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Abstract: In this study, we report for the first time to our knowledge 
theoretical investigation of modulation responses of injection-locked mid-
infrared quantum cascade lasers (QCLs) at wavelengths of 4.6 μm and 9 
μm, respectively. It is shown through a three-level rate equations model that 
the direct intensity modulation of QCLs gives the maximum modulation 
bandwidths of ~7 GHz at 4.6 μm and ~20 GHz at 9 μm. By applying the 
injection locking scheme, we find that the modulation bandwidths of up to 
~30 GHz and ~70 GHz can be achieved for QCLs at 4.6 μm and 9 μm, 
respectively, with an injection ratio of 5 dB. The result also shows that an 
ultrawide modulation bandwidth of more than 200 GHz is possible with a 
10 dB injection ratio for QCLs at 9 μm. An important characteristic of 
injection-locked QCLs is the nonexistence of unstable locking region in the 
locking map, in contrast to their diode laser counterparts. We attribute this 
to the ultra-short upper laser state lifetimes of QCLs. 
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1. Introduction 

Semiconductor laser sources with high modulation bandwidths are always desirable for high 
speed data transmission systems. However, the modulation bandwidth of direct modulated 
semiconductor laser is largely limited by relaxation resonance frequency determined by the 
interactions of the carriers and photons in the laser cavity. Optical injection locking scheme 
has been shown theoretically [1] and experimentally [2] as an effective approach to enhance 
the relaxation resonance frequency of semiconductor lasers, making it a useful method to 
increase the modulation bandwidth of lasers. With this technique, vertical-cavity surface-
emitting lasers (VCSELs) with a 80 GHz intrinsic 3-dB bandwidth [3], quantum-dot (QD) 
DFB lasers with a 16.3 GHz bandwidth [4], and distributed reflector (DR) lasers with wirelike 
active regions [5] with a 15 GHz bandwidth have been demonstrated recently. 

Quantum cascade lasers (QCLs) are the most promising semiconductor-based mid-
infrared and terahertz sources. As they have intrinsic ultrafast intersubband transitions and 
versatile-designed wavelengths, they are very attractive for high-speed free-space optical 
(FSO) communication systems [6, 7] (two atmospheric transmission windows are in the 
regimes (3-5 μm) and (8-14 μm), respectively.) and Light Detection and Ranging (LIDAR) 
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applications. Recent advancement of high-performance continuous-wave room-temperature 
operated QCLs [8, 9] has further brought interests of applying QCLs for FSO applications 
[10]. With direct modulation of 8.1 μm QCLs, enhanced link stability has been demonstrated 
in FSO communication system in fog weather due to the less Mie scattering at relatively 
longer wavelengths, showing that QCL is an ideal source for FSO communication in 
atmospheric conditions with restricted visibility [10]. Earlier theoretical studies show that the 
modulation bandwidth of QCLs can reach 100 GHz or even Terahertz regimes [11–13]. 
However, this is misleading as the value of photon lifetime was inaccurately estimated for 
practical QCLs. Also in [14], the rate equations for QCLs were not correctly established, as 
the cascade characteristics of QCLs were not properly considered. Direct modulation of QCLs 
actually leads to a much lower modulation bandwidth ~10 GHz for some mid-infrared QCLs 
[15] and ~13 GHz for typical terahertz QCLs [16]. Further increase of the modulation 
bandwidth of QCLs through other approaches is highly desired. 

In the paper, we theoretically and systematically investigate the injection-locking of 
QCLs, for the first time to our knowledge, at emitting wavelengths of 4.6 μm [17] and 9 μm 
[18] corresponding to the two atmospheric transmission windows, respectively. We first 
examine the direct intensity modulation characteristics of QCLs, using a three-level rate 
equations model. The results show that no resonant frequency appears in the frequency 
modulation response, and the maximum modulation bandwidths of round 7 GHz for QCLs at 
4.6 μm and 20 GHz for QCLs at 9 μm are obtained. The theoretical analysis is in good 
agreement with the experimental observations [15]. In addition, we apply the optical injection 
locking scheme to increase the frequency modulation bandwidth of QCL. Rate equation 
analysis shows that the obtained modulation bandwidth of injection locked QCLs is about 
three times higher than that of the directly modulated QCLs for both lasers at 4.6 μm and 9 
μm under a 5 dB injection ratio, with modulation bandwidths up to ~30 GHz and ~70 GHz, 
respectively. With a 10 dB injection ratio, a modulation bandwidth of over 200 GHz can be 
achieved with the injection locking scheme. A unique feature of injection locked QCLs is that 
there is no unstable locking range, as opposed to other semiconductor lasers [19]. We attribute 
this effect to the ultra-short lifetime of the upper laser state. 

2. Theory 

2.1 Direct intensity modulation of QCLs 

In this study, we use a three-level rate equation model to describe the dynamic behavior of 
injection-locked QCLs. It is noted that neglecting the carrier number in the lower laser state is 
invalid in QCLs, especially for room temperature operation, also to accurately describe the 
dynamic behavior of QCLs, a self-consistent scattering model [20] is required, which 
however is too complicated for the present study. We denote the instantaneous carrier 
numbers in the lower and upper laser state by N2 and N3, respectively, and the photon number 
by P. Here the cavity is assumed to have only one longitudinal mode. We noticed that 
analysis of direct intensity modulation of QCLs with rate equation model has also been 
investigated in [14]; however, the gain coefficients for carrier rate equations are miscalculated 
due to the neglect of the cascade characteristics of QCLs. Therefore, the obtained modulation 
bandwidth in [14] is much larger than that demonstrated in experiments [15]. This conclusion 
is also supported by the analysis in Ref [21]. The resulted rate equations for QCLs should be: 

  3 3
3 2

3 p

dN N G
J N N P

dt N
     (1) 

  32 2
3 2

3 2P

NdN NG
N N P

dt N 
     (2) 
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  3 2

P

dP P
G N N P

dt 
    (3) 

where J denotes the current injected into the active region divided by electronic charge e, G is 
the optical gain coefficient of the entire active region, Np is the number of stages, τ2 and τ3 
represent the lifetime of lower and upper laser levels, respectively, and τP is the lifetime of 
photon in the cavity, expressed as τP = νg (αw+αm) where αw, αm, and νg are the waveguide 
loss, mirror loss, and group velocity, respectively. The mirror loss can be calculated using αm 
= -ln(R1R2)/(2L), where R1 and R2 are the power reflectivity of the facets 1 and 2, respectively. 
The group velocity νg is given by νg = c/neff, where c and neff are the speed of light in vacuum 
and modal effective refractive index, respectively. In our analysis, G/NP instead of G as in 
[14] is correctly used in Eqs. (1) and (2) to represent the optical gain coefficient of one single 
active region period in QCLs. Denote G0 = G/NP, we have G0 = Γ’νgσ32/V, where Γ’ is the 
optical mode confinement factor for a single period, and V stands for the volume for a period, 
given by WLLP, where W and L are the width and length of the active region, and LP denotes 
the period length, respectively. The stimulated emission cross section σ32 is, 

 
 

2 2
32

32

0 0 32

4

2
neff

e z

n




  
   

where e is the electronic charge, z32 is the dipole matrix element between the upper and the 
lower lasing levels, ε0 is the vacuum dielectric constant, λ0 is the free-space emission 
wavelength, and (2γ32) stands for the full width at half maximum (FWHM) of the optical 
transition spectrum. 

2.1.1 Steady state analysis 

We set the time derivatives of Eqs. (1)-(3) to zero, and denote the steady state values of J, N2, 

N3, and P as J0, N20, N30 and P0, then the steady state rate equations can be expressed as: 

  30
0 0 30 20 0

3

0
N

J G N N P


     (4) 

  30 20
0 30 20 0

3 2

0
N N

G N N P
 

     (5) 

   0
30 20 0 0

P

P
G N N P


    (6) 

The steady state population of lower lasing level, N20 is given as 

 20 0 2N J   (7) 

with Eqs. (4) and (5), P0 can be obtained in the following equation, 

    30 20
0 0 30 20 0

3

1 0
N N

J G N N P



      (8) 

where η=τ2/ τ3. Also, we note that at threshold, 

  30 20

0

1

p p

N N
N G 

   (9) 

where Jth is the threshold current (s1), given by Jth = 1/Gτ3τP (1-η). Substituting Eq. (9) into 
Eq. (8), one gets the steady state photon number P0, 
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1
1

th

J
P
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 
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 (10) 

with Eqs. (7) and (9), the upper laser level population N30 can be written as, 

 30 0 2

0

1

P P

N J
N G




   (11) 

2.1.2 Small-signal modulation analysis 

The small-signal analysis is necessary in order to investigate the modulation response of 
QCLs. Assuming small variations ∆N2, ∆N3, ∆P and ∆J around the steady state values, and 
substituting N2=N20+∆N2, N3=N30+∆N3, P=P0=+∆P and J=J0+∆J into Eqs. (1) – (3), we get the 
rate equations for the small deviations as follows: 

    3 3
0 3 2 0 0 30 20

3

d N N
J G N N P G N N P

dt 
 

          (12) 

    32 2
0 3 2 0 0 30 20

3 2

Nd N N
G N N P G N N P

dt  
 

         (13) 

    3 2 0 30 20

P

d P P
G N N P G N N P

dt 
 

        (14) 

Taking the Laplace transform of Eqs. (12)–(14), and placing them into a matrix form, we 
have the following transformed matrix, 

 

11 12 13 3

21 22 23 2

31 32 33

0

0

s f f f N J

f s f f N

f f s f P

       
            
           

 (15) 

where the matrix terms are expressed as 

 

11 0 0 21 0 0 31 0

3 3

12 0 0 22 0 0 32 0

2

13 23 33

1 1

1

1 1
0

P P P P

f G P f G P f GP

f G P f G P f GP

f f f
N N

 



 

 
       

 

    

   

 (16) 

The normalized modulation response is 

     3 2

1

1 1P P

s

P AH s
J N Bs Cs Ds 


 
    

 (17) 

Where 

 

2

3 0

0 0 0 0 0

3 2 3 2

1 1
1

1 1 1 1 1
2 1 2

P P

P P

N
A B

GP

C B G P D B G P GP
N

 
 

     

 
   
 
    

         
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(18) 
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2.2 Injection locking of quantum cascade lasers (QCLs) 

2.2.1 Steady state analysis 

The injection locking scheme involves two lasers: the slave laser (SL) is optically locked by 
the master laser (ML) [2]. The differential equation describing electric field inside the slave 
laser under injection locking was first proposed by Lang and Kobayashi, given as 

      0

1 1
( ) ( )

2
SL P SL d ML

p

d
E t j N N G N E t f E t

dt




        
    

 (19) 

where fd is the coupling rate between the master laser and the slave laser, approximately 
expressed as: fd = νg(1-R)/(2LR

1/2) where R stands for the power reflectivity of the injected 
cavity facet. We denote the electromagnetic fields in the slave laser and the master laser as, 

       0 0

0

j t t

SL
E t E t e

   (20a) 

       1 1

1

j t t

ML
E t E t e

   (20b) 

where E1(t) is taken as a constant, 0(t) and 1(t) are the phases of the two electromagnetic 
fields, (1(t) is usually set as zero for computing convenience); ω0 and ω1 are the angular 
frequencies of the slave laser and the master laser, respectively. Substituting Eq. (20) into 
(19), the differential equation can be split into field magnitude and phase rate equations. 

        0 0 0 1

1
cos

2
P d

d
E t N G N t E t f E t

dt
    (21) 

      1
0

0

1
sin

2
P d inj

Ed
t N G N t f t

dt E
        (22) 

In the above equations, ∆N is the carrier number change due to light injection from the 
master laser, given by N-Nth. Different from rate equations for diode lasers, the carrier number 
in the above equations is the carrier number difference between the upper and the lower laser 
levels, i.e. N = N3-N2. From Eqs. (12) and (13), and taking into account the carrier number in 
the lower laser state, the differential equations governing the carrier dynamics are given as, 

 
    2 2

2 0 0

3 2

2
2

dN t N
J N N E G N

dt  
      (23) 

 
   2 2 2

2 0 0

3 2

1dN t N
N N E G N

dt  
     (24) 

where E0(t), 0(t), N(t), and N2(t) represent the slave laser’s field magnitude, phase, carrier 
number difference between the transition states, and carrier number in the lower laser state, 
respectively. The field magnitude E0(t) has been normalized, so that |E0(t)|

2=P(t), where P(t) 
is regarded as the total photon number for a single longitudinal mode inside the cavity. (t) is 
defined as the phase difference between the master and the slave lasers, i.e. (t)=SL(t)ML(t), 
G0, NP, α, J, τ2, and τ3 are the slave laser’s gain coefficient for one stage, the number of 
period, linewidth enhancement factor, the injection current, the lower laser state lifetime, and 
the upper laser state lifetime, respectively. While fd, E1 and ∆ωinj represent the coupling rate, 
injected electrical field magnitude, and frequency detuning, respectively. The latter is 
expressed as ∆ωinj = ω1-ω0. For free-running laser, N = Nth, N2 = N2th, E = Efr, with Eq. (24), 
the carrier number in the lower laser state for free-running slave laser can be obtained, 
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where we define γP as, 

 0P th
G N   (26) 

Remembering that cavity photon decay rate γP0 is given by GNth, so that γP = γP0/NP. With 
Eq. (23) and the expression of γP, the threshold current, defined as I/e (where I is current, and 
e is the electronic charge), and the free-running field magnitude of slave laser are found to be, 
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Under the injection-locking region, the carrier number difference N in the slave laser 
should decrease, due to the enhanced stimulated mission in the gain medium. The steady state 
values for E, ∆N, , and N2 under injection locking are denoted as E0, ∆N0, 0 and N20 
respectively. The corresponding expressions of ∆N0, 0 and N20 are given below, 

 1
0 0

0 0

2
cosd

p

f E
N

N G E
    (29) 

 
01 1

0
2

1

sin tan
1

inj

d

E

f E


 


 
 
   
  

 (30) 

  2 0 2 3
20 0 0 0

3 3 3 2

th

P

N N
N E G N

 


   
 

       
 (31) 

Applying Eqs. (29)-(31) into Eqs. (23), and setting the time derivative to zero, one gets a 
cubic equation for the steady state value E0. Defining two new parameters, 
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the equation is shown as, 
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The steady state value of E0 can be solved by various numerical methods, given that the 
phase difference 0 varies approximately from -π/2 to cot1α in the injection locking range, 
and ∆N0 should be negative. 
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2.2.2 Small-signal modulation analysis 

Assuming a small variances ∆E, ∆, ∆N and ∆N2 around the corresponding steady state value, 
and substituting E=E0+∆E, =0+∆, N=N0+∆N, N2=N20+∆N2 into Eqs. (21) – (24), one gets 
the rate equations for the small signal modulation: 
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Converting the rate equations into the matrix form and taking Laplace transform, we have 
the following matrix: 
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In which the matrix elements are 
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The direct modulation frequency response is given by, 
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where 
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3. Results and discussions 

3.1 Direct modulations 

First, we examine the direct modulation bandwidths of QCLs at different wavelengths in the 
mid-IR regime. Table 1 shows the parameters used in the simulations, of the state-of-the-art 
mid-infrared QCLs emitting at around 4.6 μm [17] and 9 μm [18], which correspond to the 
two atmospheric windows in the mid-infrared spectrum range. A simple way to analyze the 
modulation behavior of QCLs can be done by analyzing the zeros and poles of the normalized 
frequency response H(s). Tables 2 and 3 list the corresponding zeros and poles for the QCLs 
at 4.6 μm and 9 μm under different injection currents. Three poles can be obtained from the 
denominator of the frequency response, which are expressed as p1, p2 and p3 respectively. One 
zero will be obtained from the numerator. Also shown is the calculated 3-dB bandwidth of the 
modulation response. We also notice that the phenomena that no resonance frequency appears 
and the calculated direct modulation bandwidth are in good agreement with the experimental 
observations [15], if the experimental parameters [15] are used in the calculations. 

Table 1. Characteristic parameters of the state-of-the-art QCLs at 4.6 μm [17] and 9 μm 
[18] for direct modulation 

Parameter Symbol Value (unit) 

Wavelength Λ 4.6 (μm)/ 9 (μm) 
Width W 11.6 (μm)/12 (μm) 
Length Lp 5 (mm)/ 3 (mm) 

Length of period L 50 (nm)/ 67 (nm) 

Modal effective refractive index neff 3.27/ 3.27 

Waveguide loss αW 2.6 (cm1)/ 8.77(cm1) 

Mirror loss αm 1.34(cm1)/ 2.23 (cm1) 

Photon lifetime τp 27.6 (ps)/9.91 (ps) 

Upper state lifetime τ3 1.77 (ps)/0.66 (ps) 

Lower state lifetime τ2 0.26 (ps)/ 0.14(ps) 

Optical gain coefficient G 2.93×104(s1)/1.2×105(s1) 

Number of period NP 40/40 

Table 2. Poles, zeros, and f3dB for QCLs at 4.6 μm 

I0 p1(GHz) p2(GHz) p3(GHz) z(GHz) f3dB(GHz) 
1.5 Ith 2.0 122.7 697.5 552.4 3.4 
2 Ith 2.9 150.0 759.1 552.4 5.0 
3 Ith 3.9 190.7 897.3 552.4 6.8 
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4 Ith 4.4 217.8 1049.5 552.4 7.6 

Table 3. Poles, zeros, and f3dB for QCLs at 9 μm 

I0 p1(GHz) p2(GHz) p3(GHz) z(GHz) f3dB(GHz) 
1.5 Ith 5.4 312.7 1312.5 907.2 9.4 
2 Ith 8.1 364.5 1499.1 907.2 14.0 
3 Ith 10.8 428.8 1914.4 907.2 18.6 
4 Ith 12.2 464.7 2359.4 907.2 21.0 

(a) (b)

 

Fig. 1. Normalized modulation response of mid-infrared QCLs. (a) QCLs emitting at 4.6 μm 
with parameters shown in Table.1 (b) QCLs emitting at 9 μm with parameters shown in 
Table.1. The 3-dB bandwidth is indicated by the black dashed line. 

Figures 1(a) and (b) show the normalized frequency responses of QCLs at 4.6 μm and 9 
μm, for I = 1.5Ith, 2Ith, 3Ith, and 4Ith, respectively, corresponding to the injection currents from 
just above threshold to roll-over, respectively. Obtaining the poles and zeros of the frequency 
response, we can transfer it into the following form, 
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 (43) 

This is the normal form of the Bode plot. Because the first pole is three to four magnitudes 
smaller than the other poles and zeros, it will mainly determine the modulation bandwidth, so 
H(s)1/(s/|p1|+1) in the Bode plot. For cubic equations, we have p1p2+p2p3+p1p3=D/B, and 
p1p2p3=1/B, leading to 1/p1+1/p2+1/p3=1/D. For p1 is much smaller than p2 and p3, we get 
|1/p1||D|. Substituting |1/p1| with |D| in the expression of H(s), and keeping in mind that D is 
positive in the whole locking region; one can approximate the frequency response as, 

   1

1
H s

sD



 (44) 

where D is given by (τP + 2τ2) + τP/(G0P0τ3). The definition of 3-dB bandwidth is defined as 
|H(s)| at half of its zero value, i.e. |H(s)|f3dB| = 1/2 in the case of normalized frequency 
response. An approximated expression for 3-dB bandwidth is given as, 
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Combining the D and f3dB, we can easily see that a larger value of τp leads to a decreased 
modulation bandwidth. This can also be seen from the simulated frequency responses of 
QCLs at 4.6 μm and 9 μm. Due to larger optical loss, e.g. free carrier absorption (proportional 
to λ2) and intersubband absorption in the waveguide, the photon lifetime is much shorter for 
longer emission wavelengths, leading to an increased modulation bandwidth. However, a 
larger τp means a decreased optical loss, leading to a higher optical output. Thus, the tradeoff 
between the modulation bandwidth and the output optical power has to be taken into account 
when designing QCLs for high speed modulation applications. Another feature of QCLs is the 
absence of resonance peak as normally shown in conventional diode lasers. The physics 
behind it lies in the ultrafast upper state lifetime compared with the photon lifetime, making 
QCLs an overdamped system, showing no resonance peak in the frequency modulation 
response. 

3.2 Injection locking modulations 

To further enhance the modulation bandwidth of QCLs in the mid-IR regime, we can employ 
injection locking scheme for QCLs, the theoretical analysis of which is shown in section 2.2. 
All the additional parameters used in injection locking calculation are listed in Table 4, for 
QCLs emitting at 4.6 μm and 9 μm, respectively. The rest of the parameters which are 
common to direct modulated QCLs are shown in Tables 1. Though the linewidth enhance 
factor of QCLs is expected to be zero [22], the experiments showed different values (0.02 ± 
0.2 in [23],-0.44 to 2.29 in [24], and 1.8 to 1.7 in [25]). Without loss of generality, we set 
the linewidth enhancement factor as unity in the calculations. 

Table 4. Characteristic parameters of the state-of-the-art QCL at 4.6 μm [17] and 9 μm 
[18] for injection locking modulation 

Parameter Symbol Value(4.6 μm/9 μm) 
Linewidth enhancement 

factor 
α 1/1 

Threshold carrier number 
difference 

N 1.19×106(#)/1×106(#) 

Threshold current Jth 7.9×1017(s1)/ 1.92×1018(s1) 
Optical gain coefficient G 3×104(s1)/ 1×105(s1) 

Coupling rate fd 11.7(ns1)/19.5(ns1) 

Under injection locking scheme, four equations are involved in the calculations. This 
results in a four-order denominator and a two-order numerator in the frequency response. The 
typical locking maps for both of QCLs at 4.6 μm and 9μm are illustrated in Fig. 2.(a) and (b), 
respectively, with J = 4Jth. In our simulations, the boundaries of phase in the injection locking 
range are approximately cot1α to -π/2, from negative to positive detuning edge. This is 
derived from rate equations for the field magnitude E and phase difference , where the noise 
terms and spontaneous terms are neglected. The calculated locking maps of QCLs are similar 
to those of diode lasers, where the locking range increases linearly with the increase of the 
amplitude of the injected optical field, as demonstrated in Ref [26]. 
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(a) (b)

 

Fig. 2. Locking maps for QCLs emitting at (a) 4.6 μm and (b) 9 μm. The parameters used in 
the simulations are shown in Tables 1 and 4. 

To examine the frequency response of the injection locked QCLs, we calculate the 
response curves of QCLs at 9 μm with an injection ratio of 5 dB across the locking range and 
a frequency spacing of 1 GHz. The corresponding waterfall plot is shown in Fig. 3. Table 5 
lists the accompanying poles, zeros and 3 dB bandwidth of the responses. 

 

Fig. 3. Normalized frequency response curves versus frequency detuning at a fixed injection 
ratio R = 5 dB, for the 9 μm QCL. 

The frequency response exhibits resonance-like behaviors close to both edges of the 
locking range (e.g. the green and the black curves, respectively, in Fig. 3). However, the 
reasons behind these two are different. A further explanation can be sought by examining the 
poles of the frequency response. As illustrated in Table 5, when the frequency comes close to 
the positive frequency detuning edge (black curve in Fig. 3), two complex conjugate poles 
appear. In conventional semiconductor lasers, the imaginary part of the complex conjugate 
poles gives the resonance frequency of the response, while the real part defines the damping 
term, so that a peak appears in the frequency response. This is also the case for QCLs. At the 
negative detuning edge (black curve in Fig. 3), because all the poles are real (and negative), 
the peak in the frequency response has to be analyzed by the Bode Plots. According to the 
Bode Plots theory, zeros will increase the magnitude of the frequency response from its 
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critical frequency and beyond 10 dB per decade, while poles decrease the magnitude at the 
same rate. For QCLs, the first zero z1 is smaller than any of the poles, making the peak in the 
frequency response apparent, even though all the poles are real. 

Table 5. Poles, Zeros and 3-dB bandwidth f3dB for the QCL in Fig. 3. 

f (GHz) p1(GHz) p2(GHz) p3(GHz) p4(GHz) z1(GHz) z2(GHz) f3dB(GHz) 

5 1.6 9.9 387.2 1606.2 0.7 895.7 43.6 

4 2.5 9.7 398.7 1676.0 2.3 895.7 18.4 

3 3.4 8.8 400.8 1690.0 3.4 895.7 15.2 

2 5.1 6.9 396.9 1664.3 4.2 895.7 15 

1 5.8-2.4i 5.8 + 2.4i 389.4 1618.9 4.7 895.7 15.6 

0 5.5-3.6i 5.5 + 3.6i 379.4 1563.2 5.1 895.7 16.6 

1 5.2-4.5i 5.2 + 4.5i 367.6 1504.4 5.3 895.7 18.0 

2 4.7-5.3i 4.7 + 5.3i 355.3 1450.6 5.4 895.7 19.2 

3 4.2-5.9i 4.2 + 5.9i 342.9 1401.9 5.5 895.7 20.6 

4 3.7-6.5i 3.7 + 6.5i 331.2 1360.6 5.5 895.7 21.8 

5 3.0-7.1i 3.0 + 7.1i 318.1 1318.7 5.5 895.7 23.4 

For conventional semiconductor lasers, increasing slave laser’s bias current is an effective 
way to enhance the bandwidth of the modulation system [12]. Here we calculate the 
frequency response at a fixed injection ratio of 5 dB, with the injection current varying 1.5x, 
2x, 3x, and 4xJth, respectively, and a frequency detuning 0.1 GHz away from the negative 
detuning edge, as shown in Fig. 4. The inset is the corresponding pole/zero diagrams. Tables 6 
and 7 list the associated poles and zeros of the modulation responses. The increased 
bandwidth can be attributed to the increased values of poles and zeros of the frequency 
response, and the much smaller z1 than any of the poles. Similar effects can also be seen by 
increasing the injection ratio, for which a much broader modulation bandwidth can be 
achieved. Our calculation shows that for injection ratio R = 10 dB and frequency detuning of 
0.1 GHz away from the edge, over 200 GHz modulation bandwidth can be obtained. 
However, there is a tradeoff between the injection ratio and the slave laser’s injection current, 
even though both of which can effectively increase the modulation bandwidth. This is because 
the increased injection current leads to an increased slave laser output power, so that in order 
to achieve a high injection ratio, a master laser with a higher output power is required, which 
in some cases is limited in real applications. We noticed that by direct modulating the 
injection current using an RF source, Pierre et al demonstrated that the cavity resonance 
frequency of terahertz QCLs can be injection-locked [27]. However, their scheme is different 
to ours in that the injection signal in our case is the optical signal from the master laser. 

It is also noted that there is no unstable locking range in QCLs based on the above rate 
equation analysis, compared to other types of semiconductor lasers. Mathematically, the 
stable locking condition is satisfied when the eigenvalues of the frequency response 
function’s denominators are located at the left half of the complex s-plane. In the entire 
locking region of QCLs, we find that the roots of the denominator are always negative, 
making the whole locking region a stable locking system. One of the experimental evidence is 
that the injected light induced pulsation effect [19], which is a unique sign of the unstable 
locking condition in diode lasers [28] caused by the reduced damping and the strong 
correlation between the phase and intensity of photons, has not been observed in QCLs. The 
reasons are as follows: first, there is no relaxation oscillation in QCLs which has been 
experimentally verified, owing to the picosecond carrier lifetime of the laser states [15]. It is 
equivalent to say that the damping for the relaxation oscillation is so high such that the carrier 
numbers and photons come to a steady state in a much shorter time than those in conventional 
diode lasers. Second, using the phasor diagram and small signal analysis (here we express the 
small change of N, P, and  as δN, δP and δ), Henry pointed out [28] that the increase of δP 
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causes an increased δ in relaxation oscillations. On the other hand, at the negative detuning 
edge, the increase of δ causes an enhanced mismatch of E0 and E1, leading to a larger cavity 
intensity change, i.e. larger δP. This forms a positive feedback between δ and δP, which is 
enhanced as the relaxation oscillations increase. However, there is no relaxation oscillation in 
QCLs, thus the interaction between δ and δP is reduced. Therefore the large damping effect 
and the reduced interactions between  and P, make the unstable locking range in QCLs 
disappear, as shown in Fig. 2. 

Table 6. Poles, zeros, and f3dB for the QCL in Fig. 4 (a) 

I0 p1(GHz) p2(GHz) p3(GHz) p4(GHz) z1(GHz) z2(GHz) f3dB(GHz) 

1.5 
Ith 

0.94 3.8 182.5 845.0 0.25 522.2 27.6 

2 Ith 1.0 4.1 215.1 1038.2 0.27 522.2 30.0 
3 Ith 1.1 4.3 247.4 1442.1 0.29 522.2 31.8 
4 Ith 1.1 4.4 263.1 1857.5 0.29 522.2 32.6 

Table 7. Poles, zeros, and f3dB for Fig. 4 (b) 

I0 p1(GHz) p2(GHz) p3(GHz) p4(GHz) z1(GHz) z2(GHz) f3dB(GHz) 
1.5 
Ith 

1.5 9.9 385.1 1594.2 0.50 895.7 59.2 

2 Ith 1.6 11.3 434.2 1971.5 0.54 895.7 65.2 
3 Ith 1.6 12.5 482.0 2753.1 0.57 895.7 69.6 
4 Ith 1.6 13.0 505.1 3552.0 0.58 895.7 71.4 

(a) (b)

 

Fig. 4. Normalized modulation response of mid-infrared QCLs under injection locking scheme. 
(a) QCLs emitting at 4.6 μm. (b) QCLs emitting at 9 μm. The inset show the corresponding 
poles (x) and zeros (  ), with the arrow indicating direction of increasing the injection current 
of the slave laser. The 3 dB bandwidth is indicated by the dashed line. 

4. Conclusions 

Theoretical investigation of injection-locked QCLs at wavelengths of 4.6 μm and 9 μm are 
carried out in the paper. By using a three-level rate equations model, we find that the 
maximum modulation bandwidths of round 7 GHz for QCLs at 4.6 μm and 20 GHz for QCLs 
at 9 μm were obtained. It is shown that by applying the injection locking scheme, the 
modulation bandwidths can be increased by around three times under a 5 dB injection ratio, 
compared to the direct modulation scheme. The frequency modulation responses were 
analyzed using the Bode diagram, based on which it shows that increasing the injection ratio 
and the injected current of the slave laser are effective ways to enhance the modulation 

#158118 - $15.00 USD Received 15 Nov 2011; accepted 1 Dec 2011; published 9 Jan 2012
(C) 2012 OSA 16 January 2012 / Vol. 20,  No. 2 / OPTICS EXPRESS  1463



 
 

bandwidth of the master QCLs. With a 10 dB injection ratio, more than 200 GHz modulation 
bandwidth can be obtained for QCLs at 9 μm. Unlike conventional semiconductor lasers, no 
unstable locking ranges appear in the locking map, which we attribute to the ultra-short 
lifetime of the upper laser state of QCLs, due to the nature of intersubband transitions. 
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