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Theoretical Note 

Parsimony in neural representations: 
Generalization of a model of 

spatial orientation ability 

ROBERT B. GLASSMAN 
Lake Forest College, Lake Forest, Illinois 

Brains must be adequate to process complex information, but they must also have a simple 
enough underlying organization to have evolved by natural selection. Beginning with a network 
model, originally developed to show how spatial orientational behavior might be organized with 
a modest number of neural connections, the following hypothesis is offered about a pattern of 
connections recurring within the brain: All significant activation patterns of a large number of 
input elements are transformed to output patterns by small numbers of associative subsystems, 
or modules, which do not require computerlike algorithms. They are single neurons or other func
tional units, which individually merely summate inputs; together, they discriminate among prob
able inputs without requiring a complex representation to do so. They may be thought of as register
ing (1) values of input dimensions, (2) combinations of activated input elements, or (3) numerical 
labels for distinct inputs. The informational capacity of a set of modules is a function of its num
ber of modules and their dynamic range. The set works most efficiently if all its modules have 
the same range. Elementary combinatorial considerations suggest that besides receiving patterns 
of connections appropriate to the information being processed, sets of associative modules proba
bly receive inputs systematically restricted in more general ways, for example by lateral inhibi
tion or by connections from a small or large, but not intermediate, proportion of the set of input 
modules. 

Efforts to develop neural network theories include com

puter simulations, vector concepts, and other sophisticated 

techniques of multidimensional analysis (e.g., Feldman 

& Ballard, 1982; Fukushima, 1984; Grossberg, 1978; 

Hinton & Anderson, 1981; Kohonen, 1978; Pellionisz & 
Uinas, 1982; Willshaw, 1981; and Levine's, 1983, exten

sive review), but some ideas about neural networks lend 

themselves to more elementary mathematical techniques. 

This paper offers a new hypothesis about numbers of con

nections required by associative systems and about the dy

namic ranges of their components. The idea began with 

a surprising observation in cats recovering from somato

sensory cortical damage. 

Cutaneous Orientation-Localization in Cats 
When blindfolded cats orient the head towards a tactile 

stimulus, muscles of the limbs, trunk, and neck must all 

adjust to bring the mouth into contact with the point of 

the body that was touched, the pattern of adjustment de-
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pending on the location of the stimulus (Glassman, 1970). 

This behavior has an interesting degree of complexity, 

greater than in local reflexes, which simply involve mo

tor output to the same part of the body from which input 

is received. 

While cats were behaviorally recovering from unilateral 

damage to SII cortex and adjacent areas, many were un

expectedly observed to pass through a stage in which the 

vertical and horizontal orientational movements were 

largely dissociated. For example, when the cutaneous 

stimulus was applied to the left forepaw, in some cases 

the blindfolded cat pitched its head downward to paw level 

before initiating any leftward movement; in other cases, 

the lateral movement occurred before the vertical com

ponent (Glassman, 1983). 

These observations are reminiscent of an aspect of the 

organization of industrial robot arms; that is, they require 

only three sets of motors and controllers to reach any point 

in a volume (Engelberger, 1980). The observations sug

gest that the cat's brain may somehow behave analogously 

in moving the mouth to any point in the three-dimensional 

space occupied by its body surface. What are the critical 

factors that might underlie a parsimonious, three-module 

neural system? First, consider a "straw system," which 

is unlikely to exist for orientation-localization in higher 

animals. 

Copyright 1985 Psychonomic Society, Inc. 
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Figure 1. Scheme of a hypothetical system for controlling orien
tation of the head toward parts of the body; each discriminable skin 
area is directly connected to each muscle. Only some of the connec
tions are sketched in. 

A Two-Level Input-Output Model 

In the neural model for orientation-localization schema
tized in Figure 1, a simplifying assumption is that the skin 

surface comprises discrete, discriminable units; each unit 
has an appropriately weighted output line to each mus

cle. (This model and the following one emphasize spatial 

organization and disregard temporal sequencing and feed

backs. Their purpose is to show how the contraction of 

the muscles may be set for the head to reach a point on 

the way to the target.) 

The scheme of exhaustive direct input-output connec

tions might describe a hypothetical primitive creature with 

a set of sensory receptor cells connected directly to a set 

of motor effector cells; alternatively, it describes the net 

effect of multisynaptic pathways through the brain of a 

more complicated organism. More generally, the argu

ments in this paper pertain to the organization between 

two connected layers of a multilevel system. When parts 

of a similar model were ablated in computer simulations, 

brainlike effects of apparent mass action or redundancy 

were observed (Anderson, Silverstein, Ritz, & Jones, 

1977; Wood, 1982). 
When there are many elements in each of two sequen

tiallevels, the scheme of direct connections between all 

elements in each of the layers requires a large number 

of connections. In the orientation-localization model, if 

there are s discriminable skin areas and r muscles, then 

a total of sr weighted connections is needed. Thus, the 

evolutionary and ontogenetic problem of maintaining 

orderly input-output relationships grows rapidly with the 

size of organism or its discriminative capacity. 

A Three-Level Orientation-Localization 

Model with Associative Subsystems 

Figure 2 illustrates a system that can mediate orienta

tion-localization behavior while requiring many fewer 

connections. Roughly speaking, each of the three associa

tive subsystems or modules represents one of the three 

dimensions of space, that is, one for proximodistallocal

ization, one for left versus right, and one for localization 

along the anterior-posterior axis . Each discriminable skin 

area connects to each associative module with appropriate 

weighting; the connection from each associative module 

to each muscle sets the degree to which that muscle par

ticipates in a localizing motion of the head in the "dimen
sion" represented by the module. 

These associative modules are plausible biologically be

cause they do not require computerlike algorithms for their 

functioning; each works simply on the basis of diffuse ex

citation. Thus, they may be single neurons, mass-acting 

groups of neurons, neurotransmitter pools, or perhaps 

Figure 2. Input and output elements communicate via a small num
ber of associative modules. Each discriminable skin area is connected 

to each associative module, and each associative module is connected 
to each muscle. Fewer total connections are needed than in the sys
tem shown in Figure 1. Not all connections are sketched in. 
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other functional units. The discriminative and motor capa

bilities of the system as a whole derive from the pattern 

of combined activation of the associative modules, and 
the pattern of skeletal moorings of the muscles. The total 

number of connections is 3s+3r = 3(s+r). In compari

son with the model of direct input-output connections, the 

savings are great, particularly if sand r are large. For 

example, if s = 1,000 and r = 100, then the first model 

requires 100,000 connections, whereas the one with as

sociative modules requires only 3,300 connections. 

Although the empirical dissociation data suggested this 

model, it is not obvious how to relate it to neuroanatomy. 

The mappings of visual and tactile space to cortex and 

tectum do not involve a radical convergence onto simple 

modules which represent spatial dimensions by their dy

namic properties; rather, these central neurons are arrayed 

in a two-dimensional sheet. Output control of orienting 
is distributed over the tectal brain maps in frogs (Arbib, 

1982) and cats (Stein, Magalhaes-Castro, & Kruger, 

1976). Nevertheless, topographic brain maps must do 

something besides simply transfer stimulus space to brain 

space, or there would hardly be any need for a brain. In

deed, in cats, orientation-localization depends on the topo

graphic mappings in SIT and subjacent orbital-anterior syl

vian association cortex; a good deal of convergence occurs 

to these cortical areas (Glassman & Glassman, 1977). 

An anatomical entity might act as a unitary summator 

of inputs for one function (hence, a single module) while 

comprising an internally differentiated set of modules for 

some other function. For example, the left- versus right

turning function in orientation-localization may be 

skimmed from neurons having another main function. The 

brain has fairly symmetrical hemispheres and primarily 

contralateral sensory input. Therefore, left versus right 

turning could simply follow the overall central neural 

asymmetry of diffusely summed cutaneous input activity, 
regardless of the fine spatial distribution of inputs to the 

topographic maps of either hemisphere. Behavioral evi
dence is consistent with this hypothesis (Glassman, 1983). 

Generalization of the Three-Level Model 
More generally, not 3 but "a" associative subsystems 

categorize input-output relations in various brain systems; 

the s skin areas and r muscles of the orientation-locali
zation model are replaced in the general case by s input 

modules and r output modules. Connections are saved 

whenever a(s+r) in a three-level system is less than sr 

in a two-level system. This occurs when the number of 

associative modules is much less than both the number 

of input and output modules. [Specifically, a(s+r) < sr 

whenever a < sr/(s+r).] 

However, the model for orientation-localization is too 

simple for other functions, because it contends only with 

binary (on vs. off) and punctiform inputs (one input mod

ule on at a time). A more general model must handle spa

tially distributed patterns of numerous input modules si-

multaneously active in various degrees. Even so, the 

associative codes may be highly impoverished, lacking 

counterparts for much of the richness of inputs and out

puts; they need only a sufficient number of distinct rep

resentations to differentiate probable inputs. The re

mainder of the structure required for adaptive behavior 

must be in other levels of the system, including the sen

sory interface and motor apparatus. (Also see Arbib, 

1975, on "action-oriented perception" and Michaels & 

Carello, 1981, on "affordances.") 

The problem of mapping distinct input patterns to dis

tinct outputs can be understood by considering the infor

mation in associative subsystems in three ways: (1) as 

values on dimensions of a graph, (2) as elements in a com

binatorial process, or (3) as digits in a counting process. 

These views will clarify what it means to consider the in

formational capacity of a set of modules, but first, one 
more concept needs to be made explicit. 

Associative modules must have a range of possible 

degrees of activation; as a simplification, think of these 

degrees as discretely different. One possible example is 

the firing rate of a neuron. There is also a need to con

sider resolution in this example because there may be ran
dom fluctuations of firing rates, with slightly different 

values not eliciting distinct outputs. The maximal neuronal 

firing rate of about 1,000/sec sets an upper limit on what 

we might imagine as the range of a single-neuron module. 

No matter how many possible input patterns there are, 
one could logically hypothesize a single associative mod

ule with a sufficient range to uniquely represent each in

put. However, such a drastic convergence to a large-range 

module might require a complicated algorithm. By con

trast, a categorization using three diffusely summing mod

ules was appropriate in the orientation-localization model. 

Associative Modules Representing 
Dimensions-Handling Nonbinary Inputs 

Figure 3 illustrates a possible organization of inputs, 
converging onto associative modules that are connected 

in the manner of any two of the three modules of Figure 

2. The input weights are illustrated as ordered pairs of 
numbers (x,y) labeling the graphic cells in Figure 3. If 

s is the number of binary inputs and range is represented 

by g, then (gx)(gy) = s. The most efficient use of mod
ules' ranges occurs when the ranges are equal. As infor

mal proof, referring to Figure 3, recall that a square en

compasses a given area with a shorter perimeter than any 

other rectangle. 

One way to handle input modules with a range greater 

than binary "ons" versus "offs" would be to add a third 

associative module to register input amplitude, which 

could be represented as a z-axis in Figure 3. This is con

ceptually simplest, but there are many ways to map input 

elements' ranges into the ranges of any number of associa

tive modules; in the future, these need to be considered 

with regard to physiological and evolutionary plausibility . 
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Figure 3. Each associative module can take one value at a time 
on a "dimension." In this example, when the x-axis module is active 
at a value of 3 and the y-axis module is active at a value of 4, this 
is represented at graphic cell (3,4). 

Associative Modules Representing 
Combinations or Counts - Handling Both 
Nonbinary and Distributed Inputs 

In the orientation-localization model, combined patterns 

of activity in several associative modules were allowed 

as representations, .whereas inputs were restricted to one 

point at a time. The punctiform restriction is an extreme 

case; more generally, the brain's associative systems must 

cope with spatially distributed input patterns. In such a 

pattern, a combination of input modules is active, with 

each module at some level of its range. If the range of 

input module i is represented as gi. then the total number 

of possible activation patterns of n input modules is the 

product of all their ranges, which can be expressed as 

n 

i=1 

If the range of all input modules is the same (call it g), 

this formula reduces to gn. 

With this last formula, each module also may be con

sidered as containing a digit in a counting process. Thus, 

if each module were binary (g=2), a system of n mod

ules as a whole could represent 2n distinct patterns; this 

is analogous to the wayan 8-bit byte in a computer can 

take any of 28 = 256 unique states, counting from 0 to 

255. If all the modules have a range of 10, then g = 10; 

so, for example, ifn = 6, the six modules would be suffi

cient to represent 1,000,000 distinct patterns, or to 

"count" from 0 to 999,999. Of course, even a neural as

sociative system whose modules happen to have a range 

of 10 is not likely to count in the decimal method used 

by a whole human; this analysis merely suggests minimal 

requirements for the discriminative capacity of an associa

tive system. 

Input Restrictions 
The immediately preceding comments imply that sav

ing connections requires restricting an associative system's 

inputs. Input restrictions are familiar in sensory physiol

ogy and perceptual psychology. For instance, lateral in

hibition may greatly reduce the number of possible input 

combinations to deeper levels. If neurons are arrayed in 

a thin layer, and if activity in a row of neurons inhibits 

an equal number of neurons in rows on either side, then 

the associative system to which they connect needs to con

tend with only one-third of its input neurons' being ac

tive at once or, at most, with half, if they happened to 

be active in a tightly striped pattern. 

As an additional example, tendencies of Gestalt per

ception such as perceived closure of nearly closed curves 

(Hochberg, 1972) may depend upon early signal condi

tioning that has evolved in reducing the multiplicity with 

which deeper associative systems must cope. Because 

different analyses occur at different places in the brain, 

inputs may often be restricted not at the source, but some

place between the source and the various sets of associa

tive modules to which they distribute. Empirically there 

are some great expansions in going from one to another 

brain level (e.g., retina to visual cortex); the present model 

suggests looking at these expanded representations as com

prising numerous functional segments, each of which is 

a small set of associative modules. As a whole, an ex

pansive feature map may serve as a staging ground for 

subsequent parsimonious convergences further down

stream. 
Associative systems would generally require few mod

ules if these modules received convergences either from 

few or from most members of the input set. This is be

cause the quantities represented by the combinatorial for

mula for n things (e. g., input modules) taken r at a time, 

n! 
nCr = (--::-)! , ' n r .r. 

are smallest for combinations that are either much smaller 

than half of n or are close to n. This interesting empirical 

implication of the model may help in understanding evi

dence that the various visual cortical maps have local or 

global specializations (Sprague, Hughes, & Berlucchi, 

1981). 
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