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Abstract

The theoretical basis for the prediction of anisotropies in the cosmic microwave background

is very well developed. Very low amplitude density and temperature perturbations produce

small gravitational effects, leading to an anisotropy that is a combination of temperature

fluctuations at the surface of last scattering and gravitational redshifts both at last scattering

and along the path to the observer. All of the primary anisotropy can be handled by linear

perturbation theory, which allows a very accurate calculation of the predicted anisotropy

from different models of the Universe.

1.1 Introduction
The first predictions of the anisotropy of the cosmic microwave background (CMB)

were published shortly after the CMB was discovered by Penzias & Wilson (1965). Sachs &

Wolfe (1967) calculated the anisotropies due to gravitational potential fluctuations produced

by density perturbations (Figure 1.1). Because the density perturbations are given by the

second derivative of the gravitational potential fluctuation in Poisson’s equation, the Sachs-

Wolfe effect dominates the temperature fluctuations at large scales or low spherical harmonic

index ℓ. Sachs & Wolfe predicted ∆T/T ≈ 10−2 at large scales. This prediction, which failed

by a factor of 103, is based on correct physics but incorrect input assumptions: prior to the

discovery of the CMB no one knew how uniform the Universe was on large scales.

Silk (1968) computed the density perturbations needed at the recombination epoch at

z ≈ 103 in order to produce galaxies, and predicted ∆T/T ≈ 3×10−4 on arcminute scales.

Silk (1967) calculated the damping of waves that were partially optically thick during re-

combination. This process, known as “Silk damping,” greatly reduces the CMB anisotropy

for small angular scales.

Observations by Conklin (1969) and then Henry (1971) showed that there was a dipole

anisotropy in the CMB corresponding to the motion of the Solar System with respect to the

average velocity of the observable Universe. There is a discussion of the dipole observations

and their interpretation in Peebles (1971) that is still valid today, except that what was then

a “tentative” dipole is now known to better than 1% accuracy, after a string of improved

measurements starting with Corey & Wilkinson (1976) and ending with the COBE DMR

(Bennett et al. 1996).

Peebles & Yu (1970) calculated the baryonic oscillations resulting from interactions be-

1

http://aps.arXiv.org/abs/astro-ph/0305591v1


E. L. Wright

φ(x)

∆T φ=T 3c2

Fig. 1.1. Sachs & Wolfe (1967) predicted that density enhancements would be cold spots
in the CMB, as shown in this conformal spacetime diagram.

tween photons and hydrogen in the early Universe, and also independently introduced the

Harrison-Zel’dovich spectrum (Harrison 1970; Zel’dovich 1972). Pebbles & Yu predicted

∆T/T ≈ 1.5×10−4 on 1′ scales and ∆T/T ≈ 1.7×10−3 on 7′ scales.

Wilson & Silk (1981) further developed the theory of photon and matter interaction by

scattering and gravity, and predicted ∆T/T = 100 µK for a single subtracted experiment

with a 7◦ throw and with a 7◦ beam like COBE. Of course, when COBE was launched in

1989 it actually observed a much smaller anisotropy.

These early predictions of a large anisotropy were greatly modified by the addition of dark

matter to the recipe for the cosmos. Observational upper limits on small-scale anisotropies

had reached ∆T/T < 4×10−5 on 1.′5 scales (Uson & Wilkinson 1982), which was consider-

ably less than the predictions from universes with just baryons and photons. Peebles (1982)

computed the anisotropy expected in a universe “dominated by massive, weakly interacting

particles” — in other words cold dark matter (CDM), although this paper predated the use

of “cold dark matter.”

Bond & Efstathiou (1987) calculated the correlation function of the CMB anisotropy,

C(θ), and also the angular power spectrum, Cℓ, in the CDM cosmology. This paper contains

one of the first plots showing ℓ(ℓ + 1)Cℓ vs. ℓ, with peaks originally called the “Doppler”

peaks but more properly called “acoustic peaks.” This paper solved the Boltzmann equa-

tion describing the evolution of the photon distribution functions. Several authors developed

these “Boltzmann codes,” but the calculation of the angular power spectrum up to high ℓ

was very slow. These codes described the conversion of inhomogeneity at the last-scattering

surface into anisotropy on the observed sky by a set of differential equations evolving the co-

efficients of a Legendre polynomial expansion of the radiation intensity. Since the Universe

is almost completely transparent after recombination, a ray-tracing approach is much more

efficient. This great step in efficiency was implemented in the CMBFAST code by Seljak &

Zaldarriaga (1996).

Hu & Dodelson (2002) give a recent review of CMB anisotropies, which includes a very

good tutorial on the theory of ∆T/T .
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1.2 Results
A simple analysis of cosmological perturbations can be obtained from a consider-

ation of the Newtonian approximation to a homogeneous and isotropic universe. Consider

a test particle at radius R from an arbitrary center. Because the model is homogeneous the

choice of center does not matter. The evolution of the velocity of the test particle is given by

the energy equation

υ2

2
= Etot +

GM
R

. (1.1)

If the total energy Etot is positive, the Universe will expand forever since M, the mass (plus

energy) enclosed within R, is positive, G is positive, and R is positive. In the absence of a

cosmological constant or “dark energy,” the expansion of the Universe will stop, leading to

a recollapse if Etot is negative. But this simple connection between Etot and the fate of the

Universe is broken in the presence of a vacuum energy density. The mass M is proportional

to R3 because the Universe is homogeneous and the Hubble velocity υ is given by υ = HR.

Thus Etot ∝ R2.

We can find the total energy by plugging in the velocity υ0 = H0R0 and the density ρ0 in

the Universe now. This gives

Etot =
(H0R0c)2

2
−

4πGρ0R2
0

3
=

(H0R0)2

2

(

1 −
ρ0

ρcrit

)

, (1.2)

with the critical density at time t0 being ρcrit = 3H2
0 /(8πG). We define the ratio of density to

critical density as Ω = ρ/ρcrit . This Ω includes all forms of matter and energy. Ωm will be

used to refer to the matter density.

From Equation 1.1 we can compute the time variation of Ω. Let

2Etot = υ2 −
2GM

R
= H2R2 −

8πGρR2

3
= const. (1.3)

If we divide this equation by 8πGρR2/3 we get

3H2

8πGρ
−1 =

const′

ρR2
= Ω

−1 −1. (1.4)

Thus Ω
−1 −1 ∝ (ρR2)−1. When ρ declines with expansion at a rate faster than R−2 then the

deviation of Ω from unity grows with expansion. This is the situation during the matter-

dominated epoch with ρ ∝ R−3, so Ω
−1 −1 ∝ R. During the radiation-dominated epoch ρ ∝

R−4, so Ω
−1 −1 ∝ R2. For Ω0 to be within 0.9 and 1.1, Ω needed to be between 0.999 and

1.001 at the epoch of recombination, and within 10−15 of unity during nucleosynthesis. This

fine-tuning problem is an aspect of the “flatness-oldness” problem in cosmology.

Inflation produces such a huge expansion that quantum fluctuations on the microscopic

scale can grow to be larger than the observable Universe. These perturbations can be the

seeds of structure formation and also will create the anisotropies seen by COBE for spherical

harmonic indices ℓ ≥ 2. For perturbations that are larger than ∼ cst (or ∼ cs/H) we can

ignore pressure gradients, since pressure gradients produce sound waves that are not able to

cross the perturbation in a Hubble time. In the absence of pressure gradients, the density

perturbation will evolve in the same way that a homogeneous universe does, and we can use

the equation
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ρa2

(

1

Ω
−1

)

= const, (1.5)

the assumption that Ω ≈ 1 for early times, and ∆ρ ≪ ρ as indicated by the smallness of the

∆T ’s seen by COBE, to derive

−ρa2

(

1

Ω
−1

)

≈ ρcrita
2
∆Ω ≈ ∆ρa2 = const. (1.6)

Hence,

∆φ =
G∆M

R
=

4π

3

G∆ρ0(aL)3

aL
=

1

2

∆ρ0

ρcrit
(H0L)2, (1.7)

where L is the comoving size of the perturbation. This is independent of the scale factor, so

it does not change due to the expansion of the Universe.

During inflation (Guth 2003), the Universe is approximately in a steady state with con-

stant H. Thus, the magnitude of ∆φ for perturbations with physical scale c/H will be the

same for all times during the inflationary epoch. But since this constant physical scale is

aL, and the scale factor a changes by more than 30 orders of magnitude during inflation,

this means that the magnitude of ∆φ will be the same over 30 decades of comoving scale

L. Thus, we get a strong prediction that ∆φ will be the same on all observable scales from

c/H0 down to the scale that is no longer always larger than the sound speed horizon. This

means that

∆ρ

ρ
∝ L−2, (1.8)

so the Universe becomes extremely homogeneous on large scales even though it is quite

inhomogeneous on small scales.

This behavior of ∆φ being independent of scale is called equal power on all scales. It was

originally predicted by Harrison (1970), Zel’dovich (1972), and Peebles & Yu (1970) based

on a very simple argument: there is no scale length provided by the early Universe, and thus

the perturbations should be scale-free — a power law. Therefore ∆φ∝ Lm. The gravitational

potential divided by c2 is a component of the metric, and if it gets comparable to unity then

wild things happen. If m < 0 then ∆φ gets large for small L, and many black holes would

form. But we observe that this did not happen. Therefore m ≥ 0. But if m > 0 then ∆φ gets

large on large scales, and the Universe would be grossly inhomogeneous. But we observe

that this is not the case, so m ≤ 0. Combining both results requires that m = 0, which is a

scale-invariant perturbation power spectrum. This particular power-law power spectrum is

called the Harrison-Zel’dovich spectrum. It was expected that the primordial perturbations

should follow a Harrison-Zel’dovich spectrum because all other answers were wrong, but

the inflationary scenario provides a good mechanism for producing a Harrison-Zel’dovich

spectrum.

Sachs & Wolfe (1967) show that a gravitational potential perturbation produces an aniso-

tropy of the CMB with magnitude

∆T
T

=
1

3

∆φ

c2
, (1.9)

where ∆φ is evaluated at the intersection of the line-of-sight and the surface of last scattering

(or recombination at z ≈ 1100). The (1/3) factor arises because clocks run faster by a factor
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Fig. 1.2. Left: A plane wave on the last-scattering hypersurface. Right: The spherical
intersection with our past light cone is shown.

(1 +φ/c2) in a gravitational potential, and we can consider the expansion of the Universe

to be a clock. Since the scale factor is varying as a ∝ t2/3 at recombination, the faster

expansion leads to a decreased temperature by ∆T/T = −(2/3)∆φ/c2, which, when added

to the normal gravitational redshift ∆T/T = ∆φ/c2 yields the (1/3) factor above. This is

an illustration of the “gauge” problem in calculating perturbations in general relativity. The

expected variation of the density contrast as the square of the scale factor for scales larger

than the horizon in the radiation-dominated epoch is only obtained after allowance is made

for the effect of the potential on the time. For a plane wave with wavenumber k we have

−k2
∆φ = 4πG∆ρ, or

∆φ

c2
= −

3

2
(H/ck)2 ∆ρ

ρcrit
, (1.10)

so when ρ≈ ρcrit at recombination, the Sachs-Wolfe effect exceeds the physical temperature

fluctuation ∆T/T = (1/4)∆ρ/ρ by a factor of 2(H/ck)2 if fluctuations are adiabatic (all

component number densities varying by the same factor).

In addition to the physical temperature fluctuation and the gravitational potential fluc-

tuation, there is a Doppler shift term. When the baryon fluid has a density contrast given

by

δb(x,t) =
∆ρb

ρb
= δb exp[ik(x −cst)], (1.11)

where cs is the sound speed, then

∂∆ρb

∂t
= −ikcsδbρb = −ρb

~∇·~υ = ikυρb. (1.12)

As a result the velocity perturbation is given by υ = −csδb. But the sound speed is given

by cs =
√

∂P/∂ρ =
√

(4/3)ργc2/(3ρb +4ργ) ≈ c/
√

3, since ργ > ρb at recombination (z =

1100). But the photon density is only slightly higher than the baryon density at recom-

bination so the sound speed is about 20% smaller than c/
√

3. The Doppler shift term in

the anisotropy is given by ∆T/T = υ/c, as expected. This results in ∆T/T slightly less

than δb/
√

3, which is nearly
√

3 larger than the physical temperature fluctuation given by

∆T/T = δb/3.
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Single k=50 plane wave k=50 velocity term

Fig. 1.3. Left: The scalar density and potential perturbation. Right: The vector velocity
perturbation.

These plane-wave calculations need to be projected onto the sphere that is the intersection

of our past light cone and the hypersurface corresponding to the time of recombination. Fig-

ure 1.2 shows a plane wave on these surfaces. The scalar density and potential perturbations

produce a different pattern on the observed sky than the vector velocity perturbation. Figure

1.3 shows these patterns on the sky for a plane wave with kRLS = 50, where RLS is the radius

of the last-scattering surface. The contribution of the velocity term is multiplied by cosθ,

and since the RMS of this over the sphere is
√

1/3, the RMS contribution of the velocity

term almost equals the RMS contribution from the density term since the speed of sound is

almost c/
√

3.

The anisotropy is usually expanded in spherical harmonics:

∆T (n̂)

T0

=
∑

ℓ

ℓ
∑

m=−ℓ

aℓmYℓm(n̂). (1.13)

Because the Universe is approximately isotropic the probability densities for all the different

m’s at a given ℓ are identical. Furthermore, the expected value of ∆T (n̂) is obviously zero,

and thus the expected values of the aℓm’s is zero. But the variance of the aℓm’s is a measurable

function of ℓ, defined as

Cℓ = 〈|aℓm|2〉. (1.14)

Note that in this normalization Cℓ and aℓm are dimensionless. The harmonic index ℓ as-

sociated with an angular scale θ is given by ℓ ≈ 180◦/θ, but the total number of spherical

harmonics contributing to the anisotropy power at angular scale θ is given by ∆ℓ ≈ ℓ times

2ℓ +1. Thus to have equal power on all scales one needs to have approximately Cℓ ∝ ℓ−2.

Given that the square of the angular momentum operator is actually ℓ(ℓ +1), it is not sur-

prising that the actual angular power spectrum of the CMB predicted by “equal power on all

scales” is

Cℓ =
4π〈Q2〉

5T 2
0

6

ℓ(ℓ+1)
, (1.15)

where 〈Q2〉 or Q2
rms−PS is the expected variance of the ℓ = 2 component of the sky, which must

be divided by T 2
0 because the aℓm’s are defined to be dimensionless. The “4π” term arises

because the mean of |Yℓm|2 is 1/(4π), so the |aℓm|2’s must be 4π times larger to compensate.
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Fig. 1.4. Left: Mean ℓ is plotted vs. the wavenumber kRLS. The light solid line shows ℓ =
kRLS, while the solid line shows ℓ = (π/4)kRLS, and the dashed line shows ℓ = (3π/16)kRLS.
Right: The angular power spectra for single k skies is plotted for kRLS = 25, 50, and 100
(from bottom to top).

Finally, the quadrupole has 5 components, while Cℓ is the variance of a single component,

giving the “5” in the denominator. The COBE DMR experiment determined
√

〈Q2〉= 18 µK,

and that the Cℓ’s from ℓ = 2 to ℓ = 20 were consistent with Equation 1.15.

The other common way of describing the anisotropy is in terms of

∆T 2
ℓ =

T 2
0 ℓ(ℓ+1)Cℓ

2π
. (1.16)

Note these definitions give ∆T 2
2 = 2.4〈Q2〉. Therefore, the COBE normalized Harrison-

Zel’dovich spectrum has ∆T 2
ℓ = 2.4×182 = 778 µK2 for ℓ ≤ 20.

It is important to realize that the relationship between the wavenumber k and the spherical

harmonic index ℓ is not a simple ℓ = kRLS. Figure 1.3 shows that while ℓ = kRLS at the

“equator” the poles have lower ℓ. In fact, if µ = cosθ, where θ is the angle between the wave

vector and the line-of-sight, then the “local ℓ” is given by kRLS

√

1 −µ2. The average of this

over the sphere is 〈ℓ〉 = (π/4)kRLS. For the velocity term the power goes to zero when µ = 0

on the equator, so the average ℓ is smaller, 〈ℓ〉 = (3π/16)kRLS, and the distribution of power

over ℓ lacks the sharp cusp at ℓ = kRLS. As a result the velocity term, while contributing about

60% as much to the RMS anisotropy as the density term, does not contribute this much to

the peak structure in the angular power spectrum. Thus the old nomenclature of “Doppler”

peaks was not appropriate, and the new usage of “acoustic” peaks is more correct. Figure

1.4 shows the angular power spectrum from single k skies for both the density and velocity

terms for several values of k, and a graph of the variance-weighted mean ℓ vs. kRLS. These

curves were computed numerically but have the expected forms given by the spherical Bessel

function jℓ for the density term and j′ℓ for the velocity term.

Seljak (1994) considered a simple model in which the photons and baryons are locked

together before recombination, and completely noninteracting after recombination. Thus the

opacity went from infinity to zero instantaneously. Prior to recombination there were two

fluids, the photon-baryon fluid and the CDM fluid, which interacted only gravitationally.

The baryon-photon fluid has a sound speed of about c/
√

3 while the dark matter fluid has

a sound speed of zero. Figure 1.5 shows a conformal spacetime diagrams with a traveling

wave in the baryon-photon fluid and the stationary wave in the CDM. The CDM dominates

7
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Fig. 1.5. On the left a conformal spacetime diagram showing a traveling wave in the baryon-
photon fluid. On the right, the stationary CDM wave and the world lines of matter falling
into the potential wells. For this wavenumber the density contrast in the baryon-photon fluid
has undergone one-half cycle of its oscillation and is thus in phase with the Sachs-Wolfe
effect from the CDM. This condition defines the first acoustic peak.

the potential, so the large-scale structure (LSS) forms in the potential wells defined by the

CDM.

In Seljak’s simple two-fluid model, there are five variables to follow: the density contrast

in the CDM and baryons, δc and δb, the velocities of these fluids υc and υb, and the potential

φ. The photon density contrast is (4/3)δb. In Figure 1.6 the density contrasts are plotted vs.

the scale factor for several values of the wavenumber. To make this plot the density contrasts

were adjusted for the effect of the potential on the time, with

-2 -1 0
-4

-3

-2

-1

0

1

2

log[a/aeq]

lo
g[

∆ γ], 
lo

g[
∆ c]

Fig. 1.6. Density contrasts in the CDM and the photons for wavenumbers κ = 5, 20, and 80
(see Fig. 1.7) as a function of the scale factor relative to the scale factor and when matter
and radiation densities were equal. The photon density contrast starts out slightly larger than
the CDM density contrast but oscillates.
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κ

φ,
v,

δ

0 20 40 60 80 100

-1

0

1

Fig. 1.7. Density contrasts at recombination as a function of wavenumber κ. The arrows
on the x-axis indicate the values of κ for δ vs. a, as plotted in Figure 1.6. The solid curve
shows the potential (the initial potential is always φ = 1), the long dashed curve curve shows
the combined potential plus density effect on the CMB temperature, while the short dashed
curve shows the velocity of the baryon-photon fluid.

∆c = δc +3H
∫

(φ/c2)dt (1.17)

and

∆γ = δγ +4H
∫

(φ/c2)dt. (1.18)

Remembering that φ is negative when δ is positive, the two terms on the right-hand side of

the above equations cancel almost entirely at early times, leaving a small residual growing

like a2 prior to aeq, the scale factor when the matter density and the radiation density were

equal. Thus these adjusted density contrasts evolve like Ω
−1 −1 in homogeneous universes.

Figure 1.7 shows the potential that survives to recombination and produces LSS, the po-

tential plus density effect on the CMB temperature, and the velocity of the baryons as func-

tion of wavenumber. Close scrutiny of the potential curve in the plot shows the baryonic

wiggles in the LSS that may be detectable in the large redshift surveys by the 2dF and SDSS

groups.

A careful examination of the angular power spectrum allows several cosmological param-

eters to be derived. The baryon to photon ratio and the dark matter to baryon density ratio

can both be derived from the amplitudes of the first two acoustic peaks. Since the photon

density is known precisely, the peak amplitudes determine the baryon density ωb = Ωbh2 and

the cold dark matter density ωc = ΩCDMh2. The matter density is given by Ωm = Ωb +ΩCDM.

The amplitude 〈Q2〉 and spectral index n of the primordial density perturbations are also

9
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Fig. 1.8. The angular size distance vs. Ωm for H0 = 60 km s−1 Mpc−1 and three different

values of Ωtot(0.9, 1, and 1.1, from top to bottom). The dashed curve shows Ω
−1/2
m .

easily observed. Finally the angular scale of the peaks depends on the ratio of the angular

size distance at recombination to the distance sound can travel before recombination. Since

the speed of sound is close to c/
√

3, this sound travel distance is primarily affected by the

age of the Universe at z = 1100. The age of the Universe goes like t ∝ ρ−1/2 ∝ Ω
−1/2
m h−1.

The angular size distance is proportional to h−1 as well, so the Hubble constant cancels out.

The angular size distance is almost proportional to Ω
−1/2
m , but this relation is not quite exact.

Figure 1.8 compares the angular size distance to Ω
−1/2
m . One sees that a peak position that

corresponds to Ωtot = 0.95 if Ωm = 0.2 can also be fit by Ωtot = 1.1 if Ωm = 1. Thus, to first

order the peak position is a good measure of Ωtot .

The CMBFAST code by Seljak & Zaldarriaga (1996) provides the ability to quickly com-

pute the angular power spectrum Cℓ. Typically CMBFAST runs in about 1 minute for a

given set of cosmological parameters. However, two different groups have developed even

faster methods to evaluate Cℓ. Kaplinghat, Knox, & Skordis (2002) have published the Davis

Anisotropy Shortcut (DASh), with code available for download. This program interpolates

among precomputed Cℓ’s. Kosowsky, Milosavljević, & Jiminez (2002) discuss combina-

tions of the parameters that produce simple changes in the power spectrum, and also allow

accurate and fast interpolation between Cℓ’s. These shortcuts allow the computation of a Cℓ

from model parameters in about 1 second. This allows the rapid computation of the likeli-

hood of a given data set D for a set of model parameters M, L(D|M). When computing the

likelihood for high signal-to-noise ratio observations of a small area of the sky, biases due to

the non-Gaussian shape of the likelihood are common. This can be avoided using the offset

log-normal form for the likelihood L(Cℓ) advocated by Bond, Jaffe, & Knox (2000).

10
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Table 1.1. Beam Size and Calibration Corrections

Experiment θB (′) 100(∆θ)/θ 100(∆dT )/dT

COBE 420.0 −0.3 ...

ARCHEOPS 15.0 −0.2 2.7

BOOMERanG 12.9 10.5 −7.6

MAXIMA 10.0 −0.9 0.2

DASI 5.0 −0.4 0.7

VSA 3.0 −0.5 −1.7

CBI 1.5 −1.1 −0.2

The likelihood is a probability distribution over the data, so
∫

L(D|M)dD = 1 for any M.

It is not a probability distribution over the models, so one should never attempt to evaluate
∫

LdM. For example, one could consider the likelihood as a function of the model param-

eters H0 in km s−1 Mpc−1 and Ωm for flat ΛCDM models, or one could use the parameters

t0 in seconds and Ωm. For any (H0,Ωm) there is a corresponding (t0,Ωm) that makes exactly

the same predictions, and therefore gives the same likelihood. But the integral of the likeli-

hood over dt0dΩm will be much larger than the integral of the likelihood over dH0dΩm just

because of the Jacobian of the transformation between the different parameter sets.

Wright (1994) gave the example of determining the primordial power spectrum power-

law index n, P(k) = A(k/k0)n. Marginalizing over the amplitude by integrating the likelihood

over A gives very different results for different values of k0. Thus, it is very unfortunate that

Hu & Dodelson (2002) still accept integration over the likelihood.

Instead of integrating over the likelihood one needs to define the a posteriori probability

of the models p f (M) based on an a priori distribution pi(M) and Bayes’ theorem:

p f (M) ∝ pi(M)L(D|M). (1.19)

It is allowable to integrate p f over the space of models because the prior will transform when

changing variables so as to keep the integral invariant.

In the modeling reported here, the a priori distribution is chosen to be uniform in ωb, ωc,

n, ΩV , Ωtot , and zri. In doing the fits, the model Cℓ’s are adjusted by a factor of exp[a +
bℓ(ℓ+ 1)] before comparison with the data. Here a is a calibration adjustment, and b is a

beam size correction that assumes a Gaussian beam. For COBE, a is the overall amplitude

scaling parameter instead of a calibration correction. Marginalization over the calibration

and beam size corrections for each experiment, and the overall spectral amplitude, is done

by maximizing the likelihood, not by integrating the likelihood. Table 1.1 gives these beam

and calibration corrections for each experiments. All of these corrections are less than the

quoted uncertainties for these experiments. BOOMERanG stands out in the table for having

honestly reported its uncertainties: ±11% for the beam size and ±10% for the gain. The

likelihood is given by

−2lnL = χ2 =
∑

j

{

f (a j/σ[a j]) + f (b j/σ[b j])

11
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Table 1.2. Cosmic Parameters from pre-WMAP CMB Data only

Parameter Mean σ Units

ωb 0.0206 0.0020

ωc 0.1343 0.0221

ΩV 0.3947 0.2083

Ωk −0.0506 0.0560

zri 7.58 3.97

n 0.9409 0.0379

H0 51.78 12.26 km s−1 Mpc−1

t0 15.34 1.60 Gyr

Γ 0.2600 0.0498

+
∑

i

f ([Zo
i j −Zc

i j]/σ[Zi j])
}

, (1.20)

where j indexes over experiments, i indexes over points within each experiment, Z = ln(Cℓ +
Nℓ) in the offset log normal approach of Bond et al. (2000), and Nℓ is the noise bias. Since for

COBE a is the overall normalization, σ(a) is set to infinity for this term to eliminate it from

the likelihood. The function f (x) is x2 for small |x| but switches to 4(|x|−1) when |x| > 2.

This downweighs outliers in the data. Most of the experiments have double tabulated their

data. I have used both the even and odd points in my fits, but I have multiplied the σ’s by√
2 to compensate. Thus, I expect to get χ2 per degree of freedom close to 0.5 but should

have the correct sensitivity to cosmic parameters.

The scientific results such as the mean values and the covariance matrix of the param-

eters can be determined by integrations over parameter space weighted by p f . Table 1.2

shows the mean and standard deviation of the parameters determined by integrating over

the a posteriori probability distribution of the models. The evaluation of integrals over

multi-dimensional spaces can require a large number of function evaluations when the di-

mensionality of the model space is large, so a Monte Carlo approach can be used. To achieve

an accuracy of O(ǫ) in a Monte Carlo integration requires O(ǫ−2) function evaluations, while

achieving the same accuracy with a gridding approach requires O(ǫ−n/2) evaluations when

second-order methods are applied on each axis. The Monte Carlo approach is more efficient

for more than four dimensions. When the CMB data get better, the likelihood gets more

and more sharply peaked as a function of the parameters, so a Gaussian approximation to

L(M) becomes more accurate, and concerns about banana-shaped confidence intervals and

long tails in the likelihood are reduced. The Monte Carlo Markov Chain (MCMC) approach

using the Metropolis-Hastings algorithm to generate models drawn from p f is a relatively

fast way to evaluate these integrals (Lewis & Bridle 2002). In the MCMC, a “trial” set of

parameters is sampled from the proposal density pt(P′;P), where P is the current location

in parameter space, and P′ is the new location. Then the trial location is accepted with a

probability given by

λ =
p f (P′)

p f (P)

pt(P;P′)

pt(P′;P)
. (1.21)
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Fig. 1.9. Left: Clouds of models drawn from the a posteriori distribution based on the
CMB data set as of 19 November 2002. The gray band shows the Big Bang nucleosynthesis
determination of ωb (±2σ) from Burles, Nollett, & Turner (2001). Right: the same set of
models in the Ωm, ΩΛ plane.

When a trial is accepted the Markov chain one sets P = P′. This algorithm guarantees that

the accepted points in parameter space are sampled from the a posteriori probability distri-

bution.

The most common choice for the proposal density is one that depends only on the parame-

ter change P′−P. If the proposal density is a symmetric function then the ratio pt(P;P′)/ptP′;P)

= 1 and λ is then just the ratio of a posteriori probabilities. But the most efficient choice for

the proposal density is p f (P) which is not a function of the parameter change, because this

choice makes λ = 1 and all trials are accepted. However, if one knew how to sample models

from p f , why waste time calculating the likelihoods?

Just plotting the cloud of points from MCMC gives a useful indication of the allowable

parameter ranges that are consistent with the data. I have done some MCMC calculations

using the DASh (Kaplinghat et al. 2002) to find the Cℓ’s. I found DASh to be user un-

friendly and too likely to terminate instead of reporting an error for out-of-bounds parame-

ter sets, but it was fast. Figure 1.9 shows the range of baryon and CDM densities consistent

with the CMB data set from COBE (Bennett et al. 1996), ARCHEOPS (Amblard 2003),

BOOMERanG (Netterfield et al. 2002), MAXIMA (Lee et al. 2001), DASI (Halverson et

al. 2002), VSA (Scott et al. 2003), and CBI (Pearson et al. 2003), and the range of matter

and vacuum densities consistent with these data. The Hubble constant is strongly correlated

with position on this diagram. Figure 1.10 shows the distribution of t0 for models consis-

tent with this pre-WMAP CMB data set. The relative uncertainty in t0 is much smaller than

the relative uncertainty in H0 because the low-H0 models have low vacuum energy density

(ΩV ), and thus low values of the product H0t0. The CMB data are giving a reasonable value

for t0 without using information on the distances or ages of objects, which is an interesting

confirmation of the Big Bang model.

Peacock & Dodds (1994) define a shape parameter for the observed LSS power spectrum,

Γ = Ωmhexp(−2Ωb). There are other slightly different definitions of Γ in use, but this will be

13
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used consistently here. Peacock & Dodds determine Γ = 0.255±0.017 +0.32(n−1 −1). The

CMB data specify n, so the slope correction in the last term is only 0.020± 0.013. Hence,

the LSS power spectrum wants Γ = 0.275±0.02. The models based only on the pre-WMAP
CMB data give the distribution in Γ shown in Figure 1.11, which is clearly consistent with

the LSS data.

Two examples of flat (Ωtot = 1) models with equal power on all scales (n = 1), plotted on

the pre-WMAP data set, are shown in Figure 1.12. Both these models are acceptable fits, but

the ΛCDM model is somewhat favored based on the positions of the peaks. The rise in Cℓ at

low ℓ for the ΛCDM model is caused by the late integrated Sachs-Wolfe effect, which is due

to the changing potential that occurs for z < 1 in this model. The potential changes because

the density contrast stops growing when Λ dominates while the Universe continues to expand

at an accelerating rate. The potential change during a photon’s passage through a structure

produces a temperature change given by ∆T/T = 2∆φ/c2 (Fig. 1.13). The factor of 2 is the

same factor of 2 that enters into the gravitational deflection of starlight by the Sun. The effect

should be correlated with LSS that we can see at z ≈ 0.6. Boughn & Crittenden (2003) have

looked for this correlation using COBE maps compared to radio source count maps from the

NVSS, and Boughn, Crittenden, & Koehrsen (2002) have looked at the correlation of COBE
and the X-ray background. As of now the correlation has not been seen, which is an area of

concern for ΛCDM, since the (non)correlation implies ΩΛ = 0±0.33 with roughly Gaussian

errors. This correlation should arise primarily from redshifts near z = 0.6, as shown in Figure

10 12 14 16 18 20
Age [Gyr]

Fig. 1.10. Distribution of the age of the Universe based only on the pre-WMAP CMB data.
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Fig. 1.11. Distribution of the LSS power spectrum shape parameter Γ = Ωmhexp(−2Ωb)
from the pre-WMAP CMB data.

1.14. The coming availability of LSS maps based on deep all-sky infrared surveys (Maller

2003) should allow a better search for this correlation.

In addition to the late integrated Sachs-Wolfe effect from Λ, reionization should also

enhance Cℓ at low ℓ, as would an admixture of tensor waves. Since Λ, τri and T/S all

increase Cℓ at low ℓ, and this increase is not seen, one has an upper limit on a weighted sum

of all these parameters. If Λ is finally detected by the correlation between improved CMB

and LSS maps, or if a substantial τri, such as the τ = 0.1 predicted by Cen (2003), is detected

by the correlation between the E-mode polarization and the anisotropy (Zaldarriaga 2003),

then one gets a greatly strengthened limit on tensor waves.

1.3 Discussion
The observed anisotropy of the CMB has an angular power spectrum that is in

excellent agreement with the predictions of the ΛCDM model. But the CMB angular power

spectrum is also consistent with an Einstein-de Sitter model having Ωm = 1 and a low value

of H0 ≈ 40 km s−1 Mpc−1. The observed lack of the expected correlation between the CMB

and LSS due to the late integrated Sachs-Wolfe effect in ΛCDM slightly favors the Ωm = 1

“super Sandage” CDM model (sSCDM), which, like ΛCDM, is also consistent with the

shape of the matter power spectrum P(k) and the baryon fraction in clusters of galaxies. But

sSCDM disagrees with the actual measurements of H0 and with the supernova data for an

accelerating Universe. Thus, ΛCDM is the overall best fit, but further efforts to confirm the

CMB-LSS correlation should be encouraged.

15



E. L. Wright

20

30

50

70

100

1 5 20 100 500 1000 1500

100 20 5 2 1 0.5 0.2

[  
( 

 +
1)

C
 /2

  ]
1/

2  [ 
 K

]
µ

π

eff

Angular Scale [Degrees]

COBE
ARCHEOPS
BOOM
MAXIMA
DASI
VSA
CBI

sCDM ΛCDM

Ned Wright - 19 Nov 2002

Fig. 1.12. Two flat n = 1 models. One shows ΛCDM with ΩΛ = 2/3. The best fit gives
ωb = 0.022 and ωc = 0.132, implying H0 = 68 km s−1 Mpc−1. The other fit shows ΩΛ = 0
with ωb = 0.021 and ωc = 0.196, implying H0 = 47 km s−1 Mpc−1.

∆T 2∆φ=T c2

Fig. 1.13. Fading potentials cause large-scale anisotropy correlated with LSS due to the
late integrated Sachs-Wolfe effect.

1.4 Conclusions
The pre-WMAP CMB angular power spectrum assembled from multiple experi-

ments is very well fit by a six-parameter model. Of these six parameters, the vacuum energy
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density ΩV and the redshift of reionization zri are still poorly determined from CMB data

alone. However, the well-determined parameters either match independent determinations

or the expectations from inflation:

• The baryon density ωb is determined to 10% and agrees with the value from Big Bang

nucleosynthesis.

• The age of the Universe is determined to 11% and agrees with determinations from white

dwarf cooling (Rich 2003), main sequence turnoffs, and radioactive decay.

• The predicted shape of the LSS power spectrum P(k) agrees with the observed shape.

• The curvature Ωk is determined to 4% and agrees with the expected value from inflation.

• The spectral index n is determined to 4% and agrees with the expected value from inflation.

The angular power spectrum of the CMB can be computed using well-understood physics

and linear perturbation theory. The current data set agrees with the predictions of inflation

happening less than 1 picosecond after the Big Bang, the observations of light isotope abun-

dances from the first three minutes after the Big Bang, and the observations of LSS in the

current Universe. The inflationary scenario and the hot Big Bang model appear to be solidly

based on confirmed quantitative predictions.

The greatly improved CMB data expected from WMAP, and later Planck, should dramat-

ically improve our knowledge of the Universe.
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