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Theoretical perspective on the route to
turbulence in a pipe

D. BARKLEY†
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

(Received xx; revised xx; accepted xx)

The route to turbulence in pipe flow is a complex, nonlinear, spatiotemporal process for
which an increasingly clear theoretical understanding has emerged. This understanding
is explained to the reader in several steps, exploiting analogies to co-existing ther-
modynamic phases and to excitable and bistable media. In the end, simple equations
encapsulating the keys physical properties of pipe turbulence provide a comprehensive
picture of all large-scale states and stages of the transition process. Important among
these are metastable localized puffs, localized edge states, puff splitting and interactions
between puffs, the critical point for the onset of sustained turbulence via spatiotemporal
intermittency (directed percolation), and finally the rise of fully turbulent flow in the
form of expanding weak and strong turbulent slugs.

Key words: Transition to turbulence, Bifurcation, Shear layer turbulence

1. Introduction

More than a century ago Osborne Reynolds (1883) launched the study of turbulent
transition as he sought to understand the conditions under which fluid flowing through
a pipe would be laminar or turbulent. Because laminar and turbulent flow have vastly
different drag laws and mixing properties, these questions are as important now as they
were in Reynolds’ day. Pipe flow has now become a dominant paradigm in the study of
turbulence and is representative of a large class of wall-bounded flows, such as those in
channels, ducts, and boundary layers. Despite the appealing simplicity of pipe flow, the
complexity of phenomena it exhibits are such that it would ultimately take more than
100 years to reach an understanding of the route to turbulence in this flow, and even
now many questions remain.
Figure 1 illustrates the most basic features established by Reynolds and encapsulates

the story I am going to tell. At low flow speeds, the fluid motion within a pipe is smooth
and laminar, while at high speeds the motion quickly becomes complex and turbulent.
Over some intermediate range of flow speeds, the flow is neither fully laminar nor fully
turbulent, but rather a complicated combination of these two that varies over both space
and time in a highly intermittent and unpredictable fashion.
Reynolds determined that pipe flow was governed by a single non-dimensional param-

eter, since referred to as the Reynolds number, which we now denote

Re =
Ūd

ν
, (1.1)

† Email address for correspondence: D.Barkley@warwick.ac.uk
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Figure 1. The regimes of pipe flow illustrated by sketches modelled after those in Reynolds
(1883). The flow here, and throughout the paper, is from left to right. At low flow speeds the
fluid motion is laminar and dye injected at the pipe inlet produces a straight streakline. At high
flow speeds, swirling motions of injected dye reveals that the fluid becomes turbulent within
a short distance of the pipe inlet. The transitional regime occurs at intermediate flow speeds
where the flow exhibits irregular, intermittent turbulence.

where Ū is the cross-sectionally averaged mean flow speed, also known as the bulk
velocity, d is the pipe diameter, and ν is the kinematic viscosity of the fluid. Reynolds
considered many issues, but one in particular was the law of resistance for pipe flow.
Essentially the question is how much pressure is needed to drive a given volume flux
through the pipe, or vice versa. It is now standard to express this in terms of the non-
dimensional friction factor as a function of Re, as shown in figure 2. The friction factor
f is defined by

f =
△pd

1

2
ρLŪ2

where △p is the magnitude of the pressure drop over streamwise distance L and ρ is the
fluid density.
For my purposes this plot is useful for discussing the relationship between laminar

and turbulent flows as a function of Re. Points in the figure represent what would be
measured in a typical experiment. At low Re the flow is laminar and the friction factor
obeys the scaling easily obtained from the Navier-Stokes equations (e.g., Pope 2000). At
high Re the flow is turbulent and the friction factor obeys the law proposed by Prandtl
(e.g., Schlichting 1968; Pope 2000). The much larger friction factor for turbulent flow is
a quantitative expression of the increased drag due to turbulent fluid motion. Within the
transition region, the flow switches from the laminar to the turbulent scaling. The shading
in figure 2 is not meant to define a precise region, but rather to show the approximate
range over which the dynamics are particularly interesting, and over which I will focus.
One of the most significant features of figure 2 is the white points showing what is

observed in experiments free from disturbances that trigger turbulence. These indicate
that turbulence is not inevitable as Re increases through and even beyond the transition
region. The transition to turbulence in pipe flow is thus subcritical, meaning that
turbulence exists even without laminar flow first becoming unstable. This is common for
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Figure 2. Friction factor f as a function of Re for pipe flow. The dashed curve shows the
exact relationship for fully-developed laminar flow. The solid curve shows the Prandtl law for
turbulent flow. Coloured points are a cartoon representation of what would be observed in a
typical experiment (Schlichting 1968; McKeon et al. 2004). Open points represent fully developed
laminar flow that can be achieved in experiments free from disturbances that trigger turbulence.
Shading indicates approximately what can be considered to be the transitional regime. It
includes, but is somewhat broader than, the region where typical experiments transition from
the laminar to turbulent scaling.

wall-bounded shear flows, e.g. channel flow, duct flow, plane Couette flow (Manneville
2015) and others that will not be discussed here. We know from numerical computations
that laminar pipe flow is stable to infinitesimal disturbances (linear stability) to at least
Re = 107 (Salwen et al. 1980; Meseguer & Trefethen 2003). While no real experiment will
show laminar flow at such large Re, maintaining laminar flow at the white points shown
in the figure is common in a well-controlled experiment, (e.g., Wygnanski & Champagne
1973; Darbyshire & Mullin 1995; van Doorne & Westerweel 2009).
Consider now the following question: is there a critical point for the onset of turbulence

in pipe flow, and if so, what is the critical Reynolds number? This fundamental question is
really at the heart of Reynolds’ original study. While this specific question will not be the
sole, or even the primary focus of this paper, it is useful to consider since it highlights so
much about what is interesting and difficult in the transition problem. The intermittent
appearance of turbulence and the subcritical character of the transition complicate this
issue and require first stating precisely what the question is. I will get to that in good
time. Nevertheless, as the cartoon of experimental points in figure 2 indicates, a sensibly
defined critical point would probably be at Re ≈ 2000, as Reynolds himself estimated
in 1883. However, it was not until 2011 (Avila et al. 2011) that the critical value was
definitely determined in a way that was fully justified and that did not suffer from finite-
size effects. Determining this value required demanding experiments that could not have
been performed in Reynolds’ time. As we will see, this is only one piece in the story of how
turbulence arises, but it illustrates how only recently has it been possible to definitely
answer some of the most basic questions about this flow and to obtain a more-or-less
clear understanding of the route to turbulence in pipe flow. Manneville (2015, 2016) gives
excellent reviews of the field in the broader context of wall-bounded shear flows.



4 D. Barkley

I will end this short introduction by summarizing what will be presented and how.
This subject is largely driven by experiments and direct numerical simulations (DNS) of
the Navier-Stokes equations. These are where the facts come from. I will refer to these
facts as needed, but for the most part will use my own cartoon representations of what
experiments and simulations tell us, rather than reprinting results published elsewhere.
(Figures 1 and 2 already illustrate this approach. No actual measurements are shown
in these figures.) I will present my perspective on the route from laminar to turbulent
flow in a pipe by focusing on what can be understood from relatively few simple physical
ideas and developing models that express these ideas. As already indicated, there is a rich
variety of phenomena associated with pipe flow transition. Rather than first presenting
all the phenomena and then discussing a theoretical framework, I will proceed little by
little with increasing detail about transition process. Only at the end will I be able to
fully address issues such as the critical point for pipe flow.

2. What pipe flow transition is not – a short history

In the years following Reynolds’ experiments, attempts to explain the onset of turbu-
lence via analysis of the Navier-Stokes equations met with failure. Eckert (2010) gives a
review of that “troublesome” period in hydrodynamic stability theory. So dire was the
situation more than 20 years after Reynolds’ first work on the problem, that Orr (1907)
wrote “It would seem improbable that any sharp criterion for stability of fluid motion
will even be arrived at mathematically.” This remained the case through the early 1920’s
when, for example, Prandtl writes to von Kármán: “and so, once more, we do not obtain
a critical Reynolds number. There seems to be a very nasty devil in the turbulence so
that all mathematical efforts are doomed to failure” (See Eckert 2010, p. 43).
G.I. Taylor (1923) had the great insight to considered instead a shear flow that actually

possesses a linear instability. Quoting from Taylor: “It seems doubtful whether we can
expect to understand fully the instability of fluid flow without obtaining a mathematical
representation of the motion of a fluid in some particular case in which instability can
actually be observed, so that a detailed comparison can be made between the results
of analysis and those of experiment.” Taylor conducted both experiments and a linear
stability analysis on the flow between concentric rotating cylinders, now commonly
called Taylor-Couette flow. The outstanding agreement between the two solidified linear
stability analysis as a fundamental tool of fluid dynamics.
Nonlinearity presented an even greater challenge to obtaining a mathematical de-

scription of the route to turbulence. Landau (1944) and Stuart (1958) explained how
nonlinearity would come into play following a linear instability. The basic message is
that nonlinearity will lead to two fundamentally different situations. In one, nonlinearity
will act to arrest the growth of a linearly unstable mode (supercritical instability), while
in the other nonlinearity will act to further enhance the growth of the unstable mode
(subcritical instability). Later developments in bifurcation theory greatly extended the
understanding of how nonlinearity manifests itself. This made it possible to understand
not only initial (primary) instabilities, but also subsequent (secondary) instabilities in
flows such as Taylor-Couette flow (See, e.g. Joseph 1976; Chossat & Iooss 1985).
In the 1970’s chaos burst onto the scene with the works of Ruelle & Takens (1971),

Feigenbaum (1978), and others. Ruelle & Takens (1971) specifically proposed a connec-
tion between chaotic dynamics and turbulence. They proposed a modification of the
earlier Landau-Hopf view that turbulence occurred after a large number of successive
instabilities (Landau 1944; Hopf 1948). They showed that instead only a few instabilities
were necessary to generate complex, non-periodic dynamics, meaning that turbulence
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Figure 3. Experiments illustrating the route to turbulence in Taylor-Couette flow. Photographic
images show flow states encountered with increasing Reynolds number (increasing from left
to right). The flow is turbulent (right-most image) following a short sequence of successive
instabilities. Modified from (Swinney & Gollub 1985).

could appear in a fluid after only a few instabilities. This was subsequently confirmed by
Gollub & Swinney (1975) in experiments on Taylor-Couette flow.
This culminated in a route to turbulence illustrated in figure 3. As the Reynolds

number of the flow is increased, by increasing the rotation rate of the inner cylinder
in the case shown, the system undergoes a sequence of successive instabilities. Each
instability increases the complexity of the dynamics such that after a short sequence
the dynamics becomes chaotic, i.e. turbulent. The volume edited by Swinney & Gollub
(1985) gives a wonderful account of the success of this approach and it communicates
the excitement that followed the bringing together of dynamical system theory and
hydrodynamic instabilities to understand the transition to turbulence.
There is just one problem – this picture is essentially irrelevant to transition in pipe

flow. One can end up wasting a lot of time trying to bend and contort this scenario to
try to make it conform to what is observed in pipe experiments. In actuality, the route
to turbulence in pipe flow is of a wholly different type and requires a completely different
perspective. If you have the above picture of transition in mind, you should forget it now.
I cannot stress this enough.
(I do want to note that history also includes several individuals who understood, or

would have understood, that the above picture does not apply to pipe flow. Important
among them would be Rotta (1956), Lindgren (1957), Landau & Lifshitz (1959), Coles
(1962), Wygnanski & Champagne (1973), and Reynolds himself. That is not meant to be
a complete list, and it does not include my contemporaries. Rather than give a separate
alternative history, I will refer to these important works as needed in the following.)

3. The first step – low and high Reynolds number

As a first step in understanding the transition problem, I want to take a detour and
consider what happens at high and low Reynolds numbers, excluding the transition
regime where the most interesting dynamics occurs. I find it useful first to develop a
good understanding of dynamics outside the transitional regime and then after to build
on this for a more complete explanation for transitional behaviour.
Figure 4 summarizes what I will focus on. Two common types of experiments are

illustrated (e.g. Wygnanski & Champagne 1973; Darbyshire &Mullin 1995). In figure 4(a)
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Figure 4. The dynamics of pipe flow at low and high Re. Two common types of disturbances are
illustrated: (a) a constant perturbation near the pipe inlet that continually disturbs incoming
flow and (b) a short duration perturbation that only locally disturbs laminar flow. Space-time
plots (c)-(f) illustrate the resulting dynamics at low and high Re, excluding the transitional
regime. The plots are not from actual pipe measurements, but resemble what might be observed
for transverse velocity measurements on the pipe axis. The expanding turbulent state in (f) is
known as a slug.

the flow is constantly disturbed at or near the pipe inlet. In figure 4(b), incoming laminar
flow is allowed to develop, but then is disturbed over a brief time interval, typically with a
short-duration transverse jet, resulting in a localized disturbance to laminar flow. Space-
time plots illustrate what measurements of transverse velocity on the pipe centreline
might look like at low and high Re for each type of disturbance.
At low Re, the flow cannot sustain turbulence. Figures 4(c) and 4(d) depicted what

could be observed when Re is not so small that turbulent fluctuations immediately
dissipate. Advection by the mean flow transports decaying turbulence some distance
downstream before the system reverts to laminar flow. At high Re, once triggered
turbulence expands at the expense of laminar flow, as illustrated in figures 4(e) and
4(f). The expanding turbulent state following the localized perturbation is known as
a slug. The spreading rates on the upstream and downstream sides of the slug are key
quantities of interest that have been studied extensively in experiments and numerical
simulations (e.g. Coles 1962; Lindgren 1969; Wygnanski & Champagne 1973; Nishi et al.
2008; Duguet et al. 2010; Barkley et al. 2015).

From the development of slugs it is known that downstream advection by the mean
flow plays a significant role even at high Re. Experiments show that advection dominates
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Figure 5. Expansion of a turbulent slug as seen in a frame of reference moving at the mean flow
velocity Ū . Results are from a DNS of pipe flow at Re = 4000. The kinetic energy of the flow,
with laminar Hagen-Poiseuille flow subtracted, is visualized in a cross-section through the pipe.
Thus laminar Hagen-Poiseuille flow appears as white. The five snapshots are separated by 10
advective time units d/Ū . The pipe has length 50d with periodic boundary conditions imposed
in the streamwise direction. In the reference frame in which the pipe is stationary, turbulence
does not expand upstream from where it is triggered. (Simulation courtesy of M. Chantry.)

expansion such that, at least up to Re ≃ 105, turbulence does not spread upstream from
where it is triggered (Wygnanski & Champagne 1973). The trend suggests that this will
hold to much larger Re, and possibly all values Re.

Here we get a taste of what we must deal with in understanding actual pipe experi-
ments. Not only must the flow be disturbed, but in addition pipes must be sufficiently long
to allow the disturbed flow to obtain its asymptotic state before reaching the downstream
end of the pipe. When obtaining quantities such as the friction factor (or turbulence
fraction as we consider later), it is necessary that measurements be made after the
flow has reached an asymptotic state. While continuous inlet disturbances provide less
information on spreading rates than do localized perturbations, continuous disturbances
can be better suited for producing an asymptotic state of turbulence in the downstream
portion of a pipe.

Figure 5 shows an expanding turbulent slug from a direct numerical simulation of the
Navier-Stokes equations. Periodic boundary conditions are employed at the ends of a
pipe 50d in length. For ease of visualization, snapshots of the flow have been translated
and displayed in a frame of reference moving at the mean velocity Ū . In the laboratory
reference frame in which the pipe is stationary, the slug centre advects approximately 40d
downstream over the time shown. This means that in the laboratory reference frame, the
upstream (left) edge of the slug advects downstream faster than it expands, as illustrated
in figure 4(f).

Numerical simulations with periodic boundary conditions can alleviate some of the
requirements for very long pipes needed in experiments by effectively decoupling long
temporal evolution from long spatial evolution. Much depends on what the question
is, but it is not uncommon to be interested in the long time behaviour of structures no
greater than 100 pipe diameters. The simulation shown is a relatively small in both space
and time. It is constrained by the need to visualize the resulting flow state rather than
by the computational resources needed to produce it.

Before leaving these issues, I will take the opportunity to comment on the connection
between what is illustrated in figure 4 and the concepts of absolute and convective
instability (Chomaz 2005). At a linear level, laminar pipe flow is always stable. As a
result, linear instability, whether absolute or convective, will not appear anywhere in the
following; everything of interest will be nonlinear. At a nonlinear level, the expansion of
turbulent slugs is dominated by downstream advection such that, at least to Re ≃ 105,
turbulence resulting from a localized perturbation always advects out of the system in
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Figure 6. Illustration, modelled after Wygnanski & Champagne (1973), showing the structure
of a turbulent slug. A region of turbulent flow is bounded upstream and downstream by laminar
flow. The middle portion of the slug is not shown. Laminar flow can be viewed as a liquid phase
while the disordered turbulent fluid motion can be viewed as a gaseous phase. Sharp interfaces,
or fronts, separate the laminar and turbulent regions. The speed of the upstream interface, cu,
and the speed of the downstream interface, cd, play key roles in the dynamics of the system.

the laboratory reference frame. Such flows can be classified as nonlinearly convectively
unstable (Chomaz 2005).

4. The almost correct analogy – phase transitions

It has been long been recognized that the distinct regions of turbulent and laminar
fluid motion observed in many shear flows have analogies to coexisting phases in thermo-
dynamic systems, and moreover that the interfaces between the turbulent and laminar
regions are key to understanding these flows. Coles (1962) summarizes the situation so
well I find it is best to quote him directly: “Among several related questions raised by this
study of interfaces and intermittency, one of the most important concerns the remarkable
stability of the mixed flows already described. It seems that nature does not ordinarily
provide a continuous range of states varying from fully laminar to fully turbulent flow.
If both types of flow are present they are distinct, in the same sense that the liquid and
gaseous states are distinct for any ordinary fluid. At least in the case of transition, the
turbulent regions have a characteristic geometry and characteristic propagation velocity
which are so regular that a definite mechanism must be involved.”
Figure 6 illustrates the points Coles is making. This figure is itself modelled after the

depiction of a turbulent slug in Wygnanski & Champagne (1973). The flow is composed
of two types of motion – laminar and turbulent – and these regions are separated by
sharp interfaces rather than a gradual variation between the two flow types. The figure is
schematic and on some level there is continuous variation, but to a good approximation,
this is the situation for intermittent flows. One can think of the turbulent region as the
more disordered gaseous phase and the laminar region as the liquid phase. The speeds
of these interfaces are particularly important.
While Wygnanski & Champagne (1973) provide details on the turbulent energy budget

in the vicinity of both upstream and downstream interfaces (extending previous consid-
erations by Rotta (1956) and Coles (1962)), these results do not, or I should perhaps say
have not, led to expressions for interface speeds. Lindgren (1969) attempts an expression
for the speed of the upstream interface. While the approach is interesting, the result
unfortunately is unsatisfactory.
Pomeau (1986) had the significant insight to consider generic features of interfaces

between two coexisting states or phases. The idea is that front speed provides a notion
of stability and metastability for systems with multiple stable states and that simple
considerations, independent of the precise details of turbulent flows, are sufficient to
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Figure 7. Local dynamics of pipe flow in the absence of interfaces. (a) Snapshot of turbulent
flow from a DNS at Re = 4000 in a short pipe with periodic boundary conditions. This turbulent
state is viewed as the local state, corresponding to the turbulent core of the slug in figure 5.
The spatial variation within this domain is viewed as microscopic. The dynamics of this local
turbulent state can be viewed as: (b) chaotic, (c) an equilibrium where production P balances
dissipation ǫ, or (d) an equilibrium subjected to random fluctuations. Coexisting with turbulent
flow is laminar Hagen-Poiseuille flow.

understand much of the large-scale dynamics of subcritical shear flows. (Earlier, Landau
& Lifshitz (1959) had noted that the notion of metastability applied in the context of
subcritical shear flows, and pipe flow in particular, but did not develop the idea further.
See Pomeau (2015) for a recent review of the subject.) This is a very important part of
the story that I will now explain in detail.

4.1. Local dynamics

First I need to address the turbulent dynamics in the absence of interfaces. Figure 7
illustrates the idea. Shown is a DNS of turbulent flow at Re = 4000 in a short pipe with
streamwise periodic boundary conditions. The 2.5d axial length is near the minimal size
that can sustain turbulent structures at this Re. Effectively, this is a simulation of the
turbulence in the core of the expanding slug in figure 5. I will refer to the dynamics
of such a small domain as the local dynamics or spatially homogeneous dynamics. The
spatial variations seen in figure 7(a) are on a microscopic scale from the present point of
view. (See Waleffe (1997); Faisst & Eckhardt (2003); Wedin & Kerswell (2004); Eckhardt
et al. (2007); Kawahara et al. (2012) for details of the coherent structures of wall-bounded
turbulence, structures that will be here treated as microscopic. Pomeau (2015) discusses
at length the issues of considering turbulence as a microscopic state in analogy with
atoms in standard statistical mechanics.)

There are three perspectives on the temporal dynamics within this small box. The
first, figure 7(b), is a detailed view in which the turbulent dynamics are chaotic. The
second, figure 7(c), is the coarsest view in which turbulence is simply a equilibrium
point. This is a reasonable perspective looking at, for example, the integrated turbulent
kinetic energy where the balance of turbulent production P and dissipation ǫ results
in a stable equilibrium. In the third perspective, figure 7(d), the turbulent dynamics is
viewed as a stable state subjected to random fluctuations. Regardless of how one chooses
to view the turbulence, at this value of Re the local dynamics exhibits bistability between
turbulence and laminar flow.

Much can be learned in the simplest case where turbulence is viewed as a fixed point
and so this is where we will begin. Let the local state of the system be represented by
a single scalar variable q > 0 that represents an “amplitude of turbulence”, with q = 0
corresponding to laminar flow and q > 0 corresponding to turbulent flow. I will typically
refer to q as the turbulence level or the turbulence intensity. We then take the local
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dynamics to be of the form

q̇ = f(q) = −dV (q)

dq
. (4.1)

In terms of the analogy with phase transitions, the potential V (q) is like the free-energy
density of the bulk phases. Above a certain Reynolds number the potential will be a
double-well with minima corresponding to laminar and turbulent flow. I do not mean
to imply that the local dynamics can actually be reduced to variational form, but the
potential provides useful physical insights. (See Appendix I.) Later I will consider a non-
variational model that more completely captures the local dynamics of the Navier-Stokes
equations.
For concrete illustration, I will use the following potential

V (q) =
q2

2

[

δ + (r + δ)

(

q2

2
− 4q

3

)]

. (4.2)

where r is a parameter playing the role of Reynolds number and δ is a fixed constant.
(Throughout this section δ will be fixed at δ = 8. Later δ will be set to a smaller value.)
The local dynamics of q is thus given by

q̇ = −dV (q)

dq
= f(q) = q

[

r − (r + δ)(q − 1)2
]

(4.3)

Figure 8 shows a bifurcation diagram for the local dynamics, together with the potential
at three representative values of r. Steady states are extrema of V or roots of f . For
r < 0 the only steady state is q0 = 0. At r = 0 the potential develops an inflection point,
corresponding to a saddle-node bifurcation, and for r > 0 there are three branches of
solutions

q =























q+ = 1 +

√

r

r + δ
(upper branch)

q− = 1−
√

r

r + δ
(lower branch)

q0 = 0 (laminar)

The upper branch q+ is linearly stable (a local minimum of the potential) while the lower
branch q− is unstable.
The potential thus captures the most elementary features of a subcritical shear flow.

For small Reynolds number, here r < 0, laminar flow is the only equilibrium and all initial
conditions relax to this state. For sufficiently large Reynolds number, here starting at
r = 0, turbulent states appear. The upper and lower branches can be thought of as a
simple representation of the upper and lower branches of exact coherent structures in pipe
flow (e.g. Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Duguet et al. 2008; Eckhardt
et al. 2007). The unstable lower branch sets the basin boundary between laminar and
turbulent flow. While the laminar branch is linearly stable for all r, its basin of attraction
shrinks with increasing r, via a power law q− ∼ r−1. This is consistent with the behaviour
of pipe flow (Hof et al. 2003).

4.2. Fronts

Now consider a long pipe in which the turbulence intensity can vary in space. The
cross-sectional structure of the flow has already been discarded in describing the flow
with a scalar variable q. Hence, from the large-scale, or macroscopic point of view, the
pipe has just one spatial dimension, the axial direction x.



Route to turbulence in a pipe 11

0 2 4-2

0

1

q

q
0

q
−

I II III

q
+

0 2

0

2

V (q)

q

0

2

V (q)

0

2

V (q)

I

II

III

r

Figure 8. Local model dynamics. Shown is the bifurcation diagram of equilibrium states, with
solid and dashed curves indicating linearly stable and unstable states, respectively. Also shown
is the potential V (q) at representative values of r. Filled points are linearly stable states and
open points are linearly unstable states. The laminar branch q0 exists for all r. Upper q+ and
lower q− branches exist for r > 0. The upper and laminar branch are always linearly stable
(local minimum of V ). In region II, the laminar equilibrium q0 is at a lower potential than q+,
while in region III the situation is reversed.

Pomeau (1986, 2015) argues for taking the evolution equation for q(x, t) to be of the
form

∂q

∂t
+ U

∂q

∂x
= f(q) +D

∂2q

∂x2
(4.4)

where U is a constant representing mean downstream advection and D is the diffusion
coefficient. This is essentially the simplest, low-order extension of the local dynamics that
contains both advection and diffusive coupling in space. While Pomeau (1986) did not

originally include an advection term U
∂q

∂x
, it will be very important later so it is useful

to include here.
We want to know what will be observed in the spatially extended system at parameter

values such that both the upper branch and laminar branches are linearly stable (r > 0
in the model). Pomeau argued that, in analogy with phase transitions, the notion of
metastability applies to coexistence of laminar and turbulent flow and that this can be
deduced by examining the motion of fronts connecting the local equilibria. Specifically,
consider initializing the model system with a front, or interface, smoothly connecting the
two locally stable equilibria q+ and q0 as shown in Fig. 9(a). The basic question then is:
in which direction does this front move? In this spatially extended context this is what
dictates the difference between stable and metastable states: the stable state invades the
metastable state.
For the simple model the local dynamics is described by a potential and one can simply

read off, as in figure 8, the relative stability of the two equilibria. In region II, the laminar
fixed point is at a lower potential than the upper branch fixed point. Hence while both are
locally stable points, the laminar fixed point is “preferred” over the turbulent one. That
is, laminar flow is stable while turbulent flow is metastable. In region III, the situation
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Figure 9. Fronts between turbulent q+ and laminar q0 states. (a) Illustration of the basic
question: which direction does a front move? This dictates which state is stable and which state
is metastable. (b) Upstream and downstream fronts surrounding a region of turbulence (slug).
The fronts move with speeds cu and cd as shown. The fronts are taken to be well separated such
that they are behave as isolated fronts.

is reversed and laminar flow is metastable with respect to turbulent flow. The relative
stability of the two locally stable fixed points is a property of the local dynamics (the
potential V ) and is independent of the advection speed U .
I will now analyse the front motion without assuming the existence of a potential.

While the analysis is very simple, it is useful to include the details for future reference.
Moreover, when advection is present, one must be clear about the meaning of invasion
and this analysis will highlight this aspect.
Consider the front solution after any initial transients have died down so that the front

is travelling at constant speed, denoted c, which may be positive (motion to the right) or
negative (motion to the left). Make a coordinate transformation to go into a co-moving
frame of reference at speed c

z = x− ct (4.5)

and locate the now stationary front at z = 0. The steady front satisfies

(U − c)
dq

dz
= f(q) +D

d2q

dz2
. (4.6)

Now make a further coordinate change to natural inner coordinate for the front

ξ =
z√
D

(4.7)

and define

s ≡ c− U√
D

.

Then the equation for the steady front becomes

q′′ + sq′ + f(q) = 0, (4.8)

together with boundary condition at infinity

q(−∞) = q+ q(+∞) = q0. (4.9)

Primes denote
d

dξ
and s is referred to as a nonlinear eigenvalue.

Generically there will be a solution to (4.8) and (4.9) for a unique value of s. (See
Appendix I.) This solution determines both the shape of the front q(x) and its speed
via s. As both f(q) and q+ depend on the parameter r, the nonlinear eigenvalue s will
depend on r as well, so denote this s(r).
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In addition to fronts going from q+ to q0 with increasing x, there are also those going
from q0 to q+, as illustrated in figure 9(b). We always assume fronts are well separated
and such that they can be analysed independently. The front on the left would be an
upstream front and the one on the right would be the downstream front. In the analysis,
the only difference between the upstream front and the downstream front is the boundary
conditions applied. For the upstream front the boundary conditions are the reverse of
(4.9), namely

q(−∞) = q0 q(+∞) = q+. (4.10)

However, reversing the boundary conditions is equivalent reflecting in ξ, ξ → −ξ. This
reflection changes only the sign of the odd derivative in (4.8). Hence the upstream front
is obtained merely by reflecting the downstream front and changing s to −s. Thus it is
sufficient to solve (4.8) subject to (4.9) for various values of r, then from s(r) the speeds
of the upstream and downstream fronts are given by

cu = U −
√
D s(r), cd = U +

√
D s(r). (4.11)

Figure 10 shows the speeds of upstream and downstream fronts from numerical
solutions to (4.8) and (4.9). The speeds are symmetric about the advection speed U . Here
D = 1, but the value does not affect the transition points or the qualitative behaviour.
In region II, cd < cu and the fronts move towards one another, that is, the laminar state
q0 invades the turbulent state q+ and hence laminar flow is stable while turbulence is
metastable. At r = 1 the front speeds cross. In region III, cd > cu and turbulence invades
laminar flow indicating that now laminar flow is metastable with respect to turbulence.
Qualitatively, the behaviour in figure 10 had been anticipated from the relative depths

of the potential V at the laminar and turbulent fixed points, as shown in figure 8. The
analysis of front speeds provides more quantitative information and it does so by a
method that does not rely on the existence of a potential. The key point is the relationship
between front speeds (4.11) and the nonlinear eigenvalue s obtained from (4.8) and (4.9).
Front speeds are determined by two terms. One is merely kinematic advection at speed U .
This is independent of the type of front. The other term is dynamical and corresponds to
the front motion relative to the kinematic advection. This changes sign with front type
and it dictates whether turbulent flow invades laminar flow or vice versa. It provides
the answer to the question posed in figure 9. Since cd − cu = 2

√
D s(r), if s(r) < 0,

then fronts evolve so as to decrease the fraction of flow in the turbulent state, while if
s(r) > 0, then fronts evolve so as to increase the fraction of turbulence flow. Later we
will see a similar structure arise from the analysis of a more elaborate model in which
the underlying advection is not constant.

4.3. Further details

There are a few other relevant features of the model that I want to cover briefly. In
order not to lose focus, I will leave the details to Appendix I. Some of the techniques
presented there will be useful later, but they are not essential at the moment.
First, I want to note what happens at the limit point where the upper and lower

turbulent branches coalesce and where the fronts terminate: r = 0 in figures 8 and 10. At
this point the upper branch fixed point ceases to be hyperbolic and this in turn means
that fronts cease to be uniquely selected. The speed can take on any of a range of values.
(See Appendix I.) Just above this point, r > 0, the front speed exhibit a square-root
scaling with r. However, given this occurs in the region where turbulence is strongly
contracting, the scaling is effectively masked.

The second point of interest is the transition point between contracting and expanding
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Figure 10. Behaviour of model fronts. Upper plot (a) shows speeds of upstream and downstream
fronts as a function of model Reynolds number r. Below are space-time plots of turbulence
intensity q at representative values of r: (b) r = −1, (c) r = 0.5 and (d) r = 2. For r < 0, region
I, the upper turbulent equilibrium does not exist so fronts between q+ and q0 are meaningless.
The initial condition for space-time plot (b) has a region q > 0, which rapidly decays in time.
(The time scale of this plot is 20 times shorter that of the others two space-time plots.) For
0 < r < 1, region II, the upper turbulent state exists but is metastable with respect to laminar
flow. The turbulent patch contracts. For 1 < r, region III, laminar flow is metastable with
respect to turbulence. Turbulence expands by invading laminar flow.

turbulence: r = 1 in the model. Because the front speeds cross transversely, the scaling
of the expansion rate with Reynolds number has trivial exponent: cd − cu ∼ (r − 1)γ ,
where γ = 1. Exactly at r = 1, the solution to (4.8) gives s = 0, for both upstream and
downstream fronts. Essentially, there is no driving mechanism for fronts to move in either
direction, other than advection by the mean speed U . Such fronts are said to be neutral.
When the local dynamics is derivable from a potential, it can be shown (see Appendix
I) that the neutral fronts must correspond to

V (q0) = V (q+).

This is the intuitively obvious condition that the transition between contracting and
expanding turbulence occurs precisely where the potentials of the laminar and turbulent
state are equal.

Finally, in addition to fronts connecting laminar flow and the stable turbulent state,
the model has small-amplitude unstable travelling waves. In the context of shear flows
these are known as edge states (Schneider et al. 2007; Eckhardt et al. 2007), because they
are on the edge between laminar and turbulent flow. Their stable manifolds determine
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Edge state Edge state +Edge state _

Figure 11. Space-time plots of the model edge state or critical seed at r = 2.0. Middle: the
edge state is a low amplitude, localized travelling pulse. Left and right show evolution from the
slightly perturbed edge state. A slight decrease in q results in decay to laminar flow (left), while
a slight increase in q results in an expanding slug (right).

the basin boundary separating initial conditions that decay to laminar flow and those
that grow to turbulent flow.

Figure 11 illustrates the behaviour of edge states in the model. The middle panel shows
the edge state itself. It is a localized, unstable travelling state. The left and right panels
show the evolution from small perturbations of the edge state (either slightly decreasing
or increasing the size of q). From the point of view of spatial dynamics (see Appendix
I) edge states are homoclinic connections from the laminar branch q0 to itself. For the
model, one can easily show that the edge states satisfy s = 0, and hence have speed
c = U . These exist for all r > 1. As r decreases towards 1, their amplitude increases and
at r = 1 they coalesce with the neutral fronts.

4.4. Noise

I presented three views of the local dynamics in figure 7. While we learned much
by treating turbulence as a fixed equilibrium, a more realistic description of pipe flow
would incorporate fluctuations in the turbulent phase. Arguably the simplest approach to
introducing fluctuations, while maintaining a description with a single real amplitude, is
to introduce multiplicative noise into the local dynamics (Barkley 2011b; Pomeau 2015).
That is, the local dynamics given by (4.1) is modified to be

q̇ = f(q) + σqη, (4.12)

where σ is a parameter controlling the noise strength. I will take η to be white Gaussian
noise with unit variance, although other forms could be considered. The noise term in
(4.12) models only the intrinsic turbulent fluctuations (which in reality are deterministic),
and not randomness due to external influences. The multiplicative form of the noise
ensures that laminar flow, q = 0, is free from fluctuations. Including space, the evolution
equation for q becomes

∂q

∂t
+ U

∂q

∂x
= f(q) +D

∂2q

∂x2
+ σqη. (4.13)

In this case η is white in both space and time.
I will discuss the noise case further later in the paper. Here I only want to show what

the model produces when fluctuations are included. In fact, I have already shown these.
The space-time plots in figure 4 are numerical solutions to (4.13) at r = 0.2 (the low
Reynolds number example) and r = 3 (the high Reynolds number example). Parameter
values are: δ = 8, D = 1, U = 4, and σ = 0.2. (Further information about models and
simulations can be found in Appendix II.) For the simulations corresponding to constant
incoming disturbance, q is set to q+ over an interval at the left side of the domain. Plotted
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are just the fluctuations, |σqη|, as these mimic what might be observed for magnitude of
the transverse velocity fluctuations on the centreline. These solutions capture the broad
features of pipe flow in the low and high Reynolds number regimes.

4.5. Discussion

What I have done in this section is write down, analyse, and simulate explicit model
equations for ideas expressed previously by others, notably Landau, Coles, and especially
Pomeau. I have done this for two reasons. The first is that I find it preferable to illustrate
concepts with specific solutions, such as in figure 4. The second reason is that shortly I
will build on this model to explain a more complete theory of transition.
The simple model provides a base scenario for the route to turbulence in pipe flow.

It clearly distinguishes the notion of local stability from stability in a spatially extended
context, and it highlights the role of downstream advection. The ingredients are few:
three branches of local equilibria, advection and diffusive coupling. The turbulent upper
branch is locally a stable steady state, and yet when it first appears it is metastable with
a very specific meaning – namely that a front between turbulent and laminar flow will
move in the direction that decreases the turbulence fraction. Laminar flow is favoured.
At some larger Reynolds number the situation reverses. Now turbulence is favoured and
fronts connecting turbulent and laminar flow will move in the direction that increases
the turbulent fraction of flow. This corresponds to the gross feature of slugs in pipe flow.
Simultaneous with the formation of expanding slugs, localized edge states appear whose
stable manifolds determine the threshold perturbations giving rise to transition.
I will end this section by re-emphasizing a point crucial to the correct understanding

of pipe flow. As discussed at the end of § 4.2, one must clearly separate the truly
dynamical aspects of front motion from the kinematic effects due to advection. Consider
the upstream (left) fronts of the expanding slugs in figures 4(f) and 10(d). Looking at
these fronts in isolation, one might be tempted to think that they correspond to what
is called a reverse transition where fluid in the turbulent state transitions or relaxes to
laminar flow (Narasimha & Sreenivasan 1979). After all, at a fixed spatial location one can
observe the system in the turbulent state at one time instant and in the laminar state at a
later time. However, what is actually happening is that turbulent flow is invading laminar
flow at the upstream front, but dominant advection is driving everything downstream.
We will return to this soon, and repeatedly.

5. So what is the problem?

The preceding theory provides a simple and appealing description of the dynamics of
turbulent structures at low and high Reynolds numbers. In fact, if the dynamics at low-
and high-Re were the whole story, I could simply declare victory now. The scalar model
contains the basic mechanisms for front motion and for my purposes it is quite good at
capturing the essential large-scale (macroscopic) dynamics of pipe turbulence outside of
the transitional region.

So what is the problem? The problem is that while the simple theory gets many
things correct, it fails fundamentally when it comes to describing the dynamics within
the transition regime. The reason – at the very point where turbulence first begins to
appear it occurs in the form of persistent localized patches.

I now need to begin describing the nature of transitional turbulence, the turbulence
already illustrated in the middle panel in figure 1. The full story is rather complex and
for the moment I will focus just on the basics of localized turbulence. Later in the paper
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Figure 12. DNS of a turbulent puff in pipe flow at Re = 2000. The kinetic energy of the flow
(with laminar flow subtracted) is plotted in a cross-section through the pipe. The vertical scale
is stretched by a factor of 2. The four snapshots are separated by 200 advective time units
d/Ū and are shown in a frame of reference moving at the mean flow speed Ū . While the flow
dynamics within the puff is complicated, the size and shape of the structure, level of fluctuations,
and the propagation speed all remain essentially constant throughout the temporal evolution.
(Simulation courtesy of M. Chantry.)

I will turn to the dynamics of localized structures on long time scales and how this plays
a crucial role in the transition process.
Figure 12 shows a typical localized turbulent patch from a direct numerical simulation

of pipe flow at a typical transitional Reynolds number, Re = 2000. Such a localized
turbulent patch is called a puff (e.g. Wygnanski et al. 1975; Darbyshire & Mullin 1995).
From the four snapshots it can be seen that while the flow is turbulent, the turbulence
neither expands nor shrinks, but maintains an approximately constant streamwise extent.
This is in stark contrast to the expanding turbulent slugs discussed previously. The
turbulent puff moves downstream at nearly fixed speed, and is here shown in a co-moving
frame of reference. At it happens, for the case shown, Re = 2000, the speed is almost
identical to the mean flow speed Ū , and hence this puff remains at nearly a fixed position
in the reference frame moving at this speed. While only four frames over modest time
intervals are shown in figure 12, at this value of Re the turbulence will persist almost
indefinitely in this localized, solitary form (Wygnanski et al. 1975; Darbyshire & Mullin
1995; Nishi et al. 2008).

Puffs, once they form, are independent of how the turbulence is triggered. The flow in
figure 12 was initially seeded with a localized disturbance. However, if one had disturbed
the flow by a continuous inlet perturbation, or if one had started with fully turbulent flow
at higher Re and reduced the value of Re, or if one had made some other disturbance to
laminar flow, after some initial transience the resulting turbulence at this Re would still
necessarily be localized. The flow simply will not contain any turbulent patches larger (or
smaller) than the characteristic puff size (e.g. van Doorne & Westerweel 2009; Moxey &
Barkley 2010; Samanta et al. 2011). Depending on the length of the pipe, the flow would
probably not contain a single puff as in figure 12, but multiple puffs as in figure 13. As
illustrated, puffs are not normally observed to occur at regular intervals, but instead in
an irregular, intermittent form. Sometimes the separation between puffs can be quite
large. Puffs are, however, separated by a minimum distance (Samanta et al. 2011), which
is a reflection of the localized form of turbulence.

Puffs are not only persistent in time, but they are also persistent over a range of
Reynolds number. That is, one does not have to tune Re to one specific value in order
to obtain localized turbulence. This is a key point. In pipe flow, throughout the range
of Reynolds numbers where turbulence first can be triggered, if the flow is turbulent
then that turbulence necessarily takes the form of localized puffs. At a given Reynolds
number, turbulent puffs all have the same characteristic mean size and structure and
they all move with the same mean characteristic streamwise velocity.
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Intermittent turbulent puffs

Figure 13. Sketch, modelled after that appearing in Reynolds (1883), illustrating the nature of
intermittent turbulent puffs in the transitional regime. Puffs of a characteristic size are observed
to occur intermittently in an otherwise laminar background flow.

The previous theory (§ 4) misses the flow physics responsible for generating localized
puffs and hence it is doomed to fail in too many important respects when it comes to
describing quantitatively the route to turbulence in pipe flow. Think about our phase-
transition analogy. In this analogy, a localized turbulent patch would correspond to a
persistent localized region in the gas phase that simultaneously experiences a liquid-to-
vapour transition on one side, and a vapour-to-liquid on the other, exactly as needed
to maintain a constant sized gas bubble. This is clearly un-physical and the analogy is
flawed.

6. A better analogy

We must abandon the analogy with phase transitions if we are to develop a correct
theory for the route to turbulence in pipe flow. A near perfect analogue is what are called
excitable and bistable media (Barkley 2011a, 2012; Barkley et al. 2015). In particular,
there is a strong connection between the dynamics of transitional pipe flow and the
dynamics of the most common example of an excitable medium – the neuron.

6.1. Puffs and action potentials

As motivation, I first want to compare the behaviour of pipe flow at a typical transition
Reynolds number, Re = 2000 say, to the behaviour of a typical nerve cell. Figure 14(a)
illustrates pipe flow in the laminar state. In the absence of external perturbations the
flow will remain laminar indefinitely for as long as one maintains flow through the pipe –
laminar flow is linearly stable. Figure 14(b) illustrates a nerve cell. The extended portion,
the axon, is used to send signals to other, distant cells. In the resting state, there is a
surplus of negatively charged ions in the interior relative to the exterior of the cell. This
is manifested as a voltage difference across the cell membrane separating the inside and
outside of the cell. This voltage difference is easy to measure experimentally and is called
the membrane potential. Just as with the laminar state for pipe flow, the resting state
is linearly stable, and in the absence of perturbation, the cell will remain indefinitely in
this state as long as the cell is kept alive. The nerve cell is said to be excitable, because
while it is linearly stable, it can be excited by external inputs.

Now consider what happens following a short-duration, localized perturbation. For
the pipe this might be the small injection of fluid through a hole in the pipe wall as in
figure 4(b). For the nerve cell, this would typically be the injection of a small current
through the cell membrane. Figure 15(a) illustrates the resulting puff in pipe flow. While
the pipe and shear profile are artist’s representations, the plot is simulation data from
pipe flow. Figure 15(b) illustrates the analogous situation for the nerve cell (Hodgkin
& Huxley 1952). There is a localized excitation in which the sign of the membrane
potential is reversed. This localized excitation in the membrane potential (known as an
action potential) propagates along the nerve axon and this is the mechanism by which
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Figure 14. Analogy between pipe flow and neurons: the resting state. (a) Pipe flow and (b) a
nerve cell are illustrated in their linearly stable resting state, also referred to as the quiescent
state. In principle both systems can maintain these states indefinitely.
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Figure 15. Analogy between pipe flow and neurons: the excited state. (a) A puff in pipe flow.
The line plot shows the kinetic energy (laminar flow subtracted) on the pipe axis from a direct
numerical simulation of a puff. (b) Action potential for a nerve axon. The line plot shows the
membrane potential from simulations of the Hodgkin-Huxley model.
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nerve cells transmit signals. Once an action potential is generated, its magnitude, size,
and propagation speed are determined by cell properties and are independent of how it
was initially generated (just as for a puff).
I find it remarkable that this close analogy between pipe flow, and subcritical shear

flows generally, and excitable systems such as nerve cells, was not noted long ago.
Perhaps it has been, but I have found no reference to it. In both cases one uses nearly
identical words in describing what happens - the system is linearly stable, but there
is a threshold or basin boundary such that if the system is perturbed beyond that
threshold, a persistent, large-amplitude localized response is generated. The physics
is very different in the two systems, but the processes of localization is essentially
identical. Localized excitation persists only by continuously exciting quiescent media.
A negative feedback mechanism follows excitation such that no individual part of the
system stays in the excited state. This negative feedback keeps excitations from expanding
and maintains separation between excitations. As already suggested by figure 15(a), the
negative feedback for pipe flow comes from the distortion of the shear profile due to
turbulent stresses. I will address this in the next section. Before getting to this, I want
to make a few final comments about action potentials and pipe flow.

One could develop an understanding of pipe flow without ever making reference to
excitable media, just as the modelling in § 4 could be carried out without ever making the
connection between pipe turbulence and coexisting phases. However, given the similarities
between pipe flow and neurons, it is well worth exploiting the connection as much as
possible. As one might suspect, given the ubiquity and importance of action potentials
throughout much of biology, they are very well studied. While specific details may vary
from cell to cell and from model to model, the generic features of action potentials are
ultimately very simple. What is particularly advantageous is that the basic mechanism
can easily be understood with simple two-variable models (Keener & Sneyd 2008), and
this provides our route to a better theory of pipe flow. I will leverage a vast literature on
the modelling and analysis of neuron action potentials for this purpose. In fact, almost
all the analysis that will appear later in the paper is taken, with only little modification,
from the literature on excitable media (Rinzel & Terman 1982; Tyson & Keener 1988;
Keener & Sneyd 2008).

7. Basic physics of puffs and slugs

Before getting to specific model equations, I need to discuss in a little more detail the
physics of puffs and slugs. What I will present is comparatively simple in terms of the full
mechanics at work in these structures. The understanding comes from the accumulation of
a large number of studies. A representative sample would include Rotta (1956), Lindgren
(1957), Lindgren (1969), Wygnanski & Champagne (1973), Wygnanski et al. (1975),
Bandyopadhyay (1986), Darbyshire & Mullin (1995), van Doorne & Westerweel (2009),
Shimizu & Kida (2009), Duguet et al. (2010), Hof et al. (2010), Samanta et al. (2011),
Holzner et al. (2013), Song et al. (2016). This is far from a complete list. I recommend
particularly the papers by Wygnanski and coworkers (Wygnanski & Champagne 1973;
Wygnanski et al. 1975), for their detailed content, and Holzner et al. (2013); Song et al.

(2016) for their timely discussion of the literature and because they addresses interface
motion in terms that are useful to me here.

7.1. Slugs

I will begin with the slug and restate in slightly more detail what was previously
discussed concerning figures 5 and 6. Consider the schematic slug in figure 16(a) illus-
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Figure 16. Sketches illustrating the essential mechanics of (a) slugs and (b) puffs. The vertical
scale is highly stretched. Turbulent flow is indicated by red dashed shading. Laminar velocity
profiles are shown in blue while turbulent mean profiles are shown in red. The relative size of
the integrated turbulent energy production P and dissipation ǫ in various regions is indicated.

trating both the turbulent fluctuations and the mean shear profile. The vertical scale
is greatly expanded. Upstream of the slug the flow is fully developed laminar flow.
Crossing the upstream interface there is a rapid, almost explosive conversion of kinetic
energy from the faster-moving laminar upstream flow into turbulence. In the vicinity of
the upstream interface, there is a region of several pipe diameters in streamwise extent
where the mean profile is highly distorted and turbulent production is very high. The
cross-sectionally integrated production significantly exceeds the integrated dissipation
(Wygnanski & Champagne 1973; Song et al. 2016).
It takes some time (that is, downstream distance) for the turbulent cascade to set

in, for Reynolds stresses to act, and for the mean shear profile to adjust to a blunted
turbulent shear profile. There is a region downstream of the interface where the integrated
production falls below the integrated dissipation (Song et al. 2016). Only at a distance on
the order of 8 diameters from the interface, does the flow come into equilibrium and form
the core of the slug. In this core region the integrated production and dissipation are in
balance. The slug is an expanding turbulent structure. In the absence of end effects, the
core of a slug can be arbitrarily long and it forms the axially and azimuthally statistically
invariant state of fully developed turbulent pipe flow (Pope 2000).
Slugs also have a downstream interface between turbulent and laminar flow. The situ-

ation at the downstream interface depends on the Reynolds number (Duguet et al. 2010;
Barkley et al. 2015; Song et al. 2016). Essentially, there are two possibilities corresponding
to the two cases already discussed. At high Re turbulence invades the downstream
laminar flow at the downstream front, while at lower Re turbulence undergoes a reverse
transition to laminar flow at the downstream front. I will delay a detailed discussion of
the downstream front until later, primarily because nothing that happens there is an
input to the model. Rather, the behaviour at the downstream front arises as a natural
output from the model.
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7.2. Puffs

To explain the essential physics of a puff, I will take a slightly unusual approach.
Consider what would be expected to occur to a slug as the Reynolds number of the flow
is decreased (the viscosity is increased). It is sure that eventually production within the
core of the slug will be unable to compensate the increased dissipation due to increased
viscosity. The core of a slug will not be sustained. It is not essential exactly how it occurs,
only that necessarily it must occur with decreasing Re. Even with the collapse of the
core, there will still be an upstream interface. While this interface is affected to some
extent by the decrease in Re, we started this thought experiment from a slug state in
which production exceeds dissipation in the interface region, hence we would not expect
the upstream interface to vanish simultaneously with the core. In fact it does not, it leads
to a puff.

The above hopefully gives a sense of why puffs naturally follow from slugs as the
Reynolds number is decreased. Given the structure of the slug in figure 16(a), the puff
in figure 16(b) follows naturally as the turbulent core is lost due to increased dissipation.
The above also provides intuition for the well established fact that we will see in depth
shortly: there is a smooth evolution of the upstream front with Reynolds number going
between puffs and slugs. This is not the case for the downstream front.

It is useful to consider the structure of a puff from a more standard perspective.
Wygnanski & Champagne (1973), Darbyshire & Mullin (1995), Shimizu & Kida (2009),
Hof et al. (2010) and many others discuss the fluid mechanics of puffs in some detail. van
Doorne & Westerweel (2009) give a near perfect description for my purposes, so I refer
the reader to my sketch in figure 16(b) while quoting van Doorne & Westerweel: “The
fluid that enters the turbulent region with a high velocity at the upstream end of the puff
thus provides the necessary energy to sustain the turbulent motions inside the puff. This
energy is quickly converted into turbulent motions and dissipated, which results in an
almost uniform velocity profile at the downstream end of the puff. The hairpin vortices
that pass this (moving) plane decay quickly, because it is no longer possible to extract
energy from a uniform flow; the flow then relaminarises, and further downstream, the
wall shear layers develop and the centreline velocity again increases.” Notice that for a
puff, no parcels of fluid remain in the turbulent state. Puff turbulence is sustained only by
continually entraining fresh laminar fluid at the upstream front (which I add, is exactly
how action potentials sustain themselves, by continually exciting quiescent parts of the
medium).

There is one final crucial point. A puff consists not only of a localized patch of
turbulence, but also of a downstream refractory region in which turbulence cannot be
re-excited (van Doorne & Westerweel 2009; Hof et al. 2010; Samanta et al. 2011). As
the final part of previous quote indicates, the refractory region is an integral part of
what a puff is. It must exist or else the turbulence would not be localized; it would
expand downstream. The refractory region was already shown in figure 15, as well as in
figure 16(b). In the recovery region the flow near the pipe centre accelerates and the shear
profile recovers its parabolic form. Turbulence cannot be excited downstream until the
flow has at least mostly recovered. It is useful to consider a pair of puffs (e.g. Hof et al.
2010). A downstream puff cannot survive too close to an upstream puff because there is
not sufficient energy in the blunted downstream velocity profile. Either the downstream
puff will dissipate or it will move to increase the distance from the upstream puff. Thus
the refractory region sets an interaction distance, typically of about the same size as the
turbulent region itself. Slugs at the lowest Reynolds numbers for which they exist also
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have similar refractory regions (Song et al. 2016). Slugs at high Reynolds numbers do
not.
Needless to say there is much, much more that could be said about the fluid mechanics

of puffs and slugs. Yet, the simple mechanisms that I have just described, together with
the fluctuations intrinsic to turbulent flow, are the essential ingredients driving nearly
all the large-scale dynamics of transitional turbulent pipe flow.

8. A better theory

I will now describe a theory that incorporates the known physics of shear flows and that
naturally accounts for localized puffs as intermediary states on the route from laminar
flow to expanding turbulence (Barkley 2011a). The idea is simple. To the previous model
involving only the turbulence level, q(x, t), a second variable, u(x, t), is added which
represents the state of the mean shear and accounts for the effect of the mean shear on
the turbulence, and vice versa. An important benefit of this additional variable is that it
also allows a more realistic treatment of downstream advection (Barkley et al. 2015). The
model will no longer be variational. It will, however, effectively reduce to the previous
case at sufficiently low and high Reynolds numbers.

8.1. The variable u

I want the new variable u to be a scalar that encodes the state of the mean shear profile
at each streamwise location x. A nearly ideal choice is the mean streamwise velocity on
the centreline. As illustrated in figure 17(a, b), this velocity component is largest when
the flow is fully recovered laminar flow, and it is reduced for a blunted, turbulent shear
profile. As already indicated in figure 16, shear profiles exhibit complex forms in the
interface regions between turbulent and laminar flow (e.g. Wygnanski & Champagne
1973; Hof et al. 2010). Nevertheless, the centreline velocity captures, as well as one could
hope with a single scalar quantity, the state of the streamwise shear profile. I will refer
to u sometimes as centreline velocity (dropping the mean and streamwise qualifiers) and
sometimes as the mean shear, since this is the more relevant physical feature that it is
meant to represent.
To arrive at the evolution of the variable u, it is reasonable to start from the streamwise

component of Reynolds averaged Navier-Stokes equations for a non-swirling, statistically
axisymmetric flow (Pope 2000),
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∂t
+ Ux

∂Ux

∂x
+ Ur

∂Ux

∂r
= −∂P

∂x
+ ν

(

∂2Ux

∂x2
+

1

r

∂

∂r

(

r
∂Ux

∂r

))

+ Fx, (8.1)

where Ux and Ur are the mean streamwise and wall-normal velocities, and P is the mean
pressure. Fx is the streamwise force component generated by Reynolds stresses.
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so that (8.1) on the centreline is
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. (8.2)

While an exact statement, (8.2) is not closed because the terms contained within paren-
theses on the right hand side are not determined by the centreline velocity alone. With
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Figure 17. Dynamics of the variable u. (a) In the absence of turbulence, u will equilibrate at
the laminar centreline velocity U0. (b) In the presence of turbulence, the mean velocity profile is
blunted and u will equilibrate at a value slightly larger than the bulk velocity Ū . (c) Nullcline
diagram in the local phase plane illustrating the dynamics of u for fixed value of q.

or without turbulence, the centreline velocity is determined by the full profile, from the
pipe wall to the centre, again reflecting that the actual variable is the shear profile for
which the centreline velocity is only a proxy.
Nevertheless, it is straightforward to close the centreline equation by modelling the

cases where there is no turbulence, figure 17(a), and where there is turbulence, fig-
ure 17(b). Both cases are relatively simple and well understood. Take the equation for
u(x, t) to be

∂u

∂t
+ u

∂u

∂x
= g(q, u) + ν

∂2u

∂x2
(8.3)

where q is the turbulence level and g(q, u) is to be chosen to mimic the effects of omitted
terms.
To determine a reasonable form for g(q, u), consider streamwise invariant cases in which

q takes specified fixed values. Streamwise invariance reduces the u dynamics to

u̇ = g(q, u), (8.4)

which is the equation for the local dynamics of u.
Without turbulence, i.e. q = 0 as in figure 17(a), we know that whatever the state

of the initial profile, the flow will accelerate under imposed pressure gradient until the
viscous stresses balance the pressure gradient at which point the velocity profile will be
the fully developed parabolic Hagen-Poiseuille flow with a centreline speed denoted by
U0. (See Narasimha & Sreenivasan (1979) for a discussion of the approach to laminar
flow following relaminarisation.) We know from a leading-order Taylor expansion that
the final stage of this relaxation will be linear decay and so of the form

u̇ = ǫ1(U0 − u) (8.5)

where ǫ1 is a relaxation rate. The relaxation time will be on the order the viscous
time scale d2/ν, and hence in non-dimensional form the relaxation rate will be of order
Re−1. One could in principle numerically obtain this rate directly from the Navier-Stokes
equation (e.g. Meseguer & Trefethen 2003). In the interest of simplicity here I will take ǫ1
to be a fixed model parameter. Thus, while the actual evolution of the centreline velocity
to the laminar equilibrium is more complicated than described by (8.5), this form gives
a simple, qualitatively reasonable approximation for the dynamics of u in the absence of
turbulence.
Now consider the dynamics of u in the presence of a fixed level of turbulence, as in

figure 17(b). Reynolds stresses will now play a significant role in counter-balancing the
pressure gradient and the centreline velocity will be reduced from the value U0, but it
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will be limited by the value of the bulk velocity Ū . This suggests a model of the form

u̇ = g(q, u) = ǫ1(U0 − u) + ǫ2(Ū − u)q, (8.6)

with ǫ2 a parameter giving the rate of decrease of u in the presence of turbulence. In
the limit of large q, (8.6) will evolve to give u ≃ Ū . It can be argued that one should
have a factor q2 rather than q in the last term. In practice I have not found it to make
much difference to the overall dynamics of the model, and since the model was originally
written with a factor q (Barkley 2011a), I will continue to use it here.

Nullclines are curves in the (u, q) phase plane on which time derivatives of variables in
the local dynamics are zero. The u-nullcline is given by u̇ = 0, that is g(q, u) = 0. This
can be written

q =
ǫ1(U0 − u)

ǫ2(Ū − u)
,

and is shown in figure 17(c). Off the nullcline, the time derivative of u is non-zero.
Horizontal arrows indicate the evolution of u towards the u-nullcline for fixed q. One can
see graphically that for q = 0, u will evolve to U0. With fixed, non-zero q, u will tend
toward a value slightly larger than Ū .

Adding back the space-dependent terms, the model equation for u is

∂u

∂t
+ u

∂u

∂x
= ǫ1(U0 − u) + ǫ2(Ū − u)q + ν

∂2u

∂x2
. (8.7)

Let me comment on U0 and Ū . I have left these as parameters in the model for two
reasons. The first is that if one wanted to consider a related flow, such as flow in a square
or rectangular duct, then the numerical values of U0 and Ū would be different from
those of pipe flow. It is therefore desirable to have these values identified explicitly in the
model equations. The second, more important reason has to do with frames of reference.
By including these velocities as parameters, I can effectively capture Galilean invariance
with the model. As we have seen, there are two reference frames that are natural when
considering pipe flow – the laboratory frame in which the pipe is stationary and the frame
moving at the bulk velocity. I want the model to be equally valid in either reference frame,
or any other. As written, one need only specify the values of U0 and Ū appropriate to a
particular frame of reference of interest for u to be relative to that frame of reference.

8.2. q dynamics

For the evolution of the turbulent field, q, I need to account for the negative feedback
of the mean shear, but otherwise I want to make minimal modifications to the local
dynamics presented in § 4. The simplest thing to do is to use the same dynamics for
q as in (4.3) when the shear profile is fully recovered, u = U0, but inhibit the growth
of turbulence for u < U0 to take into account the reduced turbulent production for a
blunted shear profile (Pope 2000).

I propose simply to extend the local q dynamics given by (4.3), to

q̇ = f(q, u) = q
[

r + (u− U0)− (r + δ)(q − 1)2
]

. (8.8)

When the shear profile is fully recovered, u = U0, this reduces to the previous form. (See
Appendix II for commentary on the function f(q, u).)

To visualize the dynamics of q, I again turn to nullclines, now the curves on which
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q̇ = f(q, u) = 0. Expressing q as a function of u, the q-nullcline has three branches

q =























q+(u) = 1 +

√

r + u− U0

r + δ
(upper branch)

q−(u) = 1−
√

r + u− U0

r + δ
(lower branch)

q0(u) = 0 (laminar)

As we will see, the upper, lower and laminar branches of the q-nullcline are intimately
related to upper, lower and laminar steady states and hence the same terminology is
used for both. Figure 18(a) shows typical q-nullclines. The q dynamics, with u held fixed,
is indicated by vertical arrows. The upper and laminar branches are attractive while
the lower branch is repelling. The lower branch thus sets the nonlinear threshold for
transition to the upper branch. As can be seen, the threshold increases as u decreases,
that is, triggering turbulence from a blunted profile is more difficult than from fully
recovered flow. The upper and lower branches are part of a single parabolic curve that
has its nose at q = 1, u∗ = U0 − r. Hence as r increases, u∗ decreases, as is seen in
figure 18(b), to be discussed in detail momentarily.
Before putting the q and u dynamics together, I need to address the spatial variation of

q. Again, I will make only minimal changes to the simple model (4.4). The only change will
be in the advection term. Previously the downstream advection was a specified constant
U . Now, having a variable u representing the streamwise velocity on the centreline, I can
use this variable to set the downstream advection of q. I will take q(x, t) to be governed
by

∂q

∂t
+ (u− ζ)

∂q

∂x
= f(q, u) +D

∂2q

∂x2
, (8.9)

where ζ is an additional parameter. The justification for using u−ζ rather than u for the
advection speed is the following. Firstly, u represents the maximum of the streamwise
velocity profile and it is not reasonable that turbulence is advected at this maximum
speed. More importantly, numerical evidence shows that turbulence is advected at a speed
smaller than the centreline speed by roughly a fixed constant throughout the transition
regime (Song et al. 2016). While I would prefer not to introduce another parameter and
a somewhat awkward term into the model, it is necessary to obtain correct behaviour
and agreement with established facts.

8.3. Heart of the model

The heart of the model is the local dynamics given by the pair of equations

q̇ = f(q, u), u̇ = g(q, u),

where f and g are given in (8.8) and (8.6), respectively. These equations express the
interplay between turbulence intensity and the mean shear profile in a small region of
space, or equivalently when large-scale spatial variations are neglected. I refer the reader
back to figure 7 and the discussion in § 4.1.
I have discussed separately the dynamics of each variable in terms of nullclines; now

I will put the two together. Figure 18(b) shows nullclines for both q and u, for three
values of r. Only the upper and lower branches of the q-nullcline depend on r. Wherever
nullclines intersect, the local dynamics has a fixed point: q̇ = u̇ = 0. There is a fixed
point at (q = 0, u = U0), corresponding to fully developed laminar flow, for all values of
r. This fixed point is always stable.
For small r the laminar fixed point is the only fixed point of the local dynamics. As
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Figure 18. The heart of the model as seen in the local phase plane. (a) q-nullclines for a
representative value of r. There are three branches: attracting laminar and upper branches, q0

and q+, separated by a repelling lower branch q−. Branches q+ and q− meet at (q = 1, u = u∗)
as labelled. At u = U0 the dynamics of q is exactly as given by the one-variable model. (b)
Nullclines for q and u plotted together. Nullclines are shown for three values of r (0.3, 0.6 and
0.9), illustrating the behaviour as r increases. Fixed points at intersections of q and u-nullclines
are indicated by dots. The laminar fixed point at (q = 0, u = U0) exists for all r. As r increases,
u∗ decreases and a second pair of fixed points bifurcates. (c) Excitable dynamics at r = 0.6. The
only fixed point is laminar flow. A trajectory shows typical evolution starting from an initial
condition perturbed from laminar flow. (d) Bistable dynamics at r = 0.9. Starting from the
same state as in (c), the trajectory evolves to the stable upper-branch equilibrium.

r increases, the nullclines intersect in two further fixed points corresponding to upper
(stable) and lower (unstable) branch turbulent states. The local dynamics is then bistable.
While similar to the transition to bistability in the one-variable model, here the dynamics
is significantly richer.

Figures 18(c) and 18(d) show the qualitatively different phase portraits obtained from
the model for values of r below and above the onset of bistability. Let me first discuss
the bistable case, r = 0.9, in figure 18(d). Shown is a trajectory starting away from
the laminar fixed point with a small level of turbulence. The trajectory moves upward
under strong nonlinear amplification of q, while u initially decreases only slightly. The
nonlinear amplification stops with q saturating along the upper branch of the nullcline
q+(u). Subsequently, on a slower timescale, the shear profile u adjusts in response to the
increased turbulence level and the trajectory eventually approaches the upper branch
fixed point. Here the turbulence level and shear profile are in equilibrium. This is the
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situation for the core of a turbulent slug where turbulent production in the presence of
the blunted profile is sufficient to balance dissipation and an equilibrium is established.

Now consider the case for r = 0.6 in figure 18(c). This is the excitable case. A trajectory
is again shown starting away from the laminar fixed point. The trajectory moves to the
upper branch of the q-nullcline under nonlinear amplification of q and subsequently the
shear profile u adjusts in response. Now, however, no equilibrium can be established at
this value of Reynolds number. Turbulent fluctuations cannot be maintained once the
shear profile is blunted and so turbulence drops. In the absence of turbulence, the profile
u then begins to recover its parabolic form. Initially during this recovery, the threshold
for re-excitation into turbulence is large (set by the lower branch q−), thereby making
the system refractory. Eventually the system returns to the laminar fixed point and the
threshold is again small. Note, this is precisely what occurs in traversing a turbulent puff.

I end with the following thoughts on the local dynamics. On the one hand, the
extension from the simple variational dynamics, q̇ = −V ′(q), is relatively minor. I added
a reasonable second variable to account for the negative feedback of the mean shear on
the turbulence. On the other hand, in the region where turbulence first arises, the effect of
this second variable is profound. This is best seen in the direction of decreasing r. When
the upper equilibrium is lost, whether in the model or real turbulent flow, this does not
immediately signal that turbulence cannot be temporarily excited. The equilibrium is
only lost because turbulence cannot be maintained in the presence of a blunted shear
profile. At least for some range of Reynolds numbers, turbulence can rapidly grow from
a fully developed laminar profile even if ultimately it is not sustained. (I refer the reader
back to figure 16 and the related discussion.)

8.4. Summary

For future reference, I here summaries the two variable model as it will be studied
in the remainder of the paper. The turbulence intensity q(x, t) and mean shear u(x, t)
evolve according to the equations

∂q

∂t
+ (u− ζ)

∂q

∂x
= f(q, u) +D

∂2q

∂x2
+ σqη (8.10a)

∂u

∂t
+ u

∂u

∂x
= g(q, u), (8.10b)

where the functions f(q, u) and g(q, u) describing the local dynamics are given by,

f(q, u) = q
(

r + u− U0 − (r + δ)(q − 1)2
)

(8.10c)

g(q, u) = ǫ1(U0 − u) + ǫ2(Ū − u)q. (8.10d)

I have included a multiplicative noise term in the equation for the q dynamics, even
though for the much of the analysis I will set the noise strength σ to zero. The reader
will also observe that I have dropped the diffusive term from the u dynamics. This is
equivalent to making the boundary-layer approximation. Had I made the boundary-layer
approximation at the outset in deducing (8.10b), this diffusive term would not appear. I
have not found that it affects the dynamics one-way or the other and so for simplicity it
will not be included.
In Barkley et al. (2015) it is shown that model parameters can be adjusted to match,

quantitatively, front speeds of both pipe and duct flow. There is a lengthy discussion
there about the fitting procedure. I will not be fitting experimental data here and I
therefore choose instead to fix parameters at simple, representative values. Unless stated
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otherwise, the model parameter will be set to the following values:

ζ = 0.8, D = 0.5, δ = 0.1, ǫ1 = 0.1, ǫ2 = 0.2. (8.11)

When the noise term is included, I will normally use

σ = 0.5. (8.12)

These have been determined by the desire to use simple values while achieving model
dynamics that closely mimics actual pipe flow. The overall dynamics of the model
are, however, very robust to changes in parameter values. See Appendix II for some
commentary on this and other models, and well as numerical details.

9. Deterministic dynamics

In this section I will analyse the model dynamics in depth and relate these dynamics
to observed behaviour in pipe flow. I consider only deterministic dynamics and leave
treatment of fluctuations to the next section.

9.1. The basics

Let us first recall the situation for the one-variable model shown in figure 10. The key
point there was the crossing of the upstream and downstream front speeds. Below the
crossing point, turbulent patches shrink or decay, and the flow is asymptotically laminar.
Above the crossing point, turbulent patches invade laminar flow in the form of turbulent
slugs.
Figure 19 shows how this picture is modified when the effect of the mean shear is

included. Now stable, localized states exist between expanding and decaying turbulence.
There is still a crossing point of upstream and downstream front speeds leading to
expanding turbulence. However, below the crossing point, turbulence does not contract
to zero, but instead persists in localized form. The branch of localized states ends in
a saddle-node bifurcation with a branch of unstable localized states (dashed curve)
consisting of edge states separating laminar and turbulent flow. For r below the saddle-
node bifurcation, turbulence inevitably decays.
This diagram is going to occupy us for much of the remainder of the paper. However,

before diving into details, I want to give a brief overview of puff and slug states.
Figure 20 illustrates a typical puff and two slugs. The puff is the same state as shown

in the space-time plot of figure 19(c). The first slug, figure 20(c, d), is the same state as
shown in the space-time plot of figure 19(d). This slug is observed just after the onset of
expansion. The second slug, figure 20(e, f), occurs for a larger value of r.

Consider the three turbulent structures from upstream to downstream. All three
upstream fronts are similar. (This is directly related to the smooth dependence of the
upstream front speed on r seen in figure 19.) At the upstream fronts q increases sharply
in space and the system moves toward the upper branch of the nullcline in the local
phase plane. This corresponds to a rapid conversion of laminar flow to turbulent flow.
In response there is a decrease in u, corresponding to a blunting of the shear profile. At
this point there is a distinction between the states.
For the puff, the local dynamics is excitable, 20(b), and there is no turbulent fixed

point, meaning that it is not possible for the turbulent flow to persist in the presence of
the modified shear. Hence, once the system approaches the nose of the q-nullcline, the
flow undergoes a reverse transition from turbulent to laminar flow. This is then followed
by a slow recovery of the shear profile back to the fully recovered laminar state. The
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Figure 19. Dynamics of the two-variable model. The upper plot (a) shows speeds of upstream
and downstream fronts as a function of model Reynolds number r. Below are space-time plots
of turbulent intensity q at representative values of r: (b) r = 0.3, (c) r = 0.6 and (d) r = 0.9.
Between decaying turbulence in region I and expanding turbulence in region III, there is a region,
region II, of persistent localized states (puffs). Compare with figure 10 for the one-variable model.
The dashed curve in (a) indicates a branch of unstable localized states (edge states) that meets
the stable puff branch in a saddle-node bifurcation. The three space-time plots start from the
same initial condition (localized puff solution). The time scale for (b) is 20 times shorter than
for (c) and (d).

downstream front is always a fixed distance from the upstream front, determined by
how long it takes the system to move along the upper branch of the q-nullcline. The
downstream front is slaved to the upstream front and the fronts move at the same speed.

For slugs, the local dynamics has a stable upper branch fixed point corresponding to
the turbulent core of a slug, figures 20(d) and 20(f). The two slugs shown differ in their
downstream fronts. For the case in figures 20(c) and 20(d), there is a reverse transition
to laminar flow at the downstream front. This is called a weak downstream front and
the slug is called a weak slug (Barkley et al. 2015). The weak front is not very different
from the downstream front of a puff. The speed of this front differs from the speed of the
upstream front and hence the slug expands as seen in the space-time plot in figure 19.
I want to stress, however, that all of the increase in turbulence occurs at the upstream
front where laminar flow becomes turbulent. At the downstream front there is a reverse
transition from turbulent to laminar flow. I will return to this important point shortly.

For the slug shown in figures 20(e) and 20(f), the downstream front is much like the
upstream front. This is called a strong downstream front and the slug is called a strong
slug (Barkley et al. 2015). Laminar flow is transitioning to turbulent flow on both ends
of the slug. The upstream and downstream speeds are nearly symmetrical with respect
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Figure 20. Puffs and slugs in the two-variable model. States are shown in physical space on
the left and in the local phase plane in the right. Arrows in the phase plane indicate increasing
streamwise coordinate, x, not time. Nullclines for q (red) and u (blue) are shown in the phase
plane. (a, b) Puff at r = 0.6, as in figure 19(c). The local dynamics is excitable. (c, d) Slug at
r = 0.9, as in figure 19(d). The local dynamics is bistable. The downstream front is a transition
from turbulent to laminar flow and is referred to as a weak downstream front. (e, f) Slug at
r = 1.8. The local dynamics is bistable. At the downstream front the transition is from laminar
to turbulent. This is referred to as a strong downstream front.

to the bulk speed Ū . Turbulence expands rapidly in this case. One can see in figure 19
that there is a continuous variation in the speed of the downstream front, and hence
a continuous transition between the two types of slugs. (See also Duguet et al. (2010)
for comments on the two types of slugs, and Nishi et al. (2008); Song et al. (2016) for
experiments and simulations showing two types of slugs.)

The basic distinction between puffs and slugs follows just from the distinction between
excitable and bistable dynamics. However, to fully understand how puffs are localized,
how they delocalize to form slugs, and what distinguishes the two types of slugs, we need
to study fronts in more detail.
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9.2. Singular perturbation analysis

I now begin a rather lengthy analysis of travelling fronts using a standard singular
perturbation analysis (Rinzel & Terman 1982; Tyson & Keener 1988; Keener & Sneyd
2008). The main point of this analysis is not to obtain approximate solutions to the
nonlinear partial-differential equations. Rather, it is the simplification it brings into the
basic mechanism for puffs, slugs, and other features of transitional flow. By its very
nature, the approach cleanly separates the interfaces, where the turbulence intensity
changes on fast scales, from other regions.
The idea behind the approach is the following. We have already seen that the dynamics

is dominated by rapid transitions between the stable branches of the q nullcline and
subsequent slower evolution of u. The difference in time scales between q and u is
dictated by the small parameters ǫ1 and ǫ2 appearing in g(q, u), the function modelling
the local u dynamics (8.10d). In the perturbation analysis, the time-scale separation is
made artificially large by sending these parameters towards zero.
The analysis is most simply done by expressing the two parameters, ǫ1 and ǫ2, in terms

of a single parameter, ǫ, via

ǫ1 = ǫ, ǫ2 = κǫ, (9.1)

where is κ is a fixed value. The standard values of ǫ1 and ǫ2 in (8.11) correspond to κ = 2.
Then define G(q, u) via

g(q, u) = ǫG(q, u) = ǫ
{

(U0 − u) + κ(Ū − u)q
}

.

In terms of ǫ and G(q, u), the model reads

∂q

∂t
+ (u− ζ)

∂q

∂x
= f(q, u) +D

∂2q

∂x2
, (9.2a)

∂u

∂t
+ u

∂u

∂x
= ǫG(q, u). (9.2b)

Consider a front solution after initial transients have died down so that the front is
travelling at constant speed c. Make a coordinate transformation to go into a co-moving
frame of reference, z = x− ct, and locate the now stationary front at z = 0. The steady
front satisfies

(u− ζ − c)
dq

dz
= f(q, u) +D

d2q

dz2
, (9.3a)

(u− c)
du

dz
= ǫG(q, u). (9.3b)

We need to consider the problem on two scales – the slow, or outer scale, and the fast,
or inner scale. Changing momentarily to the slow space scale z̃ = ǫz, the equations for
the steady front on the outer scale become

ǫ(u− ζ − c)
dq

dz̃
= f(q, u) + ǫ2D

d2q

dz̃2
, (9.4a)

ǫ(u− c)
du

dz̃
= ǫG(q, u). (9.4b)

Taking the limit ǫ → 0 we obtain,

f(q, u) = 0, (9.5a)

(u− c)
du

dz̃
= G(q, u). (9.5b)

The first equation tell us that (q, u) must be a root of f . That is, the system must be on
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Figure 21. Illustrative downstream front as seen on outer and inner scales. The front on the
outer scale in the local phase plane (a) and in physical space (b). Arrows in (a) indicate increasing
z̃, the streamwise coordinate rescaled to outer units. The double arrow indicates the jumps
between stable branches of the q-nullcline, which are discontinuities on the outer scale. (c) The
same front on the inner scale. Here u = uf is constant and q is a smooth function of the stretched
inner coordinate ξ. The front speed is dictated by the inner solution.

one of the branches of the q-nullcline. Only the stable branches are relevant. This means
that given u, q must be one of

q+(u) = 1 +

√

r + u− U0

r + δ
(upper branch)

q0(u) = 0. (laminar)

When viewed on the outer scale, fronts are discontinuous jumps between the stable
branches of f . See figures 21(a) and 21(b). Excluding the discontinuous jumps, the system
is either on the q+ or q0 nullcline and hence q is a known function of u. Denote this
q+/0(u). Then in the outer regions q can be eliminated in (9.5b) to give

(u− c)
du

dz̃
= G(q+/0(u), u).

In principle this equation can be solved for u(z̃). In practice, we will not need to solve
explicitly the outer equation, although some knowledge of the behaviour of the outer
solutions will be needed.
Our main concern is with the fronts where the system jumps between stable branches

of the q-nullclines. At these jumps, derivatives are large and so the limit we took in going
from (9.4) to (9.5) is not valid. To analyse the jumps we use the fast, inner scaling and
follow a similar procedure to that used in § 4.2.
Starting from (9.3), make a coordinate change to natural inner coordinate for the front

ξ =
z√
D
, (9.6)

and define

s ≡ c− u+ ζ√
D

. (9.7)

Then the equations on the inner scale are

q′′ + sq′ + f(q, u) = 0, (9.8a)

(u− c)u′ = ǫ
√
DG(q, u), (9.8b)
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where primes denote
d

dξ
. In the limit ǫ → 0, the u equation gives

(u− c)u′ = 0. (9.9)

This implies that on the inner scale is u is constant across a front. Call this constant
value uf . Then, at leading order, the equations for a front on the inner scale become
simply

q′′ + sq′ + f(q, u) = 0 (9.10a)

u = uf . (9.10b)

The boundary conditions as ξ → ±∞ are that the inner solution matches the outer
solution on either side of the front. Namely for a downstream front

q(−∞) = q+(uf ) q(+∞) = q0. (9.11)

For an upstream front the boundary conditions are reversed, but this is equivalent to
keeping the same boundary conditions but changing the sign of s in (9.10). Figure 21(c)
shows a front on the inner scale.

Suppose for the moment that we know uf , then (9.10) together with boundary
conditions (9.11) can be solved (numerically in practice) to give q(ξ) and the nonlinear
eigenvalue s. This is almost identical to the situation for the one-variable model, § 4.2,
except here the value of s will depend on uf as well as the parameter r that appears in
f . Denote this dependence by s(r, uf ). Then inverting (9.7) we obtain the leading-order
asymptotic expressions for front speeds:

cu = uf − ζ −
√
D s(r, uf ), (9.12)

cd = uf − ζ +
√
D s(r, uf ). (9.13)

Note that the parameters ǫ1 and ǫ2 do not appear (9.12) and (9.13) and hence they
do not affect front speeds at leading order. Moreover, the diffusion term in (8.7) also
would have not contributed to front speeds at leading order – a further justification for
dropping this term from the model.

The advantage of having carried out the asymptotic analysis is that we see precisely
what determines the front speeds. It is useful to compare (9.12) and (9.13) with similar
expressions (4.11) for the one-variable model. (See also Holzner et al. (2013) and Song
et al. (2016).) In both cases front speeds are determined by kinematic motion due to
advection and by dynamical motion relative to the kinematic advection. For the one-
variable model the advection speed was a constant U and the nonlinear eigenvalue s
was a function of model Reynolds number r. Now we have additional dependence on uf ,
which is the essences of how speeds in the two models differ. Recall that, as discussed
in § 8.1, the variable u plays two related roles in the model. This is seen explicitly in
the expressions for front speeds. In its role as centreline velocity, u determines the local
advection speed. In particular, at a front where u = uf the turbulence intensity q is
advected at speed uf − ζ. (See the discussion following (8.9).) This is the kinematic
component of front motion. In its role in encoding the state of the mean shear profile,
u plays a part in determining the dynamical component of the front speed via s(r, uf ).
Fronts occurring where the shear profile is blunted behave differently from those where
the profile is fully recovered laminar flow. The values of uf will in general be different
at upstream and downstream fronts and these values must be determined in a global,
self-consistent way, as I now explain.
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Figure 22. Upstream front in the asymptotic limit. Typical front on the outer scale in the
local phase plane (a) and in physical space (b). (c) Front speed as a function of model Reynolds
number r.

9.3. Upstream front

The first step is to examine the upstream front, which as we have already seen is the
same for puffs and slugs. The simplicity of the upstream front comes from the fact that
it occurs directly from fully recovered Hagen-Poiseuille flow and hence we know uf = U0.
It is not necessary to know anything further about the system to determine the shape
and speed of this front. Figures 22(a) and 22(b) show a typical upstream front. These
plots include not just the inner-scale solution, the jump from q0 to q+, but a portion of
the surrounding outer-scale solution. Seen in physical space, figure 22(b), the upstream
front always exhibits a characteristic overshoot in the turbulence intensity q.
The expression for the upstream front speed is

cu = U0 − ζ −
√
D s(r, U0). (9.14)

This is plotted as a function of r in figure 22(c). At the lower limit of existence, the front
speed becomes U0 − ζ. With a natural choice of parameters this is slightly faster than
the bulk velocity Ū , a well-established feature of pipe flow (e.g. Avila et al. 2011).

9.4. Puffs

I have already argued that puffs occur because the downstream front is slaved to
the upstream front when the local dynamics is excitable. While this is indeed the main
message, there is a little more detail that must be discussed.
A localized solution consists of five pieces as shown in figures 23(a) and 23(b): upstream

laminar flow, an upstream front, slow evolution along a section of the upper branch of
the q-nullcline, a downstream front at a value uf such that the front speed matches the
upstream speed, and slow evolution on laminar branch of the q-nullcline returning to
laminar flow. We have already considered the upstream front, so we may take this, as
well as the slow evolution in the outer regions, as given. The essential thing is to show
that there is always a unique value of uf for which the downstream front speed matches
the upstream speed and that the system will naturally select a downstream front at this
value of uf .
Figure 23(c) illustrates why it is always possible for the downstream front speed to

match the upstream speed, cu. The downstream front is a transition from q+ to q0 at some
value u = uf in the range permitted by the upper branch q+. This range is u∗ 6 uf 6 U0,
where u∗ is the value of u at the nose of the q-nullcline. In figure 23(c), cd is plotted as
a function of uf . For uf > u∗, there is a unique s and hence a unique front speed cu for
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Figure 23. Puffs in the asymptotic limit. Equilibrium puff on the outer scale in the local phase
plane (a) and in physical space (b). The puff can be viewed as composed of five pieces: (1)
upstream laminar flow, (2) upstream front, (3) evolution on the upper branch of the q-nullcline,
(4) downstream front, and (5) recovery to laminar flow. (c) Graphical view of the selection of uf .
Downstream front speed cd is plotted as a function of uf . Given an upstream front with speed
cu, the downstream front in occurs at uf such that cd = cu. (d) Illustration of puff stability.
The downstream front of an artificially shortened puff will move faster than the upstream front
such that the excitation will grow back to its equilibrium size.

each uf . At uf = u∗, the variable s can take on infinitely many values (see Appendix
I). Altogether this means that given any specified upstream front speed cu, there will
always be an allowed value of uf such that the cd = cu. This why a localized puff always
exists in the excitable case. Given an upstream front where the system transitions to the
upper branch q+, there will always be a further point where the system can transition
back to q0 with the two speeds exactly equal. In practice the downstream front usually
occurs very close to the nose of the q-nullcline.
The stability of puffs follows from the positive slope of cd as a function of uf in

figure 23(c). Take our steady puff solution with cd = cu and give it a perturbation which
decreases its width slightly, as shown in figure 23(d). The downstream front will now
occur at a larger value of uf . At this larger value of uf the downstream front will speed
up and hence move faster than the upstream front. Thus the width of the turbulent region
will increase back to the size of the equilibrium puff. Similarly, perturbing to increase
the puff width will cause the downstream front to move more slowly than the upstream
front and again the perturbed puff will return to its equilibrium size. In practice, this
stability mechanism is very strong and puffs are extremely robust.

9.5. Weak slugs

Consider now increasing r to the point where the upper-branch fixed point appears in
the local dynamics, as illustrated in figure 18(b). For a small range of r, just after the
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Figure 24. Weak slugs in the asymptotic limit. Weak slug on the outer scale in the local phase
plane (a) and in physical space (b). The downstream front occurs at uf = uss. (c) Upstream
cu and downstream cd front speeds as function of r. The downstream branch is for weak fronts
occurring at uf = uss. Only the solid portion of the curve corresponds to weak slugs. (d)
Portion of the local phase plane illustrating the masking of the weak front speed labelled (c).
The upper branch fixed point has appeared, but the selection of the downstream front is via the
puff mechanism shown in figure 23. (e) Further condition for existence of a weak slug: uss > cd.
This ensures that flow from the slug core overtakes the downstream front and maintains u = uss

at the front.

fixed point appears, its location on the upper branch of the q- nullcline will be such that
it does not affect the puff solution. See figure 24(d) to be discussed more fully below.
However, not long after the upper fixed point appears, it will come into play. Evolution
along the q-nullcline will be restricted by this fixed point, as shown in figure 24(a), and
as a result the system cannot freely access a value of uf such that the downstream front
speed matches the upstream front speed. The speed of the two fronts will differ resulting
in a growing region of turbulence - the weak slug seen in figure 24(b).
In more detail, the expression for the downstream front speed, (9.13), can be evaluated

at uf = uss, giving the speed that a downstream front would have if it occurred at
the steady state uf = uss. This speed, together with the upstream front speed, is
plotted in figure 24(c). The bifurcation to bistability sets the lower limit of this branch
of downstream fronts. There is a small range of r, (dotted in figure 24 c), where the
upper-branch steady state has appeared, but it has not yet affected the localized puff
solution, as illustrated in figure 24(d). Effectively, the onset of bistability is masked. The
onset of the weak slug is determined by a crossing of front speeds similar to the crossing
in the one-variable model.
Weak slugs exist only over a range of r as indicated by the solid portion of the

downstream front speeds in figure 24(c). To be clear, expression (9.13) for the downstream
front speed can be evaluated at uf = uss as long as the upper branch steady state exists.
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However, taking into account the outer regions, a downstream front at uf = uss may not
actually be relevant or possible. This is the case of the dotted portion of the downstream
branch where cd(uss) < cu. There is a further condition that must be met for a front
at uf = uss to exist. This is illustrated in figure 24(e). The downstream front is moving
with speed cd. The u-field within the slug is advected at speed uss. In order to maintain
uf = uss at the front, the advection within the core must be greater than the front speed,
so uss > cd(uss). This condition sets the upper limit for the weak front.

At this point I want to return to figure 19 where front speeds are shown, not in the
singular limit, but with standard values of ǫ1 and ǫ2. The onset of expanding turbulence
is in the form of a weak slug and occurs at a crossing of upstream and downstream front
speeds. The mechanism is exactly the same as in the singular limit: the local dynamics
has a bifurcation to bistability, but the effect is masked initially because the downstream
speed cd(uss) is less than the upstream speed cu, (dotted portion of cd curve in figure 19
a).

Weak slugs have important differences with the expanding slug state in the one-variable
model and these differences are fundamental to what takes place in pipe flow. Consider
a weak slug as it would be seen in the laboratory reference frame, figure 19(d). While
turbulence is expanding, it is does so only by expanding at the upstream front. At
the downstream front, the turbulent region is actually contracting, that is, turbulent
flow undergoes a reverse transition to laminar flow. This is not immediately apparent
from standard experimental visualizations of turbulent slugs, but the model analysis
presented here and detailed direct numerical simulations (Song et al. 2016) show that
this is indeed what occurs. Expansion can be different at the two ends of a slug because of
the significant role of the mean shear. Without taking this into account, either turbulence
invades laminar flow at both fronts or at neither front. Here, the state of the mean shear is
very different at the two fronts, thus at the upstream front turbulence is invading laminar
flow (even though it is being advected downstream in the laboratory frame), while at the
downstream front, due to the highly blunted profile, turbulent flow is re-laminarising,
even though it is seen as moving downstream in a laboratory frame. This is one of the
most significant and counter-intuitive aspects of pipe flow that is clearly understandable
in the model system.

9.6. Strong slugs

Slugs with strong downstream fronts are relatively simple. Figures 25(a) and 25(b)
show such a slug in the asymptotic limit. The downstream front, like the upstream front,
is a transition from fully recovered laminar flow. In the local phase plane, figure 25(a),
the strong slug is seen as a transition from q0 to q+ at u = U0, followed by evolution
along q+(u) to the upper branch steady state. This path is then retraced in the opposite
direction with evolution along q+(u) followed by the downstream front as a transition
from q+ to q0 at u = U0. Recall that arrows in the phase plane correspond to increasing
streamwise coordinate and not time. In physical space, both fronts now show a charac-
teristic overshoot in q due to the fact that q+(U0) is larger than q+(uss).

On the inner scale, the upstream and downstream fronts are identical. The slight
asymmetry seen in the overshoot regions at the outer scale, is due to advection. Advection
pushes flow within the slug downstream, which for the upstream front is away from the
front and for the downstream front is towards the front. As the front speeds become
large, the asymmetry becomes negligible.
One should not worry that the trajectory retraces itself in the local phase plane,

figure 25(a). The equation for q is second order in space and so in reality there is a third
variable, q′, that I have not plotted. This variable has a different sign for the two fronts,
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Figure 25. Strong slugs in the asymptotic limit. Strong slug on the outer scale in the local
phase plane (a) and in physical space (b). The downstream front occurs at uf = U0. (c) Front
speeds of strong, weak, and upstream fronts as a function of r. (d) Condition for existence of a
strong front: cd > U0. This ensures that the front overtakes the downstream flow and maintains
u = U0 at the front.

so in a three-dimensional phase plane the trajectories would not lie on top of one another
(Rinzel & Terman 1982).

The strong downstream front speed can be evaluated immediately from (9.13), knowing
that uf = U0 for the strong front. This is shown in figure 25(c) along with the front speeds
already considered. It is clear that the upstream front speed and strong downstream front
speed are symmetric about U0−ζ. Barkley et al. (2015) refer to this speed as the neutral
speed.

This brings me to the final points. In figure 25(c) the curve of strong downstream front
speeds is shown all the way to r = 0 to highlight the symmetry of the front speeds. Strong
downstream fronts can only exist over the solid portion of the curve shown. Strong fronts
exist because their speed is greater than U0, that is, they are over running the laminar
flow downstream of the front, figure 25(d). Hence, strong downstream fronts exist for
cd > U0 in order to ensure that uf = U0 at the front. This is similar to the condition for
weak fronts in figure 24(e), except that for strong fronts the condition sets a minimum
front speed whereas for weak fronts the condition sets a maximum front speed. Because
uss and U0 differ, there is an overlap region where both weak and strong fronts exist in
the asymptotic limit.

Finally, unlike for a weak downstream front, turbulence invades laminar flow at a strong
downstream front, and hence a strong slug expands at both ends. This is established both
in the model and in DNS of pipe flow (Song et al. 2016). The invasion at the downstream
front is evident from the fact that turbulence overruns downstream laminar flow. It is
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Figure 26. Comparison of asymptotic front speeds with speeds at finite ǫ. Coloured curves are
upstream, weak and strong downstream front speeds at leading asymptotic order. Black curves
are front speeds for the full equations at ǫ = 0.1, 0.05, and 0.025; κ = 2. The case ǫ = 0.1,
labelled, corresponds to standard parameter values: (8.11) and (9.1). For small ǫ the transition
between weak and strong fronts is discontinuous.

also consistent with the fact that a strong downstream front is nearly identical in form
to the upstream front, where turbulence always invades laminar flow.

9.7. Comparison

Figure 26 shows a comparison of front speeds at leading asymptotic order, (9.12) and
(9.13), together with front speeds from the full model at three values of ǫ. These curves
confirm the convergence to the leading-order asymptotics as ǫ becomes small. Necessarily,
since the asymptotic results exhibit bistability between weak and strong fronts, the finite-
ǫ branches also do at small ǫ.
The front speeds in figure 19 correspond to the case ǫ = 0.1. This represents my stan-

dard choice of parameter values and so is arguably the most important case shown. What
we see from this comparison is that the upstream front speed is very well approximated
by the asymptotics except around the saddle-node bifurcation of the puff branch. The
asymptotic weak branch accurately captures the crossing point for the onset of weak
slugs and the strong asymptotic branch captures strong slugs at large r. That is to
say, the leading order asymptotic expressions are quantitatively respectable except in
the region where the downstream front switches from weak to strong scaling. What is
most important is that the asymptotic results provide a simple, clear structure to the
bifurcation diagram shown in figure 19.

9.8. Interaction distance - puff spacing and holes

Until now I have only considered puffs and slugs in isolation, with no other turbulent
structures around to interact with. I will now briefly address interactions between
turbulent patches. The main focus will be on puffs, where the effect can be most
important, and to a lesser extent on weak slugs. Figure 27 encapsulates the main features.
Figures 27(a) and 27(b) show a pair of interacting puffs in the asymptotic limit. The

downstream puff, B, sits in the refractory tail of the upstream puff, A. Until now it has
not been necessary to consider this refractory region formed by the slow recovery of the
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Figure 27. Interaction distance for puffs and weak slugs. A pair of puffs in the asymptotic
limit as seen in the local phase plane (a) and in physical space (b). The downstream puff, B, is

in the refractory tail of the upstream puff, A. The upstream front of B occurs at u♭ < U0. (c)

Upstream front speed as a function of uf with the speed difference between u♭ and U0 indicated.
(d) Puff interaction seen in a space-time plot. Plotted is the product qu in a frame moving at
the puff speed (standard parameters with r = 0.6). Initially the flow has a pair of well-separated
puffs, A and B. At t = 800 a third puff, C, is stimulated upstream, inducing speed changes, and
hence relative motion of the puffs. (e) A pair of weak slugs, A and B, seen in a moving frame
(standard parameters with r = 0.73). Once slug B comes within the interaction distance of slug
A, a laminar hole is formed whose size is set by the recovery distance.

shear profile downstream from a puff (region 5 in figure 23). For a single, isolated puff this
plays no role in selecting either the puff speed or the size of the excited state. However,
this recovery of the shear profile is what dictates the interaction between multiple puffs.
To understand how the interaction works, consider the speed of the puff. This speed is

dictated by its upstream front, and this in turn is affected by the state of the mean shear
at the front. Puffs A and B occur at different states of the mean shear: puff A at fully
developed laminar flow uf = U0 and puff B at uf = u♭ < U0. From equation (9.12) we
know the speed of any upstream front as a function of uf . This is plotted in figure 27(c).
The negative slope of this curve implies that the front at uf = u♭ moves faster downstream
than the front at uf = U0. Hence, puff B moves away from puff A. What this corresponds
to physically is that the blunted shear profile due to puff A deprives puff B of kinetic
energy (van Doorne & Westerweel 2009; Hof et al. 2010; Samanta et al. 2011). Hence,
puff B is less able to entrain fresh laminar flow at its upstream interface and hence it
is less able to fight against downstream advection by the mean flow. The net effect is
that puff B is driven downstream faster than puff A. Not only is the speed of puff B
affected by the recovery of the shear profile, the size and duration of the excitation are
also affected, as seen in figure 27(b).
Figure 27(d) illustrates puff interaction with model simulations, not in the asymptotic

limit, but at standard parameters, equations (8.11). Initially the flow has two well-
separated puffs: puff A and puff B. The space-time plot is in the reference frame moving
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at the speed of an isolated puff and hence these two puffs are stationary in this frame.
(Puff B necessarily senses the refractory tail of puff A, but the distance is sufficiently
large that the effect is weak on the time-scale shown.) After 800 time units a third region
of excitation is instantaneously introduced upstream. On a fast time scale this forms into
a puff, puff C, which then develops a recovery region on its downstream side. Within a
short time this reaches puff A and puff A responds immediately by moving away. (The
characteristic shape of this response in the space-time plot is exactly what is seen in puff
splitting discussed later in the paper.) If one looks closely, one can see that when puff
A initially feels the effect of puff C, the excitation width of puff A is reduced, similar to
what is seen in the downstream puff in figure 27(b). Once puff A moves away from puff
C, puff A affects puff B.
Weak slugs can also interact. I have previously noted that the downstream fronts

of weak slugs are similar to those of puffs. They too have recovery regions on their
downstream side. Figure 27(e) shows how this interaction might manifest itself. Two weak
slugs, A and B, are initialized and viewed in a co-moving reference frame (the average
speed of the upstream and downstream fronts). The slugs expand until the upstream front
of slug B encounters the recovery region downstream from slug A. Slug A is unaffected.
However, the upstream speed of slug B is greatly affected. The result is that a laminar
pocket, or laminar hole, is formed that persists. Such laminar pockets, commonly observed
in turbulent pipe flow at transitional Reynolds numbers, are caused by the downstream
structure responding to the partially recovered shear profile of the upstream structure.

The interaction of structures is a rich subject that I have only touched on. The
literature on excitable media is filled with studies of these effects (e.g. Winfree 1991;
Starmer et al. 1993; Jalife 2000; Keener & Sneyd 2008), because the issues of how action
potentials affect one other and how closely they can be spaced are fundamental to the
field. Here the main message is that the recovery of the blunted shear profile dictates the
refractory region.

9.9. Edge states

Finally I briefly consider edge states. Recall that these are small-amplitude localized
states on the boundary between laminar and turbulent flow, as illustrated in figure 11 for
the one-variable model. Edge states are important and much studied in subcritical shear
flows (e.g. Itano & Toh 2001; Eckhardt et al. 2007; Duguet et al. 2008; Mellibovsky et al.

2009). Equivalent states are well known in the context of excitable media and are referred
to as slow waves (Flores 1991), because in the absence of advection they travel at a small
velocity. We have seen that in the two-variable model these unstable states originate
together with localized stable puffs in a saddle-node bifurcation (figure 19). Figure 28
summarizes some further relevant features. There is little I want to say beyond what
is evident from the figure. As the local phase plane suggests, edge states are naturally
viewed as small-amplitude homoclinic orbits connecting laminar flow to itself. At large
r their amplitude decreases as r−1, which is the same scaling as for the lower-branch
equilibrium. (Only the turbulence intensity q is shown in figure 28 c, but the deviation of
the centreline velocity from laminar flow, U0−u, has the same r−1 scaling at large r, both
for the edge state and for the lower-branch equilibrium.) Probably the most interesting
thing to say about the edge states is shown in the space-time diagrams of figures 28(d)
and 28(e). The initial conditions are ever so slightly perturbed edge states. These follow
the edge for some time and then abruptly increase in amplitude and form corresponding
slug states. Figure 28(d) is a weak slug while figure 28(e) is a strong slug. The values
of r have been chosen to highlight the close resemblance to behaviour observed in pipe
flow (Mellibovsky et al. 2009; Duguet et al. 2010). The edge state moves faster than the
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Figure 28. Edge states in the two-variable model. All results are at standard parameter values,
equation (8.11). States in the local phase plane (a) and in physical space (b) at three values of
model Reynolds number: r = 0.6 (solid), r = 0.9 (dashed) and r = 1.8 (dotted). (c) Amplitude
of the edge state, ‖q‖∞, as a function of r. Also shown is q for the lower-branch equilibrium.
Both decrease towards zero as r−1. Space-time plots starting from very slightly perturbed edge
states at r = 1.12 (d) and r = 1.8 (e). Plotted is the product qu in a frame of reference moving
at the bulk velocity Ū .

slug at low Reynolds number, while at large Reynolds number the edge state moves at
a speed between the upstream and downstream slug speeds. For the model, this can be
directly read off the speeds plotted in figure 19(a).

9.10. Discussion

I end this long section with a discussion of what we have learned about the route to
turbulence in pipe flow. The main message is that by incorporating the negative feedback
of the shear profile into turbulent dynamics, the transition scenario becomes a multistage
process. A simple skeleton for this process is provided by a singular perturbation analysis
of fronts. Viewed as a function of increasing model Reynolds number, r, we have the
following scenario.
Turbulence first appears in form of localized puffs. These originate in a saddle-node

bifurcation, with edge states simultaneously appearing as unstable localized states. In
stark contrast to the one-variable model, not only is turbulence spatially localized at
onset, it persists even though the local dynamics is itself unable to support a sustained
state of turbulence. Turbulent puffs are maintained by continually entraining laminar
fluid at the upstream interface. In response, the mean shear profile adjusts such that
the turbulence generated continually undergoes a reverse transition at the downstream
interface. These upstream and downstream ends are locked together by the mean shear.
The resulting localized puffs are stable, in fact very highly stable, and once initiated they
will travel the length of any pipe. Turbulence is sustained, although in intermittent form.

As r increases, the local dynamics becomes bistable and turbulence can now be
sustained in the presence of modified shear. However, the effect of this is initially masked.
It takes further increase in r for the upper equilibrium to come into play and form the core
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of a weak slug. At this point a speed difference between the upstream and downstream
fronts arises and turbulence begins to expand, albeit weakly. All the conversion of laminar
flow to turbulent flow takes place at the upstream front. At the downstream front of a
weak slug, turbulence undergoes a reverse transition, much like the downstream side of
a puff.
Finally, at yet larger r, the downstream front moves sufficiently fast that it overtakes

downstream laminar flow. From this point on, turbulence entrains laminar flow at
both ends of the slug. The resulting strong slug expands rapidly. The upstream and
downstream speeds are symmetrical about a neutral speed, which is close to, but slightly
larger than the mean speed Ū .
There is only one further thing to do in order to have the complete scenario for

turbulent pipe flow – take into account the intrinsic fluctuations of the turbulent state.

10. Fluctuations

At long last I am ready to address the full route to turbulence in pipe flow and
discuss many of the issues that have dominated the research on transition in recent years.
The deterministic model dynamics provides the scaffold on which the full scenario rests.
Ultimately though, it is not sufficient to treat the turbulent state of pipe flow as a simple
fixed point. I refer the reader back to figure 7 and the related discussion. At the local
level the turbulent state is dynamically complex and this affects, in a very fundamental
way, the large-scale dynamics in the transitional regime. The effect is most important
for the puff regime. In fact, this is probably the only regime of the transition scenario
in which it is absolutely essential to account for the fluctuating character of turbulence.
Fluctuations are particularly important to puff dynamics for two related reasons. The
first is that puffs are just at the limit of being able to sustain turbulence and hence
they are most susceptible to fluctuations. The second reason is that puffs are the last
turbulent states encountered in decreasing Reynolds number and hence they dictate the
lower bound for sustained turbulence in pipe flow. As we will see, fluctuating puffs not
only dictate the critical Reynolds number for the onset of turbulence, they also dictate
the spatiotemporal scenario by which turbulence is sustained near onset.

10.1. Basics

Before getting to the critical point, I first want to show how the basic bifurcation
scenario for the deterministic model is altered (or not) when turbulent fluctuations are
incorporated by means of a multiplicative noise term. Figure 29(a) summarizes the effect
of the stochastic term on front speeds. Front speeds are now plotted as points to highlight
that, due to fluctuations, front speeds are not constant in time and points represent
average speeds over ensembles of long runs. One observes the rather unsurprising effect of
noise strength on the mean front speed. At low noise, the mean speeds follow very closely
the deterministic results. As the noise strength increases, differences emerge, particularly
in the region where the system switches between weak and strong slugs, and at the lower
limit of the puff states.

Figures 29(b)-29(d) show the space-time evolution of a typical puff, weak slug and
strong slug for σ = 0.5, illustrating what is commonly observed in experiments and
simulations of pipe flow (e.g. Darbyshire & Mullin 1995; Nishi et al. 2008; Duguet et al.
2010). (See also the discussion in Appendix II.) One observes that for the particular
parameter values selected and for observation times shown, the three states are essentially
fluctuating counterparts of the deterministic states. Hence, the route from localized to
expanding turbulence is unchanged by fluctuations and the bifurcation diagram is still
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Figure 29. Effect of noise on model front speeds. (a) Mean front speeds, for noise strengths σ
as indicated, compared with deterministic speeds. For the case at the standard value σ = 0.5,
separate symbols and colours are used for the upstream and downstream front speeds. (b)-(d)
Space-time diagrams illustrating behaviour typical of experiments in the puff regime (r = 0.7),
weak slug regime (r = 1.0), and strong slug regime (r = 2.0). Plotted is |uqη|. All results are at
standard parameter values, equation (8.11). For the space-time plots U0 = 3.

clearly organized by the principal asymptotic branches discussed in the previous section.
These model results precisely capture the bifurcation structure observed in experiments
and DNS (Barkley et al. 2015; Song et al. 2016).

10.2. Metastable puffs

I now begin addressing one of the most fascinating topics in transitional turbulence,
and as I said, one that has dominated much of the field in recent years. It turns out that
what historically has been referred to as an “equilibrium puff” (Wygnanski et al. 1975), in
fact is not a stable equilibrium, ever. Consider a pipe experiment at any Reynolds number
within the puff regime. Consider disturbing laminar flow with a localized perturbation
(figure 4 b) that generates exactly one puff. Now watch at the downstream end of the
pipe for that single puff to arrive. For reasons that we will see shortly, in a very long
pipe, independently of Reynolds number, the probability that exactly one puff will arrive
at the downstream end is essentially zero.
There are at least two significant aspects in that last statement. The first is that “very

long” implies thinking in terms of a thermodynamic limit in which system size goes to
infinity, or is at least sufficiently large to to remove finite-size effects. This is the mindset
that one must adopt from here on. The second is that the statement is about probability.
Even for fully deterministic simulations of the Navier-Stokes equations, minute changes
in the initial turbulent puff will result in dramatically different fates (Faisst & Eckhardt
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Figure 30. Metastable puffs in the model with noise strength σ = 0.5. (a) Space-time plots
from simulations (three realizations) illustrating puff decay at r = 0.68. The reference frame is
moving at the mean puff speed. Although fluctuating, puffs behave as equilibrium structures
until they abruptly decay (revert to laminar flow), as seen in two cases. White arrows indicate
the time of decay. The puff in the third realization decays beyond the time horizon plotted. (b)
Lifetime statistics for puff decay. The logarithm of the survival function S(t) is plotted against t
for several values of r: 0.62, 0.64, 0.66, 0.68, 0.70, 0.72, increasing in the direction indicated. Solid
black lines show exponentials with mean lifetimes estimated from the data. The mean lifetime
τD at each r can be read off the plots as demonstrated for the case r = 0.68.

2004). Hence questions, including the issue of the critical point, are necessarily statistical.
Individual realizations may be informative, but they are not demonstrative.

I will use the model to demonstrate how this all works. I refer the reader to Avila
et al. (2011) and references therein for results on experiments and DNS of pipe flow. The
model is faithful to all the phenomena I will be discussing and it has the advantage that
with it one can access results that are currently out of reach in experiments and DNS.
Figure 30(a) shows spacetime visualizations of puff dynamics on a moderately long time

scale. The noise strength here, and throughout the remainder of the section, is σ = 0.5,
and all results are at standard parameter values, equation (8.11). Three realizations are
shown for a fixed value of r. Plots are in a frame of reference moving at the mean puff
speed for this value of r. One sees that while puffs undergo fluctuations, they remain
localized and they propagate at nearly constant speed. (The time scale shown is long
and the changes in speed are minor compared to the speed in the reference frame in
which the pipe is stationary.) Hence on short time scales puffs appear as equilibrium
structures. However, as two out of the three cases show, they are not stable equilibria
but instead abruptly revert to laminar flow. That is, they decay. The third case is not
meant to signify that puffs sometimes persist indefinitely. Rather, there is large variation
in the time to decay. At this value of r, a significant portion of puffs will not decay within
this moderately long time window.

Hence puffs are in fact metastable equilibria and not true stable equilibria. Fluctuations
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ultimately conspire to push a sufficiently large portion of the turbulence below a threshold
from which they cannot recover and the puff dies (Goldenfeld et al. 2010; Barkley 2011a).
Whether in the model, DNS, or experiment, one analyses statistics of puff decay by
generating an ensemble of realizations of the type shown in figure 30(a) and recording
the times at which decay takes place. These data are then used to determine the survival
function,

S(t) = P (Puff decays at time T > t), (10.1)

where P denotes probability. Hence S(t) is the probability that a puff will survive to at
least time t. See Avila et al. (2010) for details on how this is done including removing
any effects due to initial transients.

Semi-logarithmic plots of the survival function for several values of r are shown in
figure 30(b). For each value of r, the survival function is evidently exponential, so of the
form

S(t) = exp (−t/τD) , (10.2)

where τD is the r-dependent mean lifetime of a puff. As illustrated for the case r = 0.68,
the value of τD can be read directly off the semi-logarithmic plot. (Note that the three
realizations shown in figure 30 a are consistent with a mean lifetime of τD(r = 0.68) ≃
1.1× 104.)
The exponential form of the survival function tells us something very important. It tells

us that puff decay follows a Poisson processes and hence that it is effectively memoryless.
At fixed r, puffs decay at rate 1/τD independently of time and hence independently of
their history. The exponential form of survival functions is well documented in numerous
studies, not only of pipe flow, but also several other wall-bounded shear flows (Faisst &
Eckhardt 2004; Peixinho & Mullin 2006; Avila et al. 2010; Manneville 2015, 2016, and
references therein). On a practical level, memoryless decay is absolutely essential to the
study of puff dynamics, particularly in experiments, since it implies that all time intervals
of a given size are equivalent. Because of this, mean lifetimes can be determined without
constructing a pipe long enough for the time of flight through the pipe to be as large as
the mean lifetime. One may instead study a large number of independent puffs, each over
some shorter time. All that is required is that the total observation time is comparable to
the mean lifetime. Think of the prototypical memoryless process – radioactive decay. The
half-life of carbon-14 is known to be 5730 years, and yet no nucleus has been observed
over that length of time. It is sufficient to study a large number of nuclei over a far shorter
time. If puffs had significant memory, we would know much less about them than we do.

As r increases, τD moves to larger values. Hence, puff decay becomes increasingly
unlikely as r increases. It was once expected that τD would become infinite at some
critical value of the Reynolds number, at which point turbulence in the form of puffs
would persist indefinitely. It was something of a surprise when it was shown that this
is not the case (Hof et al. 2006). With increasing Reynolds number the mean lifetime
continues to get larger, experiments and DNS become harder to perform, and yet no
critical point is reached at which individual puffs survive indefinitely.
Let me put puff decay to the side for the moment and consider figure 31. This

corresponds to larger Reynolds number, but still within the puff regime. In this case
one observes a process known as puff splitting, whereby a daughter puff is nucleated
downstream from an existing mother puff (Wygnanski et al. 1975; Avila et al. 2011;
Shimizu et al. 2014). The process results in an increase in turbulence fraction (percentage
of the flow that is turbulent) rather than a decrease as in the case of decay. Before
discussing statistics, let me note a few facts about puff splitting, both in pipe flow and in
the model. Daughter puffs only nucleate on the downstream side of a mother puff, and
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Figure 31. Puff splitting in the model. Parameters as in figure 30 except for larger r. (a)
Space-time plots from simulations (three realizations) illustrating puff splitting at r = 0.78.
Periodic boundary conditions are used. The reference frame is moving at the mean puff speed.
White arrows indicate the time of first split. The puff in the third realization splits beyond the
time plotted. (b) Lifetime statistics for puff splitting. The logarithm of the survival function
S(t) is plotted against t for several values of r: r = 0.75, 0.77, 0.78, 0.79, 0.80, 0.81, increasing in
the direction indicated. Solid black lines show exponentials with mean lifetimes estimated from
the data. The mean lifetime at each r can be read off the plots as demonstrated for the case
r = 0.78.

when they do nucleate, they show a very characteristic motion away from the mother puff.
This motion is directly attributable to the refractory tail of the mother puff. (Compare
the separation following splitting events in figure 31 a to the puff interaction discussed in
§ 9.8.) Finally, once the daughter puff has moved downstream from the mother puff, both
mother and daughter puffs move at the same mean speed. Except where puffs interact,
they all move with the same speed.
Just as with puff decay, the splitting process is statistical. In this case one measures

the time to the first split, as indicated by arrows in figure 31(a). From an ensemble of
such simulations one can again determine a survival function

S(t) = P (Puff first splits at time T > t). (10.3)

Hence, in this case S(t) is the probability that a puff will survive as a single puff to at
least time t. See Avila et al. (2011) for details on how this is done in experiments and
DNS.
Figure 31(b) shows the survival function for puff splitting at several values of r. As

with the decay process, the survival function is exponential

S(t) = exp (−t/τS) ,

where τS is the r-dependent mean lifetime of a puff until the first split. Thus, the splitting
process is also memoryless. The statistics of decay and splitting are nearly identical in
most respects and the previous discussion of decay applies equally to the case of splitting.
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There is one important difference, however. As can be seen comparing figures 30(b) and
31(b), the mean lifetime for splitting varies with r in the opposite sense to the mean
lifetime for decay.

10.3. The critical point

Having presented separately the two possible fates for individual puffs, I now address
what happens when the two processes come together at a critical point. This was first
reported by Avila et al. (2011) in a combined experimental and DNS based study that
established for the first time a well-defined critical Reynolds number for pipe flow. I will
again illustrate this with model data while pointing to important issues for pipe flow in
general and experiments in particular.
The mean lifetimes τD(r) and τS(r) for the model are displayed together in figure 32.

Both lifetimes exhibit super-exponential dependence on r as indicated by the lack of
linearity on the semi-logarithmic plot. Each data set is well fit by a double exponential
specified in the figure caption. (Plots of ln(ln τD) and ln(ln τS) are linear in r, but are
not shown.) Goldenfeld et al. (2010) have shown that a double-exponential scaling of
lifetimes naturally results from the assumption that extreme events drive the collapse of
puffs. Similar reasoning presumably applies to puff splitting as well (Barkley 2011a; Shih
et al. 2016).

The situation is now essentially obvious. The mean lifetimes cross at a critical value r.
For r less than this critical value the mean time for decay is smaller than the mean time for
splitting. Hence while both effects can occur, on average decay dominates splitting in this
regime. Imagine disturbing the upstream flow. This will generate long-lived metastable
puffs. Predominately such puffs will decay. Occasionally, particularly if r is near the
critical value, puffs may experience a rare splitting event prior to decay. However, the
resulting pair of puffs will each be more likely to decay than to split again. If the pipe is
sufficiently long, then all disturbances generated at the inlet will decay before reaching the
downstream end. For r above the critical value the situation is reversed and now splitting
dominates decay. On average the number of puffs will increase over time. Eventually puff
interaction becomes important, as will be treated in the next section. Essentially though,
disturbing the upstream flow will lead to a persistent intermittent state of turbulence
that will reach the downstream end of any pipe, no matter how long. Thus the mean-
lifetime crossing of two separate memoryless processes is the fundamental mechanism by
which turbulent flow in a pipe first becomes truly sustained.
Having presented the concepts using model results, I want to return to experiments

and DNS (Avila et al. 2011). To be clear, the critical point for pipe flow was determined
from mean lifetimes prior to the related model analysis Barkley (2011a). For pipe flow,
the mean decay and splitting lifetimes, τD and τS , show double-exponential scaling with
Re and cross at a critical value Re = 2040± 10. The time at which these mean lifetimes
cross is τD = τS ≃ 2 × 107 in advective time units. Since puffs travel at approximately
one pipe diameter per advective time unit, this timescale corresponds to a pipe length of
∼ 107 pipe diameters. It is rather amazing that such a critical point could be determined
at all. Everything hinges on the memoryless property of metastable puffs. This allowed
experimentalists (who deserve all the credit here) to study sufficiently many independent
puffs such that a total observation time of over 108 advective time units could be reached.

One may question why any fluid dynamicist should care about phenomena that occur
on such time and length scales. There are many possible answers, but I will give two. The
first is that it would simply not be acceptable to admit defeat on one of the most basic
questions in all of fluid dynamics. Obtaining a definitive result, free from finite-size finite-
time effects requires resolving such scales. Before this critical point was determined by
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Figure 32. Crossing of mean lifetimes for model puffs. Mean lifetimes for puff decay (filled, blue)
and puff splitting (open, red) as a function of model Reynolds number r. Both fitted curves are
double exponentials: τD(r) = exp(exp(4.901r − 1.102)), τS(r) = exp(exp(−6.276r + 7.126)).
Curves cross at r ≃ 0.7362 where τD = τS ≃ 2.1× 105. To the left of the crossing a single puff is
more likely to decay than split. To the right the situation is reversed and a split is more likely
than decay.

Avila et al. (2011), there was much controversy as to what the critical Reynolds number
was or even if there was a true critical Reynolds number for pipe flow (e.g. Hof et al.

2006; Peixinho & Mullin 2006; Willis & Kerswell 2007; Eckhardt et al. 2007; Avila et al.

2010). The second answer is that it is interesting that something as simple as turbulent
flow through a pipe exhibits phenomena on these scales. All evidence now leads us to
believe that solutions to the Navier-Stokes equations are such that a turbulent puff in
a pipe flow could persist as a turbulent state for 107 advective time units, and then
abruptly revert to laminar flow. That may not be immediately useful, but it is extremely
fascinating.

10.4. Directed percolation

We have seen that there are two possible fates for individual puffs – they may decay
or they may split. In other words, puffs are doomed either to die or to give birth.
Furthermore, we have seen that the mean lifetimes of the two processes intersect at
a critical point. These are the key ingredients for spatiotemporal intermittency (Kaneko
1985) and what is known in statistical physics as directed percolation (DP). In many cases
such systems exhibit universal scaling properties near criticality. See Hinrichsen (2000)
for an extensive review and Takeuchi et al. (2009) for a focused experimental study.
Pomeau (1986) first explicitly made the connection between subcritical shear flows and
DP, and he conjectured that universality might be observable is such flows. Manneville
has championed this viewpoint particularly in the context of plane Couette flow. (See
Manneville (2015, 2016) for recent reviews.) Lemoult et al. (2016) recently reported a
breakthrough in observing universal exponents in an experimental study of Couette flow.

The enormously long timescales found in pipe flow have so far prevented any direct
experimental observations of the universal properties expected at a percolation transition.
Even for model studies the critical scaling is not a simple issue. I will briefly illustrate
the type of behaviour one could hope to observe in the vicinity of the critical point for
pipe flow, but for the most part I leave this topic for further research.

Figure 33 shows the basic phenomenology. The space-time plot in figure 33(a) shows
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Figure 33. Turbulent puffs as r approaches the critical value rc ≃ 0.7394. (a) Spacetime plot at
r = 0.75. The flow is seeded with single puff. On long time scales the system reaches a statistical
equilibrium of intermittent puffs. The system has periodic boundary conditions. (b−d) Snapshots
of intermittent turbulent puffs at (b) r = 0.78, (c) r = 0.75, and (d) r = 0.7396 ≃ rc. (The full
simulation domains are 1.6 × 104 space units long and only a portion is shown in each case.)
Visually one sees the decrease in number of puffs and the development of large laminar gaps
between puffs as r decreases towards the critical value. The turbulence fraction Ft is defined to
be the percentage of the flow in the turbulent state, q > 0.5. Laminar gap lengths L are a key
diagnostic of the critical state.

how the system behaves at a Reynolds number slightly above the critical point. The flow
is initially seeded with a single turbulent puff, which then evolves through a competition
between splitting and decay processes into a complex intermittent pattern on long time
scales. Turbulent patches appear to percolate through space and time, with a clear
directionality in time. Even without labels, one could deduce the direction of time in
figure 33(a). This is even more evident looking at individual decay events in figure 30(a).
One knows the direction of time because puffs may spontaneously decay, but they cannot
spontaneously arise out of laminar flow. For this reason laminar flow is known as an
absorbing state; once it is reached, the system cannot spontaneously leave this state.
Often the analogy is made between the evolution of turbulent patches in figure 33(a)

and the percolation of a fluid through a porous medium consisting of channels that may or
may not be open. I feel a more natural analogy is to the spread of disease. Turbulent flow
is analogous to diseased individuals, while laminar flow is analogous to disease-free, but
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susceptible individuals. Disease does not spontaneously arise, but if disease is introduced
into a susceptible population (a turbulent puff is generated), then the disease can infect
adjacent individuals (puff spitting). Individuals recover spontaneously from the disease
(puff decay). If the infection rate is low, the disease will die out. If the infection rate is
high, the disease will rapidly overtake the population. When the infection and recovery
rates are similar, the disease persist indefinitely, but only through constant infection and
recovery. Quite apart from giving intuition about the percolation process, this analogy
should make it evident that similar phenomena can be expected in many diverse systems.
To begin addressing universal properties of the transition, consider the snapshots of

instantaneous turbulent states shown in figures 33(b− d). One visually sees a decrease in
the density of puffs as the Reynolds number is decreased towards the critical point. Puffs
themselves change little, but they become increasingly sparse. One quantitative measure
of the system is the turbulence fraction Ft. This is the percentage of the flow in the
turbulent state. This quantity is of interest generally in intermittent flows and it is a key
measure of a state near the percolation threshold. I will define the system to be in the
turbulent state if q > 0.5, shown by the dashed line in figure 33(d), but other reasonable
criteria distinguishing turbulent and laminar flow could be used and the critical scaling
will not be affected (e.g. Barkley 2011a). A second quantitative measure is the lengths
L of the laminar intervals, or laminar gaps, between turbulent puffs. One sees that puffs
are irregularly spaced and hence there is a distribution of the laminar lengths L. This
distribution, denoted ρS(L), characterizes the spatial intermittency of the system. In
addition to spatial intermittency, there is temporal intermittency and this provides a
third quantitative measure of the system. While not shown in figure 33, the idea is
the same as for the spatial case. A time series at any fixed spatial location will show
turbulent-laminar intermittency with a distribution, ρT (T ), of laminar time intervals, T .
In practice, one measures many laminar lengths L and laminar time intervals T from
experiments or simulations large systems over long times. From these one generates a
discrete approximations to the continuous distributions.

The universal properties associated with DP take the form of scaling relations whose
exponents are independent of details, other than the dimensions of the system (Hinrichsen
2000). For pipe flow, the system has one large space dimension and one time dimension,
and is referred to as (1+1) dimensional. For such a system the scalings can be expressed
as

Ft ∼ (r − rc)
β , (10.4)

ρ(L) ∼ Lµ⊥ , ρ(T ) ∼ Tµ‖ , , (10.5)

where rc is the critical Reynolds number and the exponents have values

β = 0.276 . . . , µ⊥ = 1.748 . . . , µ‖ = 1.841 . . . (10.6)

Asymptotic relation (10.4) holds for (r − rc) small. The critical scalings (10.5) hold at
r = rc for large L and T . Subscripts ⊥ and ‖ indicate dimensions perpendicular and
parallel to the time direction. There are other ways to express the universal scalings,
but experimental investigations of DP have largely focused on this form (Takeuchi et al.
2007, 2009; Lemoult et al. 2016). The reader should consult these references for further
details on how best to obtain critical exponents.
I must address a small detail. The lifetime crossing defines a critical Reynolds number.

For the model call this r×. The universal scalings associated with DP dictate a very
slightly different critical Reynolds number which I have called rc. These differ because
splitting must be slightly more likely than decay before turbulence is sustained. See
Hinrichsen (2000) for examples in which percolation begins when the probabilities for
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Figure 34. Universal properties of directed percolation (DP). (a) Equilibrium turbulence
fraction Ft as a function of r. The onset of sustained turbulence at occurs at rc ≃ 0.7394. (b)-(d)
Log-log plots highlighting three universal scaling relations associated with DP in one space and
one time dimension. In each case dashed lines shown the accepted universal exponent. (b) Scaling
of turbulence fraction with distance from critical point. (c) Distribution of laminar lengths L in
space close to criticality, r = 0.7396 ≃ rc. (d) Distribution of laminar intervals T in time close
to criticality, r = 0.7396 ≃ rc.

growth and decay are close, but not identical. Because in pipe flow lifetimes vary
super-exponentially with Reynolds number, small changes in Reynolds number result
in significant changes in the probabilities of decay and splitting. Hence, necessarily the
two Reynolds numbers are very close (Avila et al. 2011; Barkley 2011a). From figure 32,
r× can be determined rather accurately as r× ≃ 0.7362. The value of rc is less certain
but my estimate is rc ≃ 0.7394.

Figure 34 shows numerical results from model simulations compared with behaviour
of a system in the universality class of directed percolation. Figure 34(a) shows the
turbulent fraction as a function of r. The remaining panels show log-log plots illustrating
the three scaling laws. In each case, a dashed line shows the slope corresponding to
the universal exponent. One sees clear evidence of agreement between the data and the
universal scalings. However, the scaling ranges are rather limited. While it would be
possible to simulate longer and possibly improve the agreement shown in figure 34, these
results already required vastly longer space and time scales than could conceivably be
achieved in experiment. (The distributions in figures 34(c) and 34(d) have been extracted
from simulations of 16 independent realizations in domains of size 1.6× 104 space units,
each run from more than 106 time units after allowing a substantial time for the system
to equilibrate. At the smallest Reynolds numbers shown in figure 34(b), the turbulence
fraction has been obtained from similar substantial simulations.) These figures are meant
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to show the types of scaling one could hope to see in experimental studies of pipe flow.
It is an open question as to whether such scalings will ever be verified experimentally.
The most fundamental point about the onset of turbulence in pipe flow is not the

scalings in figures 34(b-d), but rather what is seen in figure 34(a) This figure shows
that the equilibrium turbulence fraction grows continuously from zero in crossing the
transition. (The small gap near zero is due to the difficulty of obtaining equilibrium
values very close to rc.) Thus there is a well-defined sense in which turbulence grows
continuously from laminar flow, even though laminar flow never loses stability and locally
turbulence is well separated from laminar flow. The equilibrium turbulence fraction can
be small, not because turbulent puffs are close to laminar flow, but because they are rare
(figures 33 b-d). A great deal of clarity follows from viewing transition in the context of
a disturbed flow which is then allowed to reach equilibrium, even if that equilibrium is
statistical and is reached only after enormously long times. In this way, there is a well
defined meaning to the continuous evolution between the laminar and turbulent scaling
laws shown in figure 2.

10.5. Rise of fully turbulent flow

There is no doubt that the phenomena associated with the onset of sustained turbu-
lence are fascinating. However, this fascination should not overshadow all other features
of the transition scenario that I have considered throughout this paper. In particular, at
least equally important is the transition from localized to expanding turbulence – that is
the transition from puffs to slugs. Looking back at the long history of experimental studies
of pipe flow (e.g. Coles 1962; Wygnanski & Champagne 1973; Lindgren 1969; Nishi et al.
2008; Barkley et al. 2015), and at the various bifurcation diagrams discussed throughout
this paper, it is abundantly clear that the most persistent, notable feature encountered
in the transition scenario is the emergence of expanding turbulence, as signalled by an
abrupt upturn in the downstream front speed. The importance of this to the transition
process cannot be overstated. Only after rapid expansion begins in the form of slugs does
turbulence lose its intermittent character and eventually give rise to fully turbulent flow
with its characteristic Prandtl friction-law scaling (figure 2).
I have discussed at length the distinction between puffs and slugs, and the underlying

mechanism by which the onset of bistability leads to a crossing of front speeds. This
ultimately drives the emergence of slugs, initially in weak form but then in strong form.
However, there are a few remaining details about this important process that I have not
yet shown. I will therefore end this long story by showing, primarily via representative
space-time images, the way in which intermittent, localized turbulence gives way to fully
turbulent flow. I will again use model results to make my points, but nearly identical
behaviour is observed in pipe flow (e.g Moxey & Barkley 2010).
In figure 29 I presented the transition scenario under the influence of fluctuations.

Because results for three noise strengths are plotted together, some points are not visible.
Nevertheless, one can still see the abrupt upturn of the downstream front speed associated
with the transition to weak slugs. We know that on some level this transition cannot be
truly abrupt because we have seen that puffs may split and this itself leads to expanding
turbulence, although of a highly intermittent form, e.g. figure 33(a). Hence I want to
focus in on what occurs in a small region of Reynolds numbers where expansion first
begins.
Figure 35(a) shows an enlargement of figure 29(a) around the transition to weak slugs.

Only data for the standard noise strength, σ = 0.5, are included. As before, points
represent average speeds over ensembles of long simulations. Below the critical value, rc,
points are shown with open symbols. The front speeds here are obtained from long-lived
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Figure 35. The evolution from localized puffs to weak slugs in the presence of fluctuations. (a)
Enlargement of figure 29(a) in the vicinity of the onset of weak slugs. Open symbols indicate
puffs below the critical value, rc. The downstream front speed reaches a minimum at re. Above
this value of r turbulence begins to expand rapidly. (b)-(g) Representative spacetime plots. (b)
Typical puff state seen in the frame of reference moving at the mean puff speed (r = 0.70). This
reference frame is used for the remaining panels. (c) Puff state just where mean downstream
front speed reaches a minimum (r = 0.80). A puff-splitting event occurs near the final time
shown. (d) Turbulence remains in the form of discrete puffs, but splitting is more frequent
(r = 0.82). (e) Turbulence no longer occurs solely in the form of discrete puffs (r = 0.85). (f)
Weak slug with intermittent laminar holes within the turbulent core at r = 0.90. (g) Weak slug
with nearly uniform turbulent core at r = 1.0. Due to randomness, different realizations at the
same parameter values will differ, particularly for cases (c) - (e).

metastable states. Above rc when splitting is present, the downstream front is taken
to be the front furthest downstream. Hence a speed difference between upstream and
downstream fronts measures the rate of expansion of the entire intermittent turbulent
structure due to splitting. Even though puff splitting leads to an expansion of intermittent
turbulence, just above the critical point the difference between upstream and downstream
front speeds is negligible on the scale of slug expansion. This should not be particularly
surprising given the enormously long time scales associated with splitting.

Figures 35(b)-35(g) show representative space-time plots illustrating the continuous
evolution from puffs to weak slugs. I have little to say about these other than what can be
observed in the figure. Between the states that can be classified clearly as either splitting
puffs or weak slugs, there are states that have both puff-like and slug-like characteristics.
Figure 35(e) is a prime example of such a state. Such cases show significant variability
between different realizations at fixed parameter values. As expansion becomes more
recognizably in the from of weak slugs, figure 35(f), intermittent laminar holes, or
pockets, are typical within the core region. These are a consequence of fluctuations
together with the refractory tails associated with weak slugs near onset, as shown
in figure 27(e). Eventually these give way to a more uniform turbulent core, as in
figure 35(g).

The evolution from puff splitting to weak slug expansion is evidently smooth, both in
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terms of front speeds and in terms of the spatiotemporal character of the expanding struc-
tures. This appears to preclude making a sharp distinction between the two processes.
The onset of expansion can be taken to be the point where the average downstream front
speed reaches a minimum: the point labelled re in figure 35. There are two reasons to
consider this point as the onset of expansion. The first is that the speed minimum is a
well defined point. The second is that in an experimental setting this point effectively
marks the Reynolds number above which the average speeds of upstream and downstream
fronts can be clearly distinguished. From experiment and simulations for pipe flow, this
value has been estimated as Re ≃ 2250 (Barkley et al. 2015). This Reynolds number is
as important to the transition scenario as is the critical value for the onset of sustained
turbulence.

11. Closing remarks

What I have hoped to conveyed throughout the many preceding pages is that the
route to turbulence in pipe flow is fundamentally a spatiotemporal process, and that it
is fundamentally nonlinear. The phenomena encountered in passing from laminar flow
to fully turbulent pipe flow span an enormous range of space and time scales. From the
outset, all states, other than laminar flow itself, are complex and highly nonlinear. I have
attempted, in figure 36, to capture these key points in a compact theoretical picture of
how we understand the route to turbulence in pipe flow. I do not want to recount here the
individual details of the transition scenario, but rather to summaries the broad nature
of the process. Nonlinearity manifests itself in the need to trigger turbulence within
the pipe by some form of finite-amplitude perturbation, a transverse jet for example.
Because laminar pipe flow is linearly stable, transition only makes sense in the context
of a disturbed flow. The spatiotemporal character of the problem means that the stages
of transition are distinguished by the subsequent large-scale, or macroscopic, dynamics
of turbulent structures as they flow down the pipe. It is often convenient, as illustrated
here, to view this evolution in a co-moving reference frame. If one were to zoom into any
turbulent patch of pipe flow, the microscopic viewpoint, one would not observe very much
difference between the turbulent structures at the beginning of the transition regime and
those at the end. In all cases one would observe streaks and streamwise oriented vortices
typical of wall-bounded turbulence (e.g. Waleffe 1997; Eckhardt et al. 2007; Kawahara
et al. 2012). The changes encountered in the transition process are in the spatiotemporal
organization of that turbulence on long scales. We see how fundamentally different this
process is compared with the scenario for Taylor-Couette flow shown in figure 3.

I have intermingled explanations of what we know from experiments and simulations
with my own theoretical perspective on what underlies and organizes the transition
scenario. This perspective has its origins in ideas connecting the emergence of turbulence
in subcritical shear flows to the behaviour of coexisting phases in thermodynamic systems.
The particular significance of these earlier ideas is the realization that the transition
problem could be approached from a macroscopic viewpoint, relegating the detailed
structures and dynamics of turbulence to a microscopic level. However, the mapping onto
the problem of coexisting phases misses physics at work in the transitional regime. Most
importantly, it misses the essential coupling between turbulence and the mean shear. My
belief is that the near perfect analogy for the macroscopic dynamics is instead excitable
and bistable media. If I were to summaries my view of the route to turbulence in pipe flow
it would be this: the process is fundamentally a transition from excitability to bistability
where the “upper” state corresponding to turbulence is itself highly fluctuating due
to the underlying microscopic dynamics. Together with local coupling and downstream
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Figure 36. The route to turbulence in pipe flow. The inset illustrates locally perturbed pipe
flow and subsequent observation of turbulent dynamics in a co-moving reference frame. The
main figure summarizes the stages of transition, as a function of Reynolds number, using
representative space-time plots from model simulations. Laminar flow is blue, all other colours
indicate turbulent flow. The space-time plots are terminated after the system has reached its
asymptotic state, possibly a disordered statistical equilibrium. In cases were the system has not
reached its asymptotic state within typical observation times available to experiments, additional
plots show the asymptotic state at much later times. Two important transitions are indicated.
The critical point for the onset of sustained (intermittent) turbulence and the transition to
expanding turbulence. The evolution from weak to strong slug is gradual.

advection, these are the key ingredients driving essentially all the large-scale phenomena
in route to turbulence in pipe flow.

11.1. Future

It is appropriate that I give my views on the most promising or important open areas
for further research. I will limit my comments to theoretical and model studies of the type
presented here. The obvious candidate problem would be a derivation of a macroscopic
evolution equation for pipe flow directly from the Navier-Stokes equations. One could
envision a derivation in the spirit of the Newell-Whitehead-Segel approach to patterns in
fluid convection (Newell & Whitehead 1969; Segel 1969). This has been a long-standing
desire of many researchers in the field. Such an achievement would surely have a profound
impact on the study of transitional turbulence. However, personally I feel that such a
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derivation will be exceedingly difficult due to the complexities of the flow in the vicinity
of the turbulent-laminar interfaces. This is a reflection of the highly nonlinear nature of
the problem from the outset.
A lesser goal that nevertheless would be very important, and more likely achievable,

would be to improve current modelling efforts by extracting necessary terms from direct
numerical simulations of the Navier-Stokes equations. The majority of large-scale phe-
nomena observed in pipe flow are captured, qualitatively and even semi-quantitatively,
using simple low-order polynomials for the local dynamics – the functions f and g. This
could surely be improved. (See Appendix II for some relevant discussion.) I imagine a
suitably guided reduction or fitting within the regions excluding the interfaces, together
with some appropriate phenomenological modelling of interfaces. It seem likely that in
this way a model could be produce that is quantitatively faithful to almost every aspect of
transitional turbulence. There are three specific open issues for which such a model could
assist experimental and numerical studies of pipe flow: the mechanism of puff splitting
(e.g. Shimizu et al. 2014), the scalings associated with directed percolation, and control
of transition through mean-flow modification (e.g. Hof et al. 2010; Barkley et al. 2015).
Another future direction would be to extend beyond pipe flow to other wall-bounded

shear flow for which our theoretical understanding is less well developed. Manneville
(2015, 2016) gives excellent reviews of transition, with extensive bibliographies, in the
broader context of wall-bounded shear flows. Plane Couette flow and plane channel flow
would be the cases to address next. As with pipe flow, a lot is known about the phenomena
in these flows, but we are further away in terms of theoretical understanding. There
is already evidence (Barkley 2011b; Lemoult et al. 2014) that ideas similar to those
described here can be applied in the planar cases. I believe that the difficulty in these
cases is going to be the large-scale mean flow. In a pipe, the dominant effect of advection
by the mean flow is simple because the pipe is so highly constrained. This is what
permits advection to be captured reasonably well by a scalar variable, even if the mean
flow itself is complex in the interfacial regions. Flows unconstrained in two directions
generate more involved large-scale flows that are intimately tied with turbulent-laminar
structures (Barkley & Tuckerman 2007; Duguet & Schlatter 2013). One is going to have
deal with this is some way which I suspect will necessitate treating the mean flow as a
full two-dimensional vector field.

A potential avenue may come from recent successes in reduced-order modelling in the
wall-normal direction (Manneville 2015; Chantry et al. 2016). The significant advantage
of this approach is that it makes direct connection to the self-sustaining process (Waleffe
1997) and to exact coherent structures underlying wall-bounded turbulence at moderate
Reynolds numbers (Eckhardt et al. 2007; Kawahara et al. 2012).

Finally, even now one could pursue more ambitious goals such as the description of wall-
bounded turbulence in geometrically complex or spatially developing situations, such as
expanding pipes and boundary layers. Theoretical understanding of large-scale turbulent
structures in these cases would be particularly beneficial and would have the potential
to guide useful strategies for delaying the onset of turbulence.

11.2. Reynolds and the critical value

I began with Reynolds’ pioneering work on pipe flow and I pointed specifically to
the issue of the critical point for sustained turbulence. I did this both to highlight the
timely nature of this subject and to emphasize the difficulties associated with simple flow
through a straight pipe. I will conclude by returning to Reynolds and the critical point
with a quote: “it became clear to me that if in a tube of sufficient length the water were at
first admitted in a high state of disturbance, then as the water proceeded along the tube
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the disturbance would settle down into a steady condition, which condition would be one
of eddies or steady motion, according to whether the velocity was above or below what
may be called the real critical value”(Reynolds 1883, pp. 957-958). These words are very
striking as they show how clearly Reynolds understood the correct notion of the critical
value. It is unlikely, however, that Reynolds would have anticipated the complexity and
scales that we now know to be associated with disturbances to “settle down into a steady
condition”. It is equally unlikely that Reynolds would have guessed that it would take
more than a century to finally determine the real critical value.

This work has benefited from discussions with a large number of people. Firstly,
I want to acknowledge M. Avila and B. Hof with whom I have jointly developed
many of the ideas expressed in this paper. I would also like to acknowledge signficiant
input from collaborators K. Avila, M. Chantry, G. Lemoult, A. de Lozar, D. Moxey,
V. Mukund, B. Song, and L. Tuckerman. I am also very grateful to B. Eckhardt,
Y. Duguet, P. Manneville, Y. Pomeau, and J.E. Wesfreid for helpful discussions that
have contributed to my understanding of this problem. I thank J. Langham for many
helpful suggestions concerning the manuscript.

12. Appendix I: Spatial dynamics

The following is a brief introduction to the subject of spatial dynamics. In § 4.2 I
consider travelling solutions to a one-variable, second-order-in-space, partial-differential
equation. After suitable transformations, steady travelling solutions are shown to obey
the equation

q′′ + sq′ + f(q) = 0, (12.1)

where primes denote derivatives with respect to a suitably scaled spatial coordinate. The
equation is subject to suitable boundary conditions.

In the spatial dynamics approach, the solutions to equations like (12.1) are understood
by viewing the spatial coordinate as time. Hence, equation (12.1) becomes the second-
order ordinary differential equation

q̈ + sq̇ + f(q) = 0. (12.2)

See figures 37(a) and 37(b). Of course this is in itself trivial. What is gained is that by
viewing the independent variable as time, we can to turn to the language of dynamical
systems. Specifically, letting v = q̇, we have the simple two variable dynamical system
illustrated in figure 37(c) and we can invoke the concepts of trajectories, phase planes,
fixed points, homoclinic and heteroclinic orbits. Moreover, in cases such as in § 4 where
f(q) derives from a potential, we can gain further intuition from mechanics. As discussed
by Pomeau (1986), equation (12.2) is that of a particle in a potential well −V (q) with
friction s. See figure 37(d). Note that the potential in the mechanical analogy is inverted
with respect to the original potential.
The most basic aspect of spatial dynamics is the speed selection shown in figure 38.

Consider a front in physical space from q(−∞) = q+ to q(∞) = q0, where q+ and
q0 are roots of f . Such a front corresponds to a downstream front for pipe flow. The
roots of f correspond to fixed points (q+, 0) and (q0, 0) in the two-dimensional phase
plane of spatial dynamics. A short calculation shows that these fixed points are saddles,
having both stable and unstable eigenvectors. The front from q+ to q0 corresponds to a
heteroclinic connection between (q+, 0) and (q0, 0) in the phase plane. It leaves (q+, 0)
along its unstable manifold and approaches (q0, 0) along its stable manifold. However,
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Figure 37. The main ideas of spatial dynamics. The steady spatial problem (a) is viewed as
second-order equation in time (b). From this its solutions may be analysed in the phase plane
(c) or using a mechanical analogy (d).
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Figure 38. Front selection from the spatial-dynamics point of view. Fixed points of f correspond
to saddle points (q+, 0) and (q0, 0) in the phase plane (a) or extrema of the inverted potential
(b). Only for a unique value of s will there be a heteroclinic connection from (q+, 0) to (q0, 0).
This heteroclinic connection is a front in physical space from q(−∞) = q+ to q(∞) = q0.

in general the unstable manifold of (q+, 0) will not connect to (q0, 0). Depending on the
value of s the manifold will go to one side or the other of (q0, 0). Only for a unique value
of s will these coincide to produce a connection. Hence, spatial dynamics gives us an easy
way to understand why, generically, the speed of a front is uniquely selected.

Figure 38(b) shows exactly the same situation but in terms of the mechanical analogy.
q+ and q0 correspond to extrema of the inverted potential. Only for a specific value of
the friction, s, will a ball starting at q+ roll down and stop exactly at the q0 extremum.

Edge states are homoclinic orbits from (q0, 0) to itself when viewed in the spatial-
dynamics phase plane, figure 39(a). Here the mechanical analogy, figure 39(b), is partic-
ularly helpful. An edge state, or homoclinic orbit, corresponds to a ball starting at the
extremum q0, rolling back and forth in the inverted potential, to end up back at q0, as
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Figure 39. Edge states from the spatial-dynamics point of view. An edge state is a homoclinic
orbit from (q0, 0) to itself in the phase plane (a). Also shown is a pair of fronts, heteroclinic
orbits. (b) The edge state in the mechanical analogy. (c) The collision of the edge state and
heteroclinic orbits.

shown. Conservation of energy requires both that s = 0 and that the maximum of q on
the orbit occurs where V (q) = V (q0).

Also shown in figure 39(a) are a pair of heteroclinic orbits. One, from (q0, 0) to (q+, 0)
corresponds to an upstream front, and the other from (q+, 0) to (q0, 0) corresponds to a
downstream front. Figure 39(c) illustrates the collision of the edge state and the pair of
heteroclinic orbits. This occurs at r = 1 in the model in § 4. The amplitude of the edge
state has grown to that of the fronts while both front speeds have approached zero.

A further important aspect of front dynamics that is readily understood through
spatial dynamics is the non-uniqueness of fronts that occurs when fixed points of f come
together in a saddle-node bifurcation. Such a bifurcation occurs at r = 0 in the model
of § 4. Exactly at r = 0 there is a degenerate fixed point in the spatial-dynamics phase
plane as shown in figure 40. The unstable eigenvector has become a centre direction.
Unlike unstable manifolds, centre manifolds are not unique and there are infinitely many
heteroclinic connections between the fixed points. Hence there are infinitely many possible
front solutions to the original problem and infinitely many possible speeds. Figure 40(b)
shows the speed of downstream fronts in the model over a range of r. The speed is unique
at each r above r = 0. At r = 0 the speed may take any value below some limit.

I have only considered here the one-variable model and have focused on the basic
features needed for the study of pipe flow in the main paper. The approach can be applied
to any number of dependent variables in one spatial dimension, and hence to the model in
variable q and u. However, there is no potential in that case and the mechanical analogue
does not carry over. See Rinzel & Terman (1982) for three-variable phase portraits that
correspond to q and u in the present paper.



62 D. Barkley

}

x

(q0, 0)

fr
o
n
t 

sp
ee

d

infinitely 
many speeds

r
0 2

(a) (b)degenerate

q
−

= q
+

infinitely many 
connections

or fronts

Figure 40. Degenerate fronts from the spatial-dynamics point of view. Fixed points q− and
q+ have merged giving a degenerate fixed point in the phase plane (a). Four of the infinity of
possible heteroclinic orbits are shown. (b) Speed of a downstream front as a function of r. The
degeneracy at r = 0 results in infinitely many possible speeds.

13. Appendix II: Models and simulations

13.1. Commentary

The two-variable model presented in this paper was developed to demonstrate and
analyse the consequences of known physical properties of turbulence in a pipe. The
equations use at most cubic nonlinearity and are the simplest I could construct that
contain all the necessary ingredients. The model was not intended to be quantitatively
accurate, although it turns out that with the proper selection of parameters it can fit
front-speed data from pipe and square duct flow extremely well (Barkley et al. 2015). It
is difficult, and likely impossible, to choose one set of parameter values to fit, precisely,
all the various aspects of pipe flow simultaneously. On the other hand, it is quite easy to
pick a set of parameter values such that the model captures qualitatively the full range of
phenomena seen in pipe flow. This is essentially due to the fact that these phenomena are
generic and large ranges of parameter values give the same qualitative behaviour. This
suggests that one should take the approach I have used in this paper: keep the model as
simple as possible, select one representative set of parameter values, and be content with
capturing the qualitative features of pipe flow.
The main quantitative shortcoming of the model is the function f(q, u) describing

the local dynamics of the turbulent field. (The local dynamics of the mean shear given
by g(q, u) is probably adequate for most purposes.) Three specific failings of the model
associated with this function are the following. The first is that the overshoot of q for
turbulent slugs is not sufficiently large, particularly for strong slugs as r becomes large.
I refer the reader to figures 20(e) and 20(f). In these cases the peaks of q at the fronts
barely exceed the equilibrium value of q in the turbulent core. In actual pipe flow the
peaks are much larger than the core values (e.g. Nishi et al. 2008; Song et al. 2016). The
second issue is that with increasing r, the nose, u∗, of the q nullcline moves too far to
the left in the local phase plane. See figures 18 and 20. In reality the nose should not
decrease below the mean flow speed Ū . We know this because a completely flat velocity
profile u = Ū would not sustain turbulence. The third issue is that front speeds in the
model become unrealistically large as r becomes large. Specifically, the solution to (9.10)
for r large will give a large value of s, which then will give large front speeds via (9.12)
and (9.13). This can be controlled to some extent by the choice of the diffusion coefficient
D in the model. Nevertheless this behaviour is not realistic and not desirable.

All of the above issues directly involve the function f and could in principle be resolved
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through a better choice of this function. The model for the turbulent dynamics could also
be extended to a higher-dimensional form that produces chaotic dynamics associated
with turbulent flow. Discrete-time maps producing chaotic dynamics, for example, can
be found in Vollmer et al. (2009) and Barkley (2011a).
Models by other authors have been used to understand aspects of transition in pipe

flow. Important among these are those by Kaneko (1985); Chaté & Manneville (1987);
Sipos & Goldenfeld (2011); Allhoff & Eckhardt (2012); Marschler & Vollmer (2014),
and Shih et al. (2016). I include the studies by Kaneko (1985) and Chaté & Manneville
(1987), even though these are not specifically aimed at pipe flow, because these influential
early papers highlighted the importance of spatiotemporal intermittency and used simple
models to understand it. A dominant focus of recent models has been lifetimes and
percolation. The advantage these models bring to the study of pipe flow is a combination
of simplicity and amenability to analysis. The model by Shih et al. (2016) is conceptually
the closest to what I have presented here. They propose a model based on the idea that
turbulence activates zonal flow which then inhibits turbulence. Specifically the focus
is on the radial dependence of the mean azimuthal velocity, ūθ(r) in their notation,
and its coupling to the radial gradient of the stress u′

θu
′
r. It is very unlikely, however,

that azimuthal flow plays any significant role in the dynamics of transitional pipe flow.
The dominant mechanisms at work in pipe flow involve the streamwise velocity profile,
Ux(r), the Reynolds stress component 〈u′

xu
′
r〉, and their radial gradients (Pope 2000).

The physics of puffs and slugs employed in Barkley (2011a) and Barkley et al. (2015),
and described in detail in § 7, is well documented and results in a more realistic model.
I will end the short commentary by reiterating that my focus has been on the speeds

of puffs and slugs, and on the refractory nature of puffs. As a result, the model is faithful
to these aspects of pipe flow. With respect to puffs in particular, the model reproduces
the following important behaviour: at given parameter values, all model puffs move at
the same speed, modulo small fluctuations. Puff splitting occurs only on the downstream
side of puffs and daughter puffs move away with a characteristic signature due to the
refractory nature of puffs. These are key features of transitional pipe consistently missed
by other models. These are minimal requirements that should be captured by better
models developed in the future.

13.2. Simulation details and a small cheat

The stochastic versions of the models, specifically (4.13) and (8.10), contain multi-
plicative noise terms. These are interpreted in the Itô sense (Doering 1987), primarily for
ease of numerical simulations. Euler-Maruyama time stepping is used. In the absence of
noise, σ = 0, this reduces to simple forward Euler time stepping. In all model simulations
of both the one- and two-variable models, the grid spacing is △x = 0.1 and the time step
is △t = 4× 10−3.
For simulations of the one-variable model, the parameter values are as given in §4.4.

The choice δ = 8 means that the V (q0) = V (q+) at r = 1, which is a particularly nice
value. Much of the algebra underlying the spatial dynamics in Appendix I simplifies with
the choice of δ = 8. The remaining parameter were selected based on the look of the
simulations in figures 4 and 10.
For simulations of the two-variable model, the parameter values are as given in (8.11),

together with the standard noise strength (8.12). Barkley (2011a) and Barkley et al.

(2015) discuss how parameters can be selected to match quantitatively at least some
aspects of pipe flow. As already explained, I have focused here on simple representative
values. Nevertheless, a few comments are appropriate concerning the noise strength. The
timescales for puff decay and puff splitting depend on σ. From the point of view of
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investigating spatiotemporal intermittency, large noise strengths are somewhat desirable
because then decay and splitting events occur at a greater rate. In particular, the critical
point occurs at a joint mean lifetime τD = τS (figure 32) that decreases with increasing
noise strength. On the other hand, model puffs become less realistic at large noise
strengths. The value σ = 0.5 was selected as a compromise between these desires.

Finally, I noted above that one of the deficiencies in the model is that the overshoot of
q for turbulent slugs is not sufficiently large, particularly as r becomes large. In order to
visually accentuate the overshoot, I have used uq, rather than q, in most visualizations
of the two-variable model. Consider specifically figures 29(c) and 29(d). Overshoots are
seen at the upstream fronts and at the strong downstream front the strongly resemble
those seen experimentally (e.g. Nishi et al. 2008). This is because u is largest at these
fronts and so it accentuates the otherwise small overshoot in q. (See figure 20.) With an
improved model this would be unnecessary.
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24, 258–281.

Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Commun. math. phys 20, 167–192.

Salwen, H., Cotton, F. W. & Grosch, C. E. 1980 Linear stability of poiseuille flow in a
circular pipe. J. Fluid Mech. 98, 273–284.

Samanta, D., De Lozar, A. & Hof, B. 2011 Experimental investigation of laminar turbulent
intermittency in pipe flow. Journal of Fluid Mechanics 681, 193–204.

Schlichting, H. 1968 Boundary-layer theory . McGraw-Hill.

Schneider, T., Eckhardt, B. & Yorke, J. 2007 Turbulence transition and the edge of chaos
in pipe flow. Phys. Rev. Lett. 99, 034502.

Segel, L. A. 1969 Distant side-walls cause slow amplitude modulation of cellular convection.
J. Fluid Mech. 38, 203–224.

Shih, H.-Y., Hsieh, T.-L. & Goldenfeld, N. 2016 Ecological collapse and the emergence of
travelling waves at the onset of shear turbulence. Nature Physics 12, 245–248.

Shimizu, M. & Kida, S. 2009 A driving mechanism of a turbulent puff in pipe flow. FDR 41,
045501.

Shimizu, M., Manneville, P., Duguet, Y. & Kawahara, G. 2014 Splitting of a turbulent
puff in pipe flow. Fluid Dynamics Research 46, 061403.

Sipos, M. & Goldenfeld, N. 2011 Directed percolation describes lifetime and growth of
turbulent puffs and slugs. Phys. Rev. E 84, 035304.

Song, B., Barkley, D., Avila, M. & Hof, B. 2016 Speed and structure of turbulent fronts
in pipe flow. arXiv:1603.04077 .

Starmer, C. F., Biktashev, V. N., Romashko, D. N., Stepanov, M. R., Makarova, O. N.
& Krinsky, V. I. 1993 Vulnerability in an excitable medium: analytical and numerical
studies of initiating unidirectional propagation. Biophysical journal 65, 1775.



Route to turbulence in a pipe 67

Stuart, J. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 1–21.
Swinney, H. L. & Gollub, J. P. 1985 Hydrodynamic instabilities and the transition to

turbulence, 2nd edn., Topics in Applied Physics, vol. 45. Springer-Verlag.
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