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Theoretical methods for ultrastrong light-matter interactions

Alexandre Le Boité1, ∗

1Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France

This article reviews theoretical methods developed in the last decade to understand cavity quantum electro-

dynamics in the ultrastrong-coupling regime, where the strength of the light-matter interaction becomes com-

parable to the photon frequency. Along with profound modifications of fundamental quantum optical effects

giving rise to a rich phenomenology, this regime introduces significant theoretical challenges. One of the most

important is the break-down of the rotating-wave approximation which neglects all non-resonant terms in light-

matter interaction Hamiltonians. Consequently, a large part of the quantum optical theoretical framework has to

be revisited in order to accurately account for all interaction terms in this regime. We give in this article a broad

overview of the recent progress, ranging from analytical estimates of ground-state properties to proper deriva-

tions of master equations and computation of photodetection signals. For each aspect of the theory, the basic

principles of the methods are illustrated on paradigmatic models such as quantum Rabi and spin-boson models.

In this spirit, most of the article is devoted to effective models, relevant for the various experimental platforms

in which the ultrastrong coupling has been reached, such as semiconductor microcavities and superconducting

circuits. The validity of these models is discussed in the last part of the article, where we address recent debates

on fundamental issues related to gauge invariance in the ultrastrong-coupling regime.
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I. INTRODUCTION

The search for a microscopic theory of light-matter inter-

actions has played a central role in the development of quan-

tum theory since its origin. A constant refinement of the the-

oretical framework has been fuelled by experimental progress

and technological advances. While quantization of atomic de-

grees of freedom was the essential ingredient of early models

of light-matter interactions in atomic physics, the advent of

the laser made it crucial to build a more complete theory that

accounted also for the quantum nature of light in optical ex-

periments [1]. Decades after the pioneering works that led to

the birth of quantum optics, both its theoretical and experi-

mental aspects are extremely active research fields. Indeed,

the control, at a microscopic level, of coherent interactions

between light and matter is now at the heart of the blooming

field of quantum technologies. In this context, the ability to

increase the light-matter coupling strength has played a cru-

cial role. To achieve this goal, experiments in cavity quantum

electrodynamics (cavity QED) have proved to be extremely

valuable tools [2].

Hallmarks of quantum coherence in cavity-QED setups,

such as vacuum Rabi oscillations, are observed when the light-

matter coupling strength becomes larger than any dissipation

rate in the system. This so-called strong-coupling regime has

now been demonstrated in various platforms, including atomic

cavity QED [3], semiconductor nanostructures [4, 5] and su-

perconducting circuits [6]. From a theoretical standpoint, this

regime is remarkable in that the dynamics of the system must

be understood in terms of hybrid light-matter eigenstates. The

resulting notion of dressed state has been key to our under-

standing of quantum features in the output photon statistics in

the strong-coupling regime, such as photon antibunching [7–

11]. Historically, in the platforms mentioned above, an impor-

tant feature of the strong-coupling regime was that the cou-

pling strength remained much smaller than the frequency of

the cavity mode. As a result, only the resonant terms in the

interaction Hamiltonian (i.e. conserving the number of exci-

tations), play a significant role. The remaining anti-resonant
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(or counter-rotating) terms, couple states that are much wider

apart in energy and their contribution can be neglected. This

so-called rotating-wave approximation (RWA) provides a sim-

pler, intuitive and accurate picture of atom-photon interaction

processes in this regime. The success of the exactly solvable

Jaynes-Cummings model [12], describing the interaction be-

tween a two-level atom and a single cavity mode, in various

contexts is a prominent example.

In the last decade, we entered in a new era of cavity QED

with the achievement [13–18] of the ultrastrong coupling

(USC) regime, where the coupling strength becomes compa-

rable or even larger than the cavity frequency [19–21]. The

rich phenomenology of this new regime of cavity QED has

been the focus of an intense research activity : the USC regime

has indeed proved to induce profound modifications in a vari-

ety of fundamental quantum optical phenomena, ranging from

vacuum radiation [22, 23] to single-photon emission [24, 25],

scattering processes [26] and transport properties [27, 28]. We

refer the reader to Refs. [29, 30] for a detailed presentation

of the USC phenomenology and experimental setups. It was

clear from the first theoretical predictions that the USC regime

would give rise to counter-intuitive phenomena rooted in the

break-down of the RWA and the resulting significant contribu-

tion of non-resonant terms. Equally clear was the necessity of

developing new techniques to handle correctly all interaction

terms, and checking the validity of widely used effective mod-

els in this regime. The need to provide a complete theoreti-

cal framework valid at arbitrary strong coupling strength was

further motivated by recently developed quantum simulation

techniques. Various experimental schemes have made it pos-

sible to [31–35]ultrastrong-coupling physics even in systems

that do not naturally achieve the required interaction strength.

In this article, we review the different theoretical methods

that have been designed in recent years to go beyond the RWA

and treat ultrastrong light-matter interactions. We also dis-

cuss the recent debates on some fundamental issues and lim-

itations of USC cavity QED. As the break-down of the RWA

has dramatic consequences on nearly all aspects of the the-

ory, both in open and closed systems, a wide range of ques-

tions have been revisited to face the challenges of the USC

regime. This includes exact and approximate diagonalization

methods, the treatment of dissipation and driving or the the-

ory of photodetection. Our aim is to provide a pedagogical

overview of these different topics. The term deep-strong cou-

pling (DSC) regime has been introduced in the literature to

designate more specifically the regime in which the coupling

strength becomes larger than the photon frequency [36]. In

the rest of this review we use the term USC in its most gen-

eral sense, which includes the DSC regime. The article is

structured as follows. Notations and effective models of cav-

ity QED that are used throughout the paper are introduced in

Sec. II. Section III is devoted to approximation strategies and

exact results for spectral properties of closed systems in the

USC regime. The treatment of dissipation and external driv-

ing fields is the subject of Sec. IV. Theoretical methods spe-

cific to waveguide QED setups, such as scattering theory, are

discussed in Sec. V. In Sec. VI, we discuss gauge invariance

issues and other fundamental limitations of effective models

in the USC. We conclude in Sec. VII.

II. MODELS

In this section, we introduce the effective models of light-

matter interaction that will be used in the rest of the article to

illustrate the different methods presented. As pointed out in

the introduction there are a variety of experimental platforms

in which the USC regime has been reached. Nevertheless,

the essential features of the USC regime are for the most part

captured by effective models that share platform-independent

characteristics. As the main focus of this review is on gen-

eral methods and tools, we will restrict ourselves to a set of

models that best exemplify the theoretical challenges of USC

cavity QED. All effective models of light-matter considered

in what follows are based on a general non-relativistic for-

mulation of quantum electrodynamics [37] valid within the

long-wavelength approximation. The question of their range

of validity is discussed in Sec. VI.

Among the set of models, a distinction can be drawn be-

tween two classes, based on the nature of the matter degrees

of freedom that they describe. In many setups, the latter can

be well approximated by two-level systems (TLS). Hence the

first paradigmatic family of models are spin-boson Hamilto-

nians. In its most general form it describes the interaction

between an ensemble of TLS with several modes of the elec-

tromagnetic field. Its simplest, single-spin and single-boson

version is the quantum Rabi model [38]

HQRM = ωâ†â +
Ω

2
σ̂z + gσ̂x(â

† + â), (1)

where â is the annihilation operator of the cavity mode of

frequency ω. The operators σ̂z , σ̂x are Pauli matrices Ω de-

notes the energy of the TLS and g is the light-matter cou-

pling strength (In all that follows we have set ~ = 1). Equa-

tion (1) has been widely used as model of cavity QED sys-

tems. Therefore, many of the methods presented below were

first applied or originally taylored for this Hamiltonian. Sev-

eral extension of the Rabi model have been studied, includ-

ing two-photon versions [39], where the interaction term also

contains â2 and â†2 operators, N -level extensions [40], re-

placing the TLS by more complex level structures, or models

including chiral light-matter interaction [41]. In this family

of spin-boson model, the multimode version has been widely

used to describe of a single spin strongly coupled to its envi-

ronment [42]

HSB =
Ω

2
σ̂z +

∑

k

gkσ̂x(â
† + â) +

∑

k

ωkâ
†â. (2)

It is particularly relevant in the context of waveguide QED,

where a single emitter is coupled to a continuum of modes.

A second class of models for light-matter interaction are

purely bosonic. Originally introduced by Hopfield [43], such

models are relevant when the matter degrees of freedom be-

have as bosonic (quasi)-particles [19, 44, 45]. It is the case in

the first experimental platforms in which a signature of ultra-

strong coupling was reported, where quantum well excitons
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are coupled to an intersubband transition [14]. A two-mode

example of the Hopfield Hamiltonian is the following

H = ωcâ
†â + ωX b̂

†b̂ + ig(â† + â)(b̂† − b̂) +D(â† + â)2,
(3)

where ωX denotes the frequency of the matter degree of free-

dom. The last term, quantified byD, is a diamagnetic term. A

multimode generalization to handle translation-invariant pla-

nar structures is straightforward.

III. SPECTRAL PROPERTIES

In the regime where the rotating-wave approximation is

valid, the task of finding the ground state and other spec-

tral properties of cavity QED systems is greatly simplified.

Indeed, the RWA-version of the Rabi model, the Jaynes-

Cummings Hamiltonian,

HJC = ωâ†â +
Ω

2
σ̂z + g(σ̂+â + σ̂−â

†), (4)

conserves the total number of excitations â†â + σ̂+σ̂− and is

exactly solvable. It is no longer the case when all the terms

of Eq. (1) are included. Finding spectral properties of ultra-

strongly coupled systems becomes highly nontrivial. This sec-

tion surveys the different analytical tools that have been devel-

oped for this purpose. Note that although the advent of USC

cavity QED has motivated most of the works reported here,

some of the idea presented in the following where introduced

much before the first proposals of USC experiments [46].

We begin this section by reviewing different approximation

schemes, based on perturbation theory, generalized RWA and

variational approaches. The last part is devoted to exact re-

sults, such as the one leading to an analytical solution for the

spectrum of the quantum Rabi model [47].

A. Perturbative approach

A first approach is to handle non-resonant terms as a per-

turbation of a Hamiltonian H0, containing both the free terms

and the resonant part of the interaction.

a. Effective Hamiltonian This choice for the ”unper-

turbed” Hamiltonian is motivated by the following feature.

The spectrum of H0 is structured around subspaces EN
spanned by eigenstates that are close in energy within one

of theses subspaces but far from any other eigenstate belong-

ing to another subspace EN ′ . Under such circumstances, the

dominant effect of the perturbation is to affect the dynamics

within each subspace, while the coupling between different

subspaces can be neglected at lowest order. As explained be-

low, the label N is related to the symmetry of the Hamilto-

nian and refers to a quantity that is conserved by the reso-

nant part of the Hamiltonian. For example, for the quantum

Rabi model, H0 is given by the Jaynes-Cummings Hamilto-

nian HJC and N corresponds to the total number of excita-

tions. The space EN and EN+1 are separated by an energy

of order ω, while the level spacing within one subspace is of

order g.

A precise formulation of these ideas consists therefore in

finding a effective Hamiltonian accounting for the effect of

the perturbation within each subspace EN [48]. Formulated by

Schrieffer and Wolff [49] in the context of condensed-matter

physics, the method is quite general and has found many ap-

plications [50]. In quantum optics, these ideas were applied

to strongly driven systems in the form of quantum averaging

techniques [51]. Making use of symmetry properties and of

the underlying Lie Algebra structure of light-matter interac-

tion models, Klimov et al. also gave a systematic algebraic

formulation known as the “small rotation method” [52–54].

More recently, this approach was exploited to obtain effective

low-energy approximations to finite-component Hamiltonians

exhibiting a superradiant phase transition [55, 56]. A mathe-

matical expression for the general perturbation scheme is the

following. Consider the general Hamiltonian [57]

H = H0 + ǫV, (5)

and a conserved quantity N̂ , such that [H, N̂ ] = 0 that defines

the subspaces EN . One looks for a unitary transformation eǫW

such that in the transformed Hamiltonian H̃ = e−ǫWHeǫW ,

the effect of the perturbation outside of EN is of second order:

H̃ = H0 + ǫD̂ + ǫ2V̂2, (6)

with [N̂ , D̂] = 0. In many light-matter interaction Hamilto-

nians, W is constrained by the underlying algebraic structure

of H [54]. In particular, the perturbative expansion can be

derived in a systematic way when V = X+ +X−, such that

[H0, X±] = ±X± and [X+, X−] = P (H0), (7)

with P a polynomial function. Under these assumptions the

operator W takes the form

W ∝ X+ −X−. (8)

b. Bloch-Siegert corrections and multiphotonic reso-

nances Applied to the QRM Hamiltonian, this perturbation

scheme gives the so-called Bloch-Siegert corrections to the

energy spectrum [58]. In this case, the counter-rotating terms

define the operators X+ = â†σ̂+ and X− = (X+)
†. Apply-

ing first U1 = exp
[

g
ω+Ω (âσ̂− − â†σ̂+)

]

yields at first order

H̃1 = U†
1HU1 =HJC +

g2

ω +Ω
[σ̂z(â

†â +
1

2
)− 1

2
]

+
g2

ω +Ω
[(â†2 + â2)σz]. (9)

The last term does not commute with N̂ . This comes from

the fact that the algebra of Eq. (7) is only obtained if H0 is

the non-interacting Hamiltonian. This last term is generated

by the resonant interaction terms and can be eliminated by a

second small rotation U2 = exp
[

g2

2ω(ω+Ω) σ̂z(â
2 − â†2)

]

that
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FIG. 1. Generalized rotating wave approximation applied to the

Rabi Hamiltonian HQRM. Comparison of RWA (dotted-dashed line),

limit Ω = 0 (dotted line), and GRWA (dashed line) with the exact

spectrum (solid line). Reproduced with permission [60]. Copyright

2007, American Physical Society.

produces no additional first order terms. Hence the Bloch-

Siegert effective Hamiltonian is given by

HBS = HJC +
g2

ω +Ω
[σ̂z(â

†â +
1

2
)− 1

2
]. (10)

Note that the unitary transformations U1 and U2 also give the

first correction to the eigenstates.

The validity of this approximation for the QRM has been

extensively studied [59–61]. In the resonant case, the first Jud-

dian points [62], defined as the first energy-level crossings in

the spectrum, were proposed as a boundary for the perturba-

tive regime [61]. This perturbative approach is consistent with

the first experimental observations involving an ultrastrongly

coupled qubit-oscillator system in circuit QED [16].

Perturbation theory also applies to the study of implicit res-

onances induced by counter-rotating terms. For certains val-

ues of the detuning between the atom and the cavity, some

multiphotonic processes involving intermediate states con-

nected through counter-rotating terms may become resonant.

An effective Hamiltonian that captures the dynamics of these

processes can be derived within the general algebraic frame-

work mentioned above [54, 63]. Other derivations have been

obtained by adiabatic elimination of the fastest dynamical

variables in the relevant truncated Hilbert space [64, 65]. Sev-

eral proposals have been made in recent years to exploit this

feature of the USC regime and engineer various nonlinear op-

tical analogs [66–69].

To go beyond the perturbative USC regime, other approx-

imation schemes have been developed. We first discuss the

generalized rotating wave approximation.

B. Generalized RWA

In H0 defined above, the free Hamiltonian is taken as the

Hamiltonian at g = 0. The subsequent separation into res-

onant and non-resonant interaction terms, as well as the per-

turbative treatment of non-resonant terms is relative to this

reference point. It turns out that more accurate results at large

g can be obtained by starting instead from the Hamiltonian

at g/Ω → +∞ (or equivalently Ω = 0). More precisely, the

Generalized RWA introduced by Irish [60] combines the RWA

selection of resonant contributions with a unitary transforma-

tion yielding a free Hamiltonian in the limit g/Ω → +∞.

Hence one changes the noninteracting Hamiltonian with re-

spect to which the RWA is applied. Note that in contrast to

the perturbation method described above, the unitary trans-

formation need not be a small rotation. The implementation

of the generalized RWA for the quantum Rabi model is the

following [60]. The new exactly solvable Hamiltonian that is

considered reads

H ′ = ωâ†â + gσ̂x(â
† + â). (11)

The eigenstates of this Hamiltonian are factorized and doubly

degenerate. They are of the form |±〉| ± α,N〉, where |±〉
are the eigenstates of the operator σ̂x and |±α,N〉 is the N th

Fock state, displaced by the operatorD[α] = exp(αâ†−α∗â).
It is actually more convenient to introduce the basis |Ψ±,N 〉 =
1/
√
2(|+〉|α,N〉 ± |−〉| − α,N〉), the operator σ̂x being di-

agonal in the subspace spanned by {|Ψ+,N 〉, |Ψ−,N 〉}. Note

that the states |Ψ±,N 〉 have a defined parity of the number of

excitations. The change of basis outlined above is given by

the following unitary transformation

|Ψ−,N 〉 = Û | ↓, N〉 = e
g
ω
σ̂x(â−â†)| ↓, N〉, (12)

with the parameter α = −g/ω. In this new basis the QRM

Hamiltonian of Eq. (1) is expressed as

H̃QRM = ωâ†â +
Ω

2
σzexp

[

−2g

ω
σ̂x(â

† − â)

]

. (13)

The GRWA consists in keeping in H̃QRM only the resonant

terms. It can indeed be shown that in matrix form, H̃QRM has

the same structure as the original Hamiltoninan. Hence the

GRWA yields a block-diagonal Hamiltonian, whose blocks

are spanned by the eigenstates {|ΨN,−〉, |ΨN−1,+〉}. Indeed

the resulting Hamiltonian can be expressed as

H̃GRWA = ω̃â†â +
Ω̃

2
σ̂z + g̃[f(â†â)â†σ̂− + f∗(â†â)âσ̂+],

(14)

where the coupling constants are in general renormalized with

respect to the original Hamiltonian and f is an analytical func-

tion coming from the series expansion of Eq. (13). Note that

resonant terms in H̃GRWA do not conserve the number of ex-

citations. Indeed, in the transformed basis, the spin degree of

freedom represents the parity of the number of excitation and

not the original spin. The GRWA spectrum, obtained after di-

agonalization of H̃GRWA within each {|ΨN,−〉, |ΨN−1,+〉}-

subspace was also derived earlier by other methods [57, 70].

Interestingly, whereas the RWA for the Rabi model breaks

down at the first level-crossing, the GRWA gives more ac-

curate results for a wider range of parameters (see Fig. 1).
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FIG. 2. Physical picture undelying the ab initio approach described in

Eqs. (19) and (20). (left) Bare description of the coupled light-matter

ground state in terms of many virtual excitations of the emitter state

and the bare cavity photons. (right) Quasiparticle description of the

coupled system as a factorizable state of an effective emitter in its

ground state and the vacuum of an effective photonic degree of free-

dom. Reproduced with permission [75]. Copyright 2019, American

Physical Society.

The GRWA approach has been successfully applied to other

light-matter interaction models related to the QRM, namely

to the two-qubit Rabi model [71] and to a biased version of

the QRM [72]. A so-called symmetric implementation the

GRWA, that exploit more efficiently the symmetries of the

model has also been proposed for the single- and two-photon

models [73]. A possible explanation for the wider range of

validity of the GRWA is the following. In the RWA, the de-

generacy in the energy spectrum associated with the resonant

terms is exact only when Ω = ω and g = 0. The resonant

terms in the GRWA are related to a degeneracy that is exact

for Ω = 0 (or g → ∞), which represents a larger part of the

parameter space.

An extension of these ideas was put forward by Zhang [74],

who suggested to add to the displacement defined in Eq. (12),

a squeezing operation. The starting point for the RWA now

becomes

H̃ = V̂ †Û†HÛV̂ , (15)

with

Û = eβσ̂x(â−â†) and V̂ = eλ(â
†2−â2). (16)

In contrast to the transformation of Eq. (12), the displacement

and squeezing parameters β and λ, are not determined from

the diagonalization of a new free Hamiltonian, but are com-

puted variationally by minimizing the ground state energy.

After this change of basis, the Hamiltonian is simplified in

the same way as before. After the transformation, the Hamil-

tonian still takes the general form of Eq. (14), with the addi-

tional subtlety that the renormalized atomic frequency is also

a function of â†â. Nevertheless, the problem is reduced to the

diagonalization of 2× 2 matrices.

C. Variational methods

In the previous section, we have seen that GSRWA method

combined the generalized rotating wave approximation with a

variational determination of additional squeezing paramaters.

More generally, the ground-state properties of various models

have been investigated using a variational method.

a. Polaron picture In the case of spin-boson models,

multi-polaron test functions and their generalization have

proved to be efficient Ansätze. For the spin-boson model of

Eq. (2), a multi-polaron wave function is defined as [76]

|Ψ〉 =
Npol
∑

n=1

Cn[|+, α(n)〉 − |−,−α(n)〉], (17)

where |α(n)〉 = |α1, α2 . . . 〉 is a multimode coherent state,

|α〉 = exp(
∑

n αnâ
†
n − α∗

nân)|0〉.
In the case of the quantum Rabi model, the state |Ψ−,0〉 in-

troduced in Eq. (12) is an example of a single polaron wave-

function. As mentioned above, this state is the exact ground

state in the limit Ω = 0. The relevance of polaron wave func-

tions as trial functions for the ground state of the QRM was

actually recognized in early studies of the model, long before

the advent of USC cavity QED [46]. The reasoning is based

on the parity symmetry of the QRM. As the parity of the num-

ber of excitations, given by the operatorP = σ̂ze
iπâ†â , is con-

served, the problem is simplified by considering separately the

two subspaces of states with odd or even parity. Restricted to

such subspaces, the Hamiltonian becomes purely bosonic and

can be expressed as [46, 77]

H± = ωb̂†b̂ + g(b̂† + b̂)± Ω

2
cos(πb̂†b̂), (18)

where the ± signs refer to the odd and even parity subspaces.

A coherent state in this representation of the Hamiltonian cor-

respond to a polaron state in the original basis.

Such an ansatz was later improved by considering squeezed

coherent states [77], and deformed, frequency renormalized

polarons [78, 79]. This approach was also applied to the

two-qubit [80] and two-photon [81] Rabi models. Unlike

the GRWA or the effective Hamiltonians presented above,

these polaron-based methods have been used mostly to ex-

tract ground-state properties, although possible extensions to

excited states have been proposed [78]. Other applications of

polaron transformations in the context of QED are presented

in Sec. V B.

b. Ab initio approaches Variational methods have also

been developed to tackle more complex QED systems in

which it is essential to take into account complex electronic

configurations and multiple cavity modes. Inspired by density

functional theory and its recent extension to quantum electro-

dynamics [82, 83], such methods take as a starting point the

general light-matter Hamiltonian in the Coulomb gauge. In

this context, a variational principle able to tackle ultrastrongly

coupled systems was recently proposed by Rivera et al. [75].

The ground-state is assumed to be a product of a Fermi sea of

quasi-particules parametrized by one-particle wavefunctions

ψi(r), and of the vacuum of effective photonic degrees of free-

dom (see Fig. 2). The photonic variables are the cavity mode

functions Fi(r), defined such that the vector potential Â(r)

is expressed as Â(r) =
∑

i[Fi(r)â
†
i + F ∗

i (r)âi]. The set
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FIG. 3. . Transcendental G+(x)[red] and G−(x) [blue] whose ze-

ros give the energy levels of the Rabi Hamiltonian of Eq. (1). The

parameters are ω = 1, g = 0.7 and Ω = 0.4. Reproduced with

permission [47]. Copyright 2011, American Physical Society.

of coupled equations for the dressed one-particle wave func-

tion ψi(r), effective photonic mode functions Fi(r) and mode

frequency ωi are obtained by minimizing the ground state en-

ergy, under normalization constraints. The set of equations

takes the general form

(
p2

2m
+ vext(r))ψi(r) + F [{ψ}]

+
~e2

4mǫ0

(

∑

n

1

ωn

F 2
n(r)

)

ψi(r) = Eiψi(r), (19)

[

∇×∇× ω2
i

c2
(1−

ω2
p(r)

ω2
i

)

]

Fi(r) = 0, (20)

where ω2
p(r) =

e2

mǫ0

∑

n |ψ2
n(r)| defines a position-dependent

plasma frequency. Given the form of the Ansatz, the interac-

tion term proportional to A · p in the Hamiltonian does not

enter into the above equations. The effect of this term is taken

into account self-consistently by means of second-order per-

turbation theory. So far, a proof of principle has been given for

a single emitter placed in a 1D cavity. Comparison with ex-

act numerical calculation for the ground state and one excited

state shows that the self-consistent corrections to the dressed

wave function and photonic modes make the scheme accurate

also in the ultrastrong coupling regime.

A type of variational computation based on quantum algo-

rithms has been recently adapted for cavity QED in the USC

regime [84]. However, algorithms relying on quantum hard-

ware lie outside of the scope of this review.

D. Exact results

Although for most cavity QED problems one has to rely

on approximation methods, such as the one presented in the

preceding sections, there exist exact analytical solutions for

the eigenvalue problem of a class of light-matter interaction

models, including the Rabi model. The exact solution of the

Rabi model found by Braak [47] has triggered an important

research activity bringing together both theoretical physicists

and mathematicians [85].

a. Bargmann space representation Braak’s solution to

the eigenvalue problem of the quantum Rabi model is based

on the Bargmann space representation of bosonic creation and

annihilation operators [86]. The first application of Bargmann

space methods to quantum optical models dates back to the

late 60s [87] and was used to establish several analytical re-

sults [88, 89] prior to the proof of the exact solution. In this

representation, the Hilbert space of physical states is that of

analytical functions of a complex variable z, on which the cre-

ation and annihilation operators act in the following way

â† → ∂

∂z
and â → z. (21)

The inner product in this Hilbert space is defined as

〈ψ|φ〉 = 1

π

∫

dzdz∗e−zz∗

ψ∗(z)φ(z), (22)

which also specifies the normalization requirement for the

wave functions 〈ψ|ψ〉 < ∞. The Schrödinger equation is

therefore mapped to a differential equation in the complex

plane in which the energy E enters as a parameter. The re-

quirement that the function ψ(z) be analytical in the whole

complex plane imposes some constraints on the admissible

values of E. These constraints, along with all the symmetry

properties of the model can be exploited to extract an exact

(but implicit) expression for the spectrum of the Hamiltonian.

In the case of the quantum Rabi model, due to the spin de-

gree of freedom, the total wave function in Bragmann space

has two components (φ1(z), φ2(z)). After a π/2-rotation of

the spin, the Hamiltonian reads

H =

(

ωz∂z + g(z + ∂z)
Ω
2

Ω
2 ωz∂z − g(z + ∂z)

)

, (23)

which yield the following Schrödinger equation

(z + g)∂zφ1(z) + (gz − E)φ1(z) +
Ω

2
φ2(z) = 0, (24)

(z − g)∂zφ2(z)− (gz + E)φ2(z) +
Ω

2
φ1(z) = 0. (25)

From Eqs. (24) and (25), the spectrum can be extracted in

different equivalent forms. Due to the Z2 symmetry of the

model, the problem can be solved separately in the odd and

even parity subspace. Braak’s solution exploits this feature by

working directly on the Bargmann representation of Eq. (18).

It is then shown that E belongs to the spectrum if and only if

x = E + g2 belongs to the set of zeros of some transcenden-

tal functions G±(x), where the index ± indicates the parity

subspace (see Fig. 3). The functions G±(x) are expressed as

power series whose coefficients can be computed recursively

through the Taylor expansion of the solutions to Eqs. (24) and

(25). Maciejewski et al. [90] gave an equivalent solution for

the energy spectrum by relating Eqs. (24) and (25) to the gen-

eral theory of Heun differential equations [91]. By mapping

the original problem to a second order Heun confluent equa-

tions, the results can be expressed in terms of confluent Heun
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functions. For a detailed presentation of these special func-

tion we refer the reader to Ref. [92]. Note that applications

of the Bargmann representation and the theory of complex

differential equation is not limited to parity-symmetric mod-

els. Solutions to the more general class of anisotropic Rabi

models, where the symmetry is explicitly broken by an ad-

ditional σ̂x term and in which resonant and anti-resonant in-

teraction terms depend on two-different coupling constants,

were later derived [93, 94]. Exact solutions have also been

found for other generalizations of the Rabi model such as the

two-photon model [39]. A more complete presentation of the

solution for these models can be found in Ref. [95].

b. Generalized coherent states and Bogoliubov operators

Within the family of spin-boson models with a finite number

of bosonic modes, the insight provided by the “polaron pic-

ture” – displaced states of the oscillators conditioned by the

σ̂x projection of the TLS – has been used to derive analytical

and numerical exact results. The generalized coherent state

approach can be viewed as an algebraic implementation of

this idea, in which displacements are introduced in the form of

Bogoliubov transformations on the bosonic operators [96]. In

contrast to the GRWA or variational approaches, this method

is not restricted to the low-lying energy states but was imple-

mented to obtain exact results on the full spectrum of several

light-matter interaction models. We illustrate the principle of

this method in the specific case of the Rabi model, for which

it provides an alternate derivation of the exact results obtained

trough the Bargmann space representation of the wave func-

tion. Given the role played by the σx (and its relation to the

symmetry of the model), the first step is to apply a π/2 ro-

tation of the spin and write the Hamiltonian in matrix form

as [97]

H =

(

â†â + g(â† + â) Ω
2

Ω
2 â†â − g(â† + â)

)

. (26)

Displacements of the oscillator are subsequently introduced in

the form of two Bogoliubov transformations â → Â = A+ g

and â → B̂ = â − g. Applying each one of these of this

transformation yields a Hamiltonian of the form

(

Â†Â − g2 Ω
2

Ω
2 Â†Â − 2g(Â† + Â) + 3g2

)

. (27)

The Schrödinger equation can now be written in the displaced

Fock basis {|n〉A = (Â†)n√
n!

|0〉A}, or equivalently using the

basis {|n〉B = (B̂†)n√
n!

|0〉B}, where the states |0〉B and |0〉A
are the coherent states such that B̂ |0〉B = 0 and Â|0〉A = 0.

Writing the wave function as

|Ψ〉 =
(
∑∞

n=0

√
n!en|n〉A

∑∞
n=0

√
n!fn|n〉A

)

, (28)

the Schrödinger equation translates into recursion relations for

en and fn that depend on the energy E. Applying the same

reasoning to the second Bogoliubov transformation yields a

second set of recursion relation relative to the basis {|n〉B}.

As the two representations correspond to a unique state, an

FIG. 4. (Top) A sketch of the input-output theory in the form of

Langevin equations as originally presented in Ref. [44]. Labels k
and q correspond to in-plane and orthogonal wave vector respec-

tively. Reproduced with permission [44]. Copyright 2006, American

Physical Society. (Bottom) Example of failure of the phenomeno-

logical master equation Eq. (29) in the form of an excess of photon

(black line) in the seady-state |g, 0〉 with respect to the true ground

state ˜|g, 0〉. Simulations are performed for the Rabi Hamiltonian with

Ω/2π = ω/2π = 6GHz and γ/2π = κ/2π0.1 GHz. Red dots corre-

spond to one minus the fidelity. Dotted lines are the result computed

with the correct master equation. Reproduced with permission [102].

Copyright 2011, American Physical Society.

implicit equation for E can be extracted, equivalent to the so-

lution of Ref. [47]. The method has first been applied to the

finite-size Dicke model [96], for which it provided an efficient

way of computing ground-state observables for a large num-

ber of atoms and with arbitrary precision. More recently it has

also been applied to the two-mode Rabi model [98–100] and

the quantum Rabi-Stark model [101].

IV. OPEN SYSTEMS

The methods and results presented in the previous section

dealt only with closed systems, setting aside the issue of the

experimental signature of the various spectral features in re-

alistic setups [103–105]. It proved particularly fruitful to ad-

dress this question within the more general framework of open

quantum systems, where dissipative processes stemming from

the coupling of the system to its environment play a crucial

role. In this context, it was recognized that without proper

modifications, the usual approach would lead to unphysical

predictions such as the emission of photons by a system in its

ground state [22, 102, 106]. The theory described in this sec-

tion is structured around three elements. The first one is the

master equation, governing the dynamics of the internal de-
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grees of freedom of the system. The second one is the input-

output theory, relating the signal observed via a given detec-

tion scheme to the internal degrees of freedom and to possible

input field. The last aspect that is discussed is the specific case

of open systems driven by an external periodic field. In this

context, Floquet theory can be employed to efficiently treat

the time dependency in an exact way.

A. Master equation

Master equations form an important branch of the theory

of open quantum systems which has found numerous applica-

tions in quantum optics [107]. It has successfully been applied

to the paradigmatic model of cavity QED, i.e. a system com-

posed of a TLS and a cavity mode. At temperature T = 0,

the usual quantum optical master equation for the density ma-

trix ρ of such a system takes the canonical Lindblad form and

reads

dρ

dt
= −i[H, ρ] + γ

2
[2âρâ† − â†âρ− ρâ†â]

+
κ

2
[2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−], (29)

where κ and γ are damping rates associated with the cavity

and the atom respectively. The non-unitary terms in this equa-

tion translate the fact that both the cavity and the atom are cou-

pled to their environment. It remains partly phenomenologi-

cal, as dissipative processes involving the atom and the cavity

are treated independently. The total dissipator in Eq. (29) is

indeed the sum of the dissipators obtained if the cavity and the

atom were not coupled. In the absence of pumping terms in

the Hamiltonian, such a master equation will drive the system

to d the state |g〉|0〉. It is clear that Eq. (29) cannot correctly

account for the dynamics in the USC since the state |g〉|0〉 is

no longer the ground state of the system. Such a master equa-

tion would lead in particular to emission of photons in the

ground state (see Fig. 4) [102, 106].

A first approach to handle corrections to the phenomeno-

logical equation is to go back to the microscopic deriva-

tion of Markovian master equations [107]. First applied to

the Jaynes-Cummings [108–110], this method was later ex-

tended to the Rabi model [102], providing a realistic descrip-

tion of dissipative processes in the USC. In particular, it was

shown that unphysical predictions arise even when the effect

of counter-rotating terms in the atom-cavity Hamiltonian can

be treated perturbatively. In order to highlight the correction

to Eq. (29), we first recall the basic principles on which the

microscopic derivation is based, as outlined, e. g., in Ref.

[107].

a. Setup and notations Let us consider the typical sys-

tem - bath Hamiltonian

H = HS +HB +
√
γA⊗B, (30)

where HS and HB are respectively the system and bath

Hamiltonians. In the interaction term, A and B are Hermitian

operators acting only on the system and bath Hilbert spaces re-

spectively. The bath is typically assumed to be an infinite col-

lection of harmonic oscillators. Generally speaking, the effect

of the bath on the system dynamics is to induce transitions be-

tween eigenstates of the system Hamiltonian HS . Transitions

at frequency ω are determined by the following jump operator

A(ω) =
∑

ωki=ω

|i〉〈i|A|k〉〈k|, (31)

where the |i〉 are eigenstates of HS and ωki are the corre-

sponding Bohr frequencies. As we will see in the following, it

is essential in the USC regime to write Eq. (31) in the dressed-

state basis of the full system. Note that the operators A(ω)
introduce a decomposition of A, such that A =

∑

ω A(ω).
The aim of the master equation is to obtain an approximate

equation of motion for the reduced density matrix ρ of the

system by tracing out the bath degrees of freedom. Instead of

keeping track of all its microscopic degrees of freedom, the

relevant information on the bath is encoded in the functions

Γ(ω) = γ

∫ +∞

0

dτeiωτ 〈B(τ)B(0)〉. (32)

b. Born-Markov approximation The derivation of the

master equation relies on two main assumptions (Born-

Markov approximation): a perturbative treatment, up to

second-order, of the system-bath interaction and a fast decay

of the bath correlation functions on the time scale of the sys-

tem’s internal dynamics. These assumptions are not a priori

incompatible with the USC regime, as the latter only quan-

tify the strength of the interactions within subparts of the sys-

tem. This approximation scheme, along with the trace over

bath degrees of freedom, it is most conveniently expressed in

the interaction picture, where the time evolution of A(ω) is

straightforwardly given by A(ω, t) = e−iωtA(ω). Within this

framework, the equation of motion for the reduced density

matrix reads

dρ

dt
=
∑

ω,ω′

ei(ω
′−ω)tΓ(ω)(A(ω)ρA†(ω′)−A†(ω′)A(ω)ρ)

+
∑

ω,ω′

ei(ω−ω′)tΓ∗(ω)(A(ω′)ρA†(ω)− ρA†(ω)A(ω′)),

(33)

which yields the following equation in the Schrödinger picture

dρ

dt
= −i[HS , ρ]+

∑

ω,ω′

Γ(ω)(A(ω)ρA†(ω′)−A†(ω′)A(ω)ρ)+h.c.

(34)

The particularity of this equation is that it does not guarantee

complete positivity of the density matrix. This requirement is

fulfilled by assuming an additional simplification, the secular

approximation.

c. Secular approximation If |ω − ω′| ≫ γ for ω 6= ω′,
one can perform a rotating-wave approximation in Eq. (33)

and keep only the terms for which ω = ω′. This gives a Lind-

blad equation

dρ

dt
= −i[HS , ρ]+

∑

ω

Γ(ω)(A(ω)ρA†(ω)−A†(ω)A(ω)ρ)+h.c.,

(35)
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which guarantees that the dynamical map it defines is com-

plete positive and trace preserving. For the physical inter-

pretation of the different terms, it is useful to write Γ(ω) =
γ(ω)+ iD(ω). With these notations the general expression of

the master equation at T = 0 reads

dρ

dt
= −i[HS +HL, ρ] +D[ρ], (36)

with

HL =
∑

ω>0

D(ω)A†(ω)A(ω), (37)

D[ρ] =
∑

ω>0

γ(ω)(2A(ω)ρA†(ω)− {A†(ω)A(ω), ρ}). (38)

The operator HL gives a Lamb shift that is usually absorbed

in HS by redefining the system Hamiltonian, while the dissi-

pator D[ρ]) governs the non-unitary part of the dynamics. In

the particular case introduced at the beginning of this section,

where both the atom and the cavity are coupled to a bath, there

are two operators, A1 = â† + â and A2 = σ+ +σ−, coupling

the system to its environment. In light of the above considera-

tions, the essential corrections to Eq. (29) imposed by the USC

regime can be formulated in the following way. As the cou-

pling strength becomes comparable to the cavity frequency,

one cannot assume that γ(ω) ≈ γ(ωcav) for all transitions.

Moreover, as the structure of the energy levels in the USC

regime is expected to differ drastically from the uncoupled

system, the jump operators can be defined consistently only

in the dressed-state basis. In the case of the Rabi model, it

was shown that for realistic experimental implementation in

circuit QED and for a large range of coupling strengths, the

correct dissipator in the USC regime includes individual jump

operators for all possible transition [24, 25, 102]. In other

words all transitions have to be considered non-degenerate, in

sharp contrast to Eq. (29).

d. quasi-degenerate spectrum For extreme values of the

coupling strength, such that it dominates all other energy

scales, a wide of class of systems exhibit quasi-degenerate

eigenstates [111]. In driven-dissipative setups, such degen-

eracies can be lead to appearance of long-lived metastable

states [112]. Under such circumstances, the assumption that

|ω − ω′| ≫ γ for ω 6= ω′, underlying the secular approxima-

tion breaks down. It is however possible to recover a Lindblad

equation such as Eq. (35) by extending the definition of this

approximation. Suppose that approximate equivalent classes

of frequencies can be defined as P(ω̄) = {ω : γ(ω) ≃ γ(ω̄)},

and let us write ω1 ≡ ω2 if P(ω1) = P(ω2). In the

general experssion of the dissipator in the interaction pictutre

given in Eq. (33), terms involving frequencies ω and ω′ such

that ω ≡ ω′ factorize. Expressing the secular approximation

as |ω̄1 − ω̄2| ≫ γ for ω̄1 6≡ ω̄2, one recovers a dissipator in

the Lindblad form, which reads

D[ρ] =
∑

ω̄>0

γ(ω̄)(2Ã(ω̄)ρÃ†(ω̄)− {Ã†(ω̄)Ã(ω̄), ρ}), (39)

where the sum is now performed over inequivalent frequen-

cies only and the jump operators are defined as Ã(ω̄) =

∑

ω∈P(ω̄)A(ω) In this formulation of the secular approxima-

tion, problems arise when ω̄1 6≡ ω̄2 and |ω̄1 − ω̄2| ∼ γ. This

can be a serious issue in the case of strongly driven systems.

To go beyond the secular approximation in the USC regime, a

more general formalism was introduced by Settineri et al. in

the context of hybrid quantum systems [113].

e. Non-Markovian effects To account for non-

Markovian effects, an exact master equation for a gen-

eral open quantum system can be written following the

Nakajima-Zwanzig projection method [107]. Without further

approximation, such an equation is integro-differential and

contains an involved time convolution with a memory kernel,

but approximation strategies relying on a perturbative expan-

sion of the coupling to the bath are available to make the

master equation local in time while going beyond the Markov

approximation. Before the study of Beaudoin et al. [102], De

Liberato et al. [22] have followed such an approach, called

the second-order time-convolutionless operator approach,

to correct the master equation in the USC regime. It was

also implemented by Nataf et al. in a proposal for protected

superconducting qubits in the USC regime [114]. The form

of the master equation is

dρ

dt
= −i[H, ρ] +

∑

j

(ÛjρŜj + ŜjρÛ
†
j − ŜjÛjρ− ρÛ†

j Ŝj),

(40)

where the operators Ûj are time-dependent and given by

Ûj(t) =

∫ ∞

0

vj(τ)e
−iH(t)τ Ŝje

iH(t)τdτ, (41)

with, at T = 0, v(τ) = 〈B(τ)B(0)〉. When the Born-Markov

approximation is justified, the two approaches yield the same

master equation.

f. Counter-rotating terms in the system-bath Hamiltonian

In the approach of Beaudoin et al. [102], a rotating-wave ap-

proximation is still carried out in the system-bath Hamilto-

nian. Bamba et al [45] performed a detailed study of correc-

tions to the master equation when no RWA is performed at

that stage. These authors focused on a system where the mat-

ter part is composed of (quasi-bosonic) excitons. As a result,

the system Hamiltonian is bosonic and quadratic, which from

a methodological point of view offers additional possibilities.

In particular, by performing an exact diagonalization of the

full system-bath Hamiltonian, they show that the reduced den-

sity matrix of the bath in the true ground state is not a vacuum

state. As a result, considering the bath to be in a vacuum state

when deriving the master equation induce a non-physical ex-

citation of the system resulting in a non-vanishing polariton

population (in the absence of driving). The solution to this

paradox is to estimate the correlations induced in the reservoir

by its coupling to the system when the latter is in its ground

state and the former in the vacuum state. A consistent master

equation is then obtained when injecting the corrected bath

correlations functions in the microscopic derivation. Correc-

tions to the dissipative dynamics beyond the Born-Markov ap-

proximation due to counter-rotating terms in the system-bath
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Hamiltonian have also been recently studied for spin-boson

models by means of a dynamical polaron ansatz [115] (see

Sec.V). Note that in all this section we have considered the

correction to the standard master equation of a given system-

bath Hamiltonian. A discussion on meaningful ways of deriv-

ing such Hamiltonians is presented in Ref. [116].

B. Input-output theory

While the master equation describes the dynamics of the

internal degrees of freedom of the system, the input-output

theory relates these internal variables to external ones at the

origin of input and output signals. Another aspect of the input-

output formalism is that it allows to formulate the dynamics

of the system in term of Langevin equations. This approach

is particularly fruitful when dealing with quadratic bosonic

Hamiltonians, in which case the associated Langevin equa-

tions are linear [44]. As the input-output theory gives access

to quantities such as transmission or fluorescence spectra and

correlation functions, it is well suited to tackle questions re-

lated to the experimental signatures of the USC. For exam-

ple, in the case of a two-dimensional electron gas in multiple-

quantum-well structures, a signature of the USC was identi-

fied in the form of an asymmetric anticrossing of polariton

modes visible in the optical spectra [14]. Within this theoret-

ical framework, several works have studied the output photon

statistics for systems described by the Rabi model and its gen-

eralizations. In particular essential modification of the phe-

nomenology of the photon blockade effect have been reported

in the USC regime of single [24, 25] and two-photon mod-

els [117]

a. Input-output relation for nonlinear systems The gen-

eral setting is the same as that of Eq. (30). In this section we

explicitly write the interaction part of the system-bath Hamil-

tonian in the following form :

HI = X̂ ⊗
∑

k

γki(â
†
k − âk). (42)

where X̂ is a generic Hermitian operator acting on the Hilbert

space of the system and the operators âk are bosonic annihila-

tion operators defining the bath modes. The bath Hamiltonian

and given byHB =
∑

k ωkâ
†
kâk. The input-output relation is

derived from the Heisenberg equations of motion which for

the bath modes read

dâk
dt

= −iωkâk + X̂(t), (43)

which yields

âk(t) = e−iωk(t−t0)âk(t0) + γke
−iωkt

∫ t

t0

eiωkτ X̂(τ)dτ,

(44)

for an arbitrary initial time t0. With the defini-

tion of the input and output field as âout(in)(t) =

limt0→±∞
1√
2π

∫

dωeiω(t−t0)â(t0) and combining the above

equation for t0 → +∞ and t0 → −∞ we obtain

âout(t)− âin(t) =
∑

k

γke
−iωktX̂(ωk), (45)

where X̂(ωk) denotes the Fourier transform of X̂(t). In

the continuous limit, where
∑

k γk →
∫ +∞
0

dωγ(ω), the

r.h.s. becomes the inverse Fourier transform of the quantity

γ(ω)Θ(ω)X̂(ω), where Θ(ω) is the Heaviside step function.

Note that the operator Θ(ω)X̂(ω) is the Fourier transform of

the positive-frequency part of X̂ , which in principle should

be defined with respect to the full system-bath Hamiltonian.

However, when the coupling to the bath is weak, one can de-

fine to a good approximation, the positive-frequency part from

the eigenstates of HS alone. Hence in the frequency domain,

the general input-output relation for a weak system-bath cou-

pling reads

âout(ω)− âin(ω) =
√
2πγ(ω)X̂+(ω), (46)

with

X̂+ =
∑

ωi<ωj

Xij |i〉〈j|, (47)

andXij = 〈i|X̂|j〉. It is clear from the above expressions that

we recover the key elements specific to the USC regime that

appeared in the derivation of the master equation: the “white

noise” assumption γ(ω) ≈ γ is not legitimate in the general

case [44]. In addition, X̂+ differs from â when the cavity

mode is ultrastrongly coupled to the quantum emitter [24].

The input-output relation in Eq. (46) allows to compute

various correlation functions of the output field by combin-

ing Eq. (46) with the master equation approach. Indeed,

the key quantities are now correlation functions of the field

X̂+(t), which may in turn be calculated via the quantum re-

gression theorem. However, such a scheme requires to find

an explicit time-domain expression for Eq. (46), which de-

pends on microscopic details of the model, such as the bath

spectral density γ(ω). For specific setups in which the fre-

quency dependence of γ(ω) can be neglected even in the

USC, this expression takes the simple form âout − âin ∝
X̂+ [118, 119]. Note that alternative definitions for the in-

put and output fields may be considered, depending on the

actual measurement scheme under consideration. For exam-

ple, considering a circuit QED model in which the resonator

is coupled to a waveguide, Ridolfo et al. [24] defined the out-

put field as limt0→+∞
∫

dω
√
ωeiω(t−t0)â(t0), whose corre-

lation functions are directly proportional to photodection sig-

nals from the electric field. For this setup, a relevant choice

for the spectral density γ(ω) ∝ √
ω [24, 120], leading to

an input-output relation of the form âout − âin ∝ d
dt
X̂+. In

the bosonic model considered in [45] to describe intersubband

polaritons, the output field is defined as the field operator that

couple in to the upper and lower polariton branches.

b. Langevin equations When the system Hamiltonian is

quadratic, the coupled Heisenberg equations of motion defin-

ing the exact system-bath dynamics can be cast into analyti-

cally solvable Langevin equations. This approach was applied
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to a bosonic model such as the one of Eq. (3) [44, 121]. To the

equation on the bath variables, that defined the input-output

relation, must be added the equation on the internal degrees

of freedom (see Fig. 4). The underlying physical system is of-

ten a planar structure, where quasiparticles are labeled by their

in-plane momentum k. As we only sketch the method here,

we omit this label here. Denoting by â the cavity modes, the

general form of the equations for the photonic field is

da

dt
= − i

~
[a,Hsys]−

∫ ∞

−∞
dt′Γ(t− t′)a(t′) + F (t), (48)

where the memory kernel Γk involves the spectrum of the pho-

tonic bath and is responsible for the complex energy shifts of

the photonic mode. The force Fk can be written as a function

of the input or output field depending of what initial time is

chosen. A similar equation is derived for the matter degrees

of freedom. Due to the linearity of the system, one can obtain

a algebraic expression relating input and output fields in the

frequency domain. The final results take the general form.

(

αout(ω)
βout(ω)

)

= U(ω)
(

αin(ω)
βin(ω)

)

, (49)

where this relation combines the input-output relation, as

given e.g. by Eq. (46) and the algebraic representation of the

Langevin equations of Eq. (48) expressed in Fourier space.

Assuming that the latter is written formally as

M(ω)









â(ω)

b̂(ω)
â†(−ω)
b̂†(−ω)









+ i









Fc(ω)
Fe(ω)
F †
c (−ω)
F †
e (−ω)









. (50)

with the Fourier transform of the Langevin forces F (ω) di-

rectly proportional to the input fields, the key quantity enter-

ing in the expression for U(ω) is the Green function G(ω) =
−iM−1(ω). In the matrix M(ω) appear the complex fre-

quency dependent damping rates Γ(ω) that give rise to damp-

ing terms and Lamb shifts, as in the derivation of the master

equation.

c. Photodection The considerations underlying the

derivation of the input-output relations are also relevant for

the theory of photodetection, whose aim is to determine the

relevant observable of the output field that one need to com-

pute to reproduce photodetection signals. The basic princi-

ple of Glauber’s original theory [1] are also valid in the USC

regime. However, as pointed out by Di Stefano et al [122],

its application requires the same kind of adjustments that lead

to Eq. (46). In this spirit, the theory can be established for

a device coupled to a generic light-matter system. Hence,

the operator involved in the system-detector coupling Hamil-

tonian is not limited to the electric field. In return, the fre-

quency dependence of the system-detector coupling coeffi-

cient has to be taken into account. The general setting is for-

mally very similar to was was presented above. In particular,

the system-detector coupling Hamiltonian may be written as

Hsd =
∑

gn(ĉ
†
n + ĉn) ⊗ X̂ , where the operators ĉn are an-

nihilation operators for the nth mode of the detector and need

not be bosonic. X̂ is an operator acting only on the system.

Within this framework, the equivalent of Glauber’s formula,

giving the expression of the detector probability of being ex-

cited, is obtained through the Fermi golden rule and reads

dW

dt
= 〈Ô−Ô+〉, (51)

where the operator Ô+ is similar to the quantity that appear in

the r.h.s. of Eq. (46). It is such that its Fourier transform is

given by

Ô(ω) =
√
2πg(ω)X̂+, (52)

where the positive-frequency part is defined relative to the

system Hamiltonian, assuming weak coupling to the detector.

The notation g(ω) refers to the continuous limit of gn.

C. Driven systems

A typical way to study, e.g., the output photon statistics

of a cavity QED device is to couple it to an external co-

herent field. Such driving mechanism is accounted for in

the theoretical description by adding a term proportional to

F cos(ωd + φ) in the Hamiltonian of the system, where ωd

denotes the frequency of the field and F its amplitude. In

a regime where all counter-rotating terms can be safely ne-

glected, the time-dependence induced by the driving term is

subsequently removed by expressing all quantities in a frame

rotating at the driving frequency ωd. In the ultrastrong cou-

pling regime the Hamiltonian is still time-dependent in the

rotating frame but other strategies, relying on Floquet theory,

are available to handle the driving term. The use of Floquet

theory in quantum mechanics is not restricted to open systems

and was first employed to treat strong driving in closed sys-

tems [123–125]. We restrict ourselves here to its application

to the master equation, although other approaches have also

been proposed [126, 127].

a. Floquet-Liouville approach A rigorous and general

derivation of the master equation for a time-dependent Hamil-

tonian is not a trivial task [128]. However when the driv-

ing is weak, one can assume that there is no “dressing of

the dressed-state” by the external field and that the dissipa-

tor is left unchanged. A possible strategy, designated as the

Floquet-Liouville approach [129, 130], is then to apply Flo-

quet theory to the resulting time-periodic master equation,

∂tρ = L (t)ρ, where L (t + T ) = L (t), with T = 2π/ωd.

Here L (t) denotes the Liouvillian superoperator defined by

Eq. (36). The Floquet theorem [131] states that there exist

solutions of the master equation of the form

ρ(t) =
∑

α

cαe
ΩαtRα(t). (53)

Here, Rα(t) is a periodic function of period T and Ωα is a

complex number, which are eigenfunctions and eigenvalues,

respectively, of the following operator

(L (t)− ∂t)Rα(t) = ΩαRα(t). (54)
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Practical implementations of the Floquet-Liouville approach

amount to finding an algebraic representation of Eq. (54) that

makes the problem time-independent. This is carried out by

introducing the so-called Floquet Hilbert space H2⊗T , where

T denotes the Hilbert space of T -periodic functions. A natu-

ral choice of basis for the space T , is obviously the functions

φn(t) = e−inωdt. Following Refs. [124, 132], we denote φn
by |n). In this basis, the generic expression for an element

|A〉〉 of H2 ⊗ T , |A〉〉 =
∑+∞

n=−∞A(n) ⊗ |n) coincides with

its Fourier series expansion A(t) =
∑+∞

n=−∞A(n)e−inωdt.

Note that the scalar product on the Floquet space derives from

the usual scalar product on T , (f |g) = 1
T

∫ T

0
f∗(t)g(t)dt

and the scalar product on H2, 〈A|B〉 = Tr[A†B]. Within

this framework, the quantities Rα(t) are represented as right-

eigenvectors |Rα〉〉 (corresponding to the eigenvalue Ωα), of

a non-Hermitian superoperator L̃ in Floquet space. The ma-

trix elements of this operator derive from the expression of

Eq. (54) in Fourier space, which reads

∞
∑

m=−∞
L

(n−m)R
(m)
α,k + inωdR

(n)
α,k = ΩαR

(n)
α,k, (55)

Note that the range of the index α in Eq. (53) is equal to the

dimension of the physical space of density matrices. However,

given the dimension of the Floquet space it is necessary to

label the eigenstates |Rα,k〉〉 of L̃ with an extra index k ∈
Z. This apparent discrepancy reflects the fact that, similarly

to Bloch functions in solid state physics, the matrices Rα(t)
in Eq. (53) are not uniquely defined. Indeed, the equation

is left invariant by the transformation {Ωα → Ωα − ikωd,

Rα(t) → eikωdRα(t)}. The full dynamics can be expressed

as a function of eigenstates and eigenvectors of L̃ leading to

the Floquet space equivalent of Eq. (53)

|ρ(t)〉〉 =
∑

α,k

cα,ke
Ωα,kt|Rα,k〉〉, (56)

where cα,k = 〈〈Lα,k|ρ0〉〉, with 〈〈Lα,k| the left-eigenvectors

of L̃ . In this expression the periodic part of the time evolution

is implicitly encoded in |Rα,k〉〉 Note that for a given initial

density matrix ρ0, the choice of the |ρ0〉〉 is not unique, but this

arbitrariness has no influence on the dynamics. One possible

choice is for example |ρ0〉〉 = ρ0⊗|0). In addition, due to the

degeneracy mentioned above, the sum over k can always be

suppressed and all quantities expressed as a functions of Ωα,0

and |Rα,0〉〉. More generally the propagator for the master

equation can be expressed as

ρ(t+ τ) = U(t+ τ, t)[ρ(t)]

=
∑

α,k

e−iΩα,kτ 〈〈Lα,k|ρ〉〉Rα,k(t+ τ). (57)

This algebraic formulation of the master equation in Flo-

quet provides an efficient way of computing the dynamics

for driven-dissipative systems with a small number of compo-

nents, without numerically integrating a time-dependent mas-

ter equation. In this respect, this approach was particularly

useful to address the question of metastability in the driven-

dissipative Rabi model [112]. It also allowed to find semi-

analytical expressions for the fluorescence spectrum of ultra-

strongly coupled devices [117].

b. Floquet-Markov approach A related application of

Floquet theory to the master equation is the Floquet-Markov

approach. Originally conceived for quantum systems in strong

driving fields [133–135] it consists in deriving the master

equation directly in the Floquet basis associated with the pe-

riodic Hamiltonian. Let |uα(t)〉 be the Floquet eigenstate sat-

isfying |uα(t+ T )〉 = |uα(t)〉 and

US(t, 0)|uα(0)〉 = e−iǫαt|uα(t)〉. (58)

In the Schrödinger picture, operators are defined in the basis

|u(0)α〉 and the matrix elements of the density matrix as

ρα,β(t) = 〈uα(t)|ρ(t)|uβ(t)〉. (59)

In the interaction picture relative to the Floquet basis, in which

the master equation is derived, the matrix elements of an op-

erator A(t) are

〈uα(0)|A(t)|uβ(0)〉 = 〈uα(0)|U †
S(t, 0)AUs(t, 0)|uβ(0)〉

= ei(ǫα−ǫβ)t〈uα(t)|A|uβ(t)〉

=
+∞
∑

k=−∞
e−i(ǫβ−ǫα+kωd)tA

(k)
αβ . (60)

Once a meaningful interaction picture has been defined, a pro-

cedure similar to the one outlined at the beginning of this sec-

tion applies. The relevant jump operators are now of the form

A(ω) =
∑

ǫβ−ǫα+kωd=ω

A
(k)
αβ |uα(0)〉〈uβ(0)|, (61)

from which we recover an equation that is formally equiva-

lent to Eq. (33). Summing over indices α, β, k rather than fre-

quencies ω, the equation (without the secular approximation)

reads [133]

dρ

dt
=

∑

α,β,k,α′,β′,k′

[

ei(Ωα′β′ (k′)−Ωαβ(k))tA
(k)
αβA

(k′)∗
α′β′ × (62)

× Γ(Ωα,β(k))[Pαβ , ρP
†
α′β′ ]

]

+ h.c.,

(63)

with Ωα,β(k) = ǫβ − ǫα + kωd and Pαβ = |uα(0)〉〈uβ(0)|.
An autonomous equation in the interaction picture is obtained

only when performing the secular approximation, i.e. the as-

sumption ω 6= ω′ =⇒ |ω − ω′| ≫ γ. In this setting, the

transitions frequencies not only involve the the quasienergies

ǫα but also all equivalent quasienergies obtain by adding a

multiple of the frequency ωd. When the secular approxima-

tion understood in this way is valid, the final expression for

the master equation (in the interaction picture) reads

dρ

dt
=
∑

α,β,k

|A(k)
αβ |2Γ(Ωα,β(k))[Pαβ , ρP

†
αβ ] + h.c. (64)
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V. WAVEGUIDE QED

The methods presented in the previous sections where first

and foremost tailored to solve cavity QED problems where

a finite (and usually small) number of emitters interact ultra-

stongly with a finite number of cavity modes. As the result,

even when the coupling to a continuum of modes was consid-

ered in Sec. IV to model the environment, the system-bath

coupling was considered small enough, so that the bath de-

grees of freedom could be effectively traced out. The possi-

bility of reaching the USC regime in waveguide QED, where

an atom is coupled to the continuum of electromagnetic modes

propagating in a 1D waveguide, raises a new set of theoretical

issues. While the paradigmatic model of Sections III and IV

was the quantum Rabi model (Eq. (1)), this section focuses

on the spin-boson model, presented in Eq. (2).

A. Ultrastrong coupling to a continuum

In the context of waveguide QED, a typical situation is to

consider a single quantum emitter of frequency Ω emitting

light into the waveguide with a rate Γ. The system enters the

strong coupling regime when the the emission rate Γ becomes

larger than the decoherence rate or any other dissipation rate

into other channels, while the relation Γ ≪ Ω still holds. In

analogy with cavity QED, the USC regime is reached when Γ
becomes a significant fraction of Ω. Such a regime is achiev-

able with superconducting architectures involving supercon-

ducting qubits coupled to a 1D transmission line [17, 21]. In

this settings, an experimental signature of the different cou-

pling regime may be obtained by measuring the transmitted

coherent scattering. For example, in an open setting involving

a single atom and single-photon pulses, a hallmark of strong

interaction between the atom and propagating photons is the

extinction of the transmitted light, resulting from an interfer-

ence process between the incoming light and the light emitted

collinearly by the atom [120, 136]. As in driven-disspative

cavity QED scenarios, non-poissonian statistics of the trans-

mitted and reflected field are also a manifestation of strong-

light matter interaction [137–139]. From a theoretical per-

spective, the most important underlying model is the spin-

boson Hamiltonian [42]. It is indeed the simplest model de-

scribing the coupling of an atom, assumed for simplicity to

be a TLS, to a continuum of bosonic modes modelling the

waveguide. The model, which is related to quantum impu-

rity problem [140, 141] has numerous application outside of

quantum optics and only a small fractions of the theoretical

literature is touched upon here.

Within this framework, several strategies are available to

compute the output of scattering experiments. We note first,

that in the strong-coupling regime, when the coupling to the

waveguide modes is still much weaker than the atom fre-

quency, a microscopic master equation approach is legitimate.

Scattering amplitudes and correlation functions of the out-

put field are linked to the density matrix of the atom via

standard input-output relations [142]. In the USC regime, it

was shown that numerical schemes based on Matrix Product

States [143] could successfully be adapted to scattering prob-

lems [144, 145]. They have in particular been used to bench-

mark two of the methods that are presented below: the dy-

namical polaron ansatz [146] and the extension to the USC of

field-theoretic scattering theory [26].

B. Dynamical Ansätze

The polaron states such as the one introduced in Eq. (17)

proved also useful to tackle scattering problems, and more

generally dynamical quantities relevant to waveguide QED se-

tups. In particular Diaz-Camacho et al. [146] have developed

a variational semi-analytical approach to the dynamics of the

spin-boson model based on a dynamical polaron ansatz. Note

that this general framework is well suited to multi-spin config-

urations. The first step of the method is to find an optimized

static polaron transformation that minimize the ground-state

energy. The rationale behind and the way it is implemented

is similar to what was done for scattering theory: the static

polaron transformation allows to disentangle spins and boson.

More precisely, the general static ansatz is expressed through

the polaron transformation

UP [fik] =
⊗

i,k

eσ
x
i (f

∗
ikâ

†

k
−fikâk), (65)

where the fik are the variational parameters of the transfor-

mation. For a multi-spin system there are additional variable

parametrizing the ground state, namely the spin degrees of

freedom defining the spin state,

|ψs[cσ]〉 =
∑

σ∈{↑,↓}Ns

cσ
⊗

|σi〉. (66)

The optimal polaron state is therefore the state |ΨP 〉 =

U†
P [fik]|0〉|ψs[cσ]〉, for the values of fik and σ minimize the

energy. Once the optimized polaron transformation is found,

it defines a new basis, the polaron picture in which to express

the dynamics of the system. The time evolution is then han-

dled within a subspace with a defined number of excitation.

For example, in the one-excitation subspace the general state

is parametrized as

UP [fik]W [αs(t), αk(t)]|0〉 ⊗ |ψg.s.〉, (67)

where

W [αs(t), αk(t)] =

Ns
∑

s=1

αs(t)|0〉⊗ |ψe
s〉〈ψg.s.|+

∑

k

αk(t)â
†
k.

(68)

The equations of motion for the coefficients αk,s(t) that de-

fines the dynamics take the form of Euler-Lagrange equa-

tions.The corresponding Lagrangian is derived from the en-

ergy functional for αk,s associated with the Hamiltonian.

Starting similarly from a optimized static polaron wave-

function for the ground-state of the system, Gheeraert et

al. [147, 148] have proposed an alternative dynamical ansatz,
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referred to as the“Multimode Coherent States ansatz”. Con-

sidering general superpositions of multimode coherent states

they derived a formalism that proved efficient in predicting

phenomena intrinsic to the USC regime such as frequency

conversion processes arising in off-resonant inelastic scatter-

ing [148].

C. Scattering theory

Polaron transformations have also found application in the

extension to the USC regime of scattering theory [26]. The

possibility of applying to quantum optics the theoretical appa-

ratus developed in the context of high-energy physics to com-

pute the S matrix is not restricted to the USC regime. The

formalism is indeed general and aims at extracting transmis-

sion rates and correlation between outgoing photons from the

quantity [140, 149]

S = T exp[−i
∫ +∞

−∞
Hint(t)dt], (69)

where T denotes the time-ordering operation and Hint(t) is

the atom-waveguide interaction Hamiltonian expressed in the

interaction picture. from the S-matrix are extracted the scat-

tering amplitudes

out〈f |i〉in =in 〈f |S|i〉in, (70)

where the input and output states are asymptotically free mul-

tiphoton states. Several approaches are available to com-

pute the S-matrix both for single and multi-photon scat-

tering. Early results were obtained through integrability-

based methods [150, 151], other approaches rely on the

Lippmann-Schwinger formalism [152–154]. Path integral

methods have also been developed to treat photonic scatter-

ing problems [140]. They exploit the Lehmann-Symanzik-

Zimmermann (LSZ) reduction, which relates the connected

T -matrix to the photonic Green function. The Green function

itself is then computed via a path-integral representation of its

generating functional.

Shi et al. succeeded in extending the range of application

of these computational techniques to the ultrastrong coupling

by finding an effective low-energy particle-conserving Hamil-

tonian. In the spirit of the GRWA, they first applied an op-

timized polaron transformation to find the effective ground

state, before applying the rotating-wave approximation. The

model gave good results in the single photon regime and cap-

tures the renormalization of the spin frequency and strong

Lamb shift characteristic of this regime. As the validity of

the GRWA is not easy to prove in this case, the robustness

of the approximation is established by comparing the results

with MPS numerical simulations.

VI. VALIDITY OF EFFECTIVE MODELS

In this last section we present some of the recent debates

regarding fundamental limitations of effective models in the

ultrastrong-coupling regime. While these models proved to

be successful in predicting experimental results for currently

achievable coupling strength, the prospect of reaching larger

values of the interaction strength, where g ≫ ω, lead to ques-

tion some of the approximations they are inevitably based

on [156]. It was shown for example that the usually neglected

diagmagneticA2 term can act as a potential barrier and lead to

a decoupling of light and matter in the USC regime [157, 158].

The role of the diamagnetic term has also been the focus of

vivid debates in the context of the Dicke superradiant phase

transition [159–166]. We focus more specifically in the fol-

lowing on recent developments regarding the related question

of gauge invariance.

Attempts in deriving a microscopic model for cavity QED

setups share a common background: the theory is based

on a non-relativistic formulation of quantum electrodynam-

ics within the long-wavelength approximation. At the clas-

sical level, this formulation is conveniently expressed in the

Coulomb gauge [37], from which quantization of the theory

follows the canonical procedure. A general expression for the

classical Hamiltonian of a system of charges interacting with

the electromagnetic field is the following [167]

H =
∑

α

(pα − qαA)2

2mα

+

∫

D
dr3(∇U)2 +Hfield, (71)

where Hfield may be expressed as

ǫ0
2

∫

D
dr2

[

(

Π

ǫ0

)2

+ c2(∇×A)2

]

, (72)

where U is the scalar potential and Π the canonical conjugate

momentum to A. In the context of cavity QED, the domain

D in which the field lives is not the free space. Therefore,

as pointed out by Vukics et al. [167], boundary conditions

on the fields such as U |∂D = 0 and A × n = 0|∂D, must

be added to the Coulomb gauge condition ∇ · A = 0, in or-

der to completely remove gauge ambiguities. In view of a

non-relativistic quantum treatment of the problem the Hamil-

tonian is further simplified by the long-wavelenth approxima-

tion. The charges are assumes to form well localized clusters

of small radius, such that the position dependence of the field

A(r) can be neglected at this scale. A difficulty inherent to

such formulation of cavity QED problems, is that the notion

of the charge clusters forming (natural or artificial) atoms are

not gauge invariant concepts. Moreover, the effective models

presented in the previous sections also rely on additional sim-

plifications such as the two-level approximation for the atom

or a single-mode description of the electromagnetic field. If

not applied carefully, these approximations break the gauge

invariance and may result in unphysical predictions. In the

following we split the discussion into two parts, presenting

first the debates focusing on the two-level approximations in

various gauges. In a second part we review microscopic mod-

els that were build to describe many-particle systems, with

emphasis on the existence of superradiant transitions and the

role of the A2 term.
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FIG. 5. Monitoring the break-down of gauge invariance. The energy spectra of the quantum Rabi Hamiltonian HC in the Coulomb gauge

(red dotted curves), derived from Eq. (76) is shown for various order of the Taylor expansion. Each panel also shows the exact spectra (black

continuous curves). Reproduced with permission [155]. Copyright 2019, Springer Nature.

A. Gauge non-invariance of the two-level approximation

Several recent works [155, 168–171] have identified impor-

tant issues arising in the USC when performing the two-level

approximation in different gauges. A systematic study of the

two-level approximation in the dipole and Coulomb gauge

was performed by De Bernardis et al. [168]. It is shown that

already at the level of a single electric dipole coupled to a

single cavity mode, serious discrepancies appear in two-level

models resulting from different choice of gauges. It is ex-

emplified in the computation of the matrix elements of the

interaction Hamiltonian in the eigenbasis of the atom: while

truncation of the particle Hilbert space gives consistent results

for the terms ix̂(â − â†) present in the electric dipole gauge,

the same truncation scheme is not justified for the operator

p̂(â + â†) stemming from the Coulomb gauge, The quality

of the approximation depend also on the type of confining

potential that is considered. Interestingly, comparison with

exact diagonalization in the Coulomb gauge shows that the

Rabi model is robust in the ultrastrong coupling regime when

the charge confining potential is a double well, when derived

in the electric dipole gauge. Conversely for a square-shape

confining potential no Rabi Hamiltonian reproduces the exact

result. Stokes et al. [169] tackle the validity of the two-level

approximation in a more general setting by considering a fam-

ily of gauge transformations parametrized by a real parameter

0 ≤ α ≤ 1. The relation between gauge-invariant variable

and gauge-dependent canonical conjugate variables are given

by

mṙ = pα − q(1− α)A (73)

ET = −Πα − α
ǫ(d · ǫ)
V

M, (74)

where A is the transverse vector potential, ET the transverse

electric field, ǫ and V are the cavity polarization vector and

volume and d the matter dipole moment. The electric dipole

and Coulomb gauges are recovered for α = 1 and α = 0
respectively. The unitary gauge transformation going within

this one-parameter family is Rαα′ = ei(α−α′)d·A. They

show that, for each value α, the TLA results in a general-

ized Rabi Hamiltonian with potentially asymmetric rotating

and counter-rotating terms. Given the importance of counter-

rotating terms in the phenomenology of the USC reigme,

such arbitrariness may seem paradoxal. In particular it im-

plies that there exists a value of α for with the TLA yields a

Jaynes-Cumming Hamiltonian, whose validity does not rely

on the RWA. Numerical simulations regarding the first two-

level and eigenstates and energy show that the TLA in the

Jaynes-Cummings gauge may give more accurate results than

the other two gauges considered.

Following these studies, a prescription for recovering con-

sistent results in systems involving a charged particule in a

confining potential interacting with a single mode of the elec-

tromagnetic field, was proposed by Di Stefano et al. [155].

As in previous studies, the long-wavelength approximation

is assumed to be valid and the electromagnetic field is uni-

form in space. The reason for the failure of the TLA in the

Coulomb gauge presented above was identified as related to

the non-local character of the potential after truncation of the

Hilbert space. Hence, starting from the Rabi Hamiltonian in

the dipole gauge

HD = ωâ†â +
Ω

2
σ̂z + igσ̂x(â

† − â), (75)

which has proved to be in good agreement with the exact one,

the change of gauge and subsequent truncation of the Hilbert

space can be written as a true unitary transformation. The
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correct Rabi Hamiltonian in the Coulomb gauge preserving

gauge invariance is

HC = ωâ†â+
Ω

2
(σ̂z cos[

2g

ωc

(â†+ â)]+ σ̂y sin[
2g

ωc

(â†+ â)]).

(76)

Interestingly, by expanding the cosine and sine functions in

the above expression, one can monitor the “break-down”

of gauge invariance with increasing coupling strengths (see

Fig. 5). Note that in a general setting the approach outlined

above involve computing the image of some arbitrary opera-

tors (functions of x̂ and p̂) under a given gauge transfomation.

It can be performed through the Baker-Campbell-Hausdorff

formula.

B. Multi-particle configurations and diamagnetic A2 term

The debate over the validity of effective models was partic-

ularly intense in the context of multi-dipole models of cavity

QED. As mentioned above, one of main questions is the role

played by theA2 term in the Dicke model and its consequence

on the existence of the superradiant phase transition.

More generally, a crucial question in evaluating the valid-

ity of effective models is to provide realistic bounds on the

possible coupling strength appearing in the model. In order

to answer to such fundamental questions from first princi-

ples, several minimal models for cavity and circuit QED have

been recently proposed [172–176]. A microscopic theoreti-

cal description based on the Power-Zineau-Woolley transfo-

mation was first developed for cavity QED systems involv-

ing 2D [172] and 3D [173] electron gases in solid-state struc-

tures. While first designed to describe the regime of high

electronic density, this framework was extended to the few-

electron regime by considering the interaction of the electron

gas with a quantum LC resonator [174]. Interestingly, chang-

ing the number of electrons in such a model allows to continu-

ously interpolate between effective Rabi and Hopfield Hamil-

tonians.

In the context of atomic QED, starting from the classical

Hamitonian Eqs. (71), (72), it was shown that through a proper

generalization of the Power-Zineau-Woolley transformation,

the Hamiltonian in the multipolar gauge could in be mapped

to the Dicke Hamiltonian [167]. The strategy was to elimi-

nate the A2 term and the inter-atomic dipole interaction ex-

actly, by a proper gauge choice at the classical level, taking

into account the specific geometry of cavity QED setups with

respect to free space. The obtained general expression for the

Hamiltonian in the multipolar gauge reads

H ′ =
∑

α

p2
α

2mα

+Hfield+
1

2ǫ0

∫

D
d3rP2− 1

ǫ0
d3D ·P, (77)

where P is the polarization density and D = ǫ0E + P.

The elimination of dipole-dipole interaction is meaningful

only within the long wavelength approximation and the as-

sumptions of well separated atoms. In this case, the kinetic

and P2 terms in Eq. (77) define the internal structure of the

atoms. Within this framework a correspondence with the

Dicke model is established through canonical quantization of

the resulting Hamiltonian. However finding realistic bounds

on the interaction strength requires to find an explicit formula

for the atomic polarization field. General estimates for atomic

cavity QED showed that the values of the interaction needed

to observe critical phenomena in the USC regime come too

close to the limit of validity of the independent dipole approx-

imation to provide a definitive answer [175].

Another model for which precise statements could be made

was put forward in the context of quantum circuits [176]. The

setup considered is composed of N electric dipoles interact-

ing with the electromagnetic modes of a lumped-element LC
resonator. The dipoles are described as effective particles of

mass m in a confining potential V . For this model the quan-

tization procedure is carried out from the Lagrangian of the

circuit [168]

L =C
Φ̇2

2
− Φ2

2L
+ Φ̇Qin

+
∑

i

[
m

2
ξ̇2i − V (ξi)]−

mω2
p

2

∑

i 6=j

Dijξiξj , (78)

where Φ is the is the magnetic flux through the inductor of the

LC circuit, ξi the displacements between the dipole charges

and Qin the charge induced by the dipole distribution for zero

voltage drop accross the capacitor.The dipole-dipole interac-

tion, in particular its geometric aspects are parametrized by

the quantity Dij . The analysis of coupling strength at play

in this model reveals that the dipole-dipole direct interaction

and the dipole-field coupling cannot be treated independently.

Hence the effective model obtained after performing the two-

level approximation is an extended-Dicke model, which in-

cludes spin-spin interactions. Within this theoretical frame-

work a rich phase diagram is predicted including superradi-

ant and subradiant phases with antiferromagnetic order of the

dipoles.

VII. CONCLUSION

We have reviewed in this Progress Report the recent the-

oretical advances in our understanding of ultrastrong light-

matter interactions. The counterintuitive phenomenology of-

fered by this new regime of cavity QED, has led to fruitful

developments in many aspects of the theory. Approxima-

tion strategies and variational schemes have been developed

to compute the effect of counter-rotating terms on spectral

properties. In this context, polaron transformations proved to

be valuable tools go get physical insight into the eigenstates

of systems described by Rabi and spin-boson models. Ele-

gant exact mathematical results on the energy spectrum have

also been obtained. In driven-dissipative settings, a conse-

quence of the USC is that the frequency dependence of the

noise spectrum cannot be neglected. This may affect drasti-

cally the outcome of photodetection signals and correlation

measurements. Besides, any output fields can be computed

in a meaningful way only with respect to the dressed-basis

of the full light-matter system. The counter-rotating terms
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also impact the treatment of external driving fields, as it is

no longer possible to eliminate the time-dependency of the

Hamiltonian through a simple change of reference frame. In

this context, the Floquet theorem applied to the master equa-

tion in the form of the Floquet-Liouville or Floquet-Markov

approaches give tools to treat the time-dependency exactly. In

the field of waveguide QED, the possibility of reaching the

USC regime has led to an extension of scattering theory and

to the developments of new numerical tools such as dynami-

cal polaron and multimode coherent states ansätze or specifi-

cally tailored MPS-based simulations. At a more fundamental

level, the prospect of reaching extreme values of the interac-

tion between light and matter has deepened our understand-

ing of the validity effective models for cavity QED. Inspired

by the paradigmatic setting of cavity QED including only a

single atom and a single cavity mode, many of the methods

presented in this article were primarily designed for systems

with only a small number of particles. Although collective

effects such as superradiant phase transitions have attracted a

great deal of interest in the last decades, the interplay between

many-body effects and ultrastrong-coupling phenomenology

still offers numerous perspectives [177–179]. In this respect,

the recent progress in the the field of strongly-correlated pho-

tonic phases [180–182], will play a significant role.
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[128] Á. Rivas, A. D. K Plato, S. F. Huelga, and M. B Plenio, New.

J. Phys. 12, 113032 (2010).

[129] T.-S. Ho, K. Wang, and S.-I. Chu, Phys. Rev. A 33, 1798

(1986).

[130] S.-I. Chu and D. A. Telnov, Phys. Rep. 390, 1 (2004).

[131] G. Floquet, Ann. Sci. de L’École Norm. Sup. 12, 47 (1883).
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[133] R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U. Smilan-

sky, and H. Walther, Phys. Rev. A 44, 4521 (1991).

[134] H.-P. Breuer and F. Petruccione, Phys. Rev. A 55, 3101 (1997).

[135] H.-P. Breuer, W. Huber, and F. Petruccione, Phys. Rev. E 61,

4883 (2000).

[136] O. Astafiev, A. M. Zagoskin, A. A. A. Jr., Y. A. Pashkin, T. Ya-

mamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Science

327, 840 (2010).

[137] I.-C. Hoi, T. Palomaki, J. Lindkvist, G. Johansson, P. Delsing,

and C. M. Wilson, Phys. Rev. Lett. 108, 263601 (2012).

[138] I.-C. Hoi, C. M. Wilson, G. Johansson, J. Lindkvis, B. Per-

opadre, T. Palomaki, and P. Delsing, New. J. Phys. 15, 025011

(2013).

[139] M. Pletyukhov and V. Gritsev, Phys. Rev. A 91, 063841

(2015).

[140] T. Shi and C. P. Sun, Phys. Rev. B 79, 205111 (2009).

[141] K. Le Hur, Phys. Rev. B 85, 140506 (2012).

[142] B. Peropadre, J. Lindkvis, I.-C. Hoi, C. M. Wilson, J. J.

Garcı́a-Ripoll, P. Delsing, and G. Johansson, New. J. Phys.

15, 035009 (2013).
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