 
signal due to flowing blood spins from the signal 
that itself is due to static tissue surrounding the 
blood vessels. The continuous wave signal also 
depends largely on the physical parameter of the 
CW system. One major problem that has not 
allowed for an appreciable research in the CW 
NMR system is the mathematical complexities 
involved, which of course is the development of 
exact algorithm that will provide useful solution to 
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Bloch equations. Tackling these problems (static 
tissue, system parameters) no doubt will make CW 
NMR very useful for accurate measurement of 
blood velocity as an indicator of heart and vessel 
disease [11].  

2.     CW NMR signal dependence on flow rates 

Our goal is to work out a technique that will 
facilitate the quantification of blood flow rates 
using a CW NMR system. To do this, we shall 
consider a model system of excitor and detector, 
which has a simple geometrical arrangement as in 
Fig. 1. 
 

 
 
Fig. 1:  Diagram of the model CW NMR Excitation 
Scheme with Separate Movable Detection System for 
accurate estimation of V0, V

0
pulse and also the total cross-

section of the blood vessel. Le is the length of the excitor 
coil and ∆l is the separation of the excitor and the 
detector coil whose length is L. 
 

The CW NMR excitation is carried out over the 
excitor coil of length Le = X2-X1. A fluid (blood) 
flowing in from the left is assumed to be 
magnetized to an equilibrium value M0 before 
entering the excitor coil. Static tissue in the excitor 
coil region is also subjected to CW excitation. The 
B0 field inhomogeneity should be less than the 
magnitude of the radio frequency (rf) B1 field of 
the rf excitation for our scheme to be successful. 
The requirement is far less stringent than that 
required for an ideal pulse NMR spectrometer [11]. 
The detector coil is separated from the excitor coil 
by distance ∆l in our model. 

The theoretical analysis of the dependence of 
NMR signal on flow rates begins with a model 
system in which B1 is assumed to be: (i) zero or 
negligible inside the detector coil; and (ii) finite 
inside the excitor coil. However, a highly reduced 
value of B1 in the detector coil does not alter the 
conclusion reached with the model system. Beyond 
the excitation coil region, the detector coil receives 
the signal from the blood excited in the excitor coil 

region. The detection coil can be positioned at 
different distances ∆L from the excitor coil. For 
case (i), we consider the signal as a result of 
precessing transverse magnetization My of the 
flowing spins and is dependent on both the flow 
velocity and on the T2 relaxation time. 
 Earlier, De [11], under some assumptions, 
carried out theoretical analysis of the CW NMR 
signal dependence on blood flow parameters such 
as steady blood velocity, pulsatile peak velocity 
and T2 relaxation time. In this article, we have 
carried out ab initio analysis of clinical importance 
from a more fundamental concept. 
 The x,y,z components of the magnetization are 
given by the Bloch equations [12,11], which may 
be written as  
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Where, all x, y, z are of the rotating frame of 
reference. The z-axes is along the laboratory Z axis, 
whereas the x and y axes form an angle ωt with the 
laboratory X and Y axes, respectively. All other 
symbols have their earlier definitions. 
 In the CW NMR under investigation, we 
assume that the strength of B1(x) is such that Mz 
does not differ appreciably from M0. Then, Eqn. 2 
describing the rate of change in magnetization 
along the y – axis is given by 
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Where, )(tV  is along the laboratory X axis and S is 

called the instrument factor. S = 1 for X1 < X < X2 
and S = 0 for X > X2. In this work, using a time 
retarded concept, a form of solution of Eqn. 4 that 
gives the flow signal IFS, is given as 
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Here, IFS is the CW NMR signal resulting from 

spins flowing with time dependent velocity and ′0T  

and τ  are given by the following:  
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Where, ω is the angular frequency generated by the 
rF signal and β is the blood vessel cross-section. 
The time t = 0 is counted from the moment when a 
fresh pulse enters the coil. 

 In equation (8), V is a function of )( 0
′−′− Ttt . 

Note that )( 0
′−′− TttV  is the velocity of blood 

bolus at time, )( 0
′−′− Ttt . Eqns. 5 - 8 can be 

handled only through numerical analysis in order to 
understand the dependence of CW NMR signal on 
steady and pulsatile flow rates, T2 relaxation time, 
vessel cross-section, and so on. 
 Since blood is made up of both steady and 
pulsatile flow, V(t′), the blood velocity is given by 
 

 )()( 0 tVVtV p ′+=′        (9) 

 
 In this study, in order to arrive at analytical 
expression for the CW NMR signal as a function of 
these parameters, we proceed as follows: 
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Eqns. 9 and 10 have been clearly explained by De 
[11]. 
 It would be interesting to derive the explicit 
expression for IFS (Eqn. 5) with flow velocity given 
by equations (9) and (10). Thus substituting the 

expressions for )(tV ′  and )( 0
′−′− TttM y  in Eqn. 

5, yields 
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For convenience, )( 0
′−′−= TttVV . 

 From Eqn. 14, we obtained the integral:  
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 Simplifying Eqn. 17 gives:   
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Since )( 0
′−′−= TttVV , the integration of 

Expression (18) is a difficult task in the numerator.  
The average value, V , within the excitor, is 

considered such that  
 

∫
−

′′−′−=
t

t

tdTttVV
τ

τ
)(

1
0                   (19) 

 
and

 

( ) )(5.1sin)(exp365.0/)( 00
0

00
′−′−





 ′−′−−+=′−′− TttTttVVTttV Pulse π                                              (20) 

 
 
However, V in subsequent expressions denoteV of 

Eqn. 19. Note that V  is a function of t , τ  and 

′
0T  but not of t ′ . 

The integral in (18) can be expressed as 
 
 
 

 























′






 ′+−
+′







 ′−++
−−

′






 ′+−
−′







 ′−+
−

=

∫ ∫

∫∫

− −

−−
t

t

t

t

t

t

t

t

td
VT

tVVTVTi
Ctd

VT

tVVTVTi
C

td
T

tTTi
Ctd

T

tTTi
C

i
I

τ τ

ττ

ππ

ππ

2

22
2

2

22
2

2

22
1

2

22
1

)45.1(
exp

)45.1
exp

)145.1
exp

)145.1(
exp

2

1                  (21) 



African Physical Review (2009) 3: 0012                                                                                                                                   69 

 

Where, 
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are treated as constant coefficients independent of 
t ′ . Performing the integration of Eqn. 21 after 
simplifying the last two terms gives 
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Now, we insert the limits in Eqn. 24 so that we 

obtain  
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Eqn. 25 can further be expanded to give 
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Because of the occurrence of common 
exponentials in the terms, Eqn. 26 can be written 
with some factors, as 
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Rationalizing the denominators and simplifying 
Eqn.  27, gives:  
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The expression, given by Eqn. 28, can   be written 
in a compact form as: 
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The expression in Eqn. 28 contains both the 
imaginary and real components. Since it is only the 
real part that makes contribution to the NMR 
signal of interest, it is important to extract it from 
the equation. The following procedure could be 
adopted. 
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Where, 1
1

βeB = The exponential ‘e’ has been 

adopted for convenience. Using the Euler’s 
relation, 
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which gives, on evaluation, the equation 
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Substituting the expression ( )ibaA +=1  in Eqn. 

33 and expanding the resulting  

expression would give the real part of the first term  
of  Eqn. 28 as 
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and could further be written as 
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The same procedure can be adopted to get the real  
part of the second term of Eqn. 28. But now we set  
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Working the same way as with the first term, the 
real part can be separated as  
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Which, also can be written 
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Eqn. 35 is, of course, the same as Eqn.  34. The 
contribution of the real parts by the  first two terms 

of Eqn. 28, considering their signs, can therefore be 
obtained by adding Eqns. 34 and 35 as 
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We now evaluate the real part of the last two terms 
of Eqn. 28. To do this, we let 
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Where, 2
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βeB = . Following the previous steps, the 

real part is given as 
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The same procedure can be adopted to get the real 
part of the fourth term of Eqn. 28, but now we set  
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so that the term can be written as 
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The real part can be separated as before which 

can similarly be written as 
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The combined real contribution of the third and 
fourth terms, like in the first two   

 terms and considering their signs, give 
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The real part of Eqn. 28 can now be  
 
 

written as 4,32,1 III += , so that 
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Substituting the values of 12121 ,,,,,,,, Bvuba θθββ   

 
 
 

 
and B2 in Eqn. 41 above, the expression I will be 
given as 
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We now substitute for I, i.e., Eqn. 42 in Eqn. 14 to 
arrive at the final CW NMR signal due to blood 
flow. For the purpose of simplification and 
computation of CW NMR signal, we assumed a 

particular case where 0=∆l . In this case, ′
0T  from 

Eqn. 7 turns out to be zero. Noting the expressions 

for C1 and C2, respectively, in Eqns. 22 and 23 

and
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given as:      
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3.     Calculation of IFS 

To calculate the actual value of the NMR signal 
flow given by Eqn. 43 above, the T2 for blood, the 
time τ  which the signal has remained in the 

detector, the time ′
0T  which it traverses the 

separation between the excitor and the detector, the 
time dependent blood flow velocity and of course 

0
puldeV , the peak of the pulse velocity should be 

known. The T2 relaxation time for blood ranges 

from 0.1s to 0.15s, while 0
pulseV  changes have been 

given by [10] and [11]. To know the values of τ  
when the detector receives signal in the present 
model, Eqn. 6 should be evaluated and known 

values of L and duration in which the blood bolus 
spends in the system are used for the computation. 
This proceeds as follows. 

From the Eqn. 6, we have 
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Substituting the expression for ( )tV ′  in Eqns. 9 and 

10 and performing the integration taking the limits 
of integration into consideration, we have 
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Using Eqn. 44, with values of L between 10 cm 

and 20 cm, while t was taken from 0.0s to 1.6s, 
different sets of value ofτ were obtained. The NMR 
blood flow signal FSI  in Eqn. 43 can then be 

evaluated under different conditions of the CW 
NMR detection system.  

 

4.     Discussion of result 

The result obtained at a T2 = 0.1 s, steady blood 

velocity of 20 cm/s and 0
ppulseV  = 30 cm/s is given 

in Fig. 2. It shows a close similarity with the results 
of earlier  experimental  work  [13, 14, 2]  and  [15].  
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Figs. 5 and 6 show some of their results using two-
dimensional pulsed NMR scanner. Significantly, all 
the results (previous and our present model) picture 
the flow pattern of the cardiac cycle. The first part 
indicating a rise in signal defines the diastole, while 
the second is the systolic decay. Our result also 
clearly agrees with the known fact that the cycle 
decays to zero in about 1 s. Another striking result 
of our present CW NMR model is the peak signal, a 
little above 0.2 s, which is consistent with other 
methods mentioned above. A little deviation 
however is that CW-NMR signal shows a faster 
decay in the systolic region. This has to do with the 
values ofτ , the time which the signal spends in the 
detector coil. 
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Fig. 2: Blood flow curve obtained from the new CW-
NMR detecting system obtained with a T2 = 0.1 s, blood 

steady velocity of 20 cm/s and 0pulseV  = 30 cm/s.  

 
The variation of the CW NMR signals with 

different steady flow velocity values from 5 cm/s to 

45 cm/s for a given peak pulse velocity 300 =PulseV  

cm/s is given in Fig. 3. These plots show that though 
the signal amplitude reduces at low velocities the 
signal itself decays less sharply than at higher 
velocities. This also shows that the time dependent 
CW NMR peak-to-peak signal depends not only 

on 0
PulseV , a fact that has already been established 

[11], but also on blood steady velocity0V . This is a 

significant result though overlooked by earlier 
workers. Fig. 4 shows the changes in the signal 

amplitude as the 0
pulseV  changes from 15 cm/s to 45 

cm/s. The signal strength decreases sharply with 

decreasing pulse peak velocity, 0pulseV , a result, 

which as stated above, is in agreement with earlier 
work. 
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Fig. 3: The variation CW NMR time dependent signal 
with time as the steady velocity changes from 5 cm/s to 45 
cm/s. The curve with the lowest peak represents the least 
velocity, while that with the highest peak represents the 

highest velocity in the group; 0
pulseV  = 30 cm/s, T2 = 

0.15s.  
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Fig. 4: The Variation of CW NMR signal with time at 

pulse peak velocity of  0
pulseV  15 cm/s, 25 cm/s, 35 cm/s 

and 45 cm/s. The signal increases with increasing 0
pulseV  

values. The steady blood velocity = 5 cm/s, T2 = 0.15 s. 
 

 
 
Fig. 5: Time behavior of the aortic blood rate measured 
with MR of a volunteer (measured by [13]). 
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Fig. 6 Temporary MR imaging flow curve of blood flow 
in Abdominal aorta of healthy volunteer measured with 
TRs within 1 hour shows  the physiologic reproducibility 
and the importance of a high sampling rate to detect fast 
changes of the flow [2]. 

5.     Conclusion 

We have shown in this research work that CW NMR 
can be a very useful technique that can be used for 
quantification of blood flow rate. The success 
proves that nuclear magnetic resonance being a very 
significant tool in medical diagnosis can be made an 
affordable machine for developing countries if the 
CW NMR method of blood flow estimation is fully 
exploited a situation which has hitherto not been 
given much attention because of the mathematical 
complexities involved. The theoretically simulated 
time dependent CW NMR signal has agreed with 
the experimentally measured blood flow signal by 
other workers. This shows that it is possible, based 
on our approach, to construct CW NMR blood flow 
meter that can yield results in agreement with those 
measured by sophisticated methods employing MRI 
technology. 

References 

[1]  R. Botnar, M. B. Scheidegger and P. 
Boesiger, Technology and  Health Care 4, 
97 (1996). 

[2]  E. M. Stephan, M. Dieter and P. Boesiger, 
Radiol. 171, 487 (1989). 

[3]  E. Stephan, M. D. Maier, M. B. Scheidegger, 
K. Liu, E. Schneider, A. Bolinger, and P. 
Boesiger, J. Magn. Reson Imag. 5, 669 
(1995). 

[4]  E. M. Harald, K. Hans-Kristain, M. B. 
George and E. P. Peter, JMRI 523 (1996). 

[5]  E. James, J. R. Moore E. Stephan, D. Maier, 
N. Ku. David and P. Boesiger, J. Appl. 
Physiol. 76(4), 1520 (1994). 

[6]  P. Boesiger, S. E. Maier, L. Kecheng, M. B. 
Scheidegger and D. Meier, J. Biomech. 25, 
No.1, 55 (1992). 

[7]  R. E. Halbach, J. H. Battocletti, A. Sance Jr., 
R. L. Bowman and V. Kudravcev, IEEE 
Trans. Biomed. Eng. 27, 547 (1980). 

[8]  S. X. Salles-Cunha, R. E. Halbach, J. H. 
Battocletti and A. Sances Jr., Med. Phys. 29, 
891 (1981). 

[9]  S. X. Salles-Cunha, R. E. Halbach, J. H. 
Battocletti and A. Sances Jr., Med Instrum. 
16, 295 (1982). 

[10]  J. H. Battocltti, CRC Press Inc., 13(4), 311 
(1986). 

[11]  D. K. De, Phys. Med. Biol. 35, No. 2, 197 
(1990). 

[12]  C. P. Slichter, Principles of Magnetic 
Resonance  2nd ed. (reviewed and expanded) 
(Springer-Verlag, Berlin-Heidelberg-New 
York, 1978) 11. 

[13]  D. Meier, S. Maier and P. Bosiger, Magn 
Reson. Med. 8, 23 (1988). 

[14]  D. Meier, S. Maier and P. Bosiger, 
Radiology 171, 487 (1989). 

[15]  A. Vieli, U. Moser, S. Maier, D. Meier and P. 
Boesiger, Ultrasound in Med and Biol. 15(2) 
113 (1989). 

 
 
 
 
 
 

Received: 23 June, 2008 
Revised: 29 September, 2009 

Accepted: 6 October, 2009 


