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Abstract

+.+The work presented in this-paper deals with the general prob-
Tem of matching an arbitrary load impedance to a4 pure resistance
by means of a reactive network, More precisely, it éonsists of
& systematie study of the origin and mature.of the theoretical
limitations on the tolerance and bandwidthiof makch and of their
dependence on the characteristics of the given load impedance.

Following a general discussion of the matching problem in the
first chapter, the second chapber presents a derivation of the
necessary and sufficient conditions for the physical realizability
of a function of frequency representing the input reflection co;
efficient of a matching network terminated in a given load im-
pedance., These conditions of physical realizability are trans-
formed in the third chapter into a set of integral relations which
are particularly suitable for the s@udy of the limitations on the
bandwidth and tolerance of match. Unfortunately, definite ex—
rressions for these guantities céuld be obtained only in very
gpecial cases, because of inherent mathematical difficulﬁies re-
sulting from high-order algebraic equaitiocns.

The fourth chapter deals with the practical problem of approach-

2
D= I

the optimum theoretical tolerance by means of a network with
a finite number of elements., The general solution of this problenm
was hampered again by mathematical difficulties resulting from the

negessity of solving systems of transeendental equations. Design

curves are provided, however, for a particularly.simple, but wery
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im?ertant, type of load impedance. In gddition, 8 very
convenient methed is presented for compubing the values of
the elements of the resulting metching network, The whole

design procedure is illustrated by numerical exsmples.
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1.

CEAPTER I

The Matching Problem

1.1 Origin and nafure of the problem — The transfer of power from a
generétor to a load constitutes one of the fundamental provlems in
the design of communication systems. Some generators may be con-
sidered as ideal voltage sources in series with a linear impedance;
maximum power btransfer is then obtained when the load impedance 1is
made equai to the conjugate of the source impedance. This simple
representation fails in the case of other generators, but there is
still for each generator a definite load impedance which ylelds
maximum transfer of power. Linear amplifiers, for instance, may
be included in the first group of generators, while certain power

amplifiers and all oscillators belong to the second group. When

the load and the generator are physically so distant from each other
that an electrically long transmission line has to be employed, 1t
is usually desirable to avoid the presence of standing waves on the
line, This requirement is met by making the load impedance equal

to the characteristic impedance of the line, which is, in general,

a real gquantity.
Problems of the types mentioned above involve in every case the
design of a non-dissipative coupling network to transform a given

load impedance into another specified impedance, One refers to

this operation as "impedance matching", The impedance to which
the load has to be matched is, in most cases, a pure resistance,
: ' or can be made such by means of a separate coupling network.

Therefore, from a practical standpoint, little loss of generality
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results from limiting our discussion to this simpler case, that
is, to the case of matching to a pure resistance.

It will be shown later that it is not possible t¢ match an
-arbitrary impedance to a pure resistance over the whole fre-
quency spectrum, or even at all fregquencies within a finite fre-
guency band. On the other hand, it is evidently pessible to
obtain a match at any desired mumber of frequencies, provided the
load impedance has a finite resistive componept at these fre-
quencies. Such a solution, however, has little practical value
because it is incorrect to assume that one can obtain a reasonable
match over a frequency band by correctly matching at a suffi-
ciently large number of frequencies within the desired band.

It becomes clear at this point that the statement of any
matching problem must include the maximum tolerance on the match
as well as the minimum bandwidth within whiech the match is to be
obtained, Furthermore, it is reasonable to expect that, for a
given load impedance and a given frequency band, there exists a
lower limit to the maximum tolerance that can be obtained‘by means ¥
of a physically realizable coupling network, It follows that an
investigation of this lower limit should be the first step in any
systematic study of matching networks, Before this problem can
be stated in a precise manner, however, one must define an ap~
propriate measure of the matech so as to give to the tolerance a

definite quantitative meaning.

fuantitative definition of matching - In view of the fact that

matching is used %o maximize the load power, it appears reasonable
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to use as a measure of the match the ratio‘bf the actual load power
Py to the maximum power P, that could be delivered to the load by
the same generator, It is more convenient, however, to use in-
stead the per unit value of the power which is not delivered to

the load, that is, the quantity

o2 =fomtL s I | 1

The meaning of the symbol Lp\g will become clear shortly. This
quantity can be readily expreséed in terms of the characteristics

of the generator and of the load when the génerator can be repre-
sented by means of a constant volbtage source in series with a linear
impedance. If this is not the case,|/42 becomes a complicatéd
funetion of the characteristics of the generator and very often

cannot be expressed mathematically, For lack of a better method

of attack, it will be assumed again that the generator can be
represented by a voltage source in series with a linear iumpedance,
which is now chosen equal to the conjugate of the load\impedance
which yields optimum operation., Ag pointed out before, this im-

pedance is assumed to be a pure resistance. The resulting quan-

tity | /a|2 is not simply related to actual load power but is a
definite functipn of the impedance presented to thg generator,
in terms of which the output characteristies of the generator
can be expressed.

Por the purpose of analysis it is convenient {0 normalize all
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impedances with respect to the internal impedance of the generator.
Let 7 be the normalized impedance of the load presented to the

generator, as shown in Fig. l.l.0One obtains readily:

s |
|~ = 23] (2)

It is clear at this point thatl P Iis the magnitude of the reflec-

tion coefficient

./A9 = 7+

&N
=

(3)

[

which would be obtained if the generator weré‘connected to the
load through a lossless transmission line of unity characteristic
impedance., Since is defined as the ratio of the veltage of the
reflected wave to the voltage of the incident wave,l /0‘2 is evi-
dently equal to the per unit reflected power, that is, to the
power which is not delivered to the load. It will be remembered
in this connection that the voltage standing-wave ratioc on a

transmission line is related to ,© by:
VSWR = 1slol | | (1)

It follows that|/0lis the most appropriate measure of the match

ﬁhen a transmission line is actually present and standing waves

sre to be minimized. In conclusion the tolerance on the match
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Figure 1,1 - Matching network for an arbitrary
load impedance
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will be expressed in all cases by the maximum allowable value of

the magnitude of the reflection coefficientl/o|max.

Preliminary statement and analysis of the problem — The problem
of the broadband matching of an arﬁitrary impédance can now be
stated more precisely in the light of the vrevious discussion,
With reference to Fig.ll, ZL is a given linear, passive impedance

normalized with respect to the source resistance. A non-dissipa-

-

tive coupling network must be designed such that, when terminated
in Zgs the magnitude of the reflection goefficient is smaller
than or equal to a specified valuel/o|max at all frequencies
within a prescribed band.

The impedance Z7 and the coupling network may include, in the
most general case, distributed constant elements such as trans-
migsion lines, wavegﬁides, cavity resonators, etc. Such a general
case, however, is outside the field of application of the avail-
able techniques of network analysis and synthesﬁs so that the
problem must be limited to the case of impedahces realizgable by
ﬁeans of a finite number of lumped elements. .This limitation
is not as serious as it may appear at first becauss, in many
practical cases, the results obtained in the case of lumped ele-
ment networks can be extended in an apbroximate fashion to the
case of distributed constant systems. TFor instance, such a.tech-
nique has been successfully employed by the author in the design

(1)

of microwave filters.
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An additional remark must be made on the fact that the coup-
ling network is assumed to be lossless. In practice, of course,
a certain amount of incidental dissipation will be present, which
will resulf in a distortion of the characteristics of the coupling
network. This distortion can be computed without difficulty when
the dis;ipation is uniformly distributed,(2> Moreover, in cer-
taln cases, it is possible to predistort the characteristics of
a lossless network to balance the distortion produced by dissi-

(3)

pation, apart, of course, from a constant transmission loss
ovér the pass band which cannot be eliminated, This correction

is often carriedrout experimentally since a smali amount . of dissi-
pation requires only small readjustments of the element values.
Such procedures for taking into account the effect of incidental
dissipation have been developed in comnnection with the design of
filters, since the same problem arises there as in the case of
matching networks. It seems appropriate, therefore, to neglect
the presence of lossés in our study, and to rely on the available
techniques for any correction that becomes necessary in the final

stage of a particular design.

Previous work on matching - The matching problem is now limited

to the design of.an appropriate two-terminal-pair reactive net-
work consisting of a Tinite number of 1umpedielements. This
design problem has been attacked in the past by following a step-
by-step procedure lezding to the ladder structure of ;eactances

shown in Fig.l.2. These reactances are designed successively in
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such a way that the resulting impedance (or admittance) measured
toward the load at each node of the strﬁcture approximates better
and better a pure resistance over the preseribed frequency band.
This procedure has two main weaknesses, In the first place, the
designer does not know whether the requiréments on the tolerance
and the bandwidth that he is trying to meet are consistent with
the given load impedance; for the same reason he cannot decide,
st a certain stage of the design, whether any further possible
improvement is worth the required additional complexity of the
network. 1In the second place, it is impliecitly assumed that the
step-by—stép procedure converges to the optimum desigh or at least
to a design reasonably close to the optimum. This is not the case
in general; moreover, it will be shown later that perfect matching
at any frequency is paid for very dearly in terms of maximum pOS—
sible bandwidth. A procedure for designing the laddef structure
as a unit was suggested by Bode (£55) in 1930.‘ This procedure,
however, has still most of the weaknesses of the step-by-step
method of design, and has not sufficient bearing on the work
presented in this paper to deserve a debtailed discussion.

The first step toward a systematic investigation of matching
networks was made’by Bode(é) some time later, in cohnection with
a very special but iﬁportant type of load impedances He con-
sidered the case of a load impedance Zr, consisting of a resis-
tance R shunted by a capacitance C, and showed that fhe funda-~

mental limitation on the matching network takes the form:

s vy
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where'F is the input reflection coefficient corresponding to the
impedance Z in Fig. 1. If l/o\ié kept constant and equal tcpohmnc
over a freguency band of width w (in rad. per sec.} and is made -
egual to unity over the rest of the frequency spectrum, eg. 4

yields:

w 1n ‘;‘mx < E:% ©

In words, the product of the bandwidth by the maximum value of

the "return less¥, 1n ; has a maxiom 1imit fixed by the

|2} max |
product RC. Zg. 4 indicates also that approaching a perfect
mateh, that 1s, making ‘/9\very"small at any frequéncy;results
in an unnecessary wastaof the area re?resented by the inbegral,
and, therefore, in a reduction of the bandwidth. It is also clear
that the limitation found by Bode applies to any impedance con-
sisting of a reactive two-terminal-pair network terminated iﬁ a
parallel RC combination. In this case, however, no assurance
is given that the maximum theoretical bandwidth can be approached
even in the limit: wﬁen a very large number of elements is used
in the matching network. On the contrary, in the case of a
simple RC combination, the matching network can be‘designed to

satisfy eqs. L and 5 with the equal sign., This point will be
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discussed further in Chapter ,L.

Precise statement of the problem - Bode'!s work discussed in the

preceding section indicatesgtﬁé existenée of definite limitations
on the bandwidth and on the tolerance of mateh for any given load
impedance. These limitations must originate from some conditions
of physical fealizability of the function representing the input
reflection coefficient @ , conditions which mast, in their turn,
depend on the load impedance. It is clear at this poiﬁt that the
first step in a systematic solution of the matching problem must
-be.the determination of these theoretical limitations. The develop-
ment of a design proceduré should then follow, whose objective
would be to approach the theoretical 1imit with the smallest num-
ver of elements in the matching network. For the pur?ose of dis=-
cussion, one can then divide the matching problem in three parts
as follows:

T - Given an impedance function ZL’ subject only to the condition
of being realizable by means of a finite number of lumped
elements, find the condi ions.of physical realizability for
the reflection- coefficient function 2 of a reactive, two-
terminal-pair network terminated in Zp (See Fig. 1).

II - From the conditions of physical realizabiliﬁy for <, deter-
mine the minimum tolerance on the magnitude of the reflection
coeffﬁcient'/°J0ver a preseribed frequency band.

1II - Obtain appropriate functions for , which satisfy the con-

ditions of physical realizability and, at the same time,
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minimize the tolerance over a specified frequency band for a

given number of elements in the coupling network,

The work presented in the following chapters will provide a
complete solution to the first part of the problem. The solution
to the second part will be cérried out as far as possiblehin
general terms. ﬁnfortunately, a definite expression for the
minimm tolerance could be obtained only in the simplest cases,
since the desired answer depends on the solution of a system of
high order algebraic equations. However, the conditions of physi-
cal realizability will be expressed in the form of integral rela-
tions similar té the one obtained by Bode, which will indicate
¢learly the mature of the limitations imposed by the load impedance
on the frequency behavior ofl/o [g Very little progress could be
made toward a general solution of the third part of the problem, -
because it involves a system of transcendental equations. Yet a
set of design curves will be presented for the simplest caée con-
sidered by Bode. These curves will show the behavier of the
tolérance as a funcﬁion of the bandwidth and of the number of

elements in the matching networks
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CHAPTER II

Physical Realizability of the Reflection Coefficient

Analysis of the problem - This chapter is devoted to the solution

of the Pirst part of the matching problem as stated in Sec. 1.5,

For thé sake of clariby this part of the problem is restated be-

low, With reference to Fig. 1.1, Zp is given as a function of the

complex frequency variable A=g + J w subject only to the
condipion of being physically réalizable by means of a finite num=-
ber of linear passive lumped elements. Z1 is cormected at the
output terminals of an arbitrafy two—terminal-pair reactive net-
work consisting of a finite numbér of lumped elements; the input
terminals of this network are connécted to a generator consisting
of an ideal voltage source in series with a one ohm resistance,
It is desired to determine the restrictions that must be imposed
on the function .o { A) representing the reflection coefficient at
the terminals of the generator, in order to insure the physical
realizability of the reacti§e network.

Tt will be recalled (Sec. 1l.4) that, if 2 consists of a two-
terﬁinal—pair reactive network terminated in'a parallel RC combina—
tion, the limitabion found by Bode for this case involves the
product RC. Therefofe, if sueh an impedance were given mathematb-
ically, one would have to determine its physical structure before

Bode's relation could be applied. Cn the other hand, Darlington

has éhown (3) that any physically realizable impedance function
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can be considered as the input impedance of a reactive two-terminal-
pair network terminated in a pure resistance. This resistance can
‘be made equal to one ohm in all cases by incorporating an appro-
priate ideal transformer in the reactive network. The network
shown in Fig. 1.1 can then be transformed as indicated in Fig. 2.1,

At this point the problem under consideration takes a form par-
ticulerly interesting from a general nebwork theory point of view.
It will be pointed out in the next section that the over-all char-
acteristics of a two-terminal-pair reactive network are completely
specified by the impedance (or the reflection coefficient) measured
at one pair of terminals when a one ohm resistanée is connected to
the other pair of terminals. It follows that the conditions of
physical realigzability for ~ (See Fig.72.l) are the same as the
conditions that must be satisfied by any other function or set of
functions representing the over-all characteristics of the two
resctive netwerks of Fig. 2.1 in cascade. In conclusion the prob-
lem can be restated as follows:

Civen two reactive two-terminal-pair networks of which one is

fixed, the other arbitrary, determine the conditions of physical

realizability for the over-all characteristics of the two networks

connected in cascade.

Before proceeding to the solution of this problem, it is neces-
sary to review some of the properties of the functions that will
be used to represent the characteristics of a two-terminal-pair

reactive network,
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2,2 Reflection and transmission coefficients - The reflection and
trénsmission coefficients of a two-terminalQpair reaétive network
represent the characteristies of theqnetwork when one ohm termina-
tions are commected to both pairs of terminals as shown in Fig.

2.2. The two reflection.coefficients are defined by:

L E1 o =0 (L

1]
i
=

/02.:

NN
A%}
+
et
=i
l_l
n
©
Fa¥
)
S

where Zl and 22 are the impedances measured at the two pairs of
terminals when the voltage sources are short circuited., The

transmission coefficient is defined, with reference to Fig, 2.2,

by
L |22 2
=N N = E ,

The pﬁysical significance of these coefficients is best understood
by inserting two transmission lines of unity characteristic impe-
dance between the network and the terminations. The reflection
coefficient /ﬂ. is then the ratioc of the voltage of the reflected

wave o the voltage of the ineident wave measured at terminalsl

for &5 = 05 /%3 has the same significance for terminals 2. The

~

transmission coefficient t is the ratio of the voltage of the
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transmitted wave at terminals 2 to the voltage of the incident wave
at terminals 1, for Es = Us Because of the reciprocity theorem,
the same value of t is obtained for transmission in the opposite
direction.,

It is clear from the above definitions that /fl‘g is the per

‘ 2
unit power reflected and lt‘" is the per unit power transmitted.

Since the network is non-dissipative, one obtains, for A = jw,

< 2
1]

|/°l =1 W

A similar relation can be written for transmission in the opposite
direction,
2 -

|~

l2
2

It follows that, for A= jew,

2 2 2

|~ -~ =1 -] (6)
and

I/Ollg'/%|el; lt |el (7

Equation 7 is a necessary condition for the physical realiza-
bility of a reflection coefficient. Furthermore, since a reflec-

tion coefficient is a measurs of the voltage of a reflected wave,
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all the poles of this funetion must be in the left half of the
complex -plane; otherwise the network would oscillate without the

(3,7)

help ef any external generator, It can be shown that this
condition on the poles tegether wflth egq. 7 are sufficient as well
as necessary éofnd‘i»tions fojrr the physical realiﬁability of a re-
flection éoefficient. It is, of course, understood that the
reflectlon cv:»”c;ef ficiént of a lumped element netwdrk must bé.‘ a
ratie of twé real polynomiéls in the complex frequency variable
Aze .,‘ jw, 1In conclusioﬁ tl'vl.e‘ reflection coefficientA 75 of a

reactive network must be of the form:

AU =k O T A = Ag)t(A - Ay (8)
: (A o= /\pl)(/\ -~ %2)"""(K * Apn) :

where K is a real number. All Ap’s have a negative real part and
all complex A p's and Ao's must be present in conjugate pairs
(the pelynomialé héye real coefficients). ’Fui‘thermqre /Ol( A)

mast satisfy the condition:

| 2 .
O T A RS CT) I (9
A =J'w : A T Jw
I£ can ‘be shown that the companion reflection coefficient /°2( A)
mus.ﬁ have the form:
1 ’K' (A + Ag)(A =+ AL)rt(A + AL (10)

~y(A) = (1) AN ,
& R AR S AR - A
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where the A ,'s and the ,hp‘s are the same quantities appearing
in the expreséion for /01.

Consider now the function

AN 2L (A = 2 (A) 2 (- A) (1)

which is equal %o /"1\2 = ‘/’2\2 forA= jw., The poles and zeros.

of this function are arranged in guadruplets or pairs as shown in
Fig., 2.3. HNote thaﬁ all the poles and‘zeros on the imaginary axis
mist have even multiplicity. The zeros of (11) are divided be-
tween /) and /9, as indicated by‘Eqé;igﬁéhdjiO;tﬁiﬁhout.any
other restriction but that all of them must appear in either /Ci
or /92;‘ . ' |

The transﬁission coefficient is related to /‘i.and /5 through

ta

the equation:

* L. l:/;- OVAS A)L

2
= [E(AtEA = /=15
N S WL g N8 e o

The'goles of t must have a negative real part for the same reason
as the poles of /al and ~%. Horeover eq. lé.shows that /°1, 5
and t have the same poles and, therefore, the same denominator
ﬁblYﬁémial.‘ It can be shown €3’7) that the numerator of % must be
either an,eveh or an odd polyﬁomial. This requirement implies
that the zeros of t must be present in guadrupleis or pairs, de-
pending on their location, as indicated in Fig. 2.4; zeros at the

origin and at infinity may have odd multiplicity. It follows that
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) EVEN MULTIPLICITY

Figure 2.3 - Grouping of the zeros of a typical transmission
coefficient
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all the zeros of the function [t( A) t(- A) ] mist have even mul-
tiplicity, that is, the function must be the square of either an
even or an odd polynomial. The transmission coefficient can then

be written in the form:

/1 %2 (A=A)(A =Ag)eeee(A = A)
e K A=A A= Ag) e eesR-A ) (13)

where the /\*_ 's are determined by means of eqg. l2.

The conditions of physiecal realizability for /01 do not imply
that the zeros of [t( A) t(-/\)] have necessarily even multiplicity.
This difficulty is circumvented by multiplying and dividing the
function by 'the root factors of the numerator that have odd mul-
tiplicity, It must be kept in mind, however; thaﬁ these root
factors must be pa.rried back into /"3,L and /2 as shown in -Lhe fol=-
lowing example. Suppése the quadruplet Qf zeros at A 3 /—\y »

-Ny —Ay has odd multiplicity. Then one must multiply the

Punots _ . ()-7\;))() ‘-iy)(h*lu)('\*’\p)
funection [t(h) £( /\)] by (A—AJ,)(A—T,,)(Aw*A,)()«tT,,)

and the function t will, therefore, include the factor

AAYO~KLNA+ AN A+ )
(A-X;)(A-X)

in -whieh two of the roots cancel oub (/\y has a negative real parit),
as indiecated. It can be seen by inspection that the function

[/ol( a) /@1(-%) ] must be multiplied by the same quantity as
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[ t(A) t(-,ﬁ)] . It follows that either,/ol or /AE muist contain

the phase-shift factor

(A +Au)(>‘ 1—3‘1})
(A ‘)u)(A"X))

whose magnitude is unity.on the imaginary axis. MNo Qb—rodt will
appear in the other reflection coefficient because the zeros in the
left half plane at )w and ji; will cancel the corresponding poles,

It may also happen that t contains a factor of the form

A+ 2 XA+ X)) AX0)A—2)
(A ;,\y)»* (A~ )~

with the eliminations shown and /‘E contains the same factor squared.
In this case it would be impossible to detect the presencé of the
zerocs of t at - Ajand —jgjfrom a knowledge of /41 alone. The physi-
bcal significance of this situation is that an all-pass nstwork of
unity characteristic impedance is comnected in cascade at terminals

2, with the result that a2 phase shift appears in both /‘E and ©
without their magnitudes at real frequencies being changed. In view

of this fact, the statement that either reflection coefficient de-

fines completely a two-terminal-pair reactive petwork should be modi-

fied to read "defines completely the network apart from an arbitrary

all-pass phase-shifting network comnected in cascade ab the opposite

terminals”,
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B

ascade connection of two=terminal-pair reactive networks = The

problem stated in Sec. 2.1 involves a cascade connection of two
reactive networks. It is, therefore, necessary to develop appropri-
ate relations between the characteristics of the two individuwal net-

works and the over-all characteristics of the two networks in cas—
3

cade,

Consider a reactive network terminated at both ends in lossless

By

transmission lines of unity characteristic impedance. Let ;71 and
Cﬁpl be the voltages of the incident and reflected waves at the in-
put terminals, and ;72 and ﬁﬁ; the corresponding volitages at the

outrut terminals as indicated in Fig. 2.5. On the basis of the

=

definitions of /’cl, 2, and t given in the preceding sections,

one can write the following equilibrium eguations:

R, =T R (14)
Jo=tV e 3& (15)

Solving for & and J, yields

J,

Fi /o
T - P, : (16)

"

X,

—L - L = C?
2 “7.z+(t + ) oL

N
|.....I
..\'1

L




e

Q2

g
—_— —_—
, o
_ © REAGTIVE
NETWORK
O- g v
R, 25

Figure 2.5 - Reactive network with input and output
transmission lines
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or in matrix form

[‘ T
J J
¥
= T X (18)
LQJ/ J Qr
where - e
- e
t -
7| - (19)
- e - 272
=z z

Baoe. 18 indicates that the matrix['T:]has the nroperty that the
matrix for two networks in cascade is the product of the matrices
of the individual networks. wWith reference to Fig. 2.6 one obtains

without difficulty by matrix multiplication

. t‘tll
t = T -/02'/01" {20)
o at e (&) - ,
1 :/a]_\ -+ 1T _/021 /ol" (21)
(&m)>

/02 = /02” + /02‘ 1 (22)

~ ol 1
~U

These equations are the desired relations in terms of reflection

and transmission coefficients. The factor 1 -,AE',ﬁi" results from

the multiple reflection at the junction of the twé networks. The

other terms appearing in these equations have an obvious physical
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significance from a transmission line point of view.

Method of attack of the problem - Before proceeding to the mathe-

maﬁicél solution of the ﬁhysical realizabllity problem, it is
desirable to give some thought to the physies of the problem heping
to get some idea of the kind of results that are to be expected,

and an indication of the proper mathematical approach. Consider
then the system represented in Fig., 2.6, and let N' be the reéc—
tive network whose characteristics are fixed by the given impedance
Z2 while N" is the arbitrary matching network (it will be noted that

these definitions imply a reversal of the original system as repra=-

sented in Fig. 2.1). The first question that one is likely to ask

himself is: are there any characteristics of N'! which must belong
also to the whole network N, irrespective of N"% A partial answer
to this question is suggested immediately by’the rhysical structure
of the system., If t' is zero at a real frequency, that is, at any
point of the imaginafy axis of the A -rlane, then a wave of that
frequency traveling from left to right would be completely stopped
by N! so that no part of the wave would come out of NU or even
entef it. It follows that any point of the imaginary axis which is
a zero of the transmission coefficilent t! must necessarily be a
zero of transmission for the whole network N, and, therefore, must
be a zero of t, Furthermore, the reflected wave at the input ter-

minals cannot depend on N" if no part of the incident power reaches

", Therefore, 2 must be equal to /‘i’ for any value of A = jeo

for which t! is zero.
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Tt is natural at this point to investigate the effect of a zero
of t! at real frequencies, whose multiplicity is larger than one.
It is hard to make any definite statement in this regard on the
basis of simple physical reasoning, however, it is reasonable to
expect that the zero will appear with the same multiplicity in t.
Moreover, it is also to be expected that, at frequencies in the neigh-

borhood of the zero of t!', the behavior of ~?, will be,to some eX—

1

tent, independent of N“.’ This idea indicates the possibility that a
certain mumber of derivatives of ’al’ computed at the zero of ¢,
might be independent of N" and, fherefore, might be équal to the
corresponding derivatives of Ayt

Suppose, now, that t! has a zero somewhere in the right half of
the complex A -plane. It is clear ﬁhat the behavior of a network
for values of A having a positive real parto—, is the same as the
behaviorn for purely imaginary values of A , of a network obtainsd
from the previous one by adding a resistance o L in series with
every inductance L and é conductance »~ C in parallel with every
capacitance C, It follows that if %! has a zero for a value of A
with a positive real part o3 , one can make a network consisting of

vassive elements such that its behavior for A = je> is identical

to the behavior of the original network for A o+ Jje. The gzero
of transmission of this new network lies on the imaginary axis and
one can apply to it the results obtained above, These results are

thus extended to zercs of £! lying in the right half of the com-

plex A -plane. If g; were negative, that is, if the zero of t!
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were in the left half plane, the above line of thought would be
f;ncorrect because one would be dealing, in that case, With an equi=-
valent network containing negative resistance, that is , power sources.
It wiil be shown later that zeros of t! lying in the left half plane
ére not necessarily zeros of t., Cne mﬁst remenber, however, that
for a reactive network the presence of a zero of Transmission in the
left half plane implies the presence of a symmetrical zero in the
right half plane (but not vice versa). Therefore, since the zeros
of t1 in the right half plane must necessarily be zeros of t, the
elimination of any zéro in the left half plane, which may result
from an appropriste design of N, is, in a certain sense, only ap-
parent,

On the basis of the above discussion, one can conclude that any
zero of transmission of the original network N', that is, any zero
§f L1, which lies in the right half or on the imaginary axis of the

A —?lane rust alsoc be a zero of transmission of the whole network
N, that is, a zero of t. At any such zero of t, the refiecection co-
efficient ~7; is ipdependent of WM énd, therefore, is equal to /al'.
Furthermore, there is a geod indiéatioﬁ that, in the case of a zero
of t' of multiplicity larger than one, the cerresponding zere of t
willuhave the same multiplicity, and that a number of successive
derivatives of./ol computed at the zero of + will be equal to the
corresponding derivatives of /‘g!. These conclusions suggest a
definite approach to the solution of the problem and promise to be

a2 useful guide in the mathematical analysis that will follow.
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zero for A = Jemy if /ol,, =/<TlT , that is, since
. , 5
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Zeros of transmission - Physical reasoning _j_ndicate‘s, as pointed

out in the preceding section, that the first step in the mabthe-

matical solution of the problem should be a study of the conditions
under which the zeros of transmission of the given network N' appear
as zeros of transmission ef the whole network N. Consider, for this
purpose, the expression for the transmission coefficient of N given

by eq. 20, which is rewritten below for convenience.

I A | A
= 1 -/"2‘ /lﬁ (AB)

Suppose, first, that £t1 has a zero of multiplicity n at some
point Au in the right half of the complex Aplane., 3Since " is
analybic in the right half of the plane, it is clear that ¢ mist
have a zero of thg same znultiglicity at p,,unless 1 -/02',01" is
gzero at that point. On the other hand, any reflection céefficient

is analybic in the right half plane, that is, for g é 0 and satis-

fies the condition\/" =1 on the imaginary axis. It follows from
the maximum modulus thecrem (8) thatr/"\<l for e~ >0, and, there-
fore, that the denominator of (23) cannot be zero at any point in
the right half plane (d-?é 0)s In conclusion any zero of ¢! in the
right half plane must neceséariiy appear in © with at least the
same multiplicity.

Consider next a zerc of t' located on the imaginary axis at a

frequency «2),. In this case the denominator of eq. 23 will be

1
el

-~ "‘ =1, if
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£1" = Pg'e On the other hand, if[2,1] = 1 for Az jag, t"

rust have a zero at the same point, so that in the end the zero of

t' will necessarily appear in t with, at least, the same multipli-
city. One Iﬁigat object to this conclusion on the ground that

(1L-55t FPy") could have a zero of higher multiplicity at A = jew.
This situation, however, is not possible for the following reasons.

If 1 =P, P1" had a double zero at A = jw, one would have:

EAT A N (21
RN Ay ¥y , _
[ L}
LY B =4
Py AA A2, _ (25)
A=)y ‘ Arjwy
4 2o |5 | u | ae]r (26)
A o~ .« ’ s

~

Cn the other hand, both,} 2" and |/=l”‘ must decrease with a posi-
tive increment of o as req.ujfred by the maximum modulus theorem,
ard, therefore, eq. 26 cannot be satisfied. In conclusion, if &7
has a zero at a point A with a non-negative rsal part (o 2 0),
t has a zero at 4, ﬁth, at least, the same multiplicity.

The case of a zero of 1! at any point in the.left half plane
leads to the opposite result, since the denominator (1 =t J’l“)
can have a zero of higher multiplicity at.any such point, withoub

t" being also zerc., However, as pointed out in the preceding
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section, a zero in the left half plane implies the existence of a
vsymmetrical zero in the right half plane which cannot be eliminated.
Moreover, since these zeros of transmission must originally appear
in quadruplets so that the numerator of © can be either an even or
an odd function of A , the e;iminaﬂion.of a pair of zeros in the
left half plane at Ay andix; requires the presence of a corres-
ponding pair of poles in the reflection coefficients as well as in
the transmission coefficiemt. The end result will be, according

to the diseussicn in Sec. 2.2, that a quadruplet of singularities
formed by a palr of conjugate poles in the leit half plane at Ay
and j;, and a pair of conjugate zeros symnetrically located in the
riéht half plane will be present in either one or the other of the
reflection coefficients. In the case of multiple zeros of trananis-
sion, the multiplicity of the pair of zeros eliminated will be equal
to the sum of the multiplieities of the corresponding quadruplets

of singularities in the two reflection coefficients.

The above analysis can be extended step by step to the case of
any number ofltwo—terminal—gair reactive networks connected in cas-
cade, One begins to suspect at thils point that any arbitrary two-
terminal-pair reactive netwprk might be realizable in the form of
a chain‘of elementary networks, each of them representing a zero
of ﬁransmission, a pair of zeros, or a guadruplet of zeros, depend-~
ing on their location, Darlington(B) showed this to be actually
the case, by developing a synthesis probedure which leads tc a cas-
cade connection of sections of the four types shown in Fig. 2.7,
and their duals. Type A corresponds to a zero of tranmmission at

infinity, type B to a zerc at the origin, type C to a pair of
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D

Figure 2,7 - Elementary sections representing different
' types of zeros of transmission
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conjugate zeros on the imaginary axis or a pair of symmetrical

zeros on the real axis, type D to a quadruplet of zeros symmetrically
located with respect to the origin. The order in which the sections
are connected in cascade is immaterial as far as the physical real-
izability is concerned, but, of course, the values of the elements

in each section will vary when the order of the sections is changed,
This symthesis proéedure provides a further proof for the fact that
the zeros of transmission of a reactive network cannot be effectivély

eliminated by the addition of another network in cascade,

2.6 Behavior of the reflection coefficient in the vicinity of a zero of

transmission - It was suggested in Sec. 2.4, on the basis of physi-

ﬁcal reasoning, that a certain.number of successive derivatives of
the input reflection coefficient /°l qf the network N might be in-
, dependent. of K" for any value of A at which the t ransmission coef-
ficient t! of N' has a zero. It is reasonable to expect, in addi-
tion, thaﬁ the ﬁumber of these'derivatives will 'be proportigﬁal to
_ the multiplicity of the zero of t',

The logical starting point for a mathematical investigation of

this question is eq. 21 which is rewritten below for convenience.

\2 ’
/01 = /91_!4-/01" B L (27)

1 _/02! /Olll

Tf t' has a zero of multiplicity n at A in the right half plane,

the numerator of the second term in the right hand side of eq. 27

will contain a factor (A - )uJ)Zn. The denominator of this temm }
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must be different from zero and finite at all points in the right
half of the A-plane, as already pointed out in the preceding section,
Tt follows that this term and its first 2n - 1 derivatives must van-—

ish for A = Ay, so that one obtains:

oy =t (28)
-~ '
= - |5 2 (29)
- for me 2n =1 29
A=Ay A=Ay

Consider now the case of a zero of t1 at a point jedwof the
imaginary axis. One can follow the sané reasoning as in the pre-
viocus case with the only difference that the denominator (1 f.ﬂb!/‘l“)
may have a simple (not a multiple) zero for A = j«er . This sitﬁa— ‘
tion leads to what may be called a degenerate case, becaﬁse +U must
then have a zerc at the same point which effectively combines with
the zero of t'. In fact, the resulting multiplicity of the zero cf
the over-all ﬁransmission coefficient t is, in %his case, one l1less
than the sum of the multiplicities of the zeros of t' and t" at the
same point, as indicated by eq. 23, The physical significance of this
degenerate case and the way of handiing it will be discussed later in
Sec. 2.9, It will be assumed, for the moment, that egs. 28 and 29
apply to the case of a zero of t!' on the imaginary axis as well as
to the case of a zero in the right hall plane.

Tn the case of a zero of transmission in the left alf plane /‘1

and its derivatives will, or will not, be equal to f‘i’ and the
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corresponding derivatives, depending on the multiplicity of the
zero of the denominator (1 —/‘5'/fl”). It is not necessary, how-
ever, to investigate this situaﬁion in detail, because the be-
haviors of/‘:’:L and ‘/"l' at a zero of transmission in the left half
plane depend on the Eehaviors of the same functions at the sym=
metrically located zero in the right half plane through eq. 12
and the relation @ (A) =2(A).

It should be noted at this point, that the fact that /41 and its
first 2n - 1 derivatives are independent of N" at a zeroc of t! of
multiplicity n is not a sreciality of reflection coefficients. As
one would expect, the same is true for any driving-point function
_and, in mrticular, impedance. In fac’r;,, if Zlf:.’ zzé, z}_é are the
open circuit impedances of the nétwork N', and 77" is the input im-
pedance of the network I {termirated inﬁany arbitrary' impedance),

one has for the input imi:edance Zy of the whole network:

s .t (713)? o
Zl =% T, oon (30)
oo * 41 !

This equation has a form very similar to eq. 27 and leads to the same

type of results, since it can be shown that all the zeros of t! appear

in Z,, with the same multiplicity.

2,7 HNumber of independent conditions imposed by N!' on N — The analysis

carried out in the preceding sections yields a certain number of ;
necessary conditions that must be satisfied by the functlon /"l in

order to be physically realizable by means of the two networks N!
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and N", It is desirable at this point to consider the actual number
of indepehdent conditions that can be imposed by the fact that N

is specified.

Suppose the sum of the multi?licities of the zeros of t'! is m;
for this purpose all the zeros in the left half plane are included,
even if some of them are eliminated by corresponding roots of the
denominator of t!'. The network N! is completely specified (Seec. 2.2)
by the zeros of ! and the numerafor of either reflesection ceefficient
(including the constant multiplier). On the other hand, the degree
of the polynomial at the numerator of a reflesction coefficient is
eqpal to the total number of =zeros of transm1551on, that is, to m.

Tt follows that m + 1 independert parameters (real numbers) are
required to specify completely N', in addition to the knowledge of
the gzeros of t'.

The above statement can be checked by ocbserving that the sections
used in Darlingtont!s synthesis procedure (Fig. 2.7) contain the cor-
rect number of elemermts. In fact, a zero of ! at the origin cor at

infinity leads to a section of type A or ty¥pe B employing a single

\
element , that is, it requires a single parameter. A section of type

¢, which corresponds to a pair of zeros on either axis, contains
three elements, specified by the location of one of the zeros and
by two additional parameters. A section of type D, which corres-
ponds to a guadruplet of z2ros, ﬁas six elements Sgﬁcified by the
loecation of one zerc {(two real nurbers} and four additilonsl para-
meﬁers, The one parameber in addition 1o thie m paramebers COrres-
pends bo an ideal transformer reguired by the fact that both resis-

tive terminations are made equal to one ohm. The rat vio of this
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ideal transformer can bhe changed arbitrarily by simply connecting
in cascade with the network an additional ideal transformer or
otherwise performing an squivalent operation. It follows that the
additional parameter will not impose any limitation upon the charac-
teristics of the network N.

In conclusion the fact that the network ' is fixed will impose
m.iﬁdependent conditions upon the characteristics of N in addition
to the requirement that t must have all the zeros of t! (the ones
in the left half plane potentially at least) with at léast the
same multiplicities. It appears, therefore, that the requirements
on the derivativés of ﬁhe feflection coefficient derived in Sec.
2.6 lead to imposing on N a number of conditions which exceeds the
nmumber of parameters by which N! is completely specified. It should
be noted, in this res;ect,'that.the derivatives of'/% and(‘i' are,
in general, complex quantities, aml, therefore, each derivative

w ' |
yields to separate conditions. It follows that the derivatives
considered must depend on one another and also upon the location
of the zeros of transmission at wnich they are computed;

One observes, first of a2ll, in this regard, that any two deriva—
tives computed at conjugate zeros must be conjugates of each other.
Furthermore, the derivatives at zeros in the left half plane are
related to the derivatives at the corresponding zeros in the right
half plane through eq. 12. In the second place, one observes that
the magnitude of the reflection coefficient becomes unity at any
zero of transmissioﬁ on the imaginary axis and, moreover, a certain

number of its derivatives along the imaginary axis must vanish in
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the case. of a multiple zero. This fact indicates that it might be

bether to consider the der_ivatives of 1n 2 s rather than the

1

derivatives of -/"l'

The behavior of the function 1ln ;]_-_. - It is observed, first, that
, ' . ’ ; 1

the n" derivative of 1n L can always be expressed in terms o_fr‘l

: 1
and its first n derivdtives, Special care must be used, as it will

be shown later, when /"l has a zero at the point considered and,

therefore, ln;lz- is singular at that point. I was shown in See.
1

2.6 that, if the nbh derivative of 1 :'Ls fixed by N', the values

of the mrecéding n - 1 derivatives and of /% itself are also fixed.

Tt follows that the n®? derivative of 1n /_;1_ computed at the same
1

point is also fixed by N' and must, therefore, be equal to the cor-

responding derivative of ‘1n L ., The derivatives of 1n L
~1! 4

point A, , differ only by a faetorial from the coefficients of the

‘at any

Taylor series for 1n /_01_ about the point A, » It follows that the
1 B :

X ’ N
first 2n terms of the Taylor series for In ./1-_ gbout a gerc of
1

transmission of multiplicity n are equal to the corresponding terms

of the series for 1n

l' about the same point. This statement,
i - ,
of course, does not apply to zerds in the left half plane; also the

possibility of degenerate zeros on the imaginary axis is still over-
looked for the present. Note, also, that the first term of the series
is the value of the function, so that the 2n terms considered cor-

respond to derivatives of 1n /—é‘— vp to and including the (2n - 1)%h,

1
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" To determine the 2m independent conditions imposed on/‘j'_ (cor-
responding ‘to the 2m parameters whieh, in addition to the zeros 'c-_f
transmission,. specify N1) one must study in more detall the proper-
ties of the. c;oebf)_fic.ientévof the Tayler seriesl for 1n %i_about the
five different -types of zeros of transmission. Convenient relations
will be derived at _the same time Toetween_the se épef ficients and the
zeros and poles of /.

Consider first the case of a zero cof transnu'ssion at the origir},
an_dlet its‘rr\mltiplicity be equal to n. The real p'art of In 711.,
tl";at is, 1In L , is an even function of jeo on the imaginary

|1
axis, since '/Ol(,—ja)) = ©1(jew). For the same reason, the imaginary

part of 1n = ,‘. that is, the phase of L is an odd function of jeo
~1 ~1
on the imaginary axis. It follows that both the odd and the even

derivatives of 1ln _1  at the origin are real, The phase of 1 at
~9 : ~1
he origin may be either zero or =77 depending on whether the nebtwork
behaves at zero ifi“equency as a capacitance or af an inductance; the
magnitude of /"l at zero frequency is, of course, equal to one. Fur-
ther informetion about the derivatives of 1n 1l can be chtained
e, a7

from eq. 4, keeping in mind that ,t!z has a zero of mulbiplicity 2n

.a.t the origin. One has then

<t~

-0 k<«2n-1 {(31)
ﬂL(' ) *
J A= o -
It follows that
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Sinee all the even derivatives of the vhase of f'l are zero at the
origin, it ean be concluded that all the even derivatives of 113_.];..
o -. 71
1p to and inmcluding the 2(n - 1)*0 vanish completely at the origin.

In other words, the first n - 1 coefficients of the even powers of

A in the Taylor series for 1n % about the origin are identieally
. 1 :

zeros The coefficients of the odd powers of A are real nunbers
since the corresponding derivatives are real, as pointed out above,

The Taylor svéries for 1n ...1_. about the origin can then be written

| 1
in the form
- O- o « 3 am=-3 an-1 .
L'J;?I-I‘:{_‘.T"'— A:Ai—AJA-’ c:—ﬁ +2Ah°'h 4= e e e (33)
=) -

The £%1s must be related to the pdles A i and zereos Aos of fl"

which ean be written in the form

‘ A
o BN RL) (03

= Y " a ' (34)
(I Api I = /\Pa.)'.“ (/ p ] m)

¥

)

The logarithm of each root factor can be written as a Taylor series

about the origin as follows:
(35)

Cpllecting {éhe terms with the same power of X in the series for all
root factors yields
o _ ~1! 1 -1
e..,_L: + Zf\."‘ /I A"',{ Z-/\oai
S ik | &= o e " ‘ v
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By comparing this equation with eq. 33 one obtains

— (2%+1) —(24+1)|"
Z’\'M‘ - Z-/} (37)

» re

Z_);;z.ae : Z__ A;J4 | - (integer lf&n) (38)

Bquation 38 is'a consequence of ‘the fact that the rnetwork has a
zero of transmission at the origin with multiplicity n. Equation
37,"011 -thé other hands; yields a set of n equations that must be satis-
fied by the zeros and poles of £, since Alo, ABO, esss "A%h _ q st
be the same for j-"l'.and fl!. « ~Dince the A Dis ard the ‘A J's are
present in eonjugate pa,irs; 'the A®13 are eviciently real nuihbers s as
it was pointea out before.

Consider next the ease of a zero of transmission at infinity with

multiplicity equal to n. To obtain the Taylor series for 1n L

£

about the poin’c. at infinity one must first make a change of variable,
such as Z = _;_\— 2 which frénsférms the voint at infinity of the
plane into the o;'igin of the Z plane and vice versa. Then one pro-
ceeds exdctly as-iri the previous case; the inal results can be

wﬂtteﬁ by inspection.

45T An- an-t

o [T o
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ZA 6l = Z A P | (integer K <n) - (Lpl)

The coefficients of the even powers of 7 are agaln egual to zero’
to Az( 1) included, and all the A r'sfare real 'h_um—'b_er's; Bqua-
tion 41 results from the. presence of a zero of transmlss:.on oi‘ mal-

tiplieity n at the point at infinity of the A plane. Equatlon LO

y*elds, again, a set of n equations that must be satisfied by the

ZeTO0S and poles of fq, since AT, A3 ””'A,;,; 1 age tb.e same for

.Pl and ﬂl

Cons:.der now the case of a pair of conjugate zeros of transmission

on the 1mac1mry axis at jeoyand -j <« . It is not necessary to

detemine the serles about both points bpcauoe the coefficients ef
one series are the conjugates. of the coefficients of the other series.

Consider then the case of the zero at - J «,;, One observes, first of

.all, that ‘eq. & yields again:

o  kxeo2n-1 (43)

in —l— are real while the even

Pl

derivatives are imaginary up to the order (2n

Therefore, the odd derivatives of

- 1) included. The

Taylor series is then written in the form:
(¥

“w wy(a J“’u)"‘J 2 (A J""u) A H{A‘J""y) Foerers

(ht)

ey (o)™ R AT (e
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To determine the coefficients of this series in terms of the zeros

and poles of £ 4 one writes 1n —%- in the form:

21
. 1 e luisey Aot g dwy
-ﬁw-F/—- = .e.uF'- Lo ( 7‘9"4:4’ AR (I /\Ph""“')_( 5)
& AN jeoy (,_ -—:ﬂﬁ))(/- W .e Q y.] -j:yy)

By expénding the loga;rithm of each root factor in a series, then
collecting the terms with the same power of (A - jea)) and fizzi'ally

comparing the series resulting with eq. Lk, one obtalins

/
2l =i (18)
ATy
J B*_“)‘” fer k evens 2n
i} (47)

A&“’” for k odd < 2n

Eqﬁaﬁions L6 and 47 yield a set of 2n equations that must be satis-
as . I 1 - 5 u"p .
:i:_ed by f’l, since the A 's and the B.e' .1s are the same for 'Pl
and /Jl' up to a.nd wcludlng k=2n -1,

In conm s:.ﬁerlncr t}“e case of a pair of Zeros of transmission with
multl llca.ty n, svmmetrlcaJ.lJ located on.the real axis at te7y and

- a-j, y one mst rerlemaer' thad' the reflecv on Coef_l.lulel’lu j’1 may

have a zero of order n, at ¢, in which case it has also a pole of

‘order n, at — oz Since the function In 1 is then singular szt

£1

these two points one considers in its place the function
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fl ) +oy ) | o Uﬁ)

from which the two singularities have been removed. By multiplying

and following the same line of thought as
4 -"o.'.U

in the case of In 7}_ s one ean show without difficulty that the

value of the new funetion (48) and its first (211 -5 - bl) deriva-
tives at the point gy, are independent of N", Using the Taylor
series for this furict.ion,‘ In 1 can be written finally in the

L1

Torm:

o A;*;" (f}m B(A-a5)+ AT o2) % ...

fan-n, + A
Jn-.‘n.—( v (24‘9)

AL 1)@ )T A AT (ee)

All the A "’» s are real quantltles gince f‘l is bv definition real

on the real a.x:s_s- thelr exnressmns in terms of ihe ‘zeros and scles

Py :
+ .
() ""'} ' S (50)

It is understood, of ecourse, that the zero at eof and the pole at

of ‘Pl can be written by inspection,

- oy must be excluded from the swmations. Equations 50 and 51
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zeros and poles of Aq. In addition to satisfying these equations,
R Y 5 YR 1.
£ 5 must inmclude the factor i\_.z_& .
' ArvoTy
I'he case of a q_uadruplet. of complex zeros of transmission sym-

=

met"lcally loca,ted m.th respect to the origin can be treated in a
similar manner. Let the multiplicity of the zeros at A ,and ’\u
iri-the right ;H‘:a:'l;fi'ﬁlé.hé be n, and let n, be the multiplicity of the

pair of zeros of f’l at R and /\‘, and of the s;mmetrlcal pa.:.r of

s

poles at - A, and - A, By operating on the function . .

/() A A-20) 0\ - (51)
flk(/\4)u)(/)+?iy) . | =

ofie Sbtains

(A, Au My
oot Q20T 0 )

h—-l ®Anshg= + o0 e

. ] | T
+(A +JB bY/\ AV)+.....+(A- +,8 d- (A_Ayah er! (52)

AN A-T) NP g mw
91&(/\*7@)() +Ty) / A;\on "JBO g53)»

A < ) N s
PACERY PRI i BV ] i (58)

Thg zeros at )‘u and_x and the poles at - )yand - —/\',are excluded

Xy

A
from the summations. The A‘t‘} ¥s and Bk 's are the same for '?l
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and Jol' up to and inecluding k - 2n - ng - 1 so that egss 53 and 54
yield a set of (2n - n,) equations which must oe satisfied by the
Zeros and-poles of Pi. 1In addition, F4 must iﬁclude tﬁe factor
n

(O = 2w)(2=20)
K Owa) |

2.§ D;ééﬁé;éte Zeros of ﬂréﬁsﬁiééion - Tt was pointed out in Sec. 2.6
that a zér0 5f transmigéionvof g oﬁ thé{imaginary axis may effec-
tively comblne With 4 similar zero of N" in such a way that the
multiplicity of the zero of i -becomes one less than the sum of the
multiplicities of the zeros_of 1 and t" at the same 901nt. This
situation arises when the denominator (1 ;,fa' fl”) in eq. 27 has a
simple zero 001n01dent with the zero of t!'. In ofher words, the
reflection coefficient_ﬁ " st be the rec1nrocal of.P ! and,
therefore, the impedances in the two directions measured at the
conmon ﬁéﬁninals of W amd N" at that frecuenCJ must be pure reac—
fances with equal mapnlthdes and ooﬂos*te sggns.

Twousimnle examples are shown in Fig. 2.8 for the case of a
zero at 1nf1n1ty (a) and a zero at A= 3 wy (b). It i$ clear from
hy51cal DOlnt of v1eW'that 1n the se exsmnles the zeros of trans-
mission of N!' ard NV will combine in suech a way that the (2n - l)th
derlvatxve of f’l (n is the multiplicity of the zero of t1) will
depend on NW as well as on N! and, tberefore, will not be eoual to
the correspénding derivativé'of f's Eqe 27 shows that this is true

:fiﬁ”tﬁe-genéral”Céée of‘a*degenerategzerc of transmission., The ex~-

ample of Fig. 2.8 indicates, however,rthat the change of the deriva-

tive of the input reflection coefficient wnen N" is comnected to X!







mustatékeeplace;in‘a>pa§%%6ular direction. - For instance, in the
case of Figs 2,8 (&) the fact that the total shunt dépacitéhce
Cy#+ GZVisvlarger~than~the'capacitance in Wt alone«mgst sbmehow
festrict‘theipGSSible change of the behavio}‘Of the input reflse<
tion coefficient at infinity,

‘- This situatien can.be'investigéted»by cohsideringfthe-€2nwa l)th
derivative of eq. 30, at the frequency J«buhere b1 and, ‘therefore,
zy4' ‘have a zero of multiplicity n. One obtains tﬁen, neglecting
the terms that w1l obvioudy vanish,

aAn=-/
"2,

A(j‘w)z""! ,

. n- ’ - F 3
<7 | @l () —| (55)
& () 2! | Gese)TG e 2

Since (222'-p Zl“) has a sinple zsro at a’= wy,bthe last term of

55’isﬁindeférmiﬂste and must be computed by taking the ratioc of

: ) VAR 4 z
——‘b‘— i’_’____—. - (}/fl)
2i@ Ga ey | % Er g
I R LTS

(56)

wgwy

and

2l r2)
TaGe) o, . : . (57)

2y

It can be seen by inspection ‘that; since Zﬁ2'isrimaginary on the
imaginary axis and has a zero of order n at e = s, ; the expression

(56) ‘is positive real when n is even, and negative real when n is




In regard to (57). one observes that 2" is imaginary for .

- je and its first derivative at A = jew, is independent of the

resistive load connected to the output tenninals on ﬁ", sincgnpﬁ

has a.zevo at that point. It follows that, for our purposes, %"
ﬁehgyes‘gg a reactance funcﬁion,:and, therefo:e4;ha§:a p@sitive éggl
slope.at A z jwy. Since zy,' is actually a reactance function,
thefwholg ez;mgssion 57imust Be»positiye‘real. Cne can then con-
clude that the (2n - l»)th derivative of:_\_:Zl‘is always inereased by
the last term in (55} when n is odd and is always Qec%eased when

n is even. On the other hand

é"vav.h-’ . 4&/—/—
40“’)1“-' fl

and the only term in (58) that irwolves the (2n —}l)th derivative

of 7 is !

X3 a4z L
+ 2 d.Gw);l' w;‘o _ (59)

A
5i¥§5-212 is a negative real quantity.fog%l ;_jéey,‘the exgression

58 and, therefore, the value of the real coeffieient A;;fT ] is
'always inereased by the presence of N" when n is odd, and is always
decreased when n is even. The physicél significanee of this restiric-
tion and its practical importance will become clear in the next‘

chapter.
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2.10 Necessary and sufficient conditions for the physical realimabilit

of Il - The analysis carried out in the.prééeding sections has led
ﬁé"the’fbﬁmﬂlatiOn of a mumber of nécessary éonditions that must
b5 satistied by(ﬁhe funetions representing the network N in order
to be physically realizable by means of thé given network Nt and the
arbitrary network N conneg%ed ih cascade. These neécessary condi-
tions dre’ suimarized beléw for convenience.
" With reference to Fig. 2.6 all the zeros of t', that is, the
zeros of transmission of the given hetwork NI, which lie in the right
Half of the A plane or on the imaginary axis”mnst appear as zeros of
t, thét'is,“as zeros of transmission of N, with at least the sémé
mu;tipliéiﬁy as'in‘t'; Moreover, a éertain number of coefficients
cfjthe'Téyior series for 1n _L_ about each of the zeros of ©ran&iis-—
sioﬁ meritioned above must be ééUal'to the corresponding coeffieients
for 1n _l;', or, in other words, must be independent of NY, The
pesilt inp vumbet of Peal quantities independent of N' is equal to
the multiplicity of the corresponding zero of transmission, in the
case of a gzero. . located at the origin or at infinity'(éqs. 33
and 39), to twice the multiplicipy in the case of a pairvof Zeros
on either the imaginary or the real gxis'(eqs.‘AL and A9L'to four
times the multipliecity in the case of a qﬁadruple% of complex
Zeros (éq; 52), _ . e

If a pair of zeros of ! at -Aand = X, in the left half plane
is ﬁartially or totally eliminated by a pair of poles of t! of
multiplicity n, located at the same points, a number 2n0 of these

real cquantities independent of N" are missing. In this case,




hle

hoviever, an eguivalent -munber of conditions are imposed by the . .

fact that s, must have a pair of poles of multiplicity n, at —A.

and ~ A, and, therefore, a pair of zeros with the same multiplicity
at )L,and.:i;, The case of a degenerate zero on the imaginary-axis
dsesﬁnot,lead.t91any special difficulty, as pointed_out in Sec. Z.9.
The tqtal nunber .of comitiéhs Amposed by ﬁl
to those stated above) is thus equal, in allféases, to the sum of

' and p. (in addition

the multiplieities of qll the zeros of transmission ofvp',,tbatﬁis,
to m, as'dsfined in Sec. 2.7. .These conditions can be show"l to be
independent as follows.,.
1t was pointed out in Sec. 2.5, that any twaterminal—gair_;eac-
tive network can be constructed as a chéin of sections each repre-
senting a simple zere of transmi§§§on, ; pair of zeros, or a guad-
ruplet of geros; zeros of multiplicity n are.represented by n .
gimilar segtions. The order in which thevsectiéps,represenpingvdif-
_ ferent zeros are connec;ediis\immaterial as far as the physical
realdzability of the network is concermed. One can then divide
ﬁhe network in two separate parts in cascade, of which the second
ene centains.all and only the_sections_represgnting a paxticnlar
zero of transmission. vThese t%o parts could be“identifggdg.for the
purpese of this discussion, with N! and NW of Figi 2.6. It follows
that all the coefficients consideféd‘abov@; ;high result fromzderiva-
tives of In el— evaluated at the zeros of transmission represented
1

by E' are independent of tihe coefficients resulting from derivatives
of lﬁ -

! . S
thus, that coeflicients related to”differenp_zerps of transmission

evaluated at the zero represented by L". It can be concluded,



45

(not of ﬁh@«same pair or guadruplet) are independent. A Similar

@r@cedure can be applied to the coefficients resulting from sue=

cessive derivetives at a zero of multiplicity n. In facht, the coef-

ficients resulting from the first 2k - 1 derivativés~depend only

on-the £irst k'seetion. The zeros and poles of the reflection coef-

ficlent  which result from the elimination of zeros of transmission

in the left half plane, can be taken out first in the form of all

pass sections. Finally, the elements of the kth:section of a ‘par=

tieular zero canvbe used to vary-independently the coeffiecients -

resulting frem the two corresponding derivatives., In fact a sechion

of -type A or B.corresponds to one coefficient.(A2k ; 1), a seetion

of type C corfesponds to two coefficients (AZR - l,and‘AZk _ 5 or

Bop - 2), a-gection of type D corresponds to four coefficients

(Azk - 13 BZK - l, AZk -0 ng'_-2)a It was pOinted out in Sec.

2.7»thaﬁ each»of the se sectibng has a number of elements Just equal

to the number of correspording coefficients plus the rumber of real

quantities (one or twe) reguired to locaté the zéro of transmission

represented by ihe section. One can show in each of the four cases

by means of simple examples that the A's and B's can actually be

varied inderendently by readjusting the values of the elements of

the corresponding section.

It can be cencluded, therefore, that the conditions for the

physical realizability of the network N (when II' is given) which dre

stated above are independent of one another. On the obther hand,

these corditions are equal in number to the eléments of the network

N and, therefore, specify complet&ly N' apart from the ratio of an




idealk transformer and from the sign of the reflection eoefi'icierrt.
fla Which simply differentiates N! from the reciproca.l network.
To prove that these condltlons of ph,/s:Lcal reallzablllty are |
suff:.clent as well as necessary one needs only to observe that E»
‘the network I\I defined by‘ 'ﬁl can be constructed in two parts, the‘;
first,.: of ﬁhich contains all the sections representing the zeros of
t'. If the correct sign of fl is used, this flrs’f vart, with an
é.iﬁpropriate ideal transformer at the output terminals can be identi-
fied with the given network N!', because ail the sectiox__ls'contained
in it afe compleﬁely specifiea by the conditions of phveicel reali-
zab:x_llty imposed on /’l, which on t.he other hand speeify comnletely
N’.b The second mart of the network is certainly physically reali-~
zeble because it cons_iets of the sections representing 2ll the zeros
of transmission of N which a.fe not geres of Nt,

In practice, it is not necessary to determine the elements of the
netﬁork'M ! before proceeding to the synthesis ‘of‘ N"s The reflectien
coeffieiéﬁt P 1" can be determined from ,°,, /'1':'4./’2.,' and tt-
(vhich are known) by means of eg. 27. | -v ‘7

s
Thi»s»eciuation could.be used to prove directly that the ahkove condi«;
'thnS of physical realizability are sufficient as well as necessary;

if ore could sHow that, when these eonditions are satlsfled by ﬁl,

/_/a l”/ is smaller than one on the imaginary axis and all the poles

of ﬁ 1" lie in the left half ple.ne. Such a proof, however, could




not be obtained by the auvthor up to this time.

ok

Flnal remarks - Tﬂe prﬂcedln“ sections Present a complete solution

to the DhVSlcal rﬂallzabllltv proolew as staued at the end of bec.
2.1; Th“s nroolem Was showu to be equlvalenu to the flrst Par? of
the mstchlng promlnm as stated at the beginning of the same sectlon.
However, a few remnrhs should be made in this connection for the
sake of compléteness and clarity.

In a practicél matching”problem, the fuﬁcti@né /él and t! are‘
ngnn 1ﬁd1rect 1y, . through the rnflectlon CO@IIiClenE /°2' which in

turn is sp901f1ed bv the load 1mnedance ZL’ normallzed wlt respec§

to the scurce res;stance.

ZL -1

£2' 2731 | | (61)

The network N', and, ﬁherefore, )01' and t1 are completely specified
by‘,ﬂzf, apar£ from an arbitrary all-pass ﬁetwork comected to ter-
minals (1) of ¥'. This arbitrary all-pass network, hoﬁever, can be
neglected; because it does not produce any reflection by itself nor
does it changelthe phase of any other reflection when H'! is driven
from terminals (2). Therefore, for our purposes, H! is COﬂpleuely
specified by'ZL, On the other hand, one may observe that the reflec—
tion coefficient which is measured in an actual matehing problem is.
not P but P since the source is comected to terminals 2 of N.

This fact, however, is immaterial since only the magnitude of ) is




Qf importance in most cases and ‘fl‘ - \/:2\ for A= je,
HOreove;Hif:ona»wgrg inte;gstgd_in the whole funetion 492, it

would be a simp;e:maipeynﬁglexpress the conditions of physical
realizability in terms of the zeros and poles of 1923 sinee they ars
%éﬁ&ﬁgimbljfféiéﬁéd'to the corfé5ponding singularities of J5i as
indicated in Sec. 2.2. |
bﬂﬂTﬂé;fﬁhdamentél éritiéism £hat can be made of the resﬁltsvobtained
So far is that the conditions of physical realizability, in the form
presented in this chapter, give no indication of the tolerance of
match that must be al lowed for a given bendwidth. It is the purpose
of thé‘néxi chapﬁer to express these conditions of physical realizabi-
lity in.terms.of the behavior of the reflection coefficient on the
imaginafy axis, that is, at real frequencies. The relations obtained
will point out cléarly;the hature of tﬁe iimitations ﬁh the toler-

ance énd on the bandwidth. 




CHAPTER III

Limitations on the Behavior of the Refléction

' Coefficient at Real Freguencies

3l Ceneral consideratlons - ths chapter is devoted to the solutlon

oi‘ the second part of the mtchlng problem stated in Sec. l 5.
dThe approach to be followed is based on the ’c.ransfomatlon of ﬁhe
condltlons of physical realizability, derived in the precedlng
chanter, 1nto a set of relations suitable for the determ:.natlon
of the theoretical limitations on the bandwidth of matech and én
the minimum tolerance.

The first requirémentv that thes‘é relations must meéﬁ in drderv
to be u‘sevf‘vu_'!. in a practical problem is that they should invélve
the behavier of th“e'/‘m’a.gﬁd.tude df the reflection coefficient on
the imgjr_nary‘ axis of f.he A plane, that is, over ithe resal free
quency spectrum. The limitabion found by Bode satisfies this
condition, a.nd, ﬁlrthemoré, indicates that, in general, integral
rﬂlatlons involving ln ~— ’ l might be quite appropriate i"br the.
desired purpose. Cne obslerves., on the other ha.nd, that ’the condl—
tions pfi iqh rsiecal rnallzaolil_i.tJ derived in tne preceding chapuer
irlvolve" t,he derivatives of 1n _E.é_ at points in the right half

¥
of the A plane or on the imaginary axis. These two facts indi-

eate that a contour integration of the function 1n '}]5-:" might be
. ; . g

the appropriate way of obtaining relations of the'type desired,

The logical contour of integration for this purpose is that formed

by the :Lmaglnary axis and a semlc:chle in the flgnt half plane
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of radius approdehing infinity. As a matter of fact this is just
the “procedure followed by Bode in deriving his integral relation.
i mathematical dif I"'j;culty ‘arises as soon as one considers the
details of the procedure suzgested above, namely that tiie funé-
tion 1n =i has logapithmic singularities within the region en- -

!
¢losed by the contour of integration whenever s has zeros in the

right half of the )} plane. One could, of course, modify the con-
tour of integration so as to exclude the singular poimnts and to
prevent it‘: from crossing any branch ‘line., A4 much simpler pro-
cedure is again sugzgested by Bode's works Since it is expected
that the fimal integral will involve the magnitude of /% over the
imaginary axis, and not its phase (the phase is an odd function

of w ) one czn subsbitute for p g function £, .wh-ich has the same
magnitode a SP, over the 'imaginar‘y*axis but whose zeros sre all

s obleined from 5

}-Ja

in the feft half plane. This new function
by simply moving all the zeros that lie in the*z'ifght half plane
to symmebtrical locations in the left half plane. This process
does not change the ragnitude of the function over ‘the imaginary
axis since it is eguivalent to multiplying 8 by faetors of the
type _’)..Z__é:g whose magnitude on the imaginary axis is equal to
A
one,

The ‘zeres of 5, on the imsginary axis are not elimirated by the
above procedure. They will be cénsidered; however, as limiting
cases of zeros located in the left half plane; very close to the

imaginary axis. The use of guch an artifice can be justified,




or better a.vc:l_aed, By followmv a correct mabhematical pracedure.
On tl e other hand, tﬁe flnal result s themselves will provide a
good justification for this artifiece, and, in any case, it will
b-éi_geen that the - zeros of £, must never be placed on the imagirary
axis in an optimum design. In view of these facts 1t seems reason-
able to use such an artifice'in order to prevent "zpathe;&é,tical de~
tails from obscufing the maln is'sﬁe. | | |
Another difficulty may arise from the fact that the imaginary
part of ln ..:.l_. Jumps __from +Yo - W‘when the real axis is crossed,
- A :.s nega}:ilw}e at thé origin. To aveoid fhis trouble it is suf-
ficient to make the function £ poéitive at the origin by changing
it§ sign when so required. The function In 1. is then analytic

o
over the whole right half plane and on the imaginary axis and can

-be used in the desired contour integrations without further dif-
ficulties,

Using the function 1n 1 in the contour integrations instead

o

of ln j]:' w:ill result in relations involving thg derivatives of

ax ] . .

ln. - :Lnstead of the derivatives of ln -_}T in terms of which
-] [

the conditions of physical realizability are expressed. However,
thé, two sets of derivatives ard, therefore, the co;rrespcnding
coefficients Ap's and Bk's are very simply related through their

expressions in terms of the zeros and poles of ‘& and 4. Let
Fk and Gy be the coefficients for 2, corresponding, respectively,
to the coefflclents Ak and Bk for £, and let N, be a zero of .P
in the right half plane. One obtains from egs.237, 40, 46, 47,

50, 51, 53 and 54, noting that the zeros occur in conjugate pairs,
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The following four sections will be devoted to the derivation
1
(7]

of appropriste equations relating the behavior of 1ln on

the imaginary axis to the new Fy and Gy coefficients.

3.2 Multiple zero of_ fbra.nsmission at infinity - The coefficients
reéulting from a multiple zeroiof transmission at infinity will

be considered first. The first equation, involving Fl is ob-

tained by integrating the function ln }, over the contour indi-

: o _ .
cated in Fig. 3.1, with the radius r of ‘the semicircle approaching

infinity. " Since the real part of 1n -_%_- is an even function of

[-)

& on the imaginakry axis, Tfé_hile £he imaginarjr part is an odd

funetion, one obtains for the integral Svexj the imaginary axis:

Jeo -y p -
n 2 d(jw) =2j | InoLk_dw =2j | 1n——=—-dew (10)
5 : ’f-; i / _. /f,/- |
e o ° .

To integrate over the semicircle one observes first that ln _L_
' °

behaves at infinity as FT 1, Tet then .

. A

)zr;l*' - an

from which one obtains over the semicircle

dA = jrei¥a Yy (12)

~

When r approaches infinity, the integral over the semicircle be-

COmes .




Figure 3.1 - Contour of integration in the A-plane .




The intégrgl;avéf*the whole contour must be zero because 1ln .. =
. EN # ':h ) E -
is analytic at all points of the right half plane. Therefore, one

obteins from egs.. 10 and 13

ri (1‘&)
This eguatioh is identical to that obtained by Bode. A simple
egmputatiqnﬁwill showr that; when the first element of NV is a
shunt, capacitance, one-has
- ] 2 ' -

where G is the valwe of the capacitance normalized with respect
to the terminating resistance,
.. .. N s . o
To obtain a similar equation involving Ag one must select an.

oy

integrand which behaves at infinity as AB i + The proper integrand

is then
22 1:1%-1:-‘;% | - (18)

Integrating over the imaginary axis yields

4 ) J.'G.- . ‘ Y
2 1. 1 oo ] . . R -
~ed™ |In == + fy =] d{ja) = 2] [ In == d (17)
/ [ o LI | [4] |
..J'o- o




Weterthat: F': is eliminated from the result heganse the-funetion

'

je By is odds The function (16) behaves at infinity as~

=1
FB 5

)I

The integration over the semieirele ylelds then

R T
PR BT S g} dA =5 | Fo dp = - §wFT (19)
Z, 13 - 3 ¥ = 3
A

Since the integrand has no singularities in the right half plane

one obtainsy

The equation for the (2k + l)t coefficient is derived in a

similar manner by integrating the function

N

+
1=

».'ik_]_ .
2k l - L =] —(21"'1)
2 ,‘].n_- T OF,. . AT ’ (21)

One obt:a.ins_,& therefore, in the general case:

o

2k 1 k‘-n“ (L k | 2k*1
™ lnggr dw= (’1) T = (1) A 2k+l Z-A

R+l T

’ 7 ’ T {?3
o X . _Lx\g!‘

3.3 ylultlple zaro of transmls sion at the origin -~ The equations per-

talnlng to & *nultlple zero of trans;m.ss:.on at the origin will be
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- derived next. To obtain these equat.ions-" é. functon mist be used
which has an appmpriate singularity at the origin, and whose even
part on the imaginary axis is proportiomal t6 In -j];—- + DBecause

[-]

of the singularity at the origin the contour of integration must

be modified as shown in Fig. 3.2. Consider then the function

. o
FEA )

When A approaches infinity, this }functi oti approaches zerc as a
negative power of A equal, at leést, to twoa I"c;rfollows that the
integral over the semicirecle or i-a.d'ius approaching infinity ig

: F
zero, When A approaches zero the functicn (23) behaves as L

A

Therefore, the integral over the semicircle around the origin

vields, when the radius r appmachés ZETro,

O T o
Frogoo flot e

T

2
For the integral over the imaginary axis one obtdins’

-ja >0 oo ‘ -

- 1l aGe)+ | - ig ln.%d(ja:') = =23 [ L. ln—j‘;—dw(ZE)
w2 o w w? , ’I
i R : Jdu_)o

Since the whole contour integral must be equal to zero, one ob-

tains from egs. 2/ and 25

1 1l T © 7N 0 ——
—= 1n de = LF = Ay - 2 A s (26)
w2 /f;” 2 1-%2 1 % :




Figure 3,2 ~ Contour of integration im the A=plane




Consider next the contour integral of the function

2,1
A4 Lo

integral over the imaginary axis will yield

a0

25 2 m_1 _deo
wh [f,(

For very small velues of A the integrand behaves as

1 o S
1+ 3 Fs
‘33 . A

Integrating over ﬁhe semicirele about the origin yields

. -j2¥
vl,,] 1 3 s <2 e \ o ~
Lo /o
s -
_f.Fo Sin‘ﬂ‘+ .,ﬂpﬁ _ "rrFo
= Jl_;g-_ J T3 =J 3

and one obtains finally
| G - -
L B l (8] =2
Ll e T TS 2 T
| BN 5] 23572873 T
: / |

Operating in a similar manner eon the function

574

The dntegral over the large semicirele will still vanish and the

(27)

(28)




yields the general eqguation

[y -] .
1 4p 1 K R _ kT
w2(k+1) n/_P'( deo = ( 1) 3 .1"2k+1 = ( l? 2
[Azm T T A (31)

34 Pair of conjugate zeros of transmission on the imaginary axis -

Consider now a pair of zeros of transmissicn with arbitrary il

One must use as integrand, im this

fiplicity, located at 2 jeu.
ecase, a function whiech ha,é po_leé at * jew, and ﬁlcse even part

is proportional to ln on the imaginary axis. The singplest;

L
&
function of this type is:

1 1 1 9=V 1l
= " Y s Sw, = In
A= Jey A+ Joy L )2 4%2 £, (32)

The contour of integration must ibe modified according;Ly to avoid
ﬁhe singular points as shown in.Fig. 323, |

The integral of 32 over -the 1érge semicircle vanishes when
the rad}ps”ayp;roacheg Anfinity, j}_;_st,as’_ in the ease treated in
the preceding section. In the vieinity of the point Jw,, the
)™ |

integrand behaves as jG;” () - jeo,) . Letting

X -jey = ret ¥ (33)




in the A-plane

Pigure 3,3 -~ Contour of integration



orié has over the semicircle of radius r

The intesra) over this semieircle becomes then ,
A
L7
G, ¥ dp =~ TG
T
T2

The integral over the semicircle about the point -3« yields
the same result since the function hehaves in the vieinity of+-

that’ r»olnt as -( 3G ¥ )( A+ §eoy) y T‘h:.e" integral over .th%;

1mag1nary ax1s*w1ll 1nv01ve only the even part of the 1ﬂLegrand,

as in the rrevious cases, yielding thus the value

e, [ 1 1l _ge | (36)
i By 1 7] |

Since the whole contour integral must be equal to zero, one ob~-

tains from 35 and 36

- a0
= 1n &) =-% 6

(——)

T

: “', a N
To derive the ecuation involving ¥y + one integrates over the

same contour the funetion

. ! In2--222 - 1L (309)
AT TR B T T !




The.integral over the large semicircle vanishes again, and the

integral over the imaginary axis yields:

(39)

in the vieinity of the ﬁbint jiép, the integrand behaves as
B (A - 32 YA - 32, )1, The integral over the

sémicirele becomes then:

&

One obtains in & similar manner for the integral over the semi~

féircle_about the cdnjugate point = jaip

wr 7
'z -
¥ Y

S—dys Fy ¥z

(41)

Tt will be noted that the terms in egs. 40 and 41 which are pro-= .
portional 1 have opposite signs, so that the contributicen of

both semicircles together remains finite when r approaches zerc.




One obtains finally from eqs 39, 40 and Al

l+(z,-;)2 ' ER fd o . —yr -~--F“)‘) (42)
: (o) =5 vl
__( )] /};/ 2‘ v

The following equaticns are derived in a similar mamner by opera-

ting on functions with higher order poles. One obtains successively

In —=— d(Z>) ?%":Gz (43)

and in general ‘ ,

aj, 1 . k+lor 2k ¥
g dx = (1) W, G (45)
O 7
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A , 2k+l k+l
"g“b__ 1 (1 +x) + (1 - X)2 (48)
2k’ = o2 i o]
(1 - =y
W T 2(kA o 2(k+
o =10 x) ( )_,. (1 - %) ( L (49)
e : 5 2(k+1)
: (1 -x%

" The first’sixahWeighing functions! g;: and ngJ1 are plotted in

Figa 3-[;,0

345

; grasrof trénsmission on the real axis = In deriving the-eQnations
i}%;uiting from & zerc of transmi.ssion atai,dn the real axis, one
o céﬁQﬁse“directly Cauchy's integral formula, in 9onjunction with

£he contour of integration shovm in Fig. 3.1. fﬁ;}%irﬁﬁﬁint:gfan&ﬁ?,#

tales the form

1 1 L1 275 1
_ - ln 3+ = .
A=y Atay % CR-2 R - (59)

The integral over the semicircle vanishes when the radius approaches

infinity, and the integral over the imaginary axis yields

Shey [ A1 L_ae | (51)

s

The residue of the pole at the point e, is F, s It follows that.
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ing functions for a zers of transmission at jw,,

Figure 3.4 = Weigh



1

a

2 2

-3 )

} — + j'l’ 5 . 5 55 1n — (53)
(A-—aj;) (}\_’aj) 2, ()2 \ ’ﬁ,, 53)
\Oné obtains'by meaﬁé of Cauchy's integral formula for the first
‘éerivgtive Qf an analjtic function

oo

1-("’ 2

[1+( J /dfﬂ’z

The other equations can be derived in a similar manner using
funcétions with higher order poles atgz,. The general form of

these equations is:

%, 1 s (KT __ kg% \
£ 1n /‘P'l ax = (-1)" o3, Fy (55)
o : ’
where

X = (56)
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Figure s.5 - Weighing functions for a zero of transmission at Oy
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éh

and:- .

o 1 (1L + jx) 1 -
s -2 X Xz);é JK){ (57)

The first 51x welghlng functlons fk -are plotted in Fig. 3.5.

fPair of conjugate Zeros of transmission in the right half plane -~

The case of a palr of congusane zeros of trapsm1551on in tne
rlwht balf olane at A and ) 1s treated Just as the case of a

Zero on the real axis, with the only difference that there are

two conJugate poles within the contour of integration. The first

D

equatlen is obtalned by 1ntegrat1nc the furction

( 1 - 1 +( 1 - 1 n_]'_. =
IR R—Au /\+"y,. B A‘Ap )1');1) lﬁo

2 Ay 220 1n -2 )( -;\‘2)+:i ()2 /‘ 1n 1

Lz a2 2R %A - X, >+pu‘+ 5

—_—

The residues of the integrand at)L'and /% are, respectively,

ﬁEO_P 3Go and F, - 3G . One has then:

J[—l"‘ x ] 1n —= dx = EF}'U (59)
. o
1—2(1—2J~)x + x4 I'fl’

where
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- The zvéecoﬁdweqﬁatio'ﬁ is derived by integrating the furiction

Ca M) - AR g

AF=A »(",’)y )+l,\”’ )

Tn this case, the residues of the integrand at A, and A, are

re%;aé‘etive:ly; Fo+ JG, and ~Fy+ iG4+ One obtains then:

y g 4 1-‘r~ (l—xz) 1in l —dx=-X¢G < (62)
f12(-26 9% | BT B
o LB ‘

The next tWo ecquations are derived by means of the funetions:

(o1 e gL — 2 il D)
[(“ -’ ,__“—*""u)z) (-3 (AJ,,))' "

)_(‘(A -2 )2 (,\m,/)z) ((a.-'a;>2 (AJ,,)Q)) =

& B )

By proceeding in the same mannmer one obtains

(1-262) - red286%2 - QadD b 14
(1 - 261-242)x%4 M2 &

2 E] A,]Ff” (65)




2{: 1—/ [i+ 2(1-2 89)x* -

A (1 - 2(1—9 Jz)x + xl")z
“ "

D
=
~—
~
[}

. k oA
—-F}— 2t et '('l) 'g‘/)“!zk v
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e
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&
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{71)

* [[J' +3(K-Jl—[z]_(2k*l) _[- S+ j{x+ Y1~ Jzﬂ -(2}“’13J

(1" Ef+J(X+fl——T] ) [J+J(X f’_‘]’d(k U

| (72)“
(¢ ' y
} { J.;,](X—))l-J‘J 4(%(-‘1) J+J(JC+ flh“ ]—Q(k{ l |

The first three weighing functions of the f and g type are plotted
i gs. 3.6 to 3.11 for = 0.5 and 4 = 0.05.
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3.7 fI”Féfpretation'of‘the results when.éllithe'Zerosfof,transmiSSiOn'

of N! are at infinity - The conditions of physical realizability

‘have been transformed, in the preceding sections, into equations

involving the integral over the frequency spectrum of the return

L ) miltiplied by some weighing function, the & and

loss (In

B coefficiéhtsrand the zeros of J}that lie in the right half

plane. The following sections will be devoted to the physical

intefpreigtfbn of these equations awd for the purpose of deter-

mining the theoretical limitations on the bandwidth ard on the

tolerance of match.

Owiﬁébfé ihe complekity of ﬁhe genéfal problem, the special

case of a network N!' having all the zeros of transmission at

infinity will be COﬁsidered first, Itiwill be remembered that

& network of this type can always be realized as a lowlpass

ladder structure of the type shown in Fig. 3.12, or as its dual

(starting with a shunt capacitance). The coefficient Kz'depends

on 14 alene, K; depends on Ll and Cz, A;Ddepends on‘Ll, 82 and

Ig,ﬁand so forths: The eqpa%ionsnderived=in Secs 332 are rewrit-

ten below for converiience.




Figure 3.13 - Optimum frequency response
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(75)

The ) 's are the Zeros of S’that lle in the r&ght nalf plane.

The left hand 51de of the first equatlon renresents the area

under the eurve ln ’-i i versus frequency. The coefficient
; A
Al,is;fixed bV'tbe flrst elemernt Ll of the given network [,

The )‘ ‘s are arbltrary quaﬂtltles subgect only to two resﬁric—
tious, namely, that their real parts mugt be positive and that
they must be presént in conjugaﬁe pairs. It folleﬁs that thev
sum%atian.in éq. 73 is élways real and positivé S0 thatiﬁz’sets
an upper limit to the area represented bﬁ'ihe integral. Bode

argued, in this regard, that the best possible ut 111zat10n of the

L
= _
the freguency spectrum. This situation is illustrated for the

area available is obtained when In is kept comstant over
TOW—Uass case in ¥ig. 3. ?3 If wis the desired bandwidth

(w =<3 in Fig. 3,13) the best possible tolerance is given by:

.

n ! | = L AT | | | (76)

This optimum-tolerance can be -approached indefinitely when Ll
is the only element of the given network WN', that is, when éq;;?B“
is the only eguation to be satisfied. Hoﬁéver, if zore elements
are present in N1, all thé corresponding equations will have to*

be satisfied simﬁltaneously. It is evident that the funetion
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in L which yields the best tolerance will not, in general,

meet these rsquirements, Suppose, for instance,.that N! has .

two elements; L. and 62, ’_c.hat is, has a zere of. ‘tran,smi;és«ion ef

1
multiplicity eQual to two. In this case eds. 73 and 7L mast,
: the
be satisfied simultaneously. If,rectangular funection which :
yields the optimum tolerance is used for 1n ——-dn eg Thy
;o : 77 '
the value of the integral may be larger or smaller than
in generat .

= g.&g_.(A"B"wjv.snnegatj,ve), If it is swaller, it is-s simple mat-

ter to.,x}eduqa the”r_nagnimde of A':;', In fact it was found in Sec.
2.10 that in the case of a degeneraté zero of transmission_the.
v*a.]iue of A’; can be :i'fr'lcreasedé that 1s y its magﬁitude can be de~": ;
creased. Physically, this operation amounts to starting the
matehing nebwork W ;a;ith a shﬁgt capabitance which has the effect
of increasiﬁg'i:he' {;a_lue ‘of the cabat’:itance G2' in N', In other
words, when the integral in eq. 7h is smaller than - 72_".' ﬁf; » the
capacitance Cp is smaller than the capacitance that would have te
b.e placed : ;'a_;c;_rpss,:’g.he terminals of N" to obtain the opbimwm mabch
if ,I#l._wgre the only eianent of N'.

o .T.j.' the value of the inbegral :Ln ed. 7L is . larger -than —%"Au

3 b

that is, if C, is too large, the ‘optirm}.m tolerance debermined .

2
o> ‘ P
by Al camot be reached, even theoretically. One observes, then,

< that the value of the sumation in eg. 74 can be either positive
or negative. It follows that the magnitude of A? can be increased

by introducing appropriate zeros of P,in the right half plane.

These zeros, however, reduce necessarily the value of .A&f so that




is 8

the area represented byt.he integral.in eq. 4 is:inereased-at .

the --;,expe?lse of the ‘area represented b$r the integra—l. il:g.;;eﬁq’.} 734

The. optimm behavior for 1n ’ ?; i is, in -any case, of the ree= .,

tangular type.

Using the case of Fig. 3.13 as an example, let the maximmum

value of 1n /}1, f be equal to%? K. Tt will be shown later that )
such an ideal low-pass behavior can be approached in the limit
when the number of element's in the matching network approaches .-

infinity. One obtains from eqs. 73 and TL -

“ JBK = —313;”" b2 ZRB | | ‘(77')
R Tl i - L

The /\ri‘s mst be selected in such a 'way as to maximize the value

of X for given e, A7 and A7, It will be observed, first of

‘ . 3= Ay
all, that £ can be rmltiplied by any factor of the type ; ‘Tr
+
¢ : r.
without changing the value of 1ln }: on the imaginary axis.
£
The behavior of 1ln L and the values of the pi'S can thus

| [ 5]
be controlled independently.

One observes next that, since the summation in eg. 77 umst be
made positive, both equations can be ‘sutisfied by using a single
zero locabted at some point )r = of the positive real axis.

On the other hand, maximizing K means making ZA?,I as large as
_ i



TLe.

3

pogsible while keeping Z Api 28 small as possible. Noreover,
if @.e)B > 0, @.ek , and Z__-“,ev)gi < ('Za}i,)g’. It

""r:.

follows that the masdmam va.lue of K is obtalned by us:anr a smgle

zero located at o~_ 2 Egs. 76 and 77 become then:

«wp K= &7 - 204 (78) ff
we” K = 35+ 200 I ()

Ellmnatlng o~ and solving tne resultlng tuhtc ylelds the maxi-

mum tneoretlca.l value of B as a functlon of the cut-off’ frEquenc T
1

_, ey .
341.4 as a fmctlon of =i A . for different values of the parameter

1 o

- —-3— The cu’rve K = __él fbrms the boundary of the regien in
(zfi“’)3 e, :

wh.;ch the ontmum de ign is obtained by simply inereasing the

-

‘dﬂ .The mam_rmnn pass—band value of ln is plo‘med in Fig.

value of the second element. .

When the retwork W' consists of three or more elemenits the

proBlem of determinihé, the actua.l \}alue of the optimum tolerance

of mateh becomes much more dlfllcult and no general solu’slcn could
bg obtained. However , a few general considerations can be made

22

in this regard. In the first place, the rectangular form of fre-

7

all cases, since it ;c_i_rovides the best utilization of the -areas

quency behavior for In vields the optimum tolerance in

repr@sented bv the successive integrals. In the case of a pass-

ba.nd exbendlng from ZETO fI‘che"le to @ ,‘t‘ne equations to be
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satisfied take the general form:

¢ K = (-1) [(2k+l)£\.2k+l 2 ; /Iri ] (e0)

The parameter k in the last equation off the set is eqgual to the "
Hifiiber of elemerts in the network NV, It seems reascnable to-
expect that the nimber of A ;'s for which K is & maximm will
be equal, in general, to the minimm number of ) .!s required
for the Holutiom'of the set -of equations. The reﬁséni‘rig followed
in the case of two ‘elenents, however, cou1d not e extended -
rigorously to- the case of n elements: Moreover the solution of
& given set of n equations; similar to ‘eq. 80, with a number of

A‘ri"”‘s egual to (n=l), may yield values of the Arils with a
negative resl part, Such a solutitn would not be acéeptﬁbljébe—
cduse the A"'r“i' s must represent zéros in right half :p‘iaﬁel’.« In
this case more :.Ari’s would have to be used, and their values
would have to be deﬁemined by maximizing the Va.iue of Ke

The ‘A3i+l'-:'ﬁn' the last equation of any given set can be ¢hanged,

put only in one direction, by corbining one zero of transmission
of N'! with ‘a similar zero of transmission of N, It will be ob-
»sez”-véd", on the basis .of the results obtained :Ln See, 249, that
the direction in which A;‘Z';“’i can be changed is in all cases the
one which reﬂ'lté in a decrease of the area of the corresponding
integral. It follows that one must determine first the optimum
tolerance that can be obtained neglecting the last element of

the network, as it was done in the case of two elemerts, to
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check whetherﬁhe same tolerance coukd be obtaj.ned by simply 1n-
ereasing the value of this last eriement.‘ -

It is advisable, in general, before proé:,eed_ing,to. any numerical
.com}iautafqianv of the optimum telerance, to ;det)_emine the maximum ..
value of K from the first equation alone, and substitute it in the
left ::ha,nd. side.of the other eguations. This procedure will in- |
dlcate whether each particular AZk Kl is too large or too.small and
how much the rlght ha.nd s_de of the correspondlng equat:.on must |
be chanﬁred by means of the A 's., It w:Lll be nf‘ted, in thls res-
mec’o, that the magn:.tudes of sone of the A's may be too large, |

and t’nat it is necessar;y then to "sp’end" part of the area repreé-

séﬂted by.A'f in order to decrease":the value of the right hand

side of the corre'sponding equations.

When the numer:.cal computation of the opt.lmum tolerance be-
comes so laborlous as to e impractical, ore can determine without
dlfflculty an upper llmlt to the value of K (whic hy however, can—
not be anproached) by computing the ma.x:unwn values of K wm.ch
sat::.sfy the flrst equation and eaeh.one of the other equaulons,
sépara£ely. The smallest of the values of K thus obtained sets
an upper 1imit to the value of K that satisfies all the gquat:‘goﬁs
gimiltansously. The pmpér _user of this and other similar artifices,
may lead te reasonable éstima’c.e of the optinnm tolerance ﬁthout
requiring fer;; laborious computations. It is hafdly necessary to
point out that, when the network N! contains th;:-ee or more ele-
ment s, the actual det.erma.nauon of the opt:mm.m tolerance reguires

the solution of a system of algebraic equation of degree equ‘al or




larger thafi the fifth,  This difficulty camiot be avoided a5 long
48 the mathematical formilation of'the{problém'rémains“thé Same.

Tt is quite‘possible, however, that a‘*difif’éi’-'eﬁt phiysical: approach,
sueh ‘as, Tor ifstance, one based on the tifie tesponse of the nét-
work rather than on the frequercy resporise, might avoid this dif=

ficulty and be more sucesssiul from a practical point of view.

Qpp}icatibn;qf the results of Sec. 3.7 to cher cases.- The results

ofgsecéw3;7 cahfbg a?plied”diregtly to a number of ne;works obf
taigable_ﬁrom.the i§wkpass laddér structure of Fig. 3.12, 5y means
ofvép@yqéﬁigte>trgpgformations of the fregpengy variable (9’;0).
The si@ﬁlgsﬁ_ﬁype4of\tran%fo;maﬁion is the low;pass‘£o hiéh:pasé
transfgrmation, which interéhapges the origin of ﬁhelzlplane.with

the point at infinity, and correspond to the change of variable

>

A =_l‘; The corresponding netwerk is a high pass ladder struc-
tu#§_with séries concensers aﬁd shunt inductamces, that_i;, a net-
Work_with a multiple zero of trangmissipn at‘the origin., It fol-
lows that a detailed study of suéh a network is unnecessary
because it would be a mere repetition of Sec. 3.7. This fact can
be readily checked by eomparing the result s ofvgec.YB.B»with the
corresponding results presented in Sec. 3.2,

Thg lowaPass to band-pass transformation leads to another type
of éeiﬁwoi«k to ‘_wﬁich the resilts of Sec. 3.7 can be applied,
namely the bénd-pass ladder structure., This structure consists

of resonant branches tunad to a given frequency &%, and can be

obtained from the structure of Fig. 3.12 by simply tuning to this




75~

frequeney every inducﬁ%nce‘withia'series»eapanit&nceafand=everyuw
gapégiténce:wiﬁh a.shunt inductance. +If this: procedure is-apslied
£ a+%0w~pgss{sbructure-witﬁ a low-pasé band extending: froem zepro::
frequemcy'ta a0, vbhe resulting - band—pass structure. will have a
bandwidth :“:W = ""’2 and & mean ‘frequency e#gs It will-be-noted that
the band<pass .structure is a special case of: ‘a neuworx‘w1th two .
zeros-of transmission of the same multiplicity located one at ithe
arigihrandwonemat‘infinity. ‘Thi;vapplication«of the 'resultsiof
Secs 347 wild be dllustrated with a numerieal -example:in. the fol-
lowing chapber: . |

:rAn'é&ditianal“remarkyis:in order with: regard to networks with
zeros of transmission at both the origin and infinity, If the
multiplicity of the zero at the origin is n_ and the multiplicity
of the zero ab -infinity is n -, the conditions of physieal
realizability for:the matching network will yield ny+ n, egua-

tions of the types dErived in Sees. 3.2 and 3}3. By using a:

rectancular shabed funcclon for 1n 7_%TT these eQnations take
the forms
(o2 2 Ly g - (ke Egk l)A2k - ZAZK'&].] (21)

( @._;(23*1,)_,,,;(2“ 1)> _ (-1) E%_DA et _ﬂzé A;i(2k+l) (&2)

where > and adévare,’respectively, the low frequency and high

frequency ends of the pass band and K is the pass-band values of
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ln = I 3,‘ { divided by g . To determine .the maximum value of K one
A

must . solve simultaneously the whole setb «of-ﬁ@.l.atijons. ; Hawev;a;r,

if @y 57 ey ihe two sets of equations relating to the two zeros
gf:transmission can be solved separately. Oneaga§¢9bse:¥e in this
regard that even if <3 appears ouly in :-one" set of equations and
co 5 ¢ only in the other set, the } ,4's appear in both: sehs.. 1f,
however, the mrcblem is considered from a phy51cal point of view,
it is eglear that the condition s, >? gﬁ:lmplles that the,h;gh
freguency response of the network is-independent of the low fre~
guency response. Therefore, the A_ i's whlch are sufficiently.
large 'tqaffe-c.t the high frequency response will be too large to
affect the low frequency response, and vice versa, The twe sets
of equations will yield different valﬁes of K,for,given,cqi and

DY and the smaller of.the two will represént the opbimum

tolerance of match,

deneral discﬁSsioﬁ'of the'results - All the integral relations

derlved in thls chatmer have the same general form, 1rresnect1ve

oI the location of the zero of tra Psm15510n to Wﬁlbh they refer.

The integrand - in the left hand side consists, in all cases, of

the function 1ln _I-%T multiplied by a weighing function which
depends on the l§caé1§n of the zero of trapsru551on. The right
hand side of each equation consists of the diflevence between
a coefficient specified by the netw¢rk e aﬁd a surmation in-

volving the zeros of $ in the right half ‘plane and the location

of the zero of transmission,
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~.In the two -simple cases concerning zeros of transmission ab..

infiﬂi,ty and at the origin, the weighing functions are the ,leir,e;;.

powers; positive and negative respectively; of the. frequency e s
These funetions have the effect of prevembing the arbidbrary ..:i:
distributien.over the frequency spectrum of the arsa under the

in ’ l] - versus =:freguency curve, . In partiecular they prevent
!
the - walue of 1n 1 from remaining large when the fregueney:
, "
approaches-infinity, in one case, and zerc; in the other ease..’

The weighing fungtionsg have similar properties in the case ef .
a zeros of transmission on-the“imaéinary axis. In the first
plac,evthe area represented by the integral.in the equation in=
volving A;_"‘) can be.egual, at most to "'.é".' AT) because the summa-
tion in the right hand side of the equation is always positive
(See egs. 4 and 42). - The corresponding weighing funéti@n-ff"j
rletted in}_.‘r.?ig., 2ely hé.s, a sort of even symmetry with reépect
to the pointew = ey,s This would indicate that ‘t‘né area repres
sented by AI‘” can be arbitrarily diﬁdedbetween the ﬁwof sldes
of the -fr.ei:luencyw_p. Such an arbibrary division, hewever; is not

pessible; becausse the weighing function ggb in the first eguation

of the set has a sort of odd symmetry with vrespect, %o ﬁ‘nepoint

e = ey« The division of the area is thus limited by the value
of By and by the faet that the use of any zero of s in the rig‘nir,
_ half plane to modify B, results in a decrease of the original
area represented by .A‘fd » The weighing functions of higher’
order are, alternatively, of the even symmetry and odd symmetry

types and rise faster and faster when e approaches<,. Weighing
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funietions with odd syrmetry are tiot present insthe case of zeros
of transmission abt the origin and at idfinity, because R ol _j%__
is by definitich an even.function of frEQuéﬁcy;~iApart frog.éth~:*
difference,~the‘wéighing‘fUnctioﬁs.have-the*samevﬂype Qfﬁeffects¢’
inthe twe cases.

Consider next the egquations resulting from afzeroidfﬂtransmig—
siem on thevrealiaxis. “In this ease the value of the integral
in the first eguation (52) can never be larger thanjgﬁégil “and
in addition, the value of the integral in the second equation (54)
can never be smaller than o;gngﬂgl*>.— In fact the summations
in equations 6 and 7 (for k = 1) are always positive, ‘It will be
noted, in this regard, that the weighing function f, is positive
for all values of e ; while the furction £17 is positive for
‘e < oy And negative for e (See Fig. 2.5). It follows that,
1

A
gueneies by the first equation, and at high frequencies by the

roughly speaking, the value of 1In . is limited at low fre-
‘second equation, If the miltiplicity of the zero of transmissien
is larger than one; the areas represented by the integrals in
‘these first two equations are preventéd from being distributed
arbitrarily over the freqguency spechtrum by equa$iohs of higher
order, The first six weighing functions, corresponding to a
zero-of.transmission of multiplieity equal- to thfee, are plotted
n Figj 2,5,
The last set of eguations to be discussed results from zeros
of transm1531on at complex frequencies. The weighing functions

of the fk“ type (See egs 59, 65, 71 and 72) Jead to llmltatlons
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similar to the ones just discussed in the case of zeros of trams=

mission on the real axis; they become actually equal to the cor-
responding funetions of the fﬁ?type‘when—ﬁhe-parameter’J'apprsaches

vttty .o Ay . ) ) ) L “y . 3 J
za;o‘ On the other hand,'the.fzkil»sMreduce,to:the~f2k+l~when

appioach&svzere, -This fact-is indiéated graphiedlly by the ecurve
of Figs 2,10, which is computed for § = .Lt. The coefficient AQ”
. 20

sets an upper limit to the corresponding integral bécause the

real part of the summation in eg. 8 is always positive, Similarly,

eq. 9 shous tha$ Ff"cannot be largervthanMAi” 3 anhd  therefore

- Ai“ sets a‘lewef limit to the wvalue of the corresponding integral,:
;,Thé curves of Figs. 3.6 to 3,11 show that, while the weighing
fynetieons of the f;” type have a sort of even sSymmebry with.res-
pect Lo some fregueney in the neighborhood ofl}yb the functions

of the gé? type (See eqs. 52, 66, 71 and 72) have a sort of an

. w ) A
to that performed by the g s in the case of meros of trans-

2/
2k+L ,
mission on the imaginary axis. In other words, they prevent the

N A, A S . . . co A
areas limited by'Ao and Al from being shifited arbitrarily from

)

low frequencies to high freguencies or vice versa. These func-
tions do not appear in the case of zeros of Lransmidsion on the

-real axis because 1n is by nature an even function of fre-

L

(A1 ot

queneys, It will be noted, in addition, that the ggﬁis reduce to
" ‘

the gzﬁ's when ¢ approcaches zero., This fact is again indicabed

graphigally by the curves in Figs, 3.9 and 3,11,

3.10 Coneluding ramarks - The results presented in this chapter ars
£




obviously insuffiecient to orovide a general solution to the second
part of the matching proﬁlem_as gtated in Sec. 1,5, Only in a
nartlcularly simple case a mumerical anower for t the O“tlmhm toler-
ance cou¢d be obtalned, or a practical method for comrutlng 1t ”
»eould be 1ndlcaued, It seems rather doubtful that a practlcal
vmetbod of denprmlnlng the optimum tolerance can be aeveloped for
the most general case, because of the ipheren '"flCﬂWty pre-
sented by the requifed solutien of high order alnebralc equatlon,
On the other hand, tne work presented in tnls cqauter forms a
general theoretical basis for further 1nvestlcablon of spe01al
cases arising in practlce. Mereover, the results obtalned indi-
cate clearly the nature of the limitations on the matcnwpﬂ of
arbltrary impedances, and, therefore, may be useful as a gulde

in practical design problems, even when a cut-and—trv procedure

must be followed,

i i S T e e e SR e




CHAPTER IV~ =

The De51gn of Slmple natchlnc tetworks

Lal General conS1deratlons - The 1ntegral relaulons derlved in Ch III

1ndlcate that the 1deal t;pe of behav1or for the return loss at
the 1nput tenmlnals of a matchlng network is reoresented by the
rectanﬂular shaped functlon used in the deuermlnatlon of the op-
tlmum tolerance. Such a behav1or cannot be obtalned in practlce
because it would requlre an 1nf1n1te nunber of elements in tbe

matching network, but can be anprox1mated sufflClently well for

practlcal Durooses by means of a reasonably smnll number of ele-‘

ments. In etqer words, the funcnlon representlng ) \mnst be
selected in such a way as to approx1mate a small constant over
the mss Band and unlty over the rest of tﬂe Ireouency spectrum,
-Just as in t he case of conventional filters. It must be pointed
out, bowever,\that Pllters are des gred in most cases to provide
a perfect match at a flnlte nwmoer 01 frequencies in the pass
band,_while this situation.has to be avoided in the case of

teching networks, In fact, making In very large at any

[
point of the pass band leads to an 1n€1JlC;Lnt use of the area
represented by‘the integrals discussed in the preceding chapter,
and results, therefore, in a reduction of the bandwidth of match.

In spite of tnls essential difference betﬂEED tﬂe characterig-
tlcs of filters and of matching networks, the same technlques can
be used in both ecases for the solution of the aperoximation prob-

lem. This point will be made clearer by the illustrative examples

disecussed in the following sections.
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4»2 Matehing of series RL ard shunt RC impedances - A very simple

type Of ‘matching p.f'r\:?‘bl‘em. :Ls preserrc, ed by t‘qe _.ca.‘s‘és of 2 load impe-
da;;}ge consisting of a resistance in series w:,th an ind}l\c‘tan_c}‘g,__ or
by the dual case of a resistance shunted by a condenser, FPrac-
tical problems of this type arise, for instaﬁce;_in,poﬁneqﬁion
with the broadbanding of the high frequency response of matching
trans;fqrme‘jrs‘,,r or Wh_evn the load resistance is shunted by a gtr@r o
capacitance. A method of designing appropriate matqhingiﬁetwgrksﬁ
for a series HL ,(i:mpe.da.n\ce is develo_ped- below. Thg Same mathqd_
will be dlrectly applicable to the dual .case of a shunt RC impe
Thg v_,pﬁ»_a_fss__band_xdesirgd in most p_i' the cases ymentioge{d _;a:’;o_ove ex~

tends from gzero frequency to a frequency e, ; the ideal behavior

for In —L __ is therefore that illustrated in Fig. 3.13. Iet L
be the value of the inductance normalized with respect to the
series_resistance, that is, divided by it. The qogi‘i‘icierrb fff B

vwhich represents the only condition of physical realizability to

be satisfied by the matching network, is, by definition:

i -4 1n2+ RN E .2 s e (1)
1 , = .
: [;"ﬁ', ALy } %,=ro_ Ly

The maximum theoretical pass band value of 1ln l;l 4s, therefore,
!

according to eq. 3.76:
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The problem consists then of approaching this theoretical limit
by means of a nﬁtchiﬁg network involving a finite number of ele-
ments. It is self evident that the larger is the number of ele-
ments used, the closer the theoretical 11m:|_t can be aporonched.

Therefore, the practlcal Droblem is actua]_'l.y that of obtaining

the ‘best tolerance of match with a given nunber of ele‘ments.

The gemeral remarks made in the preceding section indicate that
the inductance Ly, which forms the network M1 of Fig. 2.5, r.ray be
considered as the first element of a low—pa_sé -filﬁer», the network
N, whose input reflection coefficient is £ - This reflection cé—_
efficieht cannot be measured in practice, because the inductance
I, is assumed to be inseparable from the one ohm ﬁerminatibn;
its magnitude, however, is equal to the magnitude of the reflec~

tion woefficiemt P, at the other terminals of the filter to which
the gerierato‘r will be comected in actual operatién.

Twe types of functions are used for the soluta.on of the' approxi-
mation problem in the case of low-pass filters(3 ’l"') The first
type of function is the Tchebysheff polynomial T (_:,.’:), which
leads to a fuzj;t;“’c,i-on 'lﬁ, [ which os cillétéé between two g:.ven values
in the pass bapd and amroacnes asmtnotlcally unltJ in the at—
tenuatlon oand, as J.llustramed in }*1 !_-,.1. The mazdimum pass-:

band valuelﬂ] represents the tolerance of match whiech must he

larger than the theoretical limit given by eq. 2. The second type

of function is the Jacobian elliptic function which leads to an
of
oscillatory benavmr ]:Ln both the pass band and the attenua-

tion band., In the first case all the zeros of tranamission are




0.2 04 0.6 0.8 1.0 1.2 1.4

Pigure 4,1 - Frequeney behavior of l'?l’ for the matéhing network-
of Pigure 4.5 .
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at infinity so that the network will,ggnsistvpﬁwa:simple_ladder>

structure with series irductances and ghunt capacitences. In the
second ,ca,,se.vzer?os of transmission are present atflm.te fre-
quencies as well as at infinity, and, therefore, the network will
involve sections of type C,‘(S:,eqew Fige 2.7)« The filtering charac~
teristics in this second case are somewhat better than in the first
case for the same nunber of elerents, because a sharper cub-off
can be obf,ainéid. " in mateching problems, on the other hand, the
desigﬁ iﬁvolvj_ng ejj_iptic functions may lead to a slightly better

tolerance, but the difference does not seem Lo be worth the re-

sulting theoretlcal and Urartlcal gorplications,

Determination of £y ~ The Tchebysheff polynomial of the first

Tn(x) = cos (1 cos -1 x) (3)
In polynomizl Torm one obtains
Tl(x) = X (4)
nﬂ(x) 251 (x) 1, 1 () | (5)
2, .
It is clear that Tn(x) oseillales belween gzero and one for x<l
and approacnes infinity as (2m -1 n) for x>l. in order to obtain

the function »l_}’,’ one constructs first a function }t' which has
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an osecillatory behavior in the vass band, is smaller than unity,
and has-all-its zeros at infinity. ILetting x = .
cof

be written in‘the form

_]tl2-

(1457) +rz_v;;2?t‘ﬁ2(‘x) : ©

where K= and £° are arbitrary constants. The correspording magni-

tude of the reflection coefficiéﬁt is

K* 4+ €27, “(x)

2 2 )
5 - - = -
|12 =1 - e E o)

The degree of both the numerator and the denonminator polyneomials
ig equal to 2n, and, thersfore, the correspomling network will

have n elements, With reference to Fig. 4.1, the pass-band
fa} £

tolerance is given by

JJ’, - (8)

2
For a given wvalue of n, the constants K2 ard £ must be adjusted
ﬁo minimize lf' , rand"._ft'o satisfy, at the same time, the condi-

tion of physical realizability

bl o
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The - flrst step-in, the design procedure. must be, therefore, the
determnaulon of the zeros, A 4, and poles Api’ of J-;a For this

purpose the function If; ’2 is rewritten in the form

s:n.nh (nb)+ cosh (n sn.nh Z)
sinh (na)+c0sh {n sinh” lZ (n even)
C Z=3x
2 ) &.
,p,l ._f[,g,(z)ﬂ(-aﬂy =1 (10)
, - 2= 1
Meinh>(nb)-sinh™(n sinh™7Z) (n odd)
‘_sinhz(né)—sin_hz(n sinh~1z)
Z:jX
 where
Zed o2 =2 | (11)
e & * W \
and
L2 { L R o ._
sinh®nb -E sinhzna R - (12)
£ 2 €2
Further transformation of this ecquation yields
coshrn(mnh lZ-o)]coshEx(smh ~7 +b)] . .
(n even)

o cosh El(smh 1Z—a):]coshE'1(s.hnh lZ+ a}]
A (Z )_ﬁ(—,Z) = : (13)
) simn[n(sinn ™70} sinh[n(sinh ™z + b)] "
3 9 . g ¢
*sinh [n(sink -a)| sinh Ei('s’inh Z+ aj

n ‘odd)




The zeros of thig Tunction are evidently given by:

sinh|+b + J.;’.lf(%-omﬂ (n even)
Zy = - S (14)
sinh[-tb + %‘mj fn odd)

where m is an integer or zerc. The polss are given by a similar

expression.
sinh{+a £J -r»,(%rm)] . (n even)

Z. = n , (15)
sinh [t a+] "ErmJ " (n odd)

It will be noted that the p'oles' lie on an ellipse centered at

the origin with Sema.xés equal to cosh a and sinh a, as indicated

in Fig, 42 for the two cases of n = 3 and n = 4. The zeros lie,
similarly, on ém gllipse with semia.ies egual to cosh b and sinh ba¥
'The poles of '_P are necessarily those poles of J’ ()Uj’( A) which lie
in the right half plglqe, that is, :—:-J‘in' eg. o must be taken'sf"{ith the .
negative sign. The zeros of _f; can be locatad anywhere i;l the cgzht;plex
A plane, It was shown in the preceding chapter, however, that

V]

#* A method has been developed by the author for deriving the ap-
proximation function (10) directly from the location of its zeros
and poles without any reference o the Tchebysheff polynomials.,

This method of solving the approximstion problem, which finds ap-
plication in many other cases, will be discussed in a Lorthcomlng
‘report of the Research Laboratory of Elsctronics. ST




Iv
|
|
—sinh @ =—
|

Figure 4,2 - Location of the poles of ]5’1|‘ for networks with 3 and 4

el ement B
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Ed

AI when all the zeros offlare in the left half plane. There-

deo is a maximum for a given

5

fore, the —appr’o,pi'iate A ,;'s are given by eg. .14 in which b is
taken with the nega—.tive,si-gn.
.. The evalugtion '_ef the summation in 2q. 9 is carried out as

follows. For n even one has

S n-l
1 Z . S22 :
L D msion s T (L+1) -
S5 4 Api = -2sinh & %_;O cos 71,’:1' “(2+m} =
\ o-1 na .
‘77‘ ) 3"}:’:_111 —32£ 2 ~3¥m
= - sinh <n E e e & Z e =
mn= 1’51:0
.‘,1“ .I
< a5 T =d
Iy 1-e 2 =J l-e 2
= — sinh a E:ZI1 . +e <0 = i
l_ebl'l 1-e Jﬁ
sirh a (16)
- - —— 16
sin I v

5 (A, ~A,) —ay Simha - sinhb A |

Exactly the sam¢ result is obtained for n odd. OSubstituting eq.

17 for the summation in eg. 9 yields
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Al ,

“ H : (18)

dnhg = oginh b= (s:m 1%)

On the m;her hand, the toler'arwce of match can’ be exnressed in

tezms of the des:wn parameters a and b, w_Lth tbn h‘elp of egs. 8

and 12, as follows. |

E + smh2 nb cosh nb:. . (19)
If{max - 2 = cosh na
1+ sinh na |

These two desi parameters ate then determned in such a way as

‘,__,A_to makel!{ & minimum and satlsiy, at the same time, ed. 18,
‘Dsuw for tn:;.s fur'hose the rretl od of indeterminate multLpllers,
and dl f‘emntldtlnb eqs. 18 and lO with resnect to a and b, one

obtalns

cosh a —e< ¢Osh b = O

, (20)
sinh "la cosh nb - si;nh nb _ o ‘
: cosh na
cosh na R ‘
Elim:’matizig the multiplier o< from these two equations yields
btanh na _ tanh nb o (23_)

cosh-a ~ cosh b

The parametersa and b which yield. the minimum value c_f/J’/ are




ver sus smh x

: ffunctlon tanh nx
- cos h

' 1ﬂclud1nrr 8 . ‘T‘he correspondlng value of s:.nh b ca:rl oe ob’c.

.b;y mems of’ eq. 18
The optmun value of the return J.OSS In L - 1s plott.ed

“Al

) ?in r:r.g. L‘q. Lp. as a functlon ov;‘_’—c—' for dlii‘erent Vd._ueé of &
rve 1nd.cated By n =ee is: ‘ohcuotralght llne of gL o‘oe. equal 'to -
"’2" which repx-esents the llmt:.nfr value of the return loss glvenv y.
by eqs: 2. It will be noted thc.t th:.s 1:Lm1t1nc>' vaTue 13 approacn
rnasonably Well w:.th g relatlvely small number (n -_ l) of elemen?s' :
in the natchmg network. In the 11m1t, when n amproaches 1nf1n1ty
and bbth a iand_ b approg¢h ‘zero as l s one;}obt}a:ms _rcm qu, 18

and 19

“rwhich is e equation derived in Séc.3.7 for the optlmumtheoret— '
cal tolerance.

- mn e _‘...__-__........_._,—-_._....._*..u.._

These curves are obtained from computatlons made oy Dr. Cerrllla
of the Research Taboratory of J:,lectronlcs, '
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Lols C’empgtation,}:afwthe element. values - The next step in the design.

procedure, after having determined the. function £, is the actual
computation of element values for the matching network.. ‘For this

. purpose one can fr)o‘:}.lcw any .oneg of the availabie_-gynth_esizs Pro=. ..
_gedures (3’12), a discussion of which is beyond the scope of this

presentation. It seems appropriate, cn the other ha.nd, “to mention

a method oi‘,‘,gomgvauting th_eK glemenb values developed by the author

in connection with the ﬁatching proklem, This method has the ad-

ventage of permitting the direct and independemt compubation of

the individual element,,s.‘ from the values -oi‘ a and b obtained in the

precéd’iﬂg section., |
Consider then a ladder stmcturé consisting of series induc-

tances and shun;c, capacit.“ahcles. The values of the A;kf—l coefficients

can be computed from the poles and zeros of 5 by means of the equa~

tion _

n Okl . 2kel
= =2 - (22
AZk-&l T 2kel Z ( AOZ'I. A'pj_ ) (22) .

120

derived in Chapter I1I. It 'was pointed out, at that time, that the

ol

2k+1
. _ b
der structure. It follows that the value of the k h element must

coefficient A derends only on the first k elements of the lad-

depend only on the 4™ coefficients with a subscript équal to or ..

smaller than 2k + 1, and, therefore, it should be possible to ceom-

pube 1t directly from them., Appropriate equations have been de-

rived for kK <= L, by computing successively the A ecoefficients for




a ladder structure with 1, 2, 3, and 4 elements, and then solving
the resulting set'qf equatibns for the element(va;ues. The pro-
cedufe is straight forﬁérd bﬁ£ very laﬁdrious,~énq, therefore,

only the final results are given here. Let the sucecessive elements

of the Lad@ar bg Iy, 02; L., ete., and 1let also:

—2 - ) \ o (23)

(24)

7 -3 (29

One has for the elements

(26)

3 (27)

F1 , (28)

1l
.




It was hoped tlat these equations wenld indicste a recurrence

fo;:mq]__,a for the following element, but it did not turn out Lo be
the case. In the partié vlar case oi the f11P£tiQnal form for_}',,
d.isvcus:gea.iﬁ ih@l,precedingﬁ .sect:ic'_m‘;‘, the ;A\coeffi‘c‘:j_errbs can be
expressed very simply in terms of the pafame’gers a, b and n.
Using eq. 22, and proceedir;g in the same manner &s in the case

of A7 , one obtains without difficulty

sinh 3a - sinh 3b - sinh & - sinh b

(30)

3 sin 2 sin X
2n. _ L 20

-4 5 [sinh 5a - sinh 5b sinh 3a - sink 3b
(<% + s e o

5 sin 20 sin 2.7
2n . 2n

.2 s:z.nh a ‘— vsml‘/& fe) (31)

sin ?;f
. 2n

=0 -4 = |sinh 7a - sinh 7b. sinh 53 -~ sinh 5b .
A, = =2 ""C' + + v
- 7 sin LU sin 2
2n 2n

+4qsinh. 3a - sinh 3b Sinh a - sinh b (32)
n 30 in IO
sin 22 sin L
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A numevrical example is carried out in the following section

iliﬁ§£fa§ ;ﬁﬁié:mgthbd,ofvdesign.

Broadbapdingﬁof‘a matching Lransformer - A convenient example

for iliust;ating/thevmethad of dééign digéussed above is the high
freguency br9§dbapding.of a matehing transformer. - Suppose a
tpagsfq;mer igﬂpo%;é used to match a low impedance feaispive
lgaﬁiféia;éengraggé; a power amplifier, for instasce. The trans-
{ngg;vbehav?s at»high frequencies as ankinductangg‘L in_serieg

with the load resistance Rp. Let

‘ o
L

h

be thé;half—pOWer angular'f;éQgéncy of the transformer when the
load is matched to the generator at low frequeneies. It is de-
sired to broadband this transformer so that the loss will be
smaller or’eqﬁal to 1 db up to a frequency “"c = % “",; Inciden-
tal dissipation is neglected in thisypreliminar& design, and ean
be taken into account later, if necessary, as indicated in Sec,
1.3.

It is comvenient to normalize the network to 1 ohm impedance
level, in wnich case the normalized inductance becomes

L

One has then from egs. 9 and 33




954

WO

(35)

A transmission 1,0’5'5, Qf 1l db gorresponds to a return less equal

to 0,79. F_‘_i_g». b,.h hows that the optimum theoretical value of

In —% _  for —L. _ 0.66 is 1.0k and that a value of 0.86
| §i|max <€

can be obtained with n = 4, that is with a matching network con-
sisting of twe capacitances ard one inductance. The corresponding
vilue of ) q\ is 0.42) and the resulting transmission loss is’

0.86 db, One has then, for design data

R
he l'_' ]

= 0,66 : n = hlmm = 0.424 (36)

o Thef:lrststep iﬁ“the dfesi_g;l is the }deternﬁ.mﬁi‘on of the pafé—

metersa and b for the function |#|. One obtains from Fig. 4.3
sinh a = 0,615 ; a = 0.532' (37).
and from eg. 18
sinh b = 0.363 ; b = 0.356 (38)

The ceorresponding functien ,f,]:.s plotted in Fig. 4.1 versus the

normalized frequency variable x = “3_, Using the above values in
: 5S¢

Tt




egs. 23, 24 and 25 yields

ﬁéfﬁ,;f—,#fégz 3 %% = 3405 ;' °% = = 435.1- (39)

8

The values of the elements of the matching network are then com—

vuted by me%ns of eqs.-é?,.28fand R9...

o

=003 | (12)

The turns ratio of the ideal't?ansformef is spgbified‘by'thejzere

+ UOne

frequéngy %a&ue,qf]gﬁ[, that.is, in this case;;by'Ijﬂ’

has theﬁ

turns ratio ﬁﬂ;;.ilzkgﬁ = /E%E? = 1.57 o (43);
y1-0u2h | s
The resulting network, for a 1 ohm igpeaance level, iS‘showﬁ in
Fig. a.5(é).

The ideal traﬂéformar is combined, in practice, with the matchiﬁg
traﬁsformer by performing a suitable chahge of‘impedance level,

Suppose, for instanee, that the actual load resistance is egual to
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beb

10 ohms, the sourée resistance to 1000 ohms) “and that the half

power: freguency is @y ="50,000 rad/sec, The turns ratio of -
10

value of leskage inductance referred to:the primary side becomes

the matching transformer iz then equal to 5 = 6436, and ‘the’
16:2 mh, The résulting network is shown in Fig. 4.5(b).

- The values of the elemeérts can be checked by designing the
network from the opposite end, that is, from the reflsction co-
efficient 5+ - The poles-of P, are the sane as the poles of" )y
atd the geros of"';P o ¢an be obtained from the zeros of f,by

changing the sign of the real part, that is, the sign of b. One

must keep in mind, however; that t"‘ae presetice of the ideal trans-

former modifies the values of the elements when the network is
cons_qered from the other' end. The ‘Same pr*ocedura can be f‘ol—
lowed in de51gx11ng netwomcs m.tn more r,han L and less han 9 ele-
ments. In this case, one determnes 14. of t_rle elerlerrbs by opera-

ting en 9' and the rest of them by operathc on _P 20

Matching of a ré&So'nénfvt:v,ant enna - The methed of design developed
in See, 4.4 can pbe applied also to the case of a load consisting
of a series (or parallel) tunéd circuit; as discussed 'in Sec,
3.8, if the frequency band over which the lcad is b be matched
is centered ab ___theu,ré:sonahcé”frequency =, of the tuned cireuit,
A practical example of 'E‘E’c‘,his type 1s of fered by the broad‘oamdi.ng
of a laali‘—wave‘an’c.enna, wihiich behaves, to a first approximation,
as a series tu.t_l,ed._circ_‘uit,

Consider then, a quarter-wave grounded antenns (whose impedance

8




is just half of the impedance of the corresponding half wave

antenna in free space) with 2 resonamce frequency of 10 Me; a

radistion resistance of 30 ohms and a Q of 10. It is desired s
to match this anterna to d 50 ohm coaxial line over a 3 Mes

band with a vﬁl@age standing-wave ratioc on the line smaller than

265
One begins the design by transforming the resonant circuit
into the correspdﬂding low pass impedance; that is, into a series

resistance-inductance combination. One obtains forithe elements

R =‘36”ohms L-83% _300__ 477 1076 h G (&4)

A matching network is then designed for this impedance following
the procedurendévélbﬁed in Secs.g.j éﬁd Lale The required cut-off

frequency for:this.equivalent low-pass network is

o = 27 x 3_106 ﬁ 1.88‘x 106 fad/sec. - (

=
U
S

Therefore, the basgic design data on a 1 ohm impedance level are

L

SARRURR & L S , _
L = heT7 2107 - 1,59 x 1077 ©(46)

30

(A?)

Wl

QO
oz
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The maximum tolerable valﬁe of the reflection coefficient is -
25:1 = 0.429. Tt follows that the basic, low-pass design o~
ﬁainéd;in‘the,preceding“section (See Fig. h.5=a) camfbe used . -
also in this case; provided the ratia of the ddeal transformer.
is propefly changed to take into account the ratio of theuradia—
tion resistance to the characteristic impedance of the line. .The
impedance level of-this retwork is then inereased by a factor -of
30; and finally the band-pass equivalent is obtained by tuming to

the mean: freqpeney;aoo all the capacitances by means of -shunt

' inductances and all the inductances by mweans of series capacitances.

The resulting network is shown in Fig, L.6s This network may be
transformed further into a more convenient structure involving
tunedacoupled cails\by means of which it will be possible to
eliminate the ideal transformer. The details of sueh transforma-
tion are well known and do not reguire any further discussion.
The design procedure discussed in this section can be ex-
tended to the case of microwave networks, as pointed cut in Sec.
1.3 by means of an»approximate technique suceessfully employed

by the author in connectiodiwith microwave filters (1).

Maﬁchihg_of an/R%C-L impedance - Consider now the matching of a
1oad.imﬁedéﬁgéjéqﬁsiéfinéid% ;n iﬂdﬂcﬁange L in series with a
parallel RC ecombination. A problem of this type may arise in
connection with the high frequency response of step-up matching
transformers, In this ecase R is the load resistance; C repre-

sents the stray capacitance of the secorndary coil and L is the
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total leakage inductance, all of them referred to the primary

“gide of the trans former-

s

The -theoretioal limitations For this matching problem have

"been diseussed in Sec. 3.7 and curves for the optimum tolerance

‘are plotted in Fig. 3.1h: Tt was shown there that the optimum

tolerance is obtaited by introducing a zero of Lat a poink o—r
of the positive real axis together with a symmétrical pole on the
negative real axis, The sane techmique will beiﬁs‘ed"”'in obtaiﬁiﬁg
the appropriate function for £ when the metching network contains
a finite numbey of ‘clements. The saite approximation function
‘can be used fcr‘,'J’,"{as in the case discussed in the j:ﬁreceding "
section, Yeghuse the addition of a zero and a pole symetr'idally
Jocabed with respect to the imaginary axis lesves the value of
"'J’,'("Unchang”ied for imaginary valuss of A . Using egs. 17 an}:l‘

pa)

30 the conditions of fhysicsl realizsbility can then be writien ’

sinh a - sinh b T

sim. e
20

;=2 \3inh 3a - sinh 3b _ sinh a - sinh b _ 2( 7':.)3 o _Ai_ (49)

2n . 2n

The maximum pass-band wvalue of ’ f’,,’ is still given by

_ Cosh nb _
I'r"maa " «cosh na (50)
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The parameters a, b and Ty appeari ng in the above equation
mst be determined in such a way as to minimize the value of

I‘f', max ard satisfy, at the same time, eaqs, 48 and 49, This
mipimization process involves the solution of a system of | trans-
cendental equations, as in the simpler case of a series EL m—
pedanee. A convenlent .graphiéal procedure could not be déveloped

in this case, so that one must resort to some }:ind of laborious

,cut-and—trv procedure. Ii', no;«re\rer, an oPtlmam aes en 15 not ra—

qulred___ reasonably goed results can be obta.med b“ using tne same

relatlon betWeeu a; vand b that was determ:.ned for the match;.ng of

a s:.mple ‘?.Lv :.mnedance‘.i A cons»:.der'ablje ‘amount of numerical work o
is eliminaﬁed'by folldwiﬁg this procedure. Orce a, b and o,

are known, the compubation of the element values for the matching

network bedomes a. straight forward problem of network synthesis.

The eqﬁations developed in Sec. L.4 can still be used; but, in
3

this case, & section of type C wiLT also be present. In facth,

the zZero of ) at o . tobetber w1’ch the pole iat-'—a-r require the

presence of an 1dent1cal pa.u.r of s:Lngularltles in both ke ¢ 5

and t. A convenlenu m"ocedure for compuclng t.he values of all

the elemerts, inc¢luding those representlng the zero of transmission

at o is illustrated below by means of a numerical example, |
With réféii-eﬁéef?‘b@\iﬁj.g;': LT3 'suppose the normalized values of

the elements ‘forming the given load impedanc:e are given by

‘ 3
0y - &2208 o, o 2 a o (51)
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where ‘=, is the upper limit of the frequency band over which
the “lmpedance is to be métched.r For the sake of “gimplicity-

these figures have been selected to yield the saie valuss of a

arid bas in the problem discussed in Sec. 4.5. Une obtains frem

eqs, 23, 26:and 27

T : :
—2 7 = 0.0475 (53)
- (_a._.lT = 0.217 ' (54)

If the approximstion funetion with n = L is used and the same
rélation ‘between s and b is assumed which yields the optimum

tolerance in the case of an R-L impedance, one obtalns

sinh a = 0.615

04363 {55)

o rz 05

Since a and b awe tqe same as in the nmnerlcal case dlscussed in

Sec. 4.5, the maximum va.lue Of}.P !lS st.lu 0, L;,21+, and the corres-

ponding &turn lOSS is 1I1 _l_ = 0 86 To see how close -t.o
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‘the theoretical limit is this value of the tolerance, one enters
the plot of F,.ig.- 3.1k with (52) and (53). The maximm theoretical

value of 1n

]J‘{max 1’s i‘ound to be ecual to l .32, and the eorres-
ponding value of/.!;lmax is 0.275. _

The next step 1n tl;e ‘design is the computation of the gquan- .
tities oo, =<z, and «7 by means of eqs. 2%, 25, 31, 32 and 53.
In this case the quantities —(___) ( ) must be added to

the rlo'h" —hand s:Ldes of eqs. 31 ar*d 32 to ta,. e 1nto account the

zero of, f, at . E_Lfid the polé at ;é'-r. One obtains
=3 =-0.523 ; %5 = 0.156 0<7 = - 0,666 (56)

The values of 03 and 'Lh are then computed by means of egs. 28
and 29, with due regard to the fact that C and L must be inter-
chénged, because the first elemert of the ladder isy; in this case,

a eapacitance instead of an inductance,

- 0‘8}-3 . - 3.37
Gy =S ¢ EEs o

The ratie oi‘ the 1dea.l transformer is still 1l.57 as in the case

consldered in Bee. 4.5, but is reversed in direction because the

dual network is being designed, that is, inductances and capaci-
tances hév’eﬁfaééﬁ intéfchanged. |

To determire ’s;he va.lué ofn L 5 Lé and 07, forming; the ‘section '
of type C (See Fig. 4.7), it 18 convenient to operate on the re-

fleetion coefficient £ 55 that ‘is,.from the opposite end of the




nebwork.
The secgtion of type C can be represented as shown in Fig. L8,

It can be seen by inspection that, if M is a positive quantity,

(58)

At the same time, the reflection coefficient of )’2 mist have a

"j_:i.'z:?i’{j‘edance from the L , terminals

mist be cqual te 1 for A = o2 . It follows that

q

(60)

The + sign must be used whenJ’Q —%?

is positive for
A= q};» ""The third eguation reguired for the determination of the

elenermt s is obtained by considering the quantity

% 1 (A=) | |
b, = In 5 Giros) (61)

vnich, according to theée analysis of Ch. II is completely deter-

mined by Lg, M and 0_7., One obtains from Fig. A.B




Figure 4.8 - Section of type C for a zero of transmission on
the real axis
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o o
The pumerical value of A;" is found to be equal to =2. One has

then, from _58; 60 and 62

)

ture -and cbmbmed w:.th the actual tranﬂ@r’ﬂﬂr, s ‘that ’me load :
romstance measured from the primary side and nonnal.z.zed m_th

) resoee’t,. to the souree resistance will be equal to 2.47 ohms.
Flnally, the coupllng coefficient of the transform“ in the sec-
t:.on of type C is made smaller than umty by comblnlnc the trans—
former with the adjacg‘nt irductance Lh’ The final network is shown

in Fig. 4.9, in which the values of éll the elements are nermalized

with respeet. to the source resistance.

4.8 Concluding remarks - The design of matching network for impedances

of a moré.complexvmture than those considered above, is hampered
in most cases by mathematical difficulties which lead to laberiocus
nunierical and graphical computations. It must be saild, however,
that most of the matehing problems of practical interest are of
the types discussed in the prec.eding sections, or can be reduced
to those tjjpes by simple changes of the frequency variable. 1In

addition, a rigorous methed of design may be effectively combined




_]
o |
&
|
|
_

T |
o—o——FT— |
| I
B l
329 : o487 L |
We g we T 247 |
| I
| |
o—0—] ! |
I LoaD IMPEDANCE J

Pigure 4.9 - Transformation of the network shown in Figure 4.7




106.

at times with a cut—andétrygpiogedure. PFor instance, the fre-
guency behavior of a given 1eeérimpedance might be modified first

emplrlcally, 1n such a way as to approx1mate, over the d951red

frequency ba;d,zthe benav1or of’a 51ﬁnler 1mpedance f&netlon for

whlch a rloordus deelgn Urocedure 15 avallable. In such cases

the 1ngenu1tv o? the de51gner’becomes oft Dr_nany 1nnortence,
since the- technlque 1o be used may varv consmderably frem one
type of broblem'to another.

In rev&rd to IUrther research on the theory of matcnlng het—
wnrks, taere seems to be llt le hope of developlng a general asb
well as practlﬁal des1oe nrocedure because of tne 1nherent mathe— ;
matlcal difficulties. Gn the otber hand, & d*fferent nhyelcal
apnroech to the: matchlnw ;moblem mlght be- more successful.‘ In
particular, it mlght bes wortn whlle to 1nvest1gate the Droblem
from the t“qn51ent p01nt of v1eu3 thet 1s, in the tine dcmaln,
rather than 1n theylreqpency domaln. Surh an 1nvest1gatlon would
he of great practlcal value 1n anv cese,‘elnce in many problems
the tran31ent reSPQnse, rather than tne sneady;staue amplltude
response, 1s ef Drlmary 1mnortance. It must be sami, hcwever,
ﬁhat little progress has been made up to this time in the syn~
thesis of netwo;ks‘with’a preéseribed transient response, so that
the 1atter‘prbbiem;ﬁould have to be solved first before the match-

ing problem could be atbacked with a reasonable chance of success.
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