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The amplification of light signals (angular frequency wg) in some isotropic media
(D,0, fused silica, and Schott type SF10 glasses) by noncollinear phase-matched
parametric four-photon interaction wy +w; — wg +w; is studied theoretically.
Computer simulations are carried out for fundamental and second-harmonic pump
pulses of a mode-locked Nd:glass laser. Degenerate interaction (wavelength
A=A =1054nm or 527 nm) and nondegenerate interaction (A; = 1054 nm,
A2 =527 nm) are considered. Characteristic phase-matching parameters and gain
parameters versus wavelength are determined. Limitations by spectral bandwidth,
optical absorption, optical damage, self-phase modulation, self-focusing and
stimulated Raman scattering are analysed.

1. Introduction

Parametric three-photon interaction in noncentrosymmetric crystals is widely used in
parametric oscillators (feedback of generated light), generators (build-up from quantum
noise and black-body radiation), and amplifiers (amplification of input signal) [1-5]. Para-
metric four-photon interaction is possible in all media [1-10]. Parametric four-photon gen-
eration (also called stimulated four-photon mixing [10, 11], stimulated parametric four-
photon interaction [12], or stimulated four-wave parametric emission [3]) plays an impor-
tant role in the generation of picosecond light continua [3, 10-15 and references therein].
Four-photon parametric oscillators have been realized by applying optical fibres {16] and
atomic vapours [6, 17-21]. Also, parametric four-photon amplification has been achieved
in optical fibres [10, 22—-26] and atomic vapours [27-30]. In atomic vapours the resonant
enhancement of the third-order nonlinear susceptibility near transition frequencies is
exploited and phase-matching is achieved by the refractive index dispersion around opti-
cal transitions and by buffer gas addition [6]. In optical fibres high pump pulse intensities
are maintained over long distances. Phase matching is achieved in certain wavelength
regions by waveguide contributions to the refractive index in multimode optical fibres,
and by modal birefringence in polarization-preserving single-mode fibres [10]. Theoretical
studies of parametric four-photon amplification are presented in {13, 31-34].
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In this paper the feasibility of parametric four-photon amplification of light pulses in
bulk condensed isotropic media is investigated. Numerical simulations are performed
for noncollinear phase-matched parametric four-photon amplification in heavy water,
fused silica, and a flint glass of type Schott SF10. Degenerate interaction,
w) +w; — wg + w; (monochromatic pumping; w, wg and w; are the angular frequencies
of the pump, signal and idler pulse, respectively) and nondegenerate interaction,
W) + wy — wg +wp with w; # w, (bichromatic pumping) are considered. Calculations
are performed for pump wavelengths 1054nm and 527 nm of a mode-locked Nd: glass
laser (fundamental and second-harmonic wavelength). Phase-matching angles are
calculated, and spatial pulse overlap lengths and temporal spreadings of the pulses are
determined. Parametric amplification factors are estimated. Limitation by spectral
pulse bandwidth, optical absorption, optical damage, self-phase modulation, self-focusing
and stimulated Raman scattering are analysed. Wavelength regions of allowed
parametric four-photon amplification (positive gain) versus pump pulse duration are
determined.

2. Fundamentals

Noncollinear phase-matched parametric four-photon amplification w; + wy) — wg + wy is
considered. Pump pulses at angular frequencies w; and w, (degenerate case: w; = w,; non-
degenerate case: w; # w,) amplify an input signal at frequency wg and thereby generate
an idler signal at frequency wy (no idler input signal). The pump pulses and the signal
pulse are set to be non-divergent and linearly polarized in the same direction. Only the
small-signal approximation limit is considered where the pump pulse intensities remain
constant. Neglecting optical absorption, the collinear parametric four-photon amplifica-
tion in the slowly varying amplitude approximation is described by Equations 1 and 2
[1, 10, 12, 14, 15]:

BES - . U.)S
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where Eg, Ej, E; and E, are the amplitudes of the electrical field strengths at the angular
frequencies wg (signal), w; (idler), w; and w, (pump pulses); ¢, is the light velocity in
vacuum; z is the propagation direction; and Ak, =ks, +k;, —k;, —ky, =ks+
k1 — k1 — k, is the wavevector mismatch. The wavevectors k; (i = 1,2,S,1) are given by
ki = nw;/co = 2mnw;/cy = 2mnip; = 2mmyf);, where the n; are the refractive indices at
the angular frequencies w;, frequencies »;, wavenumbers Z; or wavelengths X;.
Xg)xx(—ws;wl,wz, —wy) and X (—wp;wy, wy, —wg) are the third-order nonlinear optical
susceptibility components. They are related by [1, 12] xgc)xx(—ws;wl,wz —w) = x@;x
(-wrwy,wy, —ws), and we abbreviate ch)xx(_ws;wl:wb —wr) by X]g . D(wy, w,)
is the degeneracy factor of the nonlinear susceptibilities, where D(w;,w,) =3 for
w) = w, (degenerate or monochromatic case) and D(w;,w;) =6 for w; #w, (non-
degenerate or bichromatic case) [1, 35]. The nonlinear susceptibilities are defined by the
nonlinear polarization relation Py = 4eox(3)fEEE [36] where ¢, is the permittivity of free
space.

816



Theoretical investigation of ultrashort light pulses in isotropic media

The solution of the equation system (1, 2) in the parametric amplification limit (neglec-
tion of quantum noise amplification) is (1, 10, 12]

Es(z) = Eg{0) exp (i Akzz> [cosh (Bz) —1 Az—];f sinh (,BZ)] (3)
Ei(z) =i %I Es(0) exp (—i %5) sinh (8z) (4)
where
B = (kky — AR/ (5)
with
w *
Ky = 2nIIco D(wl,wz)xﬁf) E\E, (6)
and
w
kg = anSCO D(whwz)XE)ElEz (7

The pump pulse, signal, and idler intensities I; (i =1,2,8,I) are related to the field
strengths E; by

I="0% |E; P ®)
The wavevector mismatch Ak, reduces the parametric amplification. If the parametric
susceptibility XS ) is real (nonresonant interaction), then parametric amplification is only
possible for x§x; > Ak,. Otherwise the hyperbolic functions cosh and sinh change to
the trigonometric functions cos and sin.
In the case of collinear phase-matched interaction the signal and idler intensities reduce

to
I5(z) = Is(0)| cosh (Bz) ©
h(z) = % I5(0)] sinh (Goz)[? (10)
with

1/2
N wyw D(w;,w .
By = (rirr)'/ :( > I) (1,02) |E1E2|X§)3)
nghy 2C0

1/2 .
:< Wswr 1112) D(wi,w,) Xf:a) (11)

N nyhRghy 600(2)

The refractive index dispersion n(A) requires noncollinear interaction of the light fields
to achieve wavevector matching Ak = kg + k; — k; — k; = 0. Noncollinear beam arrange-
ments and phase-matching wavevector diagrams for normal dispersive isotropic media are
shown in Figs 1 and 2, respectively. In the case (a) of wg>w, >w; >w; or
wy > wy > wy > wg the beam arrangement of Fig. la and the wavevector diagram of
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Figure 1 Schematic noncollinear phase-matched beam overiap for interaction wy 4+ wy; — wg + wy in normal
dispersive media. (a) Collinear pump pulse propagation for wj <w; Swy <wsg Or wg <wq < wy < w.
(b) Noncollinear pump pulse propagation for w; < wg < w,.

Fig. 2a apply where the pump pulses are collinear and the phase-matching angles ¢ and ¢
are given by

(ky + ky)* + k3 — K

= arc cos 12a
4 2(ky( + ky)ks (122)
{a) - - - - (e)
k k; ky k,
~ 3y ¥ 9 ¥
k! kZ kS kl
{b) ()
*y - -
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‘ k. P Ky $ ¥ ‘1"
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k, Ny g -
Aklei 2
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® o ® ) i
= - - ~&3 Ak . ~
k1 kz kS kI

Figure 2 Wavevector diagrams. (a—d) Collinear pump pulse propagation according to Fig. 1a. (e-h) Non-
collinear pump pulse propagation according to Fig. 1b. (a) and (e) Noncollinear phase-matching. (b) and
(f) Phase mismatch due to frequency detuning of signal light. “c) and (g) Phase mismatch due to frequency
detuning of pump light. (d) and (h) Phase mismatch due to self-phase modulation.
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and

¥ = arc cos (12b)

(ky + ky)? + i — ké}

In the case (b) of w; <w; <wg <wy or w; <wg < wp <w, the beam arrangement of
Fig. 1b and the wavevector diagram of Fig. 2e apply where the signal and idler light are
collinear and the phase-matching angles ¢ and v are given by

(ks + ky)? + K} — i3]
=a S 13a
p=arcco 2(ks + kDk, (13a)
and
[(ks + kp)* + K3 — i} ]
S ] 2 1
- 13b
1) = arc cos 2ks T DK (13b)

The noncollinear pulse propagation limits the spatial overlap of the pulses of finite beam
diameter in long samples, as illustrated in Figs. 1a and 1b. We consider the situation of
equal beam diameters d (FWHM) of the pump pulses and the signal pulse. In case (a)
(collinear pump pulses, Fig. 1a) effective spatial signal and idler overlap lengths /5 and
/; may be defined by

s = dftan (p) (14a)
and
i = d/tan (¢) (14b)

where ¢ and v are given by Equations 12a and 12b, respectively.
In case (b) (noncollinear pump pulses, Fig. 1b), the effective spatial overlap length may
be defined by

lyy = d/tan (¢ + ) (15)

where ¢ and v are given by Equations 13a and 13b, respectively.
For noncollinear phase-matched parametric four-photon amplification in nonabsorbing
samples of length / > I, [;, I}, the amplification is approximately given by

I5(1)

22~ | cosh (Byls)|? 16
for wg < wy < wy (ls < II);
50, | cosh (Boly) s/t =~ | cosh [B(lls) ")) if Boly < 1 (17a)
T 041 ~
15(0) | cosh (Byls)|? if Boly > 1 (17b)
for Wwg > Wy > Wi (ls > lI): and
I5(7) 2
——= = | cosh (Bl 18
5(0) | (Bol12)| (18)

for w) < wg < wy (112 < I, IS)
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Equation 17 takes into account that parametric four-photon amplification continues
in the region /; </ < /g with build-up of idler light from quantum noise [15], i.e. at
z=1 the signal is Is(z=4) ~ Is(0)|cosh (Goh)[*; at z=2l it is Is(z=2}) ~
Is(z = I5)| cosh (Boly)|* = Is(0)| cosh (Goh)|*; and at z = nly = (Is/l)h =I5 it is Is(nk) =
Is[(n — 1))} cosh (Boly) * = Is(0)] cosh (Boly)|*" = Is(0)] cosh (Boly)|*s’". Approximation (172)
is obtained by Taylor expansion of cosh, while approximation (17b) is obtained by
approximating cosh with exp.

In media absorbing at the signal or idler wavelength the effective interaction length /, is
limited to

/n min [og', (asar) ™V} if Bpai! < 1 (19a)
“ ag! if Bpoi! > 1 (19b)

and the sample length / should be chosen to be / < /,. Relation (19) was obtained by con-
sidering the structure of Equation 17.

The pump pulses and the signal and idler pulses move with slightly different
group velocities vy; = co/ng; (i = 1,2,8,1) where the group refractive index n,; is given
by [10]

n,, =n+uw On =n—-A gﬁ

8! ! 3(.0,- ! 8)\1

After a propagation distance /, the temporal delay 6¢; s between pump pulse 1 and signal
pulse S is

(20)

/

Co

611‘5 =

I / ngs ‘
L. S g — —2 (21a)
v cos(@Jugs| @l cos(y)

for collinear pump pulse propagation (case (a), Fig. la), and

/ ) ) He
' Jcos (Plug1  vgs| ol cos(yp) e (@b}
for noncollinear pump pulse propagation (case (b), Fig. 1b).
The temporal spread between the pump pulses 6t , is
l
611,2 = lng,l - ng,2| (21C)
Co
in case (a) (collinear pump pulse propagation), and
by = | el M2 (21d)

¢o | cos ()~ cos ()

in case (b) (noncollinear pump pulse propagation).

As long as 6t g or 6t , are small compared to the pulse duration Az of the pump and
signal pulses (same duration Az is assumed for pump and signal pulses) the effect of the
different group velocities of the interacting pulses may be neglected. Otherwise the time
spreading limits the effective sample length /, to

At At )

, 2
Girs/T] " o a/T] 22)

/, ~ min (
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The noncollinear pulse propagation, the optical absorption, and the temporal spread
limit the parametric four-photon amplification to an effective length

loge = min [(lsh)"/? or Iy, 1, 1, 1] (23)

(see Equations 14, 15, 17a, 19, 22).

Exact noncollinear phase-matching is only possible for monochromatic waves. The
dependence of the wavevector mismatch on the spectral bandwidths of the pump pulses
and the signal pulse determines the bandwidth limitations of the parametric amplification
for short-duration and broadband pulses.

The phase mismatch A¢ = Ak,z of Equations 1 to 4 changes to A¢ = Akr=
Ak,z + Ak,x in the case of noncollinear propagation where x is the propagation coordi-
nate transverse to the main propagation coordinate z. The parametric gain factor j3
(Equation 5) remains unchanged. Parametric amplification is only possible when
By > Ak,. The total transverse phase mismatch should be Ak, dy = Ak, tan (@)lg <7
to avoid reduction of parametric amplification [15, 37]. For Ak, =0 one speaks of
longitudinally phase-matched interaction or Cerenkov-like interaction [15, 38-40],
while in the case of Ak, =0 one speaks of transversely phase-matched interaction.
Transverse wavevector mismatch Ak, #0 practically does not influence the
parametric four-photon interaction as long as the transverse phase mismatch is
A¢, = Ak, dyr < .

Wavevector diagrams of noncollinear interaction with residual wavevector mismatch
Ak are illustrated in Figs. 2b to d and f to h. The angles ¢ and ¢ are kept the same as
in the noncollinear phase-matched situations of Fig. 2a (corresponding to Fig. la) and
Fig. 2e (corresponding to Fig. 1b). In all cases the idler frequency is adjusted to satisfy
energy conservation. A detuning of the signal frequency from wg to wg = wg + Awg/2
gives a wavevector mismatch of

Ak, = kg cos ¢ + ki cos ¢ — k) — ky = kg1, Adg (24a)
Ak, = kg sin @ — ki sin ¢ = kgp , Als (24b)

in the case of collinear pump pulse propagation (Fig. 2b), and of

Ak, = kg + ky — kg — ky
= kg + ki — ky cos ¢ — ky cos ¢ = kgr, A (24c)
Ak, =0 (244d)
in the case of noncollinear pump pulse propagation (Fig. 2f). In Equations 24
ks = n(ws)ws/co and ki = n(wi)wi/co with wi = wy — Aws/2. kgy = Ak, /A is the wave-
vector mismatch coefficient.
Bandwidth-limited pump pulses of a finite spectral width of Aw = Aw; = Aw, cause an
effective wavevector mismatch of
Akz = kll + k/z — kl - k2 = Kllzwz AU (253)
Ak, =0 (25b)
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in the case collinear pump pulse propagation (Fig. 2¢), and of
Ak, = kg + ky — ki cos ¢ — kj cos P = K1y, AU (25¢)
Ak, =K sin o — k) sin ¢ = Ky, AV (25d)
in the case of noncollinear pump pulse propagation (Fig. 2g). In Equations 25
ki = n(w))w)/co and k5 = n(wh)wh/co with w) = w; + Aw/2 and wh = wy — Aw/2. In the
degenerate case, w; = w,, the wavevector mismatch caused by the finite spectral band-
width of the pump pulse is negligible (Equation 25a).
For self-phase-modulated pump pulses (see below) the carrier frequency chirps with
time [1]. A spectral broadening of Avgpy causes an effective wavevector mismatch of
Akz = ks COoS ¢ -+ ki’ COS ’(p — klll — klzl = KSPM,Z AﬁSPM (263)
Akx = ks sin P — kil sin 1!) = K’SPM,x A’;SPM (26b)
in the case of collinear pump pulse propagation (Fig. 2d), and of
Akz = ks + ki, — k/{ CoS Y — klzl COS ’lﬁ = KSPM,z AI;SPM (26C)
Ak, = Kj sin ¢ — k| sin ¢ = kspm x Abspm (26d)
in the case of noncollinear pump pulse propagation (Fig. 2h). In Equations 26
ki = ny(w))wf/co, K =my(uh)utr/co, and ki =n(wi)wi/co with of =w; + Awspm/2,

Wy = wy + Awspp /2, and wf = wy — Awgpy = Wi + W — wg.
The parametric amplification of broadband signal light is limited to

Bo

Adg <
|K’SI,Z|

(27a)

according to Equations 5, 11, 24a and 24c.

The spectral width AC (A, = AD,) of the pump pulses should be so that Ak, < Gy
(Equations 5, 11 and 25a, 25¢) in order to achieve parametric amplification over the
whole spectral pump pulse width. This condition limits the pump pulse spectral width
APD for whole-bandwidth parametric amplification to

As <D0 (27b)

- iK/IZ,zl

For self-phase-modulated pulses of chirp width Agpy,, parametric amplification over
the full chirped range occurs only if

Bo

Avgpy <
| KSPM,z I

(27¢)

3. Numerical simulations

The efficiency of noncollinear phase-matched parametric four-photon amplification in the
isotropic media heavy water, fused silica, and Schott glass SF10 is analysed. Calculations
are carried out for pump pulses at wavelengths of A = 1054nm and Asyg = 527nm,
corresponding to the fundamental and second harmonic wavelengths of an Nd : glass laser.
The results apply as well to the wavelengths 1064 nm and 532nm of Nd:YAG lasers.
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Figure 3 Dispersion of phase refractive indices n (solid curves) and group refractive indices ny (dashed
curves). Curves a: D,O (data from [41, 42]). Dotted parts are extrapolated. ny(7) below 3000 cm™ is not
included. Curves b: fused silica (data from [60]). Curves c: SF10 (data from [66]).

The interaction processes (I) wp + wp, — wg +wp, (II) wgy + wsy — ws + wy, and III)
Wy, + wsy — wg + wy are considered.

The wavelength dependence of the refractive indices n{)) of the media investigated is
displayed in the solid curves of Fig. 3. The refractive index dispersion of the glasses is
approximated by

3 2
) B; A
ROy —1=3" B (28)

The fit parameters B; and C; are listed in Table 1. The refractive indices of D,0 are taken
from [41] (visible and UV range) and from [42] (infrared region). The refractive index
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TABLE | Parameters of refractive index dispersion formula (Equation 28) for

glasses

Material Si0, SF10

B, 0.696 1663 1.61625977

B, 0.407 9426 0.259 229 334

B, 0.897 4794 1.07762317

i 4.679148 x 1073 1.27534559 x 1072
G, 1.351206 x 1072 5.81983954 x 1072
G 97.93400 116.607 680
Reference [65] [66]

dispersion of the media increases in the order D,0, SiO,, SF10. The dashed curves in Fig.
3 show the wavelength dependence of the group refractive indices n,(A). ny(2) is calculated
from n()\) by use of Equation 20. Below 3000 cm™" the group refractive index dispersion of
D,0 is not included.

(em=)

COEFFICIENT o«

ABSORPTION

T E EE R ST [ L | 1
5x10° 0t 2x10* 310

FREQUENCY ¥ (em™)

Figure 4 Wavelength dependence of absorption coefficients a. Curve a: DO (own measurements). Curve b:
Si0, grade Infrasil (from [43]). Curve c: Schott glass SF10 (from [66] and own measurements for
7 < 4300cm™" and 7 > 27400cm™).
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The absorption coefficient spectra a()\) of the investigated media are shown in Fig. 4.
The displayed absorption spectrum of fused silica belongs to the grade Infrasil having
weak infrared absorption [43]. Of the investigated substances, D,O has the strongest
absorption in the near infrared, while the flint glass Schott SF10 already begins to absorb
strongly in the violet spectral region.

The noncollinear phase-matching angles ¢ belonging to the three interaction processes
I, II and III versus frequency are displayed in Fig. 5 (appropriate Equations 12a and 13a;
collinear pump pulse propagation with the exception of interaction III in the region
w, < ws < wgy). The phase-matching angles increase in the order D,0, SiO, and SF10.

The normalized spatial overlap lengths /., /d versus frequency are displayed in Fig. 6 for
the various interaction processes (/,, = Is, Equation 14a, for processes I and II, and for
ws < wy, and wg > wgy in the case of process III; [, = I;,, Equation 15, in the case of pro-
cess III in the region wy < wg < wgy). Around the pump laser frequencies the spatial over-
lap lengths are large. The vertical lines indicate the borders outside which no noncollinear
phase-matching is possible for collinear pump pulse propagation (see Fig. 5).

The normalized temporal spreading 6t; /! between signal pulse and pump pulse of
frequency wy (w; < wy, Equation 2la) is plotted in Fig. 7. Apart from the position
ws = wj, there is no time spreading at wavelengths of group velocity matching, i.e.

1 \n | 4
\'\ | \ (4} i
= . \
10 r \\ /lll/ - S i
- \ /D -7 N
L N\ e \
- \ / 1 \ \ /// \ \
o O ‘.J | \1 | A / I S WO ¥ IO TS U | \1
L\ -
wi = \ \ (b)
o = \ _
< B . \J! -
e | L ——— ]
. ~ — ~
= "/ ~N L ™~
§ 0 1 \ \]/J/:I'N \r\\xlé/f T N T B AY
< -
= A . |
1 —i \ \M Vo {a) .
a o\ \ -
< .
£ H oA \\n 1
NN ]
! NS RN Y ~-
0 11 AW Y 0% et a\'n T T B S T Y
2«0 0t 2:0* 3.10¢

SIGNAL  FREQUENCY ¥ (em=)

Figure 5 Phase-matching angles ¢ between k; and kg for the processes (1) w_ +w — wg +wy (solid

curves), (1) wsy + wsy — ws +w; (dashed curves), and (111} w, + wgy — ws + wy (dash-dotted curves). (a)
D ,0;
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Figure 6 Normalized spatial overlap lengths /,,/d for the interaction processes (1) w_ + w — wg + w; (solid
curves), (I} wgy + wgy — wg +w, (dashed curves), and (IIl) w, +wgy — wg +w, (dash-dotted curves).
(a) D,0O; (b) fused silica; (¢c) SF10 glass. AL = 1054 nm. Agy = 527 nm.

g1 = ngs/cos () (Equation 21a) or ngg = n,;/cos (¢) (Equation 21b). The time spread-
ing should be short compared to the signal and pump pulse duration in order to avoid a
reduction of amplification efficiency. The normalized temporal spreading 6t,//
(Equations 21c and d) for the interaction process III is included in Fig. 7 (dotted curves).

In Fig. 8 normalized parametric amplification factors 8y = 8,/ (1 12)1/ 2 (Equation 11)
are plotted versus frequency. The parametric gain factor Gy = Byl is obtained from
the normalized amplification factor 3; by multiplication with the effective pump pulse
intensity (1112)1/ 2 and the effective sample length [ (Equation 23).

As examples we estimate for fused silica a gain factor of Gy = 1 at &g = 5000 cm™! and
g = 14000cm ™! applying Iy, = 10" Wem™ and I = 1cm to the interaction process (I)
{(wr + wL — wg + wy). For the interaction process (II) (wsy + wsy — ws + wy) we calculate
Gy (SiOy, Iyp = 10" Wem™, [ = 1em) & 2.2 at 7 = 13000cm ™" and &g = 25000cm ™.
Considering the interaction process (I1I) (wp +wgg — wg +wy) we find Gy (510,
Iy, = Iosy = 10" Wem™, [g=1lcm)=3 at ig=7500cm™" and &g =21000cm™’
(Gy =1 corresponds to I5(/)/I5(0) = 2.38, Gy =3 is equivalent to I5(/)/Is(0) =101,
and Gy = 10 gives I5(!)/I(0) = 1.2 x 10® according to Equation 9).

The XP3 values used in the calculation of 3; were previously determined by third-
harmonic generation studies [44]. For D,0 the same xp’ value as for H,O is assumed.
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{ps/em)

ot /1

TIME SPREAD
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SIGNAL  FREQUENCY v (cm™)

Figure 7 Normalized time spread |6t 5//| between pump pulse of longest wavelength and signal pulse for
the interaction processes (1) w_ + wy — wg +w; (solid curves), (1) wgy + wgy — ws +wy (dashed curves),
and (H1) w +wsy — wg +w; (wg =w, dash-dotted curves). Dotted curves show |8ty ,//| for interaction
process (lIl). (a) D,0; (b) fused silica; (¢) SF10 glass.

The apphed nonlinear susceptibilities Xé) represent the nonresonant electronic contri-
butions X%\IR They increase in the order D,0, SiO,, SF10. The frequency dependence of
xf: = x@m( —wg; wy,wy, —wy) is neglected (for frequency dependences see, e.g., [1, 2, 12,
35, 45, 46]). In the vicinity of Raman transitions |wg — wy| = |wy — wi| = wy, where w, is
the vibrational angular frequency, the third-order nonlinear susceptibility is given by

X;?xx( —wg; Wy, Wy, —W) = X(3) + xg)xxxx(—ws;wl,wz, —uwy) (difference frequency resonance)
[1-3, 12, 15, 47] and the parameiric four-photon interaction is called coherent anti-
Stokes—Raman scattering (CARS) or coherent Stokes—anti-Stokes coupling [1-3, 47—
50] (enhancement of parametric amplification around wg= w;— w, + Aw, and
ws = w;+ wy — Awy, reduction of parametric amplification around wg = w; — wy, — Aw,
and wg = w; + wy + Aw,; w; = w; Or wy, Aw, is the spectral width of Raman line).

In regions where wy or wg approach vibrational (in the infrared spectral region) or elec-
tronic transition frequencies (in the ultraviolet spectral region) single-frequency resonance
contributions to x£)..(—ws;wy,wy, —w;) become important [1, 2, 12, 35]. In these fre-
quency regions the linear absorption becomes important that is not included in the
equation system (1, 2) (for inclusion of absorption see, e.g., [12]).
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Figure 8 Normalized parametric amplification factor 5 = o/ (/1 /2)1/2 for the interaction process (1) w +
wy — wg + w; (solid curves), (1) wgy + wgy — wg + wy (dashed curves), and (I} w + wsy — ws + w) (dash-
dotted curves). (a) D,O; (b) fused silica; (c) SF10 glass.

If w; +w, approaches an electronic transition, then X)(gc)xx(_ws;whw% —wj) is sum-
frequency enhanced. At resonance (w; + w, equal to an electronic transition frequency)
two-photon absorption occurs [1, 2, 51], which reduces the pump pulse intensity. Some
two-photon resonance enhancement of X(3)(—ws;wsmwsm —wy) is expected for the flint
glass SF10, leading to larger f3; values for the amplification process (II)
(wsh + wsy — wg + wy) than shown in Fig. 8c.

The wavevector mismatch quotient |kg;,| = |Ak,/Ai| (Equation 24a with Fig. 2b, and
Equation 22¢ with Fig. 2f) is displayed in Fig. 9 for the three interaction processes I
(WL twL = ws+wp), T (wey +wsy — ws +wy), and T (wp +wsyg — ws +wp). Ksi;
limits the spectral amplification width of broadband signal light to AZg max = B/ |ks1 ]
(Equations 27). Small kg, values are necessary for short signal pulse durations since
the spectral width of bandwidth-limited pulses is inversely proportional to the pulse
duration.

The wavevector mismatch quotient |x,,,| = |Ak,/AD| (Equation 25a with Fig. 2¢, and
Equation 25¢ with Fig. 2g) for the process III (wp + wsy — wg + wy) is included in Fig. 9
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Figure 9 Wavevector mismatch quotients kg ,| = |Ak,/ADg) for the interaction processes (1) w + w —
wg +w; (solid curves), (IlI) wgy +wsy — wg +w; (dashed curves), and (Ill) wg +wgy — wg + w; (dash-
dotted curves). The dotted curves represent the wavevector mismatch quotients |k ,| = |Ak,/A7] for the
interaction process (111). (a) D,0; (b) fused silica; (c) SF10 glass.

(dotted curves). For the pump-pulse degenerate processes I and II |« ,| is negligibly small
(of the order of 1077). Concerning efficient parametric amplification, K1z, restricts the
spectral pulse width to A7 < fy/|k12,| and the pulse duration of bandwidth-limited
pulses to Az > «yeg|kin.|/Bp with v = 0.441 for temporal Gaussian pulse shapes [52].

The wavevector mismatch quotients {xg | = |Ak,/ADs| (Equation 24b with Fig. 2b,
and Equation 24d with Fig. 2f) and |k, ,| = |Ak,/A7| (Equation 25b with Fig. 2c,
and Equation 25d with Fig. 2g) are displayed in Fig. 10.

4, Limiting processes

Concurrently with parametric four-photon amplification there occur other nonlinear opti-
cal effects. Self-phase modulation [1, 53] causes a chirp of the pump pulse frequencies
versus time and results in an overall spectral pump pulse broadening. Cross-phase modu-
lation induces a frequency chirp to the signal pulse [10, 54] (refractive index change is
caused by pump pulses). Stimulated Raman scattering w; — wg + w, (i = L or'SH) gener-
ates Stokes-shifted light at frequency wg and may deplete the pump pulse intensity [1, 47].
The parametric gain factor 3, increases linearly with the effective pump pulse intensity
(I,1,)"/?. But there is an upper intensity limit Iy set by material damage in solids [55]
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Figure 10 Wavevector mismatch quotients |kg; | = |Ak,/Abg| and [k12,| = |Ak,/AD| (dotted curve). Legend
of Fig. 9 applies.

and dielectric breakdown in liquids [56]. At high pump pulse intensities and long sample
lengths, self-focusing may occur, which increases the laser intensity in an uncontrolled
way. The transverse phase mismatch Ak, d.; increases linearly with the effective beam
diameter dy = tan ()lgr . Ak dyr should be less than 7 to avoid reduction of parametric
amplification [15, 37]. The limiting effects of these various processes on parametric four-
photon amplification are discussed in the following.

4.1. Optical breakdown
The maximum applicable pump pulse peak 1ntensxty is limited by the laser-induced optical
damage threshold intensity I ¢,. In Fig. 11 the surface damage threshold intensities of the
glasses and the dielectric breakdown threshold intensity of D,O are plotted versus pulse
duration. A wavelength dependence of I, is neglected, ie. Jyw(AL) = Igm(Asu) is
assumed. Data are taken from [57] for the Schott glass SF10, from [58, 59] for fused
silica, and from [56] for D,O. An inverse square root dependence of Iy, on pulse dura-
tion Az is assumed, i.e. Iqh A2 [58, 59].

For a fixed pump pulse energy, the four-photon parametric gain is highest if the inten-
sity is increased at the cost of the beam diameter, since the intensity rises proportionally to
d~? while the overlap length /,, decreases only proportionally to d, so that the gain G,
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Figure 11 Damage threshold intensities /44, (solid curves), and minimum pump pulse energies Wy, for
parametric gain Go =1 using //d =5, and /| =/4y,. The interaction process (I) w +wL — ws+w is
considered. Curves a: D,0. Curves b: fused silica. Curves ¢: SF10 glass.

increases proportionally to ~!. In order to obtain high parametric gain it is therefore
advantageous to increase the pump pulse intensity to near the damage threshold intensity.

The minimum pump pulse energy Wy, (Go =1, I/d =35, I = I ) necessary for a
parametric gain of G, = 1 and a sample length to beam diameter ratio of I/d =5 (see
Fig. 6) is plotted versus pulse duration in Fig. 11 (dashed curves) for the interaction pro-
cess I (wy, + w — ws + wi). Wi, is obtained from the relation Wy, ~ Iq ¢ Atd fnin, where
dmin 1s calculated from Gy = Bylyin = Bo(l/d)dmin = Bolam(l/d)dmin. The normalized
parametric gain factor §j is displayed in Fig. 8, and the damage threshold intensities
Iy are displayed by the solid curves in Fig. 11. The dashed curves in Fig. 11 show that
the minimum pump pulse energy Wy, is proportional to AP For a pump pulse dura-
tion of At = 5ps the minimum pump pulse energies are Wy yin (Go = 1, D,0) ~ 2.2m],
WL min (Go = 1, 8i,0) = 1.6mJ, and W iy (Go =1, SF10) = 0.65m]J for /,/d =5 and
Bomax (in wide frequency regions around vy, /,,/d is much larger than 5, leadlng to lower
W1 min €nergies). The minimum pump pulse energy rises proportlonally to G 3, because G,
is proportional to /, [ is proportional to d, and W is proportional to d?.

For the interaction processes 1I and III, the minimum pump pulse energies are approxi-
mately factors of 2% and 4 smaller than the displayed curves for process I, since the 3,
values are factors of 2 and 4 larger (see Fig. 8), respectively.

The maximum parametric gain factors fBymax = Bomaxlam versus pulse duration are
shown by the solid curves in Fig. 12 for the interaction process T (wp +wp — wg + wy).
Bo,max reduces proportionally to A2 with increasing pulse duration.
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Figure 712 Maximum parametric gain factor 8o max = Go(PL, /am) (solid curves), minimum sample length
Imin(laan, Go = 1) for Go = 1 (dashed curves), and minimum self-focusing length z; in (/a 4, //d = 5, Go = 1)
(dash-dotted curves). The interaction process (1) (w_ + wy — wg + w;) is considered. Curves a: D,0. Curves
b: fused silica. Curves ¢: SF10 glass.

The minimum sample lengths /,;, necessary for Gy =1 at I}, = Iy, are shown by the
dashed curves in Fig. 12 for the interaction process (I). /pi, is obtained from the relation
Go = B max/min- The minimum sample length rises proportionally to Af'? with pulse dura-
tion. For a pulse duration of Az = 5ps the minimum sample lengths are [, (Gy =1,
D,0) = 0.8mm, [, (Gy = 1, Si0,) = 0.9mm, and /p, (Go = 1, SF10) = 2.2 mm.

4.2. Optical absorption

Whenever lyin(vs, Go, Iam) = Go/Bo(vs, Iy m) becomes larger than the absorption length /,
(Equation 19), the absorption process limits the parametric amplification. The curves in
Fig. 13 show border curves i’ ;, of parametric amplification caused either by signal absorp-
tion (case of Equation 19a) or by noncollinear phase-matching limitation (horizontal lines,
Fig. 5). The bottom abscissa refers to G, = 10 and the top abscissa to Gy = 1. The pump
pulse intensities are set to Iy = Iy (process I), Isy = Iy (process II), and
I = Isg = Iq /2 (process III). For Gy = 1 a spectral limitation of parametric amplifica-
tion by signal and idler absorption is small up to pulse durations of a few nanoseconds.
For Gy = 10 the influence of absorption is weak up to a few tens of picoseconds.

4.3. Self-focusing
Self-focusing [1] of spatially bell-shaped pump pulses of frequency w; (i=L or SH) is
caused by an intensity-dependent refractive index contribution, An; = n, 4| E; |2 /2 = ml;,
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Figure 13 Signal frequency borders g, caused by signal absorption and noncollinear phase-matching limits.
The small parametric gain situation is considered (Equation 19a). Upper abscissa applies to Gy =1,
Bo(Ps s lagn) and./ = I5in(Go = 1); lower abscissa applies to G = 10, Bo(¥s p: fan) and /nin(Go = 10). Solid
curves, D,0. Dashed curves, fused silica (Infrasil). Dashed-dotted curves, SF10 glass. (l): interaction
process (1) (wi 4w — wg+wy, Iy =1lqm). (lil): interaction process (1) (w_ +wsy — wg +wy, Ip =Igy =
l4n/2). (H): interaction process (1) (wsp + wsy — ws +w), Isy = lam)-

to the linear refractive index n;, i.e. n; (f;) = n; + An;. The relation between the electric
field coefficient n,y,, the intensity coefficient v, and the real part of the nonlinear
susceptibility X@xx(—w,-;w,- ,—Wi W ) = Xn? is given by [60]

3 o

Hon = Ri€pCp7Y2 = Py Xn1 (29)
f]

The nonlinear susceptibility x@xx(—w,-;wi ,~w;,w;) is composed of a nonresonant elec-
tronic contribution (equal to XE}) used in Equation 7), a zero-frequency resonant part [61],
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TABLE 11 Nonlinear optical parameters

Parameter D,0 Si0, SF10 Comments
(m \'a ) 22x 1072 3.6x 1072 3.2x 1072 [44)
(m A 9.8 x 1072 55% 1072 ~6x 1072 Equation 29
72 gn wh 6.3 x 107 [56] 3.2x 1072 [67] ~2x 1071 [57]
X m?v?) 39x 1072 1.5x 1073 ~14x 1072 Equation 35
gr MW 4.6 x 1071 [68 1.8 x 107 [64] ~12x10712b AL = 1054nm
GrlIath, fmin (Go = 1)] 1.25 0.31 1.6 Equation 36
Vg 53 74 30 From Fig. 3
S, Ar = 5ps) 0.71 2.9 ~ 0.05 Equation 37

# Value for H,O: the same value is assumed for D,O.
® Estimated from Raman parameters presented in [69] for SF6 and SF7 glasses.
The conversion between SI units (used here) and e.s.u. units of the third-order nonlinear susceptibilities is
xP(esw) = [9 x 10%/(4m)]x™¥ (S1) [80].
and a two-photon resonant term if 2w; is near to an electronic transition frequency. xEﬂ)
values of the investigated media are listed in Table II. Xfﬂ)()\L = 1054nm) and
an ()\SH = 527 nm) are assumed to be equal.

The self-focusing length z; of a Gaussian pulse of beam diameter d (FWHM) is given by
(1, 62]

B 2 ln( )" an, o, d*
[272(In 2) " n; v, 02 d21; — 1112 + 0

where 6 is the divergence angle of the incident laser beam (# = 0 in our calculations). The
dash-dotted lines in Fig. 12 represent the minimum self-focusing lengths z¢ i, (Go = 1,
I/d = 5) versus pulse duration for pulse intensities at the damage threshold /4 ¢ and mini-
mum beam diameter dp,;, necessary for Gy = | in the case of //d =5 (correspondmg to
Wiin of Fig. 11). The self-focusing length z¢ ., increases proportionally to AL with
pulse duration. Down to the subpicosecond range, the minimum self-focusing length
2t min (Go = 1, I[/d = 5) is longer than the minimum sample length /i, (Go = 1). When-
ever self-focusing might be a problem it can be avoided by increasing the laser beam dia-
meter d since z; is approximately proportional to d (Equation 30). In this case the
necessary pump pulse energy would increase quadratically.

(30)

4.4. Self-phase modulation and cross-phase modulation

The intensity-dependent refractive index contribution An; = ¥,I; (i = L or SH) causes self-
phase modulation of temporally bell-shaped pump pulses of frequency w; [1, 14, 53]. The
carrier frequency 7, of the pulses becomes chirped according to [62, 63]

- 7 oI (¢
ae) = — 2yt 410 61)

The spectral broadening Adgpy; of a Gaussian pulse of peak intensity /Iy ; is approximately
given by [53, 62]

412 In (2)]'2 exp (—1/2), 721y,
Co At

Avgpy = (32)
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Figure 14 Spectral width (FWHM) of bandwidth-limited Gaussian pulses (solid curve) and minimum self-
phase modulation width Adgpm min(/g,th, Go =1, /min) of pulses of temporal Gaussian shape. The interaction
process (1) w +w_ — wg +wy is considered. Curve a: D,0. Curve b: fused silica. Curve c: SF10 glass.

In Fig. 14 Abgpy versus At is displayed for the case of A\, = 1054nm, I} = I3, and
Gy = 1 (dashed curves). The solid curve in Fig. 14 shows the spectral width Ay,
of bandwidth-limited Gaussian pulses. For all investigated substances it is
Abgppm(Gy = 1) > Abyyy. Abgpy rises linearly with Gy (both quantities are proportional
to IO,i [ )

The frequency chirp (parallel shift of the frequencies w; and w, in the interaction
w) +wy; — wg +wy) causes a temporally chirping wavevector mismatch of modulation
width Akgpy = |kspm | Aspy (Equations 26a and c). Parametric four-photon amplifica-
tion is limited to regions where 8, > Akgpyy, (Equation 27c¢).

The wavevector mismatch coefficient |kgpy .| = |Ak,|/Abgspy versus signal frequency g
is displayed in Fig. 15 for the three interaction processes I, II, III and the three studied
substances D,0, SiO, and SF10. The curves were obtained by use of Equations 26a
(Fig. 2d) and 26¢ (Fig. 2h). |kspm .| is of the same magnitude as |kgy,| (Fig. 9).

The wavevector mismatch due to self-phase modulation limits the regions of possible
parametric four-photon amplification. Border curves 5 ,(Af) are presented in Fig. 16.
The top abscissa applies to Gy = 1, 8y = Bo(Fsp, lam) and [ = lnin(Psp, Gy = 1), while
the bottom abscissa applies to Gy = 10, By(Psp, lam) and lpin(Fsp, Go = 10). The curves
are obtained by using the relation Akgpy, = Bo(Tsp, lasm) = |5spm, .| Aspm(Go) (for the
interaction process III, Bo(7sy, Iqh/2) is used).

835




A. Penzkofer and H. J. Lehmeier

N \ [ ! B
T T
—, 2t I\ / / e .
: \ / /
£ \ S
4 N N . J .
o | SN ~ S
~mn ~ P
\:M/ T
R | B I e o O L N -
Z o5t 1 | : / ]
— v Y |
§ L AN L 'SH | /
S /o
s §
T -~
= s ,J/ 4
< S <A
= A .
= : -1’/ I T I
z /
| , :
. |
S / (a)
g /-“.I J/ R
& : !l/
b 7 i
§ ‘/’ 4
AN s // ﬂ
J JE TN NN R N
2:10* 3«10

SIGNAL  FREQUENCY ¥ (cm™")

Figure 15 Wavevector mismatch quotients |kgpm .| = |Ak,/Algpy| due to self-phase modulation for the
interaction processes (1) (w + w_ — wg + wy, solid curves); process (1) (wsy + wsy — ws + w;, dashed curves);
and process (1) (w_ +wsy — ws + wy, dash-dotted curves). (a) D,0; (b) fused silica; (c) SF10 glass.

In the case of Gy =1 (Gy = 10) the self-phase modulation practically does not restrict
the spectral range of possible parametric amplification for D,O and fused silica when
At 2 0.1ps (At 2 10ps), while for the flint glass SF10 the spectral range is strongly
reduced up to At~ 1ns (Ar = 100ns). At a fixed pulse duration the frequency range of
feasible gain G, narrows with increasing G, since larger G, values require longer sample
lengths / and the spectral broadening by self-phase modulation is proportional to
[ [ADgpp (Gy = 10) = 10 Abgpy (Gy = 1)], while 5, is independent of / (Equation 5).

The vertical lines in Fig. 16 (upper lines: G, = 1; lower lines: G, = 10) indicate the time
positions where the minimum spectral broadening due to self-phase modulation
Abgpy (I = Iy, | = Lnin) is equal to the spectral parametric amplification width. For
shorter pulse durations the efficiency of parametric amplification is reduced.

The wavevector mismatch coefficient |kgpy | = |Ak,|/Afgpy versus signal frequency g
is displayed in Fig. 17 for the three interaction processes I, II, III and the substances D,0,
SiO; and SF10. kgpp « is of the same order of magnitude as xgp , and &3 . ~

A comparison of the curves in Figs 17, 15 and 5 indicates that |kgpy | tan () < |kspm .|-
Within the borders 7y of Fig. 16 the transversal phase mismatch is Ak.dyy =
|Kspm x| ATspm (Go) tan (¢)min(Go) < |kspm | Alspm (Go)lmin(Go) < Go. For Gy < 10 the
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Figure 16 Signal frequency borders s, caused by self-phase modulation and noncollinear phase-matching
limits. Parametric gain is Go = 1 for upper abscissa and Gy = 10 for lower abscissa. The vertical lines mark
the pulse duration positions where the spectral width between the borders is equal to the spectral self-phase
modulation width. Otherwise the legend of Fig. 13 applies.

requirement Ak,d.q¢ < 7 is fulfilled and the influence of transversal phase mismatch may
be neglected.

The pump pulse propagation through the medium modifies the refractive index at the
signal frequency vg according to Ang = 27,1, (i = L or SH) (the factor of 2 arises because
of the lifting of frequency degeneracy) [14, 54]. This refractive index change causes a signal
frequency chirping and a signal frequency broadening of twice the magnitude of the pump
pulse chirping and broadening. This phenomenon is called cross-phase modulation, XPM
[54]. Since the cross-phase modulation is twice as strong as the self-phase modulation, the
resulting wavevector mismatch Ak, including cross-phase modulation Akypy and self-
phase modulation Akgpy is approximately the same as Akgpy considered above where
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Figure 77 Wavevector mismatch quotients |kgpm «] = |Ak,/Algpy|. Legend of Fig. 15 applies.

Avypy was not included (Aky = Akxpy — Akspm = Akgpy ). Therefore the curves pre-
sented in Figs 15 to 17 apply as well to the combined effect of self-phase modulation
and cross-phase modulation.

4.5. Temporal spreading

The temporal spreading between signal pulse and pump pulses would limit the efficiency
of parametric amplification whenever 81, g X At. The temporal spreading is proportional
to the sample length. The minimum temporal spreading is given by 6t gmin =
16t1 5/1|imin (Za > Go, vs). Using the 61, 5/I curves of Fig. 7 and the /y;;, curves of Fig. 12,
one finds that 67 ¢ remains less than Az in the parametric amplification regions of
Fig. 16 determined by self-phase modulation.

4.6. Stimulated Raman scattering
The Stokes—Raman light generation by steady-state stimulated Raman scattering is given
by [47]

IR(l) = Ig nlexp (gr1L!) — 1] (33)

where Iy \ is the Stokes noise intensity, gg is the steady-state Raman gain factor and / is
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the sample length. Iy \ is approximately given by [47]

ﬂhw%{n%{

——= AQA 34
2(27r)3c(2) “R (34)

LN =

where wy is the angular Raman-Stokes frequency, ny is the refractive index at the Raman
frequency, AQ is the solid angle of efficient stimulated Raman emission, and Awyg is the
angular Raman linewidth.

The steady-state Raman gain factor gg is related to the imaginary part of the Raman

third-order nonlinear susceptibility Xg);x(—wR;w,. , —Wi ,WR) = Xg)” by [47]
2wR (3)" ( 3 5)

gR=6 ———x
n; nRE()C% R

Values of gg at A = 1054nm and of xﬁ)"

Table II.
Efficient stimulated Raman scattering causing pump pulse depletion occurs for [47, 64]

for the investigated media are listed in

Gr = grlil 2 20 = Grsa (36)

Gr is independent of pulse duration as long as a reduction of gg at short pulse durations is
neglected [47]. In Table II values of Gy are listed for Ay = 1054nm, I, = I3, and
I =l (Go =1). The listed Gg values are small compared to Ggrg,. Ggr increases
linearly with Gy. Up to parametric gain factors of Gy(D,0) = 15, Gy(SiO;) =~ 60 and
Go(SF10) = 12 the pump pulse intensity is not depleted by stimulated Raman scattering
and stimulated Raman scattering does not affect the parametric four-photon
amplification.

Stimulated Raman scattering is intrinsically phase-matched and occurs over
the whole sample length, while efficient noncollinear phase-matched parametric
four-photon amplification is limited to the effective interaction length /. (Equation 23).
In order to avoid enhanced stimulated Raman scattering, the sample length should be kept
less than or equal to the frequency-dependent effective interaction length.

5. Note added in proof
In this paper noncollinear phase matched parametric four-photon amplification of non-
divergent light beams was considered. For divergent beams the angular spreading causes
wavevector mismatching and reduces the efficiency of parametric amplification (Equation
5). The influence of an angular deviation of the signal beam from the phase-matching
angle ¢ on the longitudinal phase-mismatch Ak, is shown in Fig. 18 for the the three pro-
CCSSEs (I) wp +wy, = ws + wp, (II) Wsy + wsyg — ws + Wy, and (III) wp, +wsyg — ws +wy
and the three media (a) D,0, (b) fused silica and (c) SF10 glass. d(Ak,)/dy increases with
increasing phase-matching angle (Fig. 5). As an example, (dAk,/dgp)may = 2460cm™" for
the interaction (I) in fused silica, giving Ak, = 1.23 cm™' in the case of an angular
deviation of 0.5 mrad (signal beam divergence of A = 1 mrad). In the case of collinear
signal and idler light propagation (curves III in the region w; < wg < wsy, noncollinear
pump pulse propagation) the wavevector mismatch is small.

In Fig. 19 the situation of angular spreading of one of the pump pulses is considered. In
the case of collinear pump pulse propagation, the wavevector mismatch versus signal
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Figure 18 Wavevector-mismatch due to angular spreading of signal beam, d(Ak,)/dy, versus signal
frequency g for the processes (1) w_ +w_ — wg +w; (solid curves), (Il) wgy +wsy — ws +w; (dashed
curves) and (lll) w +wsy — ws +w, (dash-dotted curves). (a) D,0; (b) fused silica; (c) SF10 glass.
AL = 1054 nm. Agy = 527 nm.
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Figure 19 Wavevector mismatch due to angular spreading of one of the pump beams of angular frequency w,
versus signal frequency o for the processes (1) w + w — wg + w; (w = wy, solid curves), (1) wsy + wsy —
ws +wy (w = wgy, dashed curves), and (Ill) w_ +wsy — wg + w; (w; = wy, dash-dotted curves). (a) D,0;
(b) fused silica; (c) SF10 glass. A_ = 1054 nm. Agy = 527 nm.
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frequency is constant and small, while in the case of noncollinear pump pulse propagation
it rises with phase-matching angle ¢ (curves III in the region wy < ws < wsg)-
The requirement on the beam divergence A# of the signal light and the pump light is

25,
A< ——F—
d(Ak,)/de
in order to achieve parametric amplification over the whole angular spreading of the signal
beam and to involve the pump beam over its full divergence angle in the parameteric
amplification process.

6. Comparison of materials
The border curves iy, of Fig. 16 show that for a fixed pulse duration At and a fixed gain
G the covered frequency range 60s(Gy, At) = Ug p max (Go, At) — Ts b min(Go, At) decreases
in the order 65(Si0,) > 605(D,0) > 8ig(SF10). 6ig(D,0) is only slightly smaller than
8175(S10,), while 60g(SF10) is rather small for Gy = 1 and Ar < 10ps, and for At < I ns
and Gy = 10. Additionally, the flint glass Schott type S59 was studied (curves obtained
are not shown in this paper) and 65g(SF59) was found to be slightly smaller than
us(SF10).

In order to compare the efficiency of parametric four-photon amplification of various
media, a figure of merit

3
f= |X§’)|21d,th(yly(2)ll/2 At Yy (37)

3)
Co€oXn1

may be defined by setting f oc By max/AKspm,min, Where

B 3
Bo,max/ Dkspm,min < |Xs) 4,tn/ (KspMm,z APspm,min) X Ix$) | g, At/ (NSPM,zXf,l)Id,mlmin)

Using Inin = Go/Bomax X ()Y 21d th|x |] and Kgpm ; X Vg ! finally leads to Equation
37. vy = (nq — 1)/ (ng — nc) is the Abbé number (inverse of average dispersion). ng, nc
and ny are the refractive indices at 486.1 nm, 656.3 nm and 587.6 nm, respectively. The fig-
ure of merit defined by Equation 37 applies as well to parametric four-photon generation
and parametric four-photon oscillation.

The figures of merit (1, At = Sps) of the investigated media are listed in Table II.
They indicate that parametric four-photon amplification is most efficient for fused
silica, closely followed by D,0, while the efficiency is reduced for SF10 (for SF59 a figure
of merit of f~ 0.086 was found, similar to the f-value for SF10). The flint glass has the
largest parametrlc four-photon susceptibility X§>3 ) but the self-phase modulation
susceptibility x(31 has increased more strongly than X§>) and the threshold damage inten-
sity Iy, is lowest for this material.

Noncollinear phase-matched parametric four-photon amplification wy, + wp, — wg + wy
(A =1 06 um At~ 5ps) was tried in polydiacetylene crystals (X(3 ) x 1.4 x
107 % m ) [70]. In these crystals two-photon absorption attenuates the pump pulses
before observatlon of parametric four-photon amplification (optical band gap
Ey < 2hw;y, [71]). The figure of merit for parametric four-phloton amplification in poly-
diacetylene crystals is expected to be rather small because X,S) is thought to be very large,
Iy has to be replaced by the lower intensity Itps, describing the onset intensity of
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efficient two-photon absorption (Itpam < 10° W ecm™ [70]), and the optical dispersion is
large (v4 small).

It should be noted that media with a large figure of merit for parametric four-photon
amplification (small Xil) responsible for self-phase modulation, small dispersion charac-
terized by large Abbé number, high damage threshold intensity) and low Raman gain
factor are widely used for picosecond and femtosecond light continuum generation
(H,0 (11, 12, 56, 72], D,0O [11, 12, 15, 56], mixtures of H,O and D,O [73], ethylene glycol
[74, 75], mixtures of ethylene glycol and glycerin [76], fused silica [11, 12], optical silica
fibres [10, 11, 13, 14, 77], NaCl crystal [12], compressed xenon gas [78, 79], compressed
nitrogen gas [78, 79]).

7. Conclusions
The theoretical study of noncollinear phase-matched parametric four-photon amplifi-
cation presented here indicates that efficient parametric amplification is possible over
wide frequency ranges for D,O and fused silica. The frequency borders are
determined by wavevector mismatch due to self-phase modulation on a subpico-
second timescale and by absorption losses on a nanosecond timescale. For the flint
glass SF10 (and for SF59) the seclf-phase modulation restricts efficient parametric
four-photon amplification over wide frequency regions to nanosecond pulse dura-
tions where very high pump pulse energies would be required for reasonable parametric
gain.

The noncollinear phase-matched parametric four-photon amplification may be applied
to determine third-order nonlinear optical susceptibilities x>, (—ws;wy,w,, —wy) in var-
ious media by signal amplification measurements.
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