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Scope

The heterogeneity of trace constituents in lots
to be sampled for the determination of their
contents has been the object of extensive work
by many authors in the past. The scope of this
paper is to focus attention on the works done
by Gy1–3, Ingamells4–7 and Pitard4, 8–11. Links
between the works of these authors are
investigated, and an up-to-date strategy to
resolve sampling difficulties is suggested. The
challenge is to provide adequate, realistic
sample and sub-sample mass at all sampling
and sub-sampling stages, all the way to the
balance room at the assaying laboratory. More
often than not, meeting theory of sampling

(TOS) basic requirements to keep the variance
of the fundamental sampling error (FSE)
within reasonable limits are beyond economic
reach, or at least in appearance. Therefore,
when these difficulties are ignored for practical
reasons, awareness becomes the only tool at
our disposal to show the possible
consequences. Such awareness must be
properly managed, which is the primary
objective of this paper. For the unaware reader,
TOS refers to Gy’s work combined with
compatible and positive contributions made by
others. TOS is a dynamic knowledge that
should be complemented by existing and
future contributions, which is the mission of
WCSB in many ways.

Definitions and notations

The length of this paper being limited, the
reader is referred to textbooks for some
definitions and notations (Gy1–3; Pitard8;
Ingamells and Pitard4). Only the essential ones
are listed below.

Latin letters
a content of a constituent of interest
FSE fundamental sampling error
GSE grouping and segregation error
IDE increment delimitation error
IEE increment extraction error
IH invariant of heterogeneity
IPE increment preparation error
IWE increment weighting error
M mass or weight of a sample or lot to

be sampled
r number of low frequency isolated

grains of a given constituent of
interest

s experimental estimate of a standard
deviation 

Y a grouping factor
Z a segregation factor 

Theoretical, practical, and economic

difficulties in sampling for trace constituents

by F.F. Pitard*

Synopsis

Many industries base their decisions on the assaying of tiny
analytical sub-samples. The problem is that most of the time several
sampling and sub-sampling stages are required before the
laboratory provides its ultimate assays using advanced chemical
and physical methods of analysis. As long as each sampling and
sub-sampling stage is the object of due diligence using the theory of
sampling it is likely that the integrity of the sought after
information has not been altered and the generated database is still
capable to fulfil its informative mission. Unfortunately, more often
than not, unawareness of the basic properties of heterogeneous
materials combined with the unawareness of stringent requirements
listed in the theory of sampling, lead to the conclusion that massive
discrepancies may be observed between the expensive outcome of a
long chain of sampling and analytical custody, and reality. There
are no areas that are more vulnerable to such misfortune than
sampling and assaying for trace amounts of constituents of interest
in the environment, in high purity materials, in precious metals
exploration, food chain, chemicals, and pharmaceutical products.
Without the preventive suggestions of the theory of sampling
serious difficulties may arise when making Gaussian approxi-
mations or even lognormal manipulations in the subsequent
interpretations. A complementary understanding of Poisson
processes injected in the theory of sampling may greatly help the
practitioner understand structural sampling problems and prevent
unfortunate mistakes from being repeated over and over until a
crisis is reached. This paper presents an overview of the theoretical,
practical and economic difficulties often vastly underestimated in
the search for quantifying trace amounts of valuable or unwelcome
components.
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Greek letters
θ average number of constituent of interest grains per

sample
µ average number of constituent of interest grains per

sample in a primary sampling stage when two
consecutive sampling stages introduce a Poisson
process 

σ true unknown value of a standard deviation
γ a most probable result

Industries that should be concerned

Regardless of what the constituent of interest is in a material
to be sampled, it always carries a certain amount of hetero-
geneity. Many industries are concerned about such a
structural property. Some industries using materials of
mineral origin such as metallurgy, cement, coal, glass,
ceramics, uranium, and so on, are challenged every day to
quantify contents of critically important elements. These
difficulties reach a paroxysm when these elements are
present in trace amounts. There are many other similar
examples in the agricultural, food, paper, chemical, and
pharmaceutical industries. There is another stunning example
in sampling for trace constituents in the environment;
companies struggling to meet regulatory requirements have
great concerns about the capability to collect representative
samples that will be assayed for trace constituents. All these
examples are just the tip of the iceberg.

A logical approach suggested by the theory of

sampling

The theory of sampling is by definition a preventive tool for
people working in the industry to find ways to minimize the
negative effects of the heterogeneity carried by critically
important components. Such heterogeneity generates
variability in samples, therefore variability in data that are
later created. The following steps are essential for the
definition of a logical and successful sampling protocol. The
discussion is limited to the sampling of zero-dimensional,
movable lots. For one-dimensional lots the reader is referred
to Chronostatistics (Pitard12); for two- and three-dimensional
lots the reader is referred to more in-depth reading of the TOS
(Gy1–3; Pitard8; Esbensen and Minkkinen13; Petersen14;
David15). 

Mineralogical and microscopic observations

At the early stage of any sampling project it is mandatory to
proceed with a thorough mineralogical study or microscopic
study that may show how a given trace constituent behaves
in the material to be sampled. The conclusions of such study
may not be stationary in distance or time, nevertheless they
give an idea about the direction that one may go when
reaching the point when an experiment must be designed to
measure the typical heterogeneity of the constituent of
interest. These important studies must remain well focused.
For example, in the gold industry it is not rare to see a
mineralogical study of the gold performed for a given ore for
a given mining project. Then, the final report may consist of
49 pages elaborating on the many minerals present in the
ore, and only one page for gold which is by far the most
relevant constituent; well-focused substance should be the
essence. 

Heterogeneity tests

Many versions of heterogeneity tests have been suggested by
various authors. For example, Gy suggested about three
versions, François-Bongarçon suggested at least two, Pitard
suggested several, Visman suggested one, and Ingamells
suggested several. They all have something in common: they
are usually tailored to a well-focused objective and they all
have their merits within that context. It is important to refer
to François-Bongarçon’s works16–19 because of his well-
documented approaches. It is the view of this author that for
trace constituents, experiments suggested by Visman20 and
Ingamells provide the necessary information to make
important decisions, about sampling protocols, the interpre-
tation of the experimental results, and the interpretation of
future data collected in similar materials; this is especially
true to find methods to overcome nearly unsolvable sampling
problems because of the unpopular economic impact of ideal
sampling protocols.

Respecting the cardinal rules of sampling correctness

Let us be very clear on a critically important issue: if any
sampling protocol or any sampling system does not obey the
cardinal rules of sampling correctness listed in the Theory of
Sampling, then minimized sampling errors leading to an
acceptable level of uncertainty no longer exist within a
reachable domain. In other words, if increment delimitation
errors (IDE), increment extraction errors (IEE), increment
weighting errors (IWE) and increment preparation errors
(IPE) are not addressed in such a way that their mean is no
longer close to zero, we slowly leave the domain of sampling
and enter the domain of gambling. In this paper the
assumption is made that the mean of these bias generator
errors is zero. In the eventuality anyone bypasses sampling
correctness for some practical reason, solutions no longer
reside in the world of wisdom and generated data are simply
invalid and unethical. It is rather baffling that many
standards committees on sampling are still at odds with the
rules of sampling correctness.

Quantifying the fundamental sampling error

Enormous amounts of work have been done by Gy, François-
Bongarçon, and Pitard on the many ways to calculate the
variance of the fundamental sampling error. For the record
the theory of sampling offers very different approaches and
formulas for the following cases:

➤ The old, classic parametric approach1 where shape
factor, particle size distribution factor, mineralogical
factor, and liberation factor must be estimated

➤ A more scientific approach3 involves the global
determination of the constant factor of constitution
heterogeneity (i.e., IHL)

➤ A totally different approach22 focuses on the size,
shape, and size distribution of the liberated, non-
liberated, or even in situ grains of a certain constituent
of interest

➤ A special case when the emphasis of sampling is on the
determination of the size distribution of a material2,22.

The careful combination of cases 3 and 4 can actually
provide a very simple, practical and economical strategy that
may have been overlooked by many sampling practitioners.

▲
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Minimizing the grouping and segregation error

The grouping and segregation error GSE is characterized by
the following properties of its mean and variance:

If the variance of GSE is the product of three factors, this
would suggest that the cancellation of only one factor could
eliminate GSE.

➤ It is not possible to cancel the variance of FSE unless
the sample is the entire lot, which is not the objective
of sampling. However, it should be minimized and we
know how to do this.

➤ It is not possible to cancel Y unless we collect a sample
by collecting one-fragment increments at random one
at a time. This is not practical; however, it is done in
recommended methods by Gy and Pitard for the experi-
mental determination of IHL. In a routine sampling
protocol, the right strategy is to collect as many small
increments as practically possible so the factor Y can be
drastically minimized; this proves to be by far the most
effective way to minimize the variance of GSE.

➤ It is not possible to cancel the factor Z which is the
result of transient segregation. All homogenizing
processes have their weaknesses and are often wishful
thinking processes; this proves to be the most
ineffective way to minimize the variance of GSE. 

The challenges of reality

Reality often shows that between what is suggested by Gy’s
theory and what the actual implemented protocols are, there
is an abysmal difference and we should understand the
reasons for such unfortunate shortcoming; there could be
several reasons:

➤ Requirements from Gy’s theory are dismissed as
impractical and too expensive.

➤ The TOS is not understood, leading to the impression
the TOS does not cover some peculiar problems when it
most certainly does.

➤ The practitioner does not know how to go around some
assumptions made in some parts of the TOS when
limitations of these assumptions have been well
addressed and cured where necessary.

➤ Protocols are based on past experience from somebody
else.

➤ Top management does not understand the link between
hidden cost and sampling.

➤ Normal or lognormal statistics are applied within
domains where they do not belong.

➤ Poisson processes are vastly misunderstood and
ignored.

➤ People have a naïve definition of what an outlier is, etc.

Ingamells’s work to the rescue

Clearly, we need a different approach in order to make TOS
more palatable to many practitioners and this is where the
work of Ingamells can greatly help. Ingamells’s approach can
help sampling practitioners to better understand the

behaviour of bad data, so management can better be
convinced that after all, Gy’s preventive approach is the way
to go, even if it seems expensive at first glance; in this
statement there is a political and psychological subtlety that
has created barriers for the TOS for many years, and
breaking this barrier was the entire essence of Pitard’s
thesis22.

From Visman to Ingamells

Most of the valuable work of Ingamells is based on Visman’s
sampling theory. It is not the intention of this paper to inject
Visman’s work in the TOS. What is most relevant is
Ingamells’s work on Poisson distributions that can be used
as a convenient tool to show the risks involved when the
variance of FSE is going out of control: it cannot be
emphasized strongly enough that the invasion of any
database by Poisson processes can truly have catastrophic
economic consequences in any project such as exploration,
feasibility, processing, environmental, and legal assessments.
Again, let us make it very clear, any database invaded by a
Poisson process because of the sampling and sub-sampling
procedures that were used is a direct, flagrant departure from
the due diligence practices in any project. Yet, sometimes we
do not have the luxury of a choice, such as the sampling of
diamonds; then awareness is the essence.

Limitations of normal and lognormal statistical

models

At one time, scientists became convinced that the Gaussian
distribution was universally applicable, and an overwhelming
majority of applications of statistical theory are based on this
distribution.

A common error has been to reject ‘outliers’ that cannot
be made to fit the Gaussian model or some modification of it
as the popular lognormal model. The tendency, used by some
geostatisticians, has been to make the data fit a preconceived
model instead of searching for a model that fits the data. On
this issue, a Whittle quote21 later on used and modified by
Michel David15, was superb: ‘there are no mathematical
models that can claim a divine right to represent a
variogram.’

It is now apparent that outliers are often the most
important data points in a given data-set, and a good
understanding of Poisson processes is a convenient way of
understanding how and why they are created.

Poisson’s processes

Poisson and double Poisson processes6–8,22 explain why
highly skewed distribution of assay values can occur. The
grade and location of an individual point assay, which
follows a single or double-Poisson distribution, will have
virtually no relationship, and it will be impossible to assign a
grade other than the mean value to mineable small-size
blocks. Similar difficulties can occur with the assessment of
impurity contents in valuable commodities. Now, there is a
little subtlety about Poisson processes, as someone may say
the position of a grain or cluster of grains is never completely
random as explained in geostatistics; this is not the point.
The point is that, more often than not, the volume of
observation we use may itself generate the Poisson process;
there is a difference. 

Theoretical, practical, and economic difficulties in sampling for trace constituents
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The single Poisson process

The Poisson model is a limit case of the binomial model
where the proportion p of the constituent of interest is very
small (e.g., fraction of 1%, ppm or ppb), while the proportion
q = 1–p of the material surrounding the constituent of interest
is practically 1. Experience shows that such constituent may
occur as rare, tiny grains, relatively pure at times, and they
may or may not be liberated; they may even be in situ.
Sampling practitioners must exit the paradigm of looking at
liberated grains exclusively; the problem is much wider than
that. As the sample becomes too small, the probability of
having one grain or a sufficient amount of them in one
selected sample diminishes drastically. For in situ material
the sample can be replaced by an imaginary volume of
observation at any given place. When one grain or one cluster
is present, the estimator aS of aL becomes so high that it is
often considered as an outlier by the inexperienced practi-
tioner whereas it is the most important finding that should
indeed raise attention. All this is a well-known problem for
those involved with the sampling of diamonds.

Let us call P(x = r) the random probability x of r low-
frequency isolated coarse grains appearing in a sample, and θ
is the average number of these grains per sample; see
derivation of the following formula in appropriate
literature8,22.

[1]

If m is the number of trials (i.e., selected, replicate
samples), the variance of the Poisson distribution is θ = mpq
≈ mp since q is close to 1. For all practical purposes, the mean
value of the Poisson distribution is θ ≈ mp. As clearly shown
in the derivation of Equation [1] we could assume in a first
order approximation that θ ≈ mp.

The double Poisson process

When primary samples taken from the deposit contain the
constituent of interest in a limited (e.g., less than 6)4,15

average number µ of discrete grains or clusters of such grains
(i.e., P[y=n]), and they are sub-sampled in such a way that
the sub-samples also contain discrete grains of reduced size
in a limited (e.g., less than 6)4,15 average number θ (i.e.,
P[x=r]), a double Poisson distribution of the assay values is
likely.

The probability P of r grains of mineral appearing in any
sub-sample is determined by the sum of the probabilities of r
grains being generated from samples with n grains.

Let us define the ratio f:

[2]

With θ = µ · f or θ = n · f for each possibility, the equation
for the resulting, compounded probability of the double
Poisson distribution is:

[3]

for r = 0, 1, 2, 3,…

An example of this case is given in Pitard’s thesis22.
This is the probability of obtaining a sample with r grains

of the constituent of interest. The equation could be modified
using improved Stirling approximations for factorials, for
example:

[4]

In practice, one does not usually count grains; concen-
trations are measured. The conversion factor from number of
grains to, per cent X for example, is C, the contribution of a
single average grain. Since the variance of a single Poisson
distribution is equal to the mean:

[5]

Therefore:

[6]

But variances of random variables are additive, then for a
double Poisson distribution we would have:

[7]

The data available are usually assays in % metal,
gram/ton, ppm or ppb. They are related by the equation:

[8]

where xi is the assay value of a particular sample, in % for
example; aH is the low more homogeneous background
concentration in % for example, which is easier to sample; ri

is the number of mineral grains in the sample; c is the contri-
bution of one grain to the assay in % for example:

[9]

Thus the probability of a sample having an assay value of
xi equals the probability of the sample having ri grains when
aH is relatively constant.

The mean value of a set of assays can be shown to be:

[10]

For a single Poisson distribution this equation would be:

[11]  

where x is an estimator of the unknown average content aL

of the constituent of interest. Assuming sampling is correct,
and for the sake of simplicity, in the following part of this
paper we should substitute x with aL. Then:

[12]

then:

[13]

[14]

Substituting Equation [14] in Equation [7]:

[15]

whence:

▲
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[16]

The probability that there will be no difficult-to-sample
grains of the constituent of interest in a randomly taken sub-
sample is found by substituting r = 0 in Equation [3]:

[17]

If a data-set fits a double Poisson distribution, the
parameters µ and θ of this distribution may be found from a
reiterative process, as follows:

Make a preliminary low estimate of aH. Give c an
arbitrary low value. Calculate a preliminary value for f from
Equation [16], and for µ by rearranging Equation [12]:

[18]

Substitute these preliminary estimates in Equation [17];
averaging the lowest P(x=0) of the data to obtain a new
estimate of aH. Increment c and repeat until a best fit is
found. If a Poisson process is involved, which is not
necessarily the case, this incremental process for c will indeed
converge very well.

Notion of minimum sample weight

There is a necessary minimum sample mass Msmin in order to
include at least one particle of the constituent of interest
about 50% of the time in the collected sample which happens
when r =1 in Equation [1] or when n =1 in Equation [3];
Ingamells shows that it can be calculated as follows:

[19]

For replicate samples to provide a normally distributed
population the recommended sample mass MSrec should be at
least 6 times larger than MSmin·. As shown by Ingamells and
Pitard4 and David15 it takes at least r or n=6 to minimize the
Poisson process to the point that a more normally distributed
data will appear. Of course there is no magical number and r
or n should actually be much larger than 6 to bring back the
variance of the fundamental sampling error (FSE) into an
acceptable level22. At this point there is an important issue to
address: all equations suggested by Gy to estimate the
appropriate sample mass when the heterogeneity IHL carried
by the constituent of interest is roughly estimated, should be
used in such a way that we know we are reasonably within a
domain that does not carry any Poisson skewness. Ingamells
suggested that the needed sample mass MSrec is about 6
times larger than MSmin·. The recommended limit suggested
in Gy’s early work is a %sFSE = ±16% relative which happens
to be even more stringent than the Ingamells’s suggestion.    

Notion of optimum sample weight

In a logical sampling protocol a compromise must be found
between the necessary sample mass required for minimizing
the variance of the FSE and the number of samples that are
needed to have an idea about the lot variability due to either
small-scale or large-scale segregation. Such optimum sample
mass MSopt was found by Ingamells and translated in the
appropriate TOS notations in Pitard’s thesis22, and can be
written as follows:

[20]

Where s 2
se is a local variance due to the segregation of the

constituent of interest in the lot to be sampled.

Case study: estimation of the iron content in high-
purity ammonium paratungstate

The following case study involves a single stage Poisson
process and the economic consequences can already be
staggering because of the non-representative assessment of
the impurity content of an extremely valuable high purity
material. It should be emphasized that the analytical protocol
that was used was categorized as fast, cheap, and
convenient. In other words, it was called a cost-effective
analytical method.

A shipment of valuable high-purity ammonium
paratungstate used in the fabrication of tungsten coils in light
bulbs was assayed by an unspecified supplier to contain
about 10 ppm iron. The contractual limit was that no
shipment should contain more than 15 ppm iron. The client’s
estimates using large assay samples were much higher than
the supplier’s estimates using tiny 1-gram assay samples.
The maximum particle size of the product was 150-µm. To
resolve the dispute a carefully prepared 5000-gram sample,
representative of the shipment, was assayed 80 times using
the standard 1-gram assay sample weight used at the
supplier’s laboratory. Table I shows all the assay values
generated for this experiment.

A summary of results is as follows:

➤ The estimated average x ≈ aL of the 80 assays was 21
ppm.

➤ The absolute variance s2 = 378 ppm2

➤ The relative, dimensionless variance s 2
R = 0.86 

➤ The absolute standard deviation s = 19 ppm
➤ The relative, dimensionless standard deviation sR =

±0.93 or ±93%.

From the TOS the following relationship can be written:

[21]

All terms are well defined in the TOS. The subscript 1
refers to the information that is available from a small sample
weighing 1 gram; it is in that case only a reference relative to
the described experiment. The effect of ML is negligible since
it is very large relative to MS.

The value of the variance s2
GSE1 of the grouping and

segregation error is not known; however, the material is well
calibrated and there are no reasons for a lot of segregation to
take place because the isolated grains containing high iron
content have about the same density as the other grains since
their composition is mainly ammonium paratungstate.
Therefore it can be assumed in this particular case that s2

FSE1

≥ s 2
GSE if each 1-gram sample is made of several random

increments, so the value of IHL that is calculated is only
slightly pessimistic. The nearly perfect fit to a Poisson model
as shown in Figure 1 was at the time sufficient proof that the
grouping and segregation error was not the problem, and was
further confirmed latter on by the good reproducibility
obtained by collecting much larger 34-gram samples. The
following equation can therefore be written:
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[22]

Therefore, it can be assumed that IHL ≤ 0.86 g, since the
mass MS = 1 gram, justifying the way Equation [22] is
written. If the tolerated standard deviation of the FSE is
±16% relative, the optimum necessary sample mass MS can
be calculated as follows:

[23]

Obviously, it is a long way from the 1-gram that was
used for practical reasons. This mass of 34 grams is the
minimum sample mass that will make the generation of
normally distributed assays results possible. Another
parameter that can be obtained is the low background content
aH, which is likely around 4 ppm by looking at the histogram
in Figure 1. This high-frequency low value may sometimes
represent only the lowest possible detection of the analytical
method; therefore caution is recommended when the true low
background content of a product for a given impurity is
calculated.

Investigation of the histogram

Figure 1 illustrates the histogram of 80 assays shown in
Table I. In this histogram it is clear that the frequency of a
given result reaches a maximum at regular intervals,
suggesting that the classification of the data in various zones
is possible; zone A with 27 samples showing zero grain of
the iron impurity; zone B with 29 samples showing 1 grain;
zone C with 13 samples showing 2 grains; zone D with 5
samples showing 3 grains; zone E with 3 samples showing 4
grains; zone F with 1 sample showing 5 grains; Zone G with
6 grains shows no event; finally zone H with 7 grains shows
one event, which may be an anomaly in the model of the
distribution. The set of results appears Poisson distributed,
and a characteristic of the Poisson distribution is that the
variance is equal to the mean. The following equivalences can
be written:

[24]

The assumption that aH = 4 ppm needs to be checked.
The probability that the lowest assay value represents aH can
be calculated. If the average number of grains of impurity per
sample θ is small, there is a probability that the lowest assays
represent aH. The probability that a single collected sample
will have zero grain is:

[25]

If we call P(x = 0) the probability for a success, then the
probability Px of n successes in N trials is given by the
binomial model:

[26]

Where P is the probability of having a sample with no grain
when only one sample is selected, and (1-P ) is the

▲
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Figure 1—Histogram of eighty 1-gram assays for iron in ammonium

paratungstate

Table I

Summary of 80 replicate iron assays in high-purity ammonium paratungstate

Sample number ppm Fe Sample number ppm Fe Sample number ppm Fe Sample number ppm Fe

1 4 21 44 41 5 61 28

2 20 22 21 42 31 62 4

3 21 23 21 43 19 63 21

4 31 24 18 44 6 64 29

5 16 25 21 45 18 65 20

6 16 26 4 46 18 66 35

7 14 27 17 47 4 67 19

8 12 28 32 48 4 68 48

9 4 29 7 49 5 69 4

10 9 30 18 50 4 70 14

11 36 31 20 51 19 71 8

12 32 32 21 52 6 72 6

13 31 33 4 53 44 73 115

14 4 34 19 54 74 74 4

15 22 35 32 55 16 75 9

16 4 36 4 56 4 76 13

17 4 37 64 57 33 77 26

18 19 38 7 58 4 78 32

19 48 39 48 59 34 79 4

20 68 40 18 60 64 80 12



probability of having at least one grain when only one
sample is collected; then the probability of no success P(x ≠

0) with N samples is:

[27]

Equation [27] shows the probability that none of N
samples is free from low-frequency impurity grains. The
probability that the lowest assay value represents aH is:

[28]

Assuming that aH is not the analytical detection limit, we
can be sure that the lowest assay represents aH. Having
found that the value θ = 1.18, we may calculate the Poisson
probabilities for samples located in each zone illustrated in
Figure 1. Thus, by multiplying each probability by 80, we
may compare the calculated distribution with the observed
distribution. Results are summarized in Table II.

The observed distribution is very close to the calculated
distribution if we exclude the very high result showing 115
ppm, which should not have appeared with only 80 samples.
A characteristic of the Poisson distribution is that the
variance s2of the assays is equal to the average aL. 

[29]

or

[30] 

But, in practice the number of grains is not used; instead
concentrations are used such as %, g/t, ppm, or ppb. Let us
call C the conversion factor and rewrite Equation [30]
properly:

[31]

Thus, we may calculate the contribution C of a single
average impurity grain to a single iron assay:

[32]

Discussion of acceptable maximum for the standard
deviation of the FSE

Ingamells suggested that a minimum of six of the largest
grains, or clusters of tinier grains into a single fragment, of
impurity should be present in a sample for the analysis of
this sample to be meaningful. The objective of such statement
is to eliminate the Poisson process from damaging the
database. If a 1-gram sample contains an average θ = 1.18
grains, then the minimum recommended sample mass is
around 5 grams. Using this mass and the value of IHL
obtained earlier we may write:

[33]

[34]                                      

But, following Gy’s recommendations23 a 34-gram
sample is recommended in order to achieve a ±16% relative
standard deviation, which would contain about 41 grains; it
is understood that for certain applications, such as sampling
for material balance or for commercial settlements, Gy’s
recommendations in his publications were far more stringent
(5% or even 1%). In order to further discuss this difference,
let us construct the useful Ingamells’s sampling diagram.

With the set of data given in Table I a set of artificial,
large 10-gram samples made of Q=10 small one-gram
samples can be created, and they are shown in Table III. 

Visman sampling equation

With this information Visman sampling constants A and B
can be calculated; it is understood that Visman would have
suggested the collection of larger samples as well explained
by Pitard in his thesis22:

[35]

where S is the uncertainty in the average of N=80 assays on
samples of individual mass

A is the Visman homogeneity constant. It is the Gy’s
Constant Factor of Constitution Heterogeneity IHL multiplied
by the square of the average content of the lot. 

From the variances and Visman’s equation we obtain:

From Gy we suggested earlier:

Those numbers are very close and within the variances
precision, therefore this would suggest there is no room to
calculate the amount of segregation for iron in the lot. It is
wise to assume that B, the Visman segregation constant is:
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Table II

Comparison of the calculated distribution with the
observed distribution

r Poisson probability Calculated Observed

for θ = 1.18 distribution distribution

0 0.307 25 27

1 0.363 29 29

2 0.213 17 14

3 0.084 7 5

4 0.025 2 3

5 0.006 0 1

6 0.001 0 0

7 0.0002 0 1

Total 0.999 80 80

Table III

Iron content of artificial large samples of mass equal
to 10 grams

N sample number Composited small Iron content in

samples large samples

1 1–10 15

2 11–20 27

3 21–30 20

4 31–40 24

5 41–50 11

6 51–60 30

7 61–70 22

8 71–80 23
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This confirms the opinion that iron in calibrated
ammonium paratungstate grains has no reason whatsoever
to segregate in a substantial way, and all the observed
variability is due to the variance of FSE, as suggested by a
nearly perfect Poisson’s fit illustrated in Figure 1 showing the
problem was a sample mass too small by more than one order
of magnitude.

The most probable result

The most probable result γ for the assaying of iron as a
function of analytical sample mass MS is calculated with the
following Ingamells Equation1–3, 22:

[36]

Values of γ are illustrated in Figure 3, and it basically
represents the location of the mode of the probability distri-
bution relative to the expected arithmetic average aL.
Notations in Figure 3 are old Ingamells notations and the
author apologizes for this inconvenience due to the use of an
old software program (i.e., γ =Y, aL = x, L= aH). 

A careful study of the γ curve in Figure 3 (i.e., light blue
curve) is the key to complete our discussion of the difference
between Ingamells’s recommendation and Gy’s recommen-
dation for a suggested maximum value for the standard
deviation of FSE. It can be observed that the recommended
mass by Ingamells (i.e., 6 grains in the sample or a %sSFE =
±41%) leads to a location of the mode still substantially away
from the expected arithmetic average aL. It is not the case
with the necessary sample mass of 34 grams in order to
obtain a %sSFE = ±16% as recommended by Gy.

Ingamells’s gangue concentration

The low background iron content aH estimated earlier to be 4
ppm can be calculated using the mode from results from

small samples and the mode γ2 from results from large
samples. Modes can be calculated using the harmonic means
h1 and h2 of the data distribution of the small and large
samples. The harmonic mean is calculated as follows:

[37]

where N is the number of samples.
From Equation [36] we may write:

[38]

[39]

Then from Equations [1], [2], and [3] the low
background content aH can be calculated as follows:

[40]

Results are shown in Figure 2 and confirm the earlier
estimate of 4 ppm.

▲
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Figure 2—Search for a value of the low background iron content aH

Figure 3—Illustration of the Ingamells’s sampling diagram for iron traces in pure ammonium paratungstate ( �=Y, aL = x, L= aH)



If the reader is interested by the full derivation of the
above formulas, refer to Pitard’s doctoral thesis22. 

Conclusions

The key to sampling for trace amounts of a given constituent
of interest is a thorough microscopic investigation of the
ways such constituent is distributed on a small scale in the
material to be sampled. Liberated or not, the coarsest grains
of such constituent must be measured and placed into the
context of their average, local expected grade. The use of
Poisson statistics and the calculation of an Ingamells’
sampling diagram can lead to defining a minimum sampling
effort during the early phase of a project. Equipped with such
valuable preliminary information, someone can proceed with
a feasibility study to implement a necessary sampling
protocol as suggested by the TOS, with a full understanding
of what the consequences would be if no due diligence is
exercised.

Recommendations

As the sampling requirements necessary to minimize the
variance of FSE as suggested in the TOS may become
cumbersome to many economists, it becomes important to
proceed with preliminary tests in order to provide the
necessary information to create valuable risk assessments.
The following steps, in chronological order, are
recommended: 

➤ Carefully define data quality objectives. 
➤ Always respect the fundamental rules of sampling

correctness as explained in the TOS. This step is not
negotiable.

➤ Perform a thorough microscopic investigation of the
material to be sampled in order to quantify the grains
size of the constituent of interest, liberated or not.
Emphasize the size of clusters of such grains if such a
thing can be observed. 

➤ Proceed with a Visman’s experiment, calculate the
Ingamells’s parameters, and draw an informative
Ingamells’s sampling diagram. 

➤ Show the information to executive managers who must
make a feasibility study to justify more funds to
perform a wiser and necessary approach using Gy’s
requirement to minimize the variance of FSE. 
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