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Summary. We suggest a technique, related to the concept of ‘detection boundary’ that was
developed by Ingster and by Donoho and Jin, for comparing the theoretical performance of clas-
sifiers constructed from small training samples of very large vectors.The resulting ‘classification
boundaries’ are obtained for a variety of distance-based methods, including the support vector
machine, distance-weighted discrimination and k th-nearest-neighbour classifiers, for threshold-
ed forms of those methods, and for techniques based on Donoho and Jin’s higher criticism
approach to signal detection. Assessed in these terms, standard distance-based methods are
shown to be capable only of detecting differences between populations when those differences
can be estimated consistently.However, the thresholded forms of distance-based classifiers can
do better, and in particular can correctly classify data even when differences between distribu-
tions are only detectable, not estimable. Other methods, including higher criticism classifiers,
can on occasion perform better still, but they tend to be more limited in scope, requiring sub-
stantially more information about the marginal distributions. Moreover, as tail weight becomes
heavier the classification boundaries of methods designed for particular distribution types can
converge to, and achieve, the boundary for thresholded nearest neighbour approaches. For
example, although higher criticism has a lower classification boundary, and in this sense per-
forms better, in the case of normal data, the boundaries are identical for exponentially distributed
data when both sample sizes equal 1.

Keywords: Classification boundary; Detection; Distance-based classification; Distance-
weighted discrimination; Higher criticism; Nearest neighbour method; Sparsity; Support
vector machine; Thresholding; Truncation

1. Introduction

A variety of classification methods have been developed in response to discrimination problems
that are posed by small sample sizes, sparsity and high dimensional data. They include a range
of distance-based classifiers, such as the support vector machine, distance-weighted discrimina-
tion and kth-nearest-neighbour techniques. In this paper we suggest an approach to assessing
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the theoretical performance of such methods, and for comparing them with their counterparts
based on thresholding, and with alternative classifiers that are inspired by higher criticism ideas.

We shall show that each member of a large class of distance-based classifiers has the same
classification boundary. Likewise, thresholded versions of these methods share the same bound-
ary, although now the envelope lies strictly below its counterpart for non-thresholded classifiers,
i.e. the thresholding methods perform better than their non-thresholded counterparts, provided
that the threshold is chosen appropriately. The non-thresholded classifiers can use effectively
only those distribution differences that can be estimated, but, through gains in reduction of
noise, their thresholded forms can exploit differences that are too small for estimation.

A different class of classifiers, including higher criticism approaches, can be developed from
sparse signal detection methods that were discussed by Ingster (1999, 2001, 2002) and Don-
oho and Jin (2004). In some instances the classification boundary for higher criticism is lower
still than that for thresholded, distance-based classifiers, although the higher criticism method
is restricted to problems where relatively good information about marginal distributions, and
near independence among marginals, is available. Moreover, the classification boundary for
methods that are based on higher criticism converges to that for thresholded nearest neighbour
methods as the tail weight of marginal distributions increases.

One implication of our results is that classification boundaries for distance-based classifiers,
and for their thresholded forms, do not depend on the fixed training sample sizes. This con-
clusion is a consequence of the fact that, in the fixed sample size case and for distance-based
classifiers, the probability of correct classification converges to 1 if and only if the (squared)
differences between distances among data values have a certain extremal property; and that this
property holds for one difference if and only if it holds for all of them. See equation (3.11) for
an example of the sort of difference to which we are referring. Therefore it does not matter how
many distances, or, equivalently, how many training data, there are. (Here we are referring to the
case of fixed sample size.) However, for other types of classifier, which depend on information
about the marginal distributions, the sizes of the training samples can affect the formula for the
classification boundary. In such instances, the case where both training sample sizes equal 1 is
a convenient benchmark.

Sparsity, which makes classification of very high dimensional data particularly challenging,
results in the information that can assist classification being available only at a very small pro-
portion of components, scattered through a particularly long data vector. The classifier must
implicitly identify the unknown locations of this information, and use the information there
effectively. The first of these two challenges typically does not arise in conventional classifica-
tion problems, where the number of components is much less than the sample size. Examples
of real situations where sparsity arises include those which were addressed by Meinshausen and
Rice (2004), where, out of 1011 vector components in the study of the Kuiper Belt in astronomy,
only a few hundred components potentially contain the signal, and by Efron (2004), where fewer
than 20 out of several thousand genes are differentially expressed.

Related research on higher criticism and related techniques for sparse signal detection includes
contributions by Jin (2002, 2005, 2006) and Cayon et al. (2005, 2006). Support vector machine
methods enjoy a wide variety of generalizations and modifications; see, for example, Vapnik
(1982, 1995), Burges (1998), Brown et al. (2000), Cristianini and Shawe-Taylor (2000) and
Schölokopf and Smola (2001). However, in cases where the sample sizes are much less than
the dimension, there are relatively few opportunities for altering support vector machine
approaches. The definition that we shall consider is the classical one.

Distance-weighted discrimination has been proposed and explored by Marron et al. (2005),
and nearest neighbour methods have been described by, for example, Murtagh (1985) and Choi
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and Rockett (2002). Asymptotic statistical properties, in problems where sample sizes and data
vector length both increase, have been discussed by Bai and Sarandasa (1996), Sarandasa and
Altan (1998), Johnstone (2001), Baik et al. (2005) and El Karoui (2005), among others. Hall
et al. (2005) have treated problems where sample size is kept fixed and vector length is permit-
ted to increase, although the properties that were treated there are quite different from those
discussed here.

2. Methods for classification

2.1. Distance-based classifiers
Given data, in the form of samples of p-vectors X = {X1, . . . , Xm} from population ΠX and
Y = {Y1, . . . , Yn} from population ΠY , we wish to allocate a new observation, Z say, to either
ΠX or ΠY . We define distance among p-vectors in the usual Euclidean way.

Let C = C.·|X , Y/ denote a classifier which assigns Z to either ΠX or ΠY , meaning that,
with probability 1, either C.Z/=ΠX or C.Z/=ΠY . We argue that any plausible, distance-based
classifier C should enjoy both of the following properties:

(a) C classifies Z as coming from ΠX if it is closer to each of the Xis than it is to any of the
Yis;

(b) if C classifies Z as coming from ΠX then at least one of the Xis is closer to Z than Z is to
the most distant Yi.

Of course, property (b) merely states that the analogue of property (a) applies when classifying
data as coming from ΠY . Standard classification rules which have these properties include the
support vector machine, distance-weighted discrimination and kth-nearest-neighbour classi-
fiers.

Together, properties (a) and (b) imply that

πW1 �PW{C.Z/=ΠX}�πW2 for W =X, Y , .2:1/

where PW denotes probability measure under the assumption that Z is from population ΠW ,
and πW1 and πW2 are defined by

πW1 =PW . max
1�i�m

‖Xi −Z‖� min
1�i�n

‖Yi −Z‖/,

πW2 =PW . min
1�i�m

‖Xi −Z‖� max
1�i�n

‖Yi −Z‖/:
.2:2/

All the distance-based classifiers that we shall consider will be assumed to satisfy condition
(2.1).

In the theory that is developed in Section 3 we shall permit dimension p to increase, while
keeping training sample sizes m and n fixed. This reflects a range of commonly occurring prob-
lems, where m and n range between 1 and 10 whereas p is many hundreds, or many thousands, in
size. In such cases, information for classification accumulates through a large number of vector
components rather than a large number of data values.

2.2. Thresholding methods for increasing classifier sensitivity
To improve the sensitivity of classifiers it is common to threshold below at relatively high positive
values, or high absolute values, to emphasize vector components that are believed to have high
leverage for classification.
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In particular, with Xij, Yij and Zj denoting the jth components of Xi, Yi and Z respectively,
for 1� j �p, and with t > 0 representing a threshold which generally depends on p, we thresh-
old Xij, Yij and Zj, or their absolute values, at t. We treat in detail only the setting where
the components themselves are thresholded; the case of absolute values is similar. Therefore,
we replace Xij, Yij and Zij by Xtr

ij = Xij I.Xij > t/, Y tr
ij = Yij I.Yij > t/ and Ztr

j = Zj I.Zj > t/

respectively.
The corresponding thresholded vectors are Xtr

i = .Xtr
ij/, Y tr

i = .Y tr
ij / and Ztr = .Ztr

j /. Let Ctr

denote the version of the classifier C that arises when the latter is applied to the thresholded data
sets X tr ={Xtr

1 , . . . , Xtr
m} and Y tr ={Y tr

1 , . . . , Y tr
n }, instead of to the original data in X and Y .

This approach to thresholding replaces a data value that is less than t by 0. That is sometimes
done in practice, but more commonly it is removed altogether. However, in terms of the theo-
retical results that we shall derive, removal is equivalent to replacement by 0. Empirical choice
of t will be discussed in Section 4.3.

2.3. Classifiers based on higher criticism
Although, as we shall show in Section 3, Ctr has the potential to outperform C in terms of
sensitivity, it can still perform less well than classifiers that exploit knowledge of tail behaviour.
For sparse, normally distributed data, classifiers can be developed from suggestions that were
made by Ingster (1999) and Donoho and Jin (2004) for detecting small levels of contamination.
One approach can be founded on Tukey’s notion of ‘higher criticism’, by conducting, for each
j, a test of significance using the jth component of Z and the vectors in X ∪Y . The resulting
classifier is based on the statistical significance of the number of statistically significant results
among these tests.

Since higher criticism requires significant information about component distributions then,
for definiteness, we shall assume that the data Xij and Yij are independent GNγ.μXj, σ2

X/ and
GNγ.μYj, σ2

Y / respectively, where GNγ.μ, σ2/ denotes the Subbotin, or generalized normal,
distribution with probability density

f.x|γ, μ, σ/=Cγσ−1 exp
(

−|x−μ|γ
γσγ

)
,

with γ, σ > 0, −∞ < μ < ∞ and C−1
γ = 2 Γ.1=γ/γ1=γ−1. Here, μ and σ2 denote the mean and

variance respectively of the distribution GNγ.μ, σ2/. Donoho and Jin (2004) recounted the
interest in, and potential applications of, Subbotin distributions. Of course, the standard nor-
mal distribution is just the standard Subbotin distribution GNγ.0, 1/ with γ = 2. The quan-
tile of the GNγ.μ, σ2/ distribution corresponding to an upper tail probability of p−β equals
{1+o.1/}{γβ log.p/}1=γσ; in Section 4.1 we shall take 1

2 <β < 1.
Supposing for the present that σ2

X and σ2
Y are known, write Φγ and Ψγ =2Φγ −1 for respec-

tively the distribution function of a standard Subbotin variable and of the absolute value of that
variable. Let W denote either X or Y , and put nX =m and nY =n. Let

ρWj =Ψγ

[
|Zj − W̄ :j|

{.1+n−1
W /σ2

W}1=2

]
,

where

X̄:j =m−1
m∑
i

Xij
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and Ȳ :j is defined analogously. Order the values ρWj as ρW ,.1/ � . . . �ρW ,.p/, and put

hcW =p1=2 min
1�j�p

[
jp−1 −ρW ,.j/

{ρW ,.j/.1−ρW ,.j//}1=2

]
: .2:3/

The higher criticism classifier Chc allocates Z to whichever population ΠW , for W =X or W =Y ,
has the larger value of hcW .

The assumption that the variances σ2
X and σ2

Y are known can be removed by using empirical
approximations to those quantities; see the last paragraph of this section. When, in the assump-
tion of GNγ.μ, σ2/ distributions for Xij and Yij, we take γ =2 (i.e. when we assume normality),
the constraint can be relaxed by using moderate deviation arguments to address more general
cases. For example, in practice it is not uncommon for the variables Xij and Yij to represent
the values of t-statistics computed from samples, in which case the central limit theorem may
ensure approximate normality.

More difficult to mitigate, in the context of higher criticism, is the assumption that the dis-
tribution of Xij, for example, does not depend on j, modulo a change of location. Although
this condition will be imposed in the mathematical model in Section 3.1, it is not crucial to
the performance of distance-based classifiers since those methods are implicitly founded on
averages over the index j. Likewise, in the context of distance-based methods, central limit
theory for mixtures, with a sufficiently fast but polynomial mixing rate (see for example Ibragi-
mov (1962) and Politis et al. (1997)), is readily used to weaken the independence assump-
tion. In the case of higher criticism methods, however, it seems necessary to assume mixing
at an exponential rate. All these issues reflect the practical advantages that the classifier Ctr

has over Chc, although the latter is of substantial interest since, when m = n = 1, it delineates
performance in the benchmark case of approximately independent and identically distribu-
ted components. Indeed, when m = n = 1 the arguments of Donoho and Jin (2004) can be
used to show that Chc has optimal performance when the noise distribution is known to be
Gaussian.

Classification techniques that are based on thresholding of distance-based methods, and
higher criticism classification, are similar in that both are founded on a form of truncation. This
might not be immediately apparent from the definition of hcW at equation (2.3). However, the
right-hand side of that formula can be written almost equivalently as

inf
c1�t�c2

⎛
⎜⎝

∑
j

IWj.t/−p Ψγ.t/

[p Ψγ.t/{1−Ψγ.t/}]1=2

⎞
⎟⎠,

where IWj.t/ equals 1 if |Zj − W̄:j|={.1 +n−1
W /σ2

W}1=2 � t and 0 otherwise, and 0 < c1 < c2 <∞
and c1 and c2, depending on n, are chosen sufficiently small and sufficiently large respectively.
Thus, there is a sense in which hcW is based on a continuum of truncation operations at thresh-
olds t. Both higher criticism and distance-based classifiers involve accumulating the effects of
data truncation, but in the case of higher criticism the truncation operations are many fold, and
are used in a more precise way, with less opportunity for influence from noise.

Variance estimation is simplest when both m and n are at least 2. There, estimators can be
based on pairwise differences, e.g. Xi1j −Xi2j, from which any mean effects cancel. The role of
one of the data vectors in this difference could be played by Z, although there is clearly potential
for bias to be introduced at this point.
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3. Properties of classifiers

3.1. Model for data
Given a classifier satisfying condition (2.1), we shall discuss properties of the probability of
mistakenly classifying a data vector Z from ΠY as coming from ΠX. To model the distributions
corresponding to ΠX and ΠY , assume that we may write

Xij = δij,

Yij =μj + "ij,

Zj =μj + δj,

⎫⎪⎬
⎪⎭ .3:1/

where the errors δij, "ij and δj are all independent and identically distributed as the random
variable δ, say, with zero mean and finite fourth moment, and the μjs are deterministic.

We mention again a point that was made earlier: in the case of the distance-based classifiers
C and Ctr, the assumption that components are independent and that the distributions of δij,
"ij and δj do not depend on j, are inessential. In the context of Chc, however, they are relatively
difficult to relax. Further discussion is given in Sections 3.2 and 3.3, where we discuss C and Ctr

respectively.
We keep the distribution of δ fixed throughout our analysis, but we allow the μjs to vary

with j and, although not indicated in notation, also to vary with vector length p. This enables
us to make the classification problem more difficult as information is accumulated while p in-
creases. Note also that πW1 and πW2, which are defined at expression (2.2), are invariant under
any change of location for both populations ΠX and ΠY , and so the assumption that one of
the populations, chosen at expression (3.1) to be ΠX, has zero mean is made without loss of
generality.

3.2. Properties of standard distance-based classifiers C
We shall show that, under the model that is described in Section 3.1, and assuming the negligi-
bility condition (3.5) below,

the probability that the classifier C correctly classifies a new data value from ΠX or ΠY

converges to 1 if and only if p=o.‖μ‖4/ as p→∞, .3:2/

where μ= .μ1, . . . , μp/ and ‖μ‖2 =Σj μ2
j . Recall from Section 2.1 that C can be quite general, e.g.

based on the support vector machine, distance-weighted discrimination or kth-nearest-neigh-
bour classifiers. In particular, property (3.2) holds in this general context.

Property (3.2) gives a concise asymptotic description of the performance of the classifier C. In
particular, it tells us just how fast the norm of the mean vector μ must grow for it to be possible
to distinguish between ΠX and ΠY . Our theoretical comparison, in Section 4.1, of different clas-
sifiers will be based on assessing their respective performance characteristics, expressed similarly
to property (3.2).

Property (3.2) remains true without the assumption that the disturbances δij, "ij and δj all
have the same distribution. In particular, it holds if this condition is replaced by the assumption
that the variances of δij, "ij and δj are uniformly bounded away from zero, and that their 2cth
moments are uniformly bounded, where c is as in condition (3.5) below.

To derive property (3.2), note that

‖Xi1 −Z‖2 −‖Yi2 −Z‖2 =Vi1i2 +‖μ‖2, .3:3/

where
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Vi1i2 =
p∑

j=1
{δ2

i1j − "2
i2j −2δi1jμj −2.δi1j −μj − "i2j/δj}: .3:4/

It will be shown in Section 5.1 that, provided that E|δ|2c <∞ for some c�2, and

max.p, ‖μ‖2/−c
p∑

j=1
|μj|2c →0 .3:5/

as p→∞, the random variables Vi1i2 are asymptotically jointly normally distributed with zero
means and equal variances given by

σ2
p =2p.λ4 +3λ2

2/+8λ2‖μ‖2 −4λ3

p∑
j=1

μj

=6pλ2
2 +6λ2‖μ‖2 +2

p∑
j=1

E{.δ −μj/2δ2}�max.p, ‖μ‖2/,
.3:6/

where λk =E.δk/.
Property (3.5) is a standard negligibility condition in central limit theory. It holds quite gen-

erally, e.g. if c can be chosen so large that max1�j�p |μj|=O.p1=2−η/ where η �1=2c.
The asymptotic relation σ2

p � max.p, ‖μ‖2/ in expression (3.6) is defined to mean that the
ratio of the left- and right-hand sides is bounded away from 0 and ∞ as p increases, for arbi-
trary choice of the quantities μj, with the latter potentially depending on p. The correctness of
this asymptotic relation is a consequence of the second of the two identities for σ2

p in expression
(3.6).

These properties immediately imply limit results for the probabilities πY1 and πY2, defined at
expression (2.2). In particular,

πY1 =PY .Ni1i2 �−σ−1
p ‖μ‖2 for all 1� i1 �m and 1� i2 �n/+o.1/,

πY2 =PY .Ni1i2 �−σ−1
p ‖μ‖2 for some 1� i1 �m and 1� i2 �n/+o.1/,

.3:7/

as p →∞ for fixed m and n, where the variables Ni1i2 are jointly normal N.0, 1/. When using
expression (3.7), e.g. the first formula there, it is helpful to observe that, conditional on Z,
‖Xi1 −Z‖−‖Yi2 −Z‖2 equals the difference between two independent random variables. There-
fore, noting equation (3.3), we can write

PY .Ni1,i2 �−σ−1
p ‖μ‖2 for all i1, i2/=E[P{N1.i1/�N2.i2/−σ−1

p ‖μ‖2 for all i1, i2 |F}],

where, conditional on the σ-field F , N1.i1/ and N2.i2/ are non-degenerate, independent and
normally distributed variables and, unconditionally, N1.i1/−N2.i2/ is normal N.0, 1/. (In fact,
these results continue to hold if we replace F by the trivial σ-field.)

It follows from the asymptotic relation in expression (3.6) that σ−1
p ‖μ‖2 → ∞ if and only

if p = o.‖μ‖4/. Hence, in view of expression (3.7), for all classifiers satisfying condition (2.1),

PY{C.Z/=ΠX}→0 if and only if p=o.‖μ‖4/ as p→∞:

This result, and its analogue when Z is drawn from ΠX, rather than from ΠY , imply property
(3.2).
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3.3. Properties of the threshold-based classifier Ctr

It is possible to develop theory describing Ctr in the case where non-zero μjs take a range of
values. If, for all p, the number of possible, distinct non-zero values equals a fixed integer k �1,
then modified versions of the results in Sections 3 and 4 can be deduced without difficulty.
The case where the number of ‘subsignals’ is unboundedly large is more complex, however. For
simplicity we shall take k =1, and assume that

μj =ν > 0 for q distinct indices j, and μj =0 for the remaining p−q indices, where

(a) ν � t,
(b) t = t.p/→∞ as p increases,
(c) q=q.p/ satisfies q→∞ and 1�q� cp, with 0 <c< 1 fixed, and
(d) the distribution of δ is unbounded to the right. (3.8)

Part (a) of assumption (3.8) asks that the threshold t not exceed the size of the effect ν
that causes the populations ΠX and ΠY to differ. In practice, thresholds are chosen conserva-
tively, ensuring that this constraint holds. Taking t > ν would not reflect practical motivation.
Part (b) of assumption (3.8) serves only to make the problem different from the non-thresh-
olded form; if t were taken to be fixed then first-order asymptotic properties of Ctr would
be equivalent to those of C, discussed in Section 3.2. Part (c) asserts that the number of indi-
ces j for which μj �= 0 is not fixed, but is nevertheless a relatively small fraction of the total.
Part (d) makes the classification problem non-degenerate, by preventing thresholding at t from
removing, with probability 1, all vector components that correspond to an index j for which
μj =0.

Assuming result (3.8) and a negligibility condition (3.12), below, we shall shortly prove that
the following thresholded data version of property (3.2) holds:

the probability that the classifier Ctr correctly classifies a new data value from
ΠX or ΠY converges to 1 if and only if p=o.τ / as p→∞, .3:9/

where

τ = .qν2/2=E{δ4 I.δ >t/}: .3:10/

Again this holds for general thresholded data, distance-based classifiers, e.g. those based on the
support vector machine, distance-weighted discrimination or kth-nearest-neighbour classifiers.

Once more the assumption, in Section 3.1, that the disturbances δij, "ij and δj all have the
same distribution can be relaxed. In particular, property (3.9) remains true if the respective
distribution functions Fij, Gij and Fj have the property that 1−Fij, 1−Gij and 1−Fj are uni-
formly bounded above and below by constant multiples of 1−H , where H is a fixed distribution
for which condition (3.12) holds.

To derive property (3.9), note that the thresholded data analogue of the representation of
distances at equation (3.3) is

‖Xtr
i1

−Ztr‖2 −‖Y tr
i2

−Ztr‖2 =V tr
i1i2

+‖μtr‖2, .3:11/

where μtr = .μtr
j / is a p-vector, μtr

j =E{ηj I.ηj > t/}−E{δ I.δ >t/}, ηj =μj +δj and the random
variable V tr

i1i2
has zero mean. Concise formulae for V tr

i1i2
and its variance .σtr

p /2 will be given in
Section 5.2.

In the context of assumption (3.8), and assuming, in place of condition (3.5), that for some
c�2 we have E.δ4c/<∞ and

[p E{δ4 I.δ >t/}+qν4]−cp E{δ4c I.δ >t/}→0, .3:12/
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it can be proved that the variables V tr
i1i2

are asymptotically jointly normally distributed with zero
means and equal variances satisfying

.σtr
p /2 �p E{δ4 I.δ >t/}+qν4: .3:13/

See Section 5.2 for details. Property (3.12) holds quite generally, e.g. if c can be chosen so large
that p=O.qc/.

In view of condition (3.13), condition (3.7) holds for the new classifier Ctr, provided that we
replace σ−1

p ‖μ‖2 there by

.σtr
p /−1‖μtr‖2 �

[
q2ν4

pE{δ4 I.δ >t/}+qν4

]1=2

,

which diverges to ∞ if and only if p = o.τ /, where τ is given by equation (3.10). This implies
property (3.9).

4. Comparison of classifiers

4.1. Theoretical comparison of C, Ctr and Chc

Here we show that results (3.2) and (3.9), and their analogue for classifiers that are based on
higher criticism, provide concise classification boundaries describing the relative performances
of the classifiers C, Ctr and Chc. For definiteness we shall confine attention to the setting where
assumption (3.8) holds, implying that the means μj are either 0 or ν for p−q and q components
respectively. We shall assume that the distributions of Xij and Yij are GNγ.0, 1/ and GNγ.μj, 1/

respectively.
The case of heavy-tailed distributions is similar. For example, if the common distribution

function F of X−EX and Y −EY satisfies 1−F.x/=Cx−α for constants C > 0 and α> 2 and
all sufficiently large x, then it can be shown that the classification boundaries for Ctr and Chc are
identical, just as they are in the Subbotin case when γ � 1. This result can be generalized to a
much larger class of heavy-tailed distributions and suggests that thresholded nearest neighbour
methods are difficult to beat in cases where the marginal distributions are not particularly light
tailed.

Specifically, assume that q ∼ constant ×p1−β where 1
2 <β < 1, and take the threshold to be

t ={γr log.p/}1=γ and the mean to be ν ={γs log.p/}1=γ , where 0 <r<s�1 denote constants.
The inequality s�1 is imposed without loss of generality, since, for any γ′ >γ, with probability
converging to 1 as p → ∞ the maximum absolute value of p GNγ.0, 1/ random variables is
strictly less than {γ′ log.p/}1=γ .

The following result describes the relative performances of C, Ctr and Chc. Note that (a) and
(b) below hold for all fixed values of m and n, whereas (c) requires m=n=1:

necessary and sufficient conditions for the classifiers

(a) C,
(b) Ctr and
(c) Chc

to produce asymptotically correct results are

(a) 1−2β > 0,
(b) 1−2β + s> 0 and, when m=n=1,
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(c)
(i) for 0 <γ �1, 1−2β + s> 0, and
(ii) for γ > 1, .1−2β/.21=.γ−1/ −1/γ−1 +2s�0

when 1
2 <β �1−2−γ=.γ−1/, and s>{1− .1−β/1=γ}γ when 1−2−γ=.γ−1/ �β <1 respectively.

(4.1)

The results in property (4.1) are necessary and sufficient in the sense that they hold under
the strict inequalities given, and fail if those inequalities are strictly reversed. A derivation of
property (4.1) will be given in Section 5.3.

4.2. Discussion of property (4.1)
Note that the boundaries in (a)–(c) above become steadily lower as we move through the sequence
C, Ctr and Chc, implying that the respective classifiers are successively more sensitive, and in par-
ticular can produce asymptotically correct classification for successively smaller values of q,
for a given value of s. When 0 <γ �1 and m=n=1 the classification boundary for the higher
criticism classifier is identical to that for the thresholded, distance-based method.

In the case γ =2, corresponding to normal data, Fig. 1 graphs the classification boundaries
corresponding to parts (b) and (c) of property (4.1), i.e. to the classifiers Ctr and Chc (the latter

0.5

0.
0

Classification possible using
either or

Classification
possible using

but not

0.6 0.7 0.8 0.9 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1. Classification boundaries for Ctr and Chc when γ D2: the upper line is a graph of the linear function
s Ds.β/ defined by 1�2β Cs D0, which is the classification boundary for Ctr ; the lower curve is a graph of the
function s Ds.β/ given by 1�2β C2s �0, for 1

2 <β < 3
4 , and s �{1�p

.1�β/}2, for 3
4 <β <1, this being the

classification boundary for Chc in the case of N (0,1) data (i.e. GNγ (0,1) data when γ D 2); inscriptions such
as ‘classification possible’ indicate that ‘for pairs (β, s) in this region, the probability of correct classification
converges to 1 as p diverges’ (�, positions of the point pairs (β, s) that are used in the numerical work in
Section 4.4)
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when m = n = 1). The domain 1
2 < β < 1 that is represented on the horizontal axis of Fig. 1

expresses β-values that are immediately to the right of the range 0 < β < 1
2 , where estimation,

and classification by the standard classifier C are both possible.
The two classification boundaries in Fig. 1 meet at β = 1

2 and at β =1. This feature expresses
the fact that, at either extremity of the region corresponding to ‘classifiable but not estimable
differences’, higher criticism classifiers perform similarly to their threshold-based counterparts.
The lower curve in Fig. 1 is exactly that in either panel of Fig. 1 of Donoho and Jin (2004).
Versions of Fig. 1 for general γ > 1 are similar, with of course the diagonal line, depicting the
classification boundary for Ctr, in the same place. As γ ↓ 1 the lower curve increases to the
diagonal line.

4.3. Formulation of property (4.1) for empirical choice of t
For simplicity, in the discussion above we have assumed that an appropriate threshold t is given.
That assumption is readily removed, however. We shall suggest an approach to selecting t empir-
ically, which is valid under the models that were discussed in Section 4.1 and when at least one
of m and n exceeds 1.

Assuming that m=2 and n=1, and using notation from Section 2.2, fix ξ ∈ .0, 1/ and define
t̂ to equal the infimum of values of t for which

‖Xtr
1 −Xtr

2 ‖ exp{log.p/ξ}�‖Y tr
1 −Xtr

2 ‖, .4:2/

using any default value, e.g. t̂ = 0, if no such t exists. Then, the classifiers C, Ctr and Chc give
asymptotically correct classification under the respective conditions that are stated in property
(4.1), and fail to give correct results if the inequalities there are strictly reversed. A proof of
this result can be based on the fact that, for some η ∈ .0, 1/ and all ζ > 0, and with proba-
bility converging to 1 as n →∞, t̂

γ
> t

γ
0 + log.p/η and t̂

γ
< t

γ
0 + ζ log.p/, where t0 = {γ.2β −

1/ log.p/}1=γ .
If, rather than m=2 and n=1, we have m=1 and n=2, then the roles of X and Y in inequality

(4.2) should be reversed. When m and n take larger values than these, the additional informa-
tion can be incorporated by making appropriate modifications to inequality (4.2). Alternative
approaches can deal with the case where m=n=1; they are elementary if the classifier is applied
not to the thresholded components Xtr

ij and Y tr
ij but to the indicator functions, I.Xij > t/ and

I.Yij > t/, for which result (4.1) continues to apply.

4.4. Numerical comparison of Ctr and Chc

It is straightforward to show numerically that Ctr can outperform C. However, since the classi-
fication boundaries for Ctr and Chc are close together then it is more challenging to show that
the results that were described in Section 4.1 are reflected in numerical properties of Ctr and Chc.
We shall do this in the setting that was explored by Donoho and Jin (2004), who took p=106

(Donoho and Jin’s notation replaces our p by their n) and γ =2.
To construct Table 1 we chose pairs .β, s/ that lay close to, and either above or below, the

diagonal line in Fig. 1. This is the region where one or both of Ctr and Chc can be expected to
experience difficulty. The pairs fell into three classes:

(a) .β, s/ = .0:55, 0:2/, (0.6, 0.3), (0.65, 0.4), (0.7, 0.5), each distant 0.1 above the diagonal
line and, in this order, moving steadily to the right in Fig. 1, in which direction we expect
classifiers to experience increasing difficulty;
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(b) .β, s/= .0:6, 0:2/, (0.65, 0.3), (0.7, 0.4), (0.75, 0.5), all of these points lying on the diagonal
line, where classification should be marginal for Ctr but feasible for Chc, but becoming
increasingly difficult as we move through the points in the given order;

(c) .β, s/= .0:65, 0:2/, (0.7, 0.3), (0.75, 0.4), (0.8, 0.5), all of them 0.1 below the diagonal line.

For the classifier Ctr we used t = {2r log.p/}1=2 where r = 0:1 when s = 0:2, 0.3, 0.4, and
r = 0:2 when s = 0:5. These choices are not optimal, in the sense that they do not minimize
classification error. However, the error rates are not far from the minimal rates, and the choices
of r, being no more than half the value of s, are indicative of thresholds that might be used in
practice.

We took m=n=10 throughout and considered the performance of the classifiers Ctr and Chc

when the new value of Z came from ΠY . In this setting, Table 1 gives the number of correct
classifications for 100 independent realizations of Z in the respective cases, each value being
the result of averaging results from 30 simulations, with standard errors given in parenthe-
ses.

As expected, the classification results in classes (a) and (b) are quite good, especially for Chc,
although they show deterioration as β is increased. The latter trend for Chc is also observed in
cases (b) and (c). Results in case (c) are better than expected for Ctr, which has success rates
of between 58% and 73% for the three pairs .β, s/ for which, asymptotically, it does no better
than 50%. Of course, in this setting Chc performs better still, with success rates between 68%
and 75%. The percentages of correct results in case (b) lie between those in cases (a) and (c), for
given values of β. The standard errors reveal that results for the classifier Chc are markedly less
variable than those for Ctr.

In applying Chc to real data on genomic differential expression, we found that the classifier
was generally outperformed by thresholded nearest neighbour methods. This may have been
due to failure of the assumption of normality; the data were relatively heavy tailed. In practice,
biologists tend to threshold such data, using their experience to determine the size of the thresh-
old. In this connection it should be noted that, in problems where the presence of the signal
can be detected but not estimated consistently, it is, almost by definition, difficult to select the
threshold empirically—the threshold must be chosen strictly less than the unknowable value of
the signal. From these viewpoints the work in the present paper provides theoretical under-

Table 1. Means and standard errors (in parentheses) of classification rates (percentage correctly predicted)
using Chc and a nearest neighbour version of Ctr for various pairs (β, s)

s Results for the following values of β:

β = 0.55 β =0.60 β =0.65 β =0.70 β =0.75 β =0.80

Chc Ctr Chc Ctr Chc Ctr Chc Ctr Chc Ctr Chc Ctr

0.2 98.6 96.0 84.8 77.7 68.1 68.9
(0.2) (1.3) (0.7) (4.3) (0.8) (5.9)

0.3 99.7 96.3 90.3 78.4 73.9 73.2
(0.1) (1.2) (0.5) (4.9) (0.9) (5.7)

0.4 99.7 86.1 92.7 77.8 74.9 58.2
(0.1) (3.1) (0.5) (4.7) (1.0) (7.0)

0.5 99.4 80.0 89.4 63.8 73.5 71.0
(0.1) (6.5) (0.7) (7.1) (1.0) (6.6)
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pinning for using thresholded, distance-based classifiers, such as nearest neighbour methods,
and for employing experience rather than empirical methods to select the threshold.

5. Technical arguments

5.1. Properties of Vi1i2, defined at equation (3.4)
Derivation of the variance formulae at expression (3.6) is straightforward. Using the fact that
Vi1i2 is a sum of independent random variables with zero mean, asymptotic normality can be
proved from Lindeberg’s theorem. Since fourth moments are finite then, to establish Lindeberg’s
condition, it is necessary only to show that

p∑
j=1

E{|δμj=σp|2 I.|δμj=σp|> 1/}→0,

for which condition (3.5) is sufficient. Here we have used the property σ2
p �max.p, ‖μ‖2/, which

is taken from expression (3.6).

5.2. Properties of V tr
i1i2

, defined at equation (3.11)
The quantity V tr

i1i2
is given by

V tr
i1i2

=
p∑

j=1
{.δtr

i1j/2 − .ηtr
i2j/2 −2δtr

i1jμ
tr
j −2.δtr

i1j −μtr
j −ηtr

i2j/ηtr
j },

where δtr
ij = .1 − E/δij I.δij > t/, ηtr

ij = .1 − E/ηij I.ηij > t/, ηtr
j = .1 − E/ηj I.ηj > t/, ηij = μj +

"ij, ηj = μj + δj and E denotes the expectation operator. Writing δtr for δtr
11, the variance of

var.V tr
i1i2

/ can be shown to equal

.σtr
p /2 =

p∑
j=1

[var{.δtr/2}+var{.ηtr
j /2}+4 var.δtr/.μtr

j /2 +4{var.δtr/+ .μtr
j /2 +var.ηtr

j /} var.ηtr
j /

−4 E{.δtr/3}μtr
j ]

�
p∑

j=1
.E{δ4 I.δ >t/}+μ4

j P.δ >t −μj/+E{δ4 I.δ >t −μj/}+ [E{δ2 I.δ >t/}

+μ2
j P.δ >t −μj/+E{δ2 I.δ >t −μj/}]|μj|2/

�p E{δ4 I.δ >t/}+qν4:

This establishes condition (3.13).
A similar argument shows that if moments of order 4c are finite then the version of Lindeberg’s

condition in the present setting is satisfied if .σtr
p /−2cac →0, where

ac �
p∑

j=1
.E{δ4c I.δ >t/}+μ4c

j P.δ >t −μj/+E{δ4c I.δ >t −μj/}

+ [E{δ2c I.δ >t/}+|μj|2c +E{δ2c I.δ >t −μj/}] [|μj|2c P.δ >t −μj/

+E{δ2c I.δ >t −μj/}]/

�p E{δ4c I.δ >t/}+qν4c:

Now, .σtr
p /−2c[p E{δ4c I.δ > t/}+ qν4c] → 0 if and only if condition (3.12) holds, establishing

the sufficiency of condition (3.12) for the central limit theorem.
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5.3. Derivation of result (4.1)
Let b.s, β/ > 0 denote the formula for a general detection boundary that is treated in result
(4.1). In case (a), property (3.2) implies that asymptotically correct classification is possible
if and only if p = o.‖μ‖4/, which is equivalent to p = o{p2.1−β/ log.p/4=γ} and hence to 1 −
2β � 0. In case (b), property (3.9) implies that asymptotically correct classification is possible
if and only if p = o{.q2=p−r/ log.p/c}, where c is a constant or, equivalently, if and only if
p=o{p2.1−β/+r log.p/c}; call this result (R). Since r < s but can be chosen arbitrarily close to
s, then result (R) can hold if 1−2β + s> 0 but not if 1−2β + s< 0.

Finally we give an outline proof of part (c) of result (4.1), the case of Chc. Suppose that the
model (3.1) obtains, and that Z is drawn from ΠY , which is characterized by the fact that just q
of the μjs equal {γs log.p/}1=γ , and each of the other p−q μjs equals 0. If s>r and .β, s/ lies
strictly above the boundary b.s, β/=0 that is given in (c) of result (4.1), then for some ">0 (cho-
sen sufficiently small), and with probability converging to 1, hcX <−p" for all sufficiently large
p. However, for each " > 0 and with probability converging to 1, |hcY | < p" for all sufficiently
large p. Together the results imply that hcY > hcX, with probability converging to 1 as p→∞.
Equivalently, the probability that Z is correctly classified as coming from ΠY converges to 1.
Similarly it can be shown that if Z is drawn from ΠX then the probability that Z is classified as
coming from ΠX converges to 1.
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