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Abstract

This review deals with the principles of near–field optical signals detected

near a surface in a manner permitting the mapping of the distribution of the

fields close to various kinds of illuminated samples surfaces. We begin with a

discussion of the main physical properties of the optical fields near a surface

in the absence of any detector. This mainly concerns phenomena involving

evanescent waves for which the local decay lengths are governed not only by

the sizes but also by the intrinsic properties of the surface structures. The

interpretation of the detection process in near–field optics is reviewed on the

basis of a discussion about the possibility of establishing direct comparisons

between experimental images and the solutions of Maxwell equations or the
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electromagnetic local density of states.

I. INTRODUCTION

Over the last twenty years, a considerable amount of new developments were generated by

taking advantage of different kinds of near–fields existing spontaneously or artificially close

to the surfaces of various materials. In surface sciences, the practical use of these near–fields

and of their local properties was latent for a long time until local probe based methods

emerged at the beginning of the 1980s, namely: STM or Scanning tunneling Microscopy,

AFM or Atomic Force Microscopy and finally NFO or Near–field Optics. This paper deals

with the principles of NFO techniques which turn out to be a unique tool to map the

distribution of optical fields close to various kinds of samples surfaces.

In surface physics, near–field optical phenomena were already actively studied1–17 well

before the locution “near–field optics” appeared in the mid 1980s with the first realizations

of scanning near–field optical devices18–26. Rapidly, the technical assets of the scanning

near–field devices have offered new opportunities, i.e, detecting evanescent fields in guiding

structures27, imaging and exciting localized plasmons over a metallic surface28, mapping

the luminescence generated at the surface of low–dimensional semiconductor structures29 or

performing subwavelength near–field optical holography30. The reader can find in reference31

a detailed account of the early theoretical works on evanescent electromagnetic waves which

play a central rôle in near-field optics. Instead of a historical review, the purpose of this

paper is to focus on the crucial question of the interpretation of the detected signals by the

various near–field optical devices.

II. WHAT IS MEASURED BY A NEAR–FIELD OPTICAL MICROSCOPE?

Until now, the search for techniques leading to optical resolution beyond the diffraction

limit (to be refered below as “optical super–resolution”) has somewhat occulted the ba-

sic question of the interpretation of the signal detected by near–field optical microscopes.
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Of course, one can expect that optical super–resolution should allow to observe smaller

structures than those identified with a classical far–field optical microscope. However, the

interpretation of experimental images mostly relied on the implicit intuitive assumption that

the detected contrasts should allow to identify the exact shapes of the observed material

structures. Psychologically, this assumption was so dominant that it led to a tendency to

sort out the experimental results which met the expectation of perfect agreement between

the optical signal and the exact shape of the underlying structures. However, as discussed

in reference32, it turned out later that many of the cases where this agreement is found are

suspected to be related to artefacts which may occur when controlling the tip motion with a

feedback loop, not using the near–field optical signal, but using auxiliary AFM (shear–force)

or STM signals. Moreover, although rarely mentionned clearly in the literature, it is an ex-

perimental fact that many (artefact free) recorded near–field optical images do not show

this kind of agreement. Theoretical works33–35 intended then to recover the exact shapes

of the observed material structures by applying mathematical techniques which are akin of

inverse scattering and/or deconvolution methods. Such approaches still implicitly assume

that near–field optical images should allow to identify the exact shapes of the underlying

material structures, albeit after some data processing.

In this paper, we deliberately avoid to discuss about the principle of satisfying the ex-

pectation raised by this assumption. Instead, we propose a practical alternative to answer

to the question of the interpretation of near–field optical images. For this purpose, we first

summarize what kind of electromagnetic near–fields are known to exist in the vicinity of

surfaces.

A. Electromagnetic near–fields close to surfaces

The surface limiting a solid body modifies locally the physical properties of many ma-

terials (dielectric, metal, or semi–conductor)36. Breaking the translational symmetry of

homogeneous media leads to specific surface phenomena that have been well–identified for
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a long time (spontaneous polarization, electronic work function, electronic surface state,

surface polaritons, surface enhanced optical properties, etc...).

In electrodynamics, a surface may be viewed as a place which can support different classes

of near–fields. Actually, we have to distinguish two categories of surface electromagnetic

near–fields:

(i) Surface electromagnetic near–fields which are the result of an external excitation (like

photon or electron beams incident on a surface). They can be considered as the

excited states of the photons field. Both optical near–fields and surface polaritons

excited at a solid interface provide good illustrations of this category. Since they

can be manipulated by an external operator, they are involved in the various optical

near–field microscope setups26,37.

(ii) Quantum zero point fluctuations of electromagnetic fields which are confined near a

solid–vacuum interface. Since they exist in the absence of any external excitation,

one can view them as the ground state of the photons field. They are responsible for

near–field dispersion effects, such as the van der Waals force field and the spontaneous

interfacial polarization of the free surface of a dielectric. They thus play a significant

rôle in local probe experiments such as AFM38,39.

B. Probing electromagnetic near–fields locally

At first sight, the main feature of all near–field optical microscopes is the nanometre–

sized tip which is piezoelectrically driven to scan close to the sample surface. However,

according to the experimental setup (see the review of existing devices in reference37), the

tip may be used as a local photon emitter or as a local probe of the optical near–field. For

reasons which will be made clear below, we will distinguish the various near–field optical

microscope between passive probe devices and active probe devices. Among the passive

probe devices, we find the PSTM (Photon Scanning Tunneling Microscope)22 or STOM
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(Scanning Tunneling Optical Microscope)23 and the family of so–called “apertureless” near–

field optical microscopes40–42 which all use their tips as local detectors only. PSTM exploit

bare and sharply elongated optical fibres which may sometimes be coated with metals while

apertureless microscopes are using bare metal tips.

The various transmission SNOM (Scanning Near-Field Optical Microscope)18,19 config-

urations belong to the category of active probe devices because their probe act as a local

emitter of light. Reflection SNOM devices43 use their tips both as local emitter and local

detector, but the discussion below will make clear that they are fundamentally active probe

devices. SNOM favor metallized tips with a subwavelength aperture at the apex. Today,

they are mostly obtained by coating a sharply elongated optical fibre. Recent alternatives

involves tips with a tetrahedral termination (entirely or partly coated with metal)44 or mi-

crofabricated silicon–nitride tips with various shapes and coatings. In fact, as detailed in

a recent review, the design of tips is still an open problem37. It mostly relies on empirical

steps. The optimal tip characteristics for ensuring the best imaging properties are not well

stated.

In the various theoretical descriptions of near–field optical devices, practical computa-

tional reasons require the simplification of the cumbersome task of taking the tip to sample

coupling accurately into account. Cases where the interpretation of near–field optical im-

ages is problematic are often attributed to the approximations made in describing each kind

of tip. Instead of discussing the principle of refining the description of this coupling, we

propose here a practical point of view which is based on the distinct features of each family

of probe devices.

The usual goal of a measurement is to provide informations about a physical system.

Although quantum physics has shown that the situation may be complicated by entangled

states, relevant informations are those describing some aspect of the physical system, aspect

that is still supposed to exist in the absence of the measurement process. With the clas-

sification of section IIA in mind, let us now consider what kinds of physical quantities do

exist, close to a sample surface, at optical frequencies and in the absence of any measure-
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ment process, i.e. if no probe tip is present. In view of the above distinction, the physical

quantities are of quite different natures according to the passive or active character of the

probe devices. Let us begin by the simplest situation, namely the passive probe devices.

C. Passive probe devices

In this case, the illumination of the sample is not achieved through the tip but by a

classical incident plane wave. In PSTM setups, the illuminating field is incident below the

surface at an angle larger than the critical angle for total reflexion θtot. Above a perfectly

flat surface, the resulting incident field is a surface wave which decays exponentially along

the z direction (figure 1B).

Some apertureless microscopes also use the total internal reflection to excite surface

plasmons of thin metal film40: above the surface, the near–field of the surface plasmon also

decays exponentially along the z direction. Recently, apertureless microscopes were also

used to study localized plasmons of random–metal dielectric films45. Other apertureless

microscopes41,46 use the external illumination from the outside medium (figure 1A) so that

the distribution of the electromagnetic near–field above the sample critically depends on the

incident angle since, except at the Brewster angle, the field intensity is modulated by the

interferences between incident and reflected waves.

For our practical purpose, we retain that the common feature of passive probe devices

is that the electromagnetic near–fields which exist close to the sample surface when no tip

is present belong to the category (i) of the classification of section IIA. In the absence of

the tip, the optical near–fields close to the sample surface correspond to excited state of

the photons field. Theoretically, they are described by solving Maxwell equations where the

incident field is defined by the experimental conditions.

6



D. Active probe devices

In these devices, the incident field is due to the emitting tip which is assumed to deliver

a spatially localized source of light47–51. The electromagnetic near–fields which exist close to

the sample surface when no tip is present belong thus to the category (ii) of the classification

of section IIA. In the absence of the tip, the optical near–fields correspond to the ground

state of the photons field, i.e. to the electromagnetic near–fields which exist spontaneously

in the absence of any external driving excitation.

In the case of active probe devices, the proposed practical point of view brings to the

fore that the quantity which could be expected to be measured is related to the local density

of states (LDOS) of the electromagnetic field. Since it describes the distribution of the

electromagnetic field when there is not any incident field, the LDOS is not a commonly

used concept in optics textbooks. Probably, the best known exemple of the use of this

concept occurs in Planck’s description of the black body radiation where the LDOS multiplies

the Bose–Einstein distribution. In this context, the formula of the LDOS is derived in

a straightforward manner. However, in the context of near–field optics discussed here,

obtaining a theoretical distribution of the LDOS turns out to be computationally more

demanding.

E. Interpretation of the images

The following work program is required to check the validity of the hypothesis underlying

the practical point of view developed in this section:

(a) Are the images obtained by passive probe devices in agreement with the distribution of

the electromagnetic near–field scattered by the sample surface, as computed without

including any tip?

(b) Is there any link between the images obtained by active probe devices and the dis-

tribution of the electromagnetic local density of states close to the sample surface, as
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computed without including any tip?

The section V below reviews recent results which support a positive answer to the point (a)

of the above program. However, the status of point (b) should be understood as a suggestion

aimed at finding an issue to the difficult problem of the interpretation of the images obtained

with active probe devices.

III. BASIC THEORY

The practical point of view proposed in section II requires a single theoretical framework

which enables, close to the sample surface, the computation of the scattering of an electro-

magnetic field in the case of passive probe devices and a description of the LDOS in the case

of active probe devices. These both features are delivered by a formulation based on the

use of Green dyadics, also called propagators or field susceptibilities which we summarize in

this section52–55.

A. Scattering theory

With the usual exp(−iωt) time dependence, the vector wave equation issued from

Maxwell’s equations (CGS units):

−∇×∇× E(r, ω) +
ω2

c2
ǫ(r, ω) E(r, ω) = 0 (1)

may be cast as

−∇×∇×E(r, ω) + q2 E(r, ω) = V(r, ω) E(r, ω) (2)

with

q2 =
ω2

c2
ǫref . (3)

Any complicated behavior due the anisotropy or to the low-symmetry of the geometrical

shape of the original dielectric tensor profile ǫ(r, ω) is described as a difference relatively to

the reference system ǫref (1 is the unit dyadic):
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χ(r, ω) =
1

4π
(ǫ(r, ω) − 1 ǫref) . (4)

The implicit Lippmann-Schwinger equation provides a solution of equation (2):

E(r, ω) = E0(r, ω)

+
∫

V
dr

′

S0(r, r
′

, ω) · χ(r
′

, ω) · E(r
′

, ω). (5)

In scattering theory, the first term E0(r, ω) is refered as the incident field while the

second term is called the scattered field obtained from the integration over the domain V

where χ(r
′

, ω) is non-zero. V defines the volume of the scatterer relatively to the reference

system. This last equation can easily be solved numerically31 so that it provides a useful

tool for the evaluation of the theoretical near–field distributions which are needed to check

the point (a) of section II E.

To solve the Lippmann–Schwinger equation, we need to know the analytical solution

E0(r, ω) satisfying

−∇×∇×E0(r, ω) + q2 E0(r, ω) = 0 (6)

and the associated Green’s dyadic defined by

−∇×∇× S0(r, r
′

, ω) + q2 S0(r, r
′

, ω)

= −
4πc2

ω2
1 δ(r − r

′

) (7)

where δ(r − r
′

) is the Dirac delta function. The reference structure ǫref is usually a ho-

mogeneous background material or a semi-infinite surface system so that E0(r, ω) is known

analytically. For homogeneous media, the analytical form of S0(r, r
′

, ω) is known from an-

cient works56,57. For a surface system, the expression of the propagator is somewhat more

elaborated but is also found in the literature1,17,58.

B. Local density of states

Well–known in solid state physics59, the use of the LDOS is not commonly spread in

electrodynamics1,60. Solid state physics applies the concept of LDOS to non–relativistic
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electrons so that the LDOS corresponds to the density of probability to find an electron of

energy h̄ω at the point r of the solid. This function is directly related to the square moduli

of all possible electronic wavefunctions associated to this energy. In the case of photons,

different formulations of the LDOS can be proposed depending on the reference field. The

most widely used formulation relies on the calculation of the electric field susceptibility The

LDOS is then deduced from the electric Green’s dyadic S(r, r′, ω) of a sytem

ρ(r, ω) =
c2

πω2
ℑ Trace S(r, r, ω) (8)

where ℑ denotes the imaginary part. The vector character of electromagnetic fields allows

to view this LDOS as the sum

ρ(r, ω) =
∑

j=x,y,z

ρjj(r, ω) (9)

where the “partial” LDOS are defined by:

ρjj(r, ω) =
c2

πω2
ℑ Sjj(r, r, ω). (10)

With this reference field, the LDOS is related to the square moduli of the electric field

associated to all electromagnetic eigenmodes of frequency ω. When this quantity is defined

on the basis of any kind of mixed field–susceptibilities, such straightforward relation to the

electric field is not possible anymore. However, in any case, the LDOS is the only quantitative

way to describe the continuous part of the spectrum of any system independently of the

excitation mode. In the context of optics, this means that the LDOS provides spectroscopic

informations which are intrinsically independent of any particular illumination mode. This

independence is exactly the basic feature which is postulated in the practical point of view

developped in section II.

Within the framework of the linear response theory, the propagator entering equation

(8) provides the value of the electric field (electric or magnetic) at an observation point r

and a point–like source located at r′. This propagator is a second rank tensor which verifies

a dyadic Dyson equation:
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S(r, r′, ω) = S0(r, r
′, ω)

+
∫

V
S0(r, r

′, ω) · χ(r′, ω) · S(r, r′, ω)dr′ , (11)

so that it may be deduced using the propagator S0(r, r
′

, ω) of a reference system (homoge-

neous medium or surface) that we defined above61–63.

IV. APPLICATION OF THE THEORY TO PASSIVE PROBE DEVICES

This section presents a simple application of the above formalism in order to model the

near–field distribution close to a particle deposited on a surface.

A. Decay length of surface optical waves

In the TIR configuration, the basic surface wave is generated by illuminating the surface

through the substrate by a monochromatic planewave of frequency ω0, incident at an angle

θ larger than θtot. Two different incident polarizations can be considered: the s polarization,

where the incident electric field is parallel to the surface and the p polarization, where the

incident electric field is in the plane of incidence.

The incident field at an observation point r = (x, y, z) = (l, z) above the surface ( see

figure (1B)) reads

E0(r, ω) = E0 e
ik·l e−z/η (12)

where

η−1 =
ω

c

(

sin2 θ − sin2 θtot
)1/2

(13)

and

‖k‖ =
ω0

c
sin θ . (14)

When, for example, the incident field is propagating along the y–axis, one obtains for the s

polarization:
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E0x(r)= A0Ts

E0y(r)= E0z(r) = 0 ; (15)

and for the p polarization:

E0x(r)= 0

E0y(r)= A0Tpδc (16)

E0z(r)= A0Tpδs ;

where

δs=
sin(θ)

sin(θtot)
,

δc=
iη

k0 sin(θtot)
. (17)

In equations (15) and (16), A0 is proportional to eikye−z/η, and the factors Ts and Tp are

the usual transmission coefficients for each polarization64. Through Maxwell equations, the

magnetic field B0(r) associated with the surface wave is then deduced from the relations

(12), (15) and (16):

B0(r, ω) =
c

iω
∇∧E0(r, ω) (18)

These last four equations completely define the electromagnetic state of the surface

optical wave. The decay length η of the electromagnetic evanescent field is defined by

analyzing either the variations of the electric field or of the magnetic field intensities as a

function of the distance z from the sample. For the perfect planar surface considered in

this section, η does not depend on the polarization state. It just depends on the contrast of

index of refraction (implicitly contained in the parameter θtot through Snell’s law) and, as

described in figure (2), on the angle of incidence θ. Near the grazing angle (θ ∼ 90◦) this

parameter takes large values and the optical evanescent wave vanishes.
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B. Modelling the optical response of particle on a flat surface

The presence of structures buried in the substrate, protrusions lying on the surface, or

any other kind of surface defects modifies significantly the state of the surface optical wave

described in the preceding section IVA. To illustrate the interaction between an optical

evanescent wave and a subwavelength size object lying on a sample surface, we consider the

model spherical system whose geometrical parameters are described in figure 3. For optical

wavelengths, the subwavelength regime covers the range of nanoscopic sizes. In order to be as

simple as possible, the optical response of the sphere is modelled by a point-like polarizability

α0(ω) which will allow to tackle the problem analytically. Indeed, the susceptibility χ(r, ω)

is reduced to:

χ(r, ω) = α0(ω) δ(r − rs) (19)

where rs = (0, 0, D) points to the particle position.

The Lippmann-Schwinger equation (5) can then be handled algebraically since the point-

like nature of the model optical response avoids the complication due to the integration. This

allows to bring to the fore17,65–67 how the substrate modifies the polarizability α0(ω) of the

particle into the effective polarizability tensor α through:

α(rs, ω) = α0(ω) · M(rs, ω) (20)

with

M(rs, ω) = [1 − S0(rs, rs, ω) · α0(ω)]−1 (21)

where S0(rs, rs, ω) is the nonretarded propagator associated with the bare surface. In the

context of molecular physics, the sphere models a molecule and α is called the “dressed”

polarizability which describes the optical properties of the spherical particle–surface system.

In the past, theoretical works17 have been devoted to the calculation of the dressed polar-

izabilities of molecules interacting with various substrates (spheres, cylinders, planes, ...).

If the polarizability α0(ω) of the isolated particle is isotropic, the symmetry of the tensor
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α(rs, ω) is mainly determined by the symmetry of the substrate. In the specific case of a

single spherical particle interacting with a planar surface, the dyadic tensor M(rs, ω) turns

out to be diagonal. Consequently, α(rs, ω) belongs to the C∞v symmetry group. In this

case, the tensor α involoves only two independent scalar components α|| and α⊥
17,31,67

α(rs, ω) =

















α‖(rs, ω) 0 0

0 α‖(rs, ω) 0

0 0 α⊥(rs, ω)

















(22)

with

α‖(rs, ω) =
8 α0(ω) D3

8 D3 − α0(ω) ∆(ω)
(23)

and

α⊥(rs, ω) =
4 α0(ω) D3

4 D3 − α0(ω) ∆(ω)
(24)

In these two relations, the factor ∆(ω) = (ǫ(ω)−1)
(ǫ(ω)+1)

is merely the nonretarded reflection coef-

ficient of the surface. Let us notice that when the particle and the substrate are made of

dielectric materials of low optical indexes, the anisotropic ratio defined by

ξ =
α⊥

α‖

(25)

remains always close to unity over all the optical spectrum. In this case, the polarizability

α0(ω) of the free particle provides an excellent approximation of the effective polarizability

tensor α(rs, ω). This approximation is no longer valid when dealing with metallic objects

for which all further calculations must be performed on the basis of equations (23) and (24).

C. Contrast in the near–field zone

We now deal with the interaction of the model particle with an incident optical surface

wave set up by total internal reflection as described in section IVA. We focus on the near-

field zone, defined here as the points r located above the sample close the particle. In this
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zone, the incident surface wave is locally distorted by the interaction with the particle. To

keep the matter as simple as possible, we consider a particle which satisfies the criterion

defined by equation (25) so that we can use the first Born approximation. In this case, we

obtain analytically tractable formulas for both electric E(r, ω) and magnetic B(r, ω) fields

scattered by the fluctuating dipole moment µ(rs, ω) = α(rs, ω) ·E0(rs, ω) induced inside the

particle:

E(r, ω) = E0(r, t)

+ S0(r, rs, ω) · α(rs, ω) · E0(rs, ω) (26)

and

B(r, ω) = B0(r, ω)

+ Q0(r, rs, ω) · α(rs, ω) · E0(rs, ω) (27)

Above the substrate, we now approximate the dyadic tensors S0(r, rs, ω) and Q0(r, rs, ω)

by the free space propagators which describe the fields radiated by an arbitrarily oriented

dipole68. In the near–field zone, i.e. when |r − rs| < 2πc/ω, neglecting retardation effects

allows to write these propagators as:

S0(r, rs, ω) = ∇r∇r

{

1

|r− rs|

}

(28)

Q0(r, rs, ω) =
iω

c|r− rs|3

















0 −z +D y

z −D 0 −x

−y x 0

















(29)

Quite often, in the experimental images provided by passive probe devices, small surface

protrusions may appear with either a dark or a bright contrast, corresponding to a smaller

or a larger number of detected photons. From Equations (26) and (27), we are now able to

deduce four useful analytical expressions bringing to the fore the explicit dependence of the

near–field intensity constrast with respect to the external parameters. This is achieved by

defining two dimensionless coefficients depending on the location of the observation point r:
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Ξe(r) =
|E(r, ω)|2

|E0(r, ω)|2
− 1 (30)

and

Ξm(r) =
|B(r, ω)|2

|B0(r, ω)|2
− 1 (31)

When the observation point (that could be physically materialized by a sharp probe) is

located just on the top of the particle (i.e., when r = R0 = (0, 0, Z0)), both the sign and

magnitude of these coefficients provide direct information on the electric and magnetic con-

trasts near subwavelength dielectric particles. For example, for the electric contrast, we can

write

Ξe,s = −
2α‖

(Z0 − R)3

{

1 + o(|Z0 − R|6)
}

(32)

and

Ξe,p =
2α⊥

(

n2 sin2 θ0 + 1
)

(n2 sin2 θ0 − 1)(Z0 −R)3

{

1 + o(|Z0 − R|6)
}

(33)

The main physical behaviors predicted by these relations as well as the two ones for the

magnetic part are summarized in tables I and II.

Before discussing further the physical meaning of these tables, let us note that the trends

gathered in tables I and II, on the basis of the elementary model developped in this section,

are in agreement with the outputs of various the Maxwell equations solvers designed to cope

with nanoscopic parameters31,35. Specifically, the technique of perturbation in reciprocal

space69, based on the Rayleigh approximation, leads to the same conclusions.

The validity of the above theoretical analysis is supported by the successfull explanation

of the contrasts observed by passive probe devices. As detailed in the next section, when

dealing with subwavelength sized localized objects, the contrasts predicted by the simple

dipolar model are found in excellent agreement with available PSTM experimental data on

relevant dielectric objects70.

We close this section by noticing that, in the p polarized mode and close to subwavelength

size dielectric objects, equation(31) predicts strongly contrasted dark magnetic field intensity
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patterns which dramatically depends on the incident illumination angle θ0 (see table II).

Although the complete experimental investigation of this peculiar effect has not been yet

performed, this trends seems to be in qualitative agreement with recent local measurements

of the optical magnetic field using Au coated tips71.

V. PASSIVE PROBE DEVICES:

DIRECT COMPARISON OF THEORETICAL AND EXPERIMENTAL IMAGES

The point of view developped in section II states that images recorded by passive probe

devices should be interpreted as the result of the scattering of quasi–two–dimensional surface

waves by the various defects (asperities, kink, etc...) lying on the sample surface. The

surface waves generated by total internal reflection are viewed as quasi–two–dimensional

because they decay exponentially in the direction normal to the sample surface. The surface

defects scatter these waves parallel to the surface and induce some loss due to diffraction

which couples light to the external medium. Passive probe near–field optical microscopes

approach a local probe very close to the sample surface so that they detect mostly the field

distribution of the quasi–two–dimensional scattered surface wave rather than the diffracted

components which propagate away from the sample surface.

A. Dielectric samples

Using passive probe devices, the observation of dielectric structures deposited on dielec-

tric substrates allows to check experimentally the validity of the analysis of section IVC.

Such experimental test was performed recently70 using a sample displaying sub–wavelength

features. The patterns consist of several glass pads lying on a glass surface (figure 4) ob-

tained by standard electron beam lithography and reactive ion etching techniques. In the

sample of figure 4 (a), six pads had initially been placed at the corners of an hexagon around

a central pad. Unfortunately, the lower left pad was later lost during the ultrasonic cleaning

process. Also, a large aggregate (approximately 400 nm ×300 nm) is found in the lower
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right part of the scanned area. Nevertheless, this defect is useful to support the explanation

of the optical effect to be discussed below.

Figures 5 and 6 show constant intensity PSTM images recorded with sharpened bare

(uncoated) optical fibers for both incident polarizations s et p. The angle of incidence of

60 degrees and the incident wavelength λ = 633 nm set the effective wavelength λ‖ of the

surface wave close to 500 nm.

Figure 5 displays the image recorded close to the sample of figure 4 (a). In both po-

larizations, the field detected above the pads appears bright but the multiple scattering of

the incident surface wave downgrades the image–object relation . This multiple scattering

is not only due to the pads themselves but also to other structures or defects located at

larger distances outside of the scan area of the image. For surface structures of the order of

λ‖/2 (mesoscopic regime), it thus turns out that the multiple scattering of the quasi–two–

dimensional waves builds the dominant feature of the image recorded by a passive probe

device. This means that the image provides informations about the spatial distribution of

the optical field rather than a direct identification of the shapes of the underlying objects.

Such observation is thus in agreement with the point (a) of section II E.

Let us now consider the sample of figure 4 (b) where the pads size is of the order of λ‖/5.

In this nanoscopic regime, recent theoretical works72 demonstrated that reducing the defects

and their relative spacing to nanoscopic sizes leads to the extinction of the interferences due

to the multiple scattering of the surface waves and a concurrent increasing importance of

the light confinement effects summarized in tables I and II. When the fabricated nanoscopic

structures were illuminated under TM polarization, they showed a positive (bright) contrast

in the near–field image (Fig. 6 (a)). But they appear with a negative (dark) contrast

if the incident field is TE polarized (Fig. 6 (b)). Observing this inversion of contrast is

associated with the nanoscopic size of the pads. Indeed, the larger defect in the lower right

part of the scanned area (see figure 4 (b) reference) is recognized by a positive contrast in

both polarizations. If we now check against the dependence of the contrast on the incident

polarization in tables I and II, we deduce that the sharpened bare (uncoated) optical fibers
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detect signals of electric nature. On the basis of this hint about the nature of the signal, it

is now possible to answer to the question (a) of section II E by computing exactly the near–

field spatial distribution of |E(r, ω)|2, in the absence of the tip, in order to see if it matches

the experimental images of figure 6. Taking into account the experimental illumination

conditions, the computations presented in figure 7 have solved exactly the discretized form

of equation (5) where the experimental topography of figure 4 (b) defines the input values

of χ(r
′

, ω). The excellent agreement between the experimental results and the theoretical

distribution of |E(r, ω)|2, as computed in the absence of the tip, supports a positive answer

to the question (a) of section II E. Let us notice that the translation of the features of the

computed image relatively to the ones of the experimental image is explained by the fact

that the AFM topographical data used as inputs of the computations are not centered at

the same location of the sample surface as the PSTM data: indeed, after substituting the

AFM tip by the sharpened optical fiber, it is not possible to scan exactly the same area.

We close this section by mentionning that signals of magnetic nature have been discovered

when using Au coated fiber tips in a passive probe device71. Works in progress confirm that

this kind of tips may indeed lead to the detection of the distribution of the magnetic field

associated to the optical wave.

B. Resonant metallic structures

Still using passive probe device, we now turn to the observation of metallic nanostructures

sustaining plasmon resonances73. The resonant feature of these nanostructures is associated

with an optical response which does not meet the criterion of equation (25). The theoretical

analysis of section IVC does not apply anymore so that we will compare the experimental

results directly with the numerical solution of equation (5).

Also resulting of a microfabrication process, Au particles are deposited on ITO glass

substrate. Their geometry was checked by scanning electron microscopy and AFM measure-

ments. The particles shape was found to be akin of a half oblate spheroid (cut plane on
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the substrate). Their typical sizes were a 100 × 100 nm2 section and a 40 nm height. A

microspectrometer located in the far–field measured the single particles’ plasmon peak at

the wavelength of 640 nm.

The plasmon resonance of the Au particles is associated to a large lateral variation of the

intensity in the near–field zone so that the image acquisition can not be performed efficiently

at constant intensity. The tip is thus scanned at a constant height above the sample surface

while monitoring the light intensity level. Successive images are recorded while bringing the

tip closer to the sample surface by 5 nm steps. The series of images terminates when the

tip touches a particle. One retains the last complete image which was recorded before the

tip crash.

In the computation which does not include any tip, the p polarized incoming field E0

(λ = 633 nm) was adjusted to fit the experimental conditions: total internal reflection with

an angle of incidence equal to 55 degrees and projection of the incident wavevector onto the

surface substrate pointing mostly towards the y direction with a slight tilt to the upper left

corner of the images. To solve the discretized form of equation (5), the discretization cells

of a single Au particle were chosen to be 10×10×10 nm3 cubes. On the basis of the results

found for dielectric samples, the use of sharpened bare (uncoated) optical fiber tips leads to

compare the experimental image with the theoretical distribution of |E(r, ω)|2.

Figure 8 compares a theoretical computation with an experimental PSTM image recorded

above an isolated Au particle. Fig. 8 (b) maps the distribution of the normalized intensity

of the electric field associated to the optical wave (|E(r, ω)|2/|E0(r, ω)|2) at the constant

height z = 140 nm above the glass substrate. This constant height does not correspond to

the experimental tip to sample distance which was determined to be less than 45 nm since

the experimental image displayed in Fig. 8 was the last one recorded before the tip touched

the particle due to approaching the tip 5 nm closer to the sample. The height z = 140 nm

was found to provide the best agreement between the computed image and the experimental

one after examining systematically the computed distribution patterns in planes parallel to

the substrate surface at heights ranging between 0 and 200 nm. Since, in this height range,
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the distribution patterns are very similar from one plane to another, the best agreement is

defined as the pattern exhibiting a contrast between the lowest and the highest intensity

which is closest to the experimental image. We justify this procedure by the fact that the

tip is not included in the calculation. Since the tip integrates the optical field over a certain

volume, the heigth z = 140 nm should be interpreted as a rough modeling of the averaging

process occuring inside the tip.

The agreement between the patterns of the calculated and the experimental images is

excellent. Since the simulation has not included the tip, the experimental image exhibits a

broader and less contrasted pattern. The simulation recovers successfully the interference

between the incident surface optical wave and the wave scattered by the Au particle. The

computation fixes the exact position of the particle to be between the two central bright

spots. The near-field optical signature of a single Au resonant nanoparticle, as detected by

a passive probe device, is thus different of the signature of the dielectric structures with

similar geometrical features which was discussed in the preceding section. Moreover, this

signature turn out to be much larger than the size of the underlying resonant Au particle.

Once again, all these features support the point of view that active probe device provide

image of the spatial distribution of |E(r, ω)|2.

C. Observation of localized plasmons coupling

To give a definitive positive answer to the question (a) of section (II-E) one can use

an arrangement of Au particles, identical to the ones described in the preceding section, in

order to build a different distribution |E(r, ω)|2 to be detected by the near–field microscope.

This can be achieved by aligning 10000 of such particles in a row with a spacing of 100

nm. In this configuration, the localized plasmons of each individual particle may couple

to each other and set a hybrid plasmon mode. Using the same illumination and detection

conditions as in the preceding section, the observation of this phenomenon is reported in

figure 9 (a). The main feature of this coupling is the transverse squeezing of the optical field

21



distribution which contrasts with the broad spots found above a single particle (see figure

8). Indeed, the tip has integrated the detection of the optical field over its own volume at

least. Consequently, the field distribution in the absence of the tip is probably narrower.

The model calculation (figure 9 (b)) confirms that the spots are narrower than in the case

of the single Au particle (figure 8). However, the calculated squeezing is not so narrow as

in the experiment since the modeling involved only 30 particles instead of the 10000 present

in the experiment. The squeezing probably increases as the chain length grows.

VI. ACTIVE PROBE DEVICES:

THEORETICAL ASSESSMENT OF THE RELEVANCE OF THE LDOS

A rapid overview of the near–field optics literature brings easily to the fore that the ideal

active probe device is considered to be a point-like source of light. Various empirical pro-

cedures intend to produce tips which are as close as possible to this ideal emitting feature.

A fluorescing structure (made of one or several molecules) attached at the apex of a tip

provides a good approximation to such ideal point source74. Therefore, we will tackle the

theoretical assessment of the relevance of the electromagnetic LDOS to interpret the images

delivered by active probe devices using the model of a fluorescent structure as local emitter

of light. This choice presents not only the advantage to weaken the need for a discussion

about the most appropriate tip shape and size which enter the calculation, but is also of

actual experimental interest: indeed, six years ago, the detection of local signals emitted by

individual molecules was reported by Betzig and Chichester75. In particular, these authors

demonstrated how a fluorescing individual molecule was able to map the electric field inten-

sity generated at the apex of a metal coated tip. Since these pionneering work, an increasing

interest has been devoted to single molecular detection technique76.
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A. Molecules in confined geometry

In the presence of molecules, the optical electric field calculation turns out to be a

difficult task, and different approximations may be applied77–82. Several microscopic systems

(adsorbates) in interaction with a mesoscopic surrounding (like the tip-surface junction)

build a low symmetry system and, consequently, makes the application of any method based

on standard boundary condition particularly heavy. For our purpose, we will show that the

basic theory developped in section III provides an appropriate framework to discuss some

theoretical aspects of the emission of light by a fluorescing molecule placed in a complex

surrounding. Starting from a standard light–matter coupling Hamiltonian, we derive a self-

consistent equation for the optical field lying around molecular systems. At the fluorescence

wavelength, we will establish the direct relation existing between the fluorescence lifetime

change and the electromagnetic local density of state associated with the sample.

B. Quantum derivation of the self–consistent field

Let us consider a single molecule trapped inside a confined geometry (cf. figure 10).

For example, it may be the junction formed by the tip of a scanning near field optical

microscope (SNOM) facing the surface of a sample. When this system is perturbed by an

external optical field E0(r, ω) coming from an external laser source, the field E(r, ω) in the

gap may be derived from the formalism described in section III. We temporarily switch from

the ω-space to the time dependent representation and note that the field E is an observable

physical quantity since it has already been averaged on the quantum states of the whole

primary system (dielectric surrounding).

The interaction Hamiltonian coupling between the primary system and the molecule

reads

H(t) = −(E(rm, t) + E(rm, t)) · µ(t), (34)

where µ(t) and E(rm, t) are, respectively, the polarization operator of the molecule and the
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electric field operator associated with the three–dimensional dielectric surrounding. The

vector rm labels the position of the molecule. These operators are written here in the

interaction representation

E(rm, t) = exp[ih̄−1H0t]E(rm) exp[−ih̄−1H0t] (35)

and

µ(t) = exp[ih̄−1H0t]µ exp[−ih̄−1H0t] (36)

where H0 represents the Hamiltonian for the tree-dimensional dielectric surrounding. As in

all standard linear response calculations, we consider that the perturbation is limited to one

that vanishes sufficiently as t → -∞. To ensure the adiabatic turning on of the perturbation

we replace H(t) by H(t) expηt where η is greater than zero, but vanishingly small. Note

that in the present description, the eigenstates associated with the field operator E(rm, t))

are the eigenstates of the dielectric surrounding.

The simultaneous time evolution of both field states and molecular states can be derived

by well-established techniques based on time–dependent perturbations theories. In the in-

teraction representation, the wave function |ψ(t) > that describes the evolution of the whole

system is given by

|ψ(t) >= exp[ih̄−1H0t]|φ(t) > (37)

where |φ(t) > labels the wave function of the entire system written in the Schrödinger

representation. A first order expansion of |ψ(t) > leads to the well-known result

|ψ(t) >= |φ0(t) > +
1

ih̄

∫ t

−∞
H(t′)|φ0(t

′) > dt′ (38)

C. Quantum Average of the Optical Field

At this stage, since one neglects all chemical interactions between the molecule and its

surrounding, one can assume that there is no significant modification of the whole wave

24



function |ψ > of the system due to the short range interaction (of chemical origin for

example) between the molecule and the tree-dimensional dielectric surrounding. In this

situation, it is worthwhile to apply the time dependent Hartree approximation in which one

assumes that each part of the system moves under the combined effect of the external force

and the average displacement of the other system. A straightforward application of the

perturbation theory shows that the linear response of the field E(rm, t) at the location of

the molecule is given by

Em(rm, t) =< E(rm, t) + E(rm, t) >= E(rm, t)

+
∫ t

−∞
S(rm, rm, t− t′)· < µ(t′) > dt′ (39)

In this time–dependent equation, the dyadic S(rm, rm, t− t
′) represents merely the time–

dependent field–susceptibility associated with the SNOM junction (the ω–space representa-

tion of S appears in equation 11). From relations (34) to (39), it is clear that S is formed

by a succession of quadratic products of the different matrix elements of the operator E(rm)

S(r, r′, t− t′) =

i

h̄

∑

m,n

ρm,m{E(r)mnE(r′)nme
i/h̄(En−Em)(t−t′)

− E(r′)mnE(r)nme
−i/h̄(En−Em)(t−t′)} (40)

where Em and En are energies of the unperturbed quantum states of the surrounding and

ρm,m a diagonal element of the density matrix. In equation (39), the quantum average

< µ(t) > can be expressed by a second linear equation

< µ(t) >=
∫ t

−∞
αm(t− t′) ·Em(rm, t

′)dt′ (41)

where αm(t− t′) is the time–dependent molecular polarizability

αm(t− t′) =
i

h̄

∑

r,s

ρr,r{µrsµsre
i/h̄(Er−Es)(t−t′) (42)

−µrsµsre
−i/h̄(Er−Es)(t−t′)}.
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In the above equation, Er and Es are energies of the unperturbed quantum states of the

molecule. From these relations one may write the time–dependent self–consistent equation

governing both the magnitude and the polarization of the optical molecular field

Em(rm, t) = E(rm, t) +
∫ t

−∞
dt′

∫ t′

−∞
dt′′

S(rm, rm, t− t′) · αm(t′ − t′′) · Em(rm, t
′′). (43)

Solving this implicit integral equation is possible in the ω-space

Em(rm, ω) = E(rm, ω)

+ S(rm, rm, ω) · αm(ω) ·Em(rm, ω) (44)

with

αmi,j(ω) =
1

h̄

∑

r,s

ρrr{
µi

rsµ
j
sr

ω − ωsr − iΓsr
−

µj
rsµ

i
sr

ω + ωsr − iΓsr
} (45)

In this relation, we have introduced the dampings Γsr by applying the prescription of Ward83.

When one considers just a single molecule, equation (44) is very easy to solve. We obtain

then relations similar to those already exposed in section IV. The main difference lies into

the choice of the propagator S which, in the present case must be associated with the

complete SNOM junction

Em(rm, ω) = M(rm, ω) · E(rm, ω) (46)

where M(rm, ω) is a (3 × 3) matrix defined by

M(rm, ω) = [I − S(rm, rm, ω) · αm(ω)]−1 (47)

Note that, from this equation one obtains in a first stage, the molecular effective field

Em(rm, ω). The field Em(r, ω) generated by the molecule far away from the emitting zone

can be described by applying once again the Lippmann-Schwinger equation with a single

scattering center (the molecule)
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Em(r, ω) = E(r, ω)

+ S(r, rm, ω) · αm(ω) · M(rm, ω) · E0(rm, ω), (48)

that can be rewritten as

Em(r, ω) = E(r, ω)

+ S(r, rm, ω) · α(rm, ω) · E(rm, ω) (49)

where, in complete analogy with the point-like surface defect treated in section IV (equation

20), α(rm, ω) defines the effective polarizability of the molecule interacting with its dielectric

environment.

α(rm, ω) = αm(ω) · M(rm, ω) (50)

D. Lifetime change and electromagnetic LDOS

The molecule radiates optical energy with a polarizability α(rm, ω) “dressed” by the

dielectric surrounding. The symmetry of the tensor α(rm, ω) is governed mainly by the

symmetry of the molecule-surrounding super system even if the molecular polarizability

α0(ω) is initially isotropic. For example, in the particular case of a single molecule interacting

with a perfectly planar surface, the dyadic tensor α(rm, ω) belongs to the C∞v symmetry

group so that it may also be described with only two independent components α‖ and α⊥.

In the case of a SNOM surrounding (corrugated surface + pointed detector), the effective

polarizability tensor may be more complex. The new molecular lifetime Γ−1(rm) is contained

implicitly in this tensor.

Two important electrodynamical effects appear in the effective polarizability. The first

is a small shift of the excited state: the fluorescence frequency ω0 is shifted towards a lower

frequency ωeff . This effect can be characterized by the ratio

Ω(rm) = ωeff/ω0 (51)
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Quite often, this coefficient is close to unity. For our purpose, we may safely neglect its

eventual variation. The second effect, much more sensitive to the location of the molecule

in the junction, is the well–known lifetime change defined by the ratio

η(rm) = Γ−1(rm)/Γ−1
0 (52)

where Γ0 represents the molecular linewidth of the isolated molecule. This coefficient also

depends on the effective polarizability component. To proceed further analytically, we as-

sume, with a good approximation, that the interacting molecule embedded in the SNOM

surroundings still displays an effective polarizability belonging to the C∞v group with its

main axis along the z direction. The two independent components α⊥(rm, ω) and α‖(rm, ω)

may then be identified to a two-levels polarizability expression similar to the one of an

isolated molecule

α⊥(rm, ω) = {
2ω⊥A⊥

ω2
⊥ − ω2 − iωΓ⊥

} = αm(ω)Mzz(rm, ω) (53)

and

α‖(rm, ω) = {
2ω||A||

ω2
‖ − ω2 − iωΓ‖

} = αm(ω)Mxx(rm, ω) (54)

For each equation, the three parameters ω⊥, A⊥ and Γ⊥ (respectively ω‖, A‖ and Γ‖) can

be identified by introducing the two–level representation of αm(ω)

αm(ω) =
A0ω0

ω2
0 − ω2 − iωΓ0

(55)

where A0 = 2µ01µ10

h̄
.

One then finds (ℜ denotes the real part):

Γ⊥/‖ = ℜ
Γ0Mxx/zz(rm, 0)

Mxx/zz(rm, ω0)
(56)

or, similarly:

η(rm) = ℜ
Mxx/zz(rm, 0)

Mxx/zz(rm, ω0)
(57)
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where the notation xx/zz means that the element xx of M is required to compute Γ⊥ while

the element zz is used to compute Γ‖.

In conclusion, one obtains a compact result, depending only on the real part of the

dynamical matrix M(rm, ω0) at the resonance frequency of the molecule. Note that the

spatial variation of η(rm) with respect to the dielectric surroundings is contained in the

field-susceptibility S(rm, rm, ω). In the vicinity of a highly complex system, this dyadic may

be obtained by solving the Dyson equation (11).

A link with the electromagnetic LDOS arises explicitly when the matrix M is expanded

to the first Born approximation:

M(rm, ω) = I + α0(ω) · S(rm, rm, ω). (58)

Using the two–level representation of αm allows to write

Mxx/zz(rm, ω0) = 1 + i
A0

Γ0
Sxx/zz(rm, rm, ω0) (59)

whose the real part is given by

ℜ[Mxx/zz(rm, ω)] = 1 −
A0

Γ0
ℑ [Sxx/zz(rm, rm, ω0)] (60)

For the effective width of the excited molecular level, this approximation leads to

Γ||/⊥ = Γ0 + A0 ℑ [Sxx/zz(rm, rm, ω0)] (61)

This result was also derived by Metiu within a classical approach17. Several remarks may

be done about these relations. First, the propagator S of the environment controls the

molecular lifetime change. From a practical point of a view, it may be accurately modeled

for any kind of surface profiles and materials by solving the Dyson equation (11). For

realistic configurations this purpose needs a numerical procedure based, for example, on the

recursive algorithm described in references84,85,77.

Second, the propagator S(rm, rm, ω0) is very sensitive to the molecule–sample distance

variation. Consequently the molecular lifetime change constitutes a highly sensitive nano–

probe to the external environment. In particular, working in the near–field zone just
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before the quenching effect occurs, should make possible to increase the lateral SNOM

resolution77,78,81.

Third, equation (61) indicates that the spontaneous molecular decay rate is modified by

any changes in the electromagnetic local density of states with respect to LDOS of vacuum

(implicitly contained in the natural linewidth Γ0). Indeed, if we introduce the average

effective line width

Γ(rm) =
1

3
(2Γ|| + Γ⊥), (62)

we can write

Γ(rm) = Γ0 +
πω2

0A0

c2
ρ(rm, ω0), (63)

where ρ(rm, ω0) has been defined in equation (8).

At a given position, a larger LDOS, which means that a growing number of electromag-

netic states are available, is responsible for shorter lifetime of the molecule. Let us now

imagine that the fluorescent structure scans a sample surface. Referring to the classification

of active probe devices introduced in section IID, such structure may be viewed as an ideal

point source. According to equation (63), scanning a fluorescent structure should image the

electromagnetic LDOS. To illustrate what kind of information can then be extracted from

Γ(rm), figure 11 presents LDOS maps close to a system of nanoscopic glass pads deposited

on a flat glass surface. The symmetry of the pads arrangement builds a specific LDOS

pattern where maxima may occur at other locations than right above the pads (figure 11

(B)). Similarly to the case of passive probe devices, one can then expect that an active

probe device provides an image which does not allow a direct recognition of the shape of the

underlying objects. Indeed, as in the exemple of figure 11, the LDOS may display significant

discrepancies relatively to the shapes of the underlying objects.
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VII. CONCLUSION

On the basis of a simple classification of near–field optical microscope into passive and

active probe devices, this review focuses on the crucial question of the interpretation of the

images recorded by these microscopes. The paper further proposes a practical point of view

which, according to the passive or active character of the probe tip, leads to formulate dif-

ferent hypothesis about the nature of the information contained in near–field optical images.

The practical point of view suggests that the distribution of the electromagnetic near–field

scattered by the sample surface is probed by passive probe device while the electromagnetic

local density of states might be the key to understand the images recorded by active probe

devices. For both kinds of devices, this means that the resulting contrasts do not necessarily

help to recognize directly the shape of the underlying objects.

In the case of passive probe devices, the direct comparison of experimental and theoretical

results supports the proposed point of view. It also brings to the fore that a combined

use of several techniques as electron-beam lithography, numerical simulations and direct

observation of near–field phenomena is an effective procedure to improve the understanding

of near–field optical effects. We suggest that the same kind of procedure should be applied

to establish whether images recorded with active probe devices should be interpreted on the

basis of the electromagnetic LDOS or not.

An important perspective, issued from the interpretation scheme proposed in this paper,

is the development of a new class of near–field optics experiments which intend to use the

optical tunnel effect in order to control, on a submicrometer scale, the optical energy transfer

between several delocalized detection or injection centers86–88,73,89.
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TABLES

TABLE I. For s polarized incident field, contrast in the near-field zone right above a nanoscopic

particle deposited on substrate both made of low index dielectric materials.

Field θ0 Sign Predicted Contrast

intensity dependence of (Ξ) contrast decay law

Electric negligible negative dark r−3

Magnetic weak positive bright r−2

TABLE II. Same as table I but for a p polarized incident field.

Field θ0 Sign Predicted Contrast

intensity dependence of (Ξ) contrast decay law

Electric weak positive bright r−3

Magnetic strong negative dark r−2

38



FIGURES

FIG. 1. Schematic drawing of two basic illumination configurations. (A) External reflection;

(B) Total internal reflection.

FIG. 2. Variation of the exponential decay versus the angle of incidence. The glass sample

(index of refraction n = 1.5) is illuminated in total internal reflection (s–polarized mode).

FIG. 3. Model system of a simple surface corrugation. A tranparent substrate, of optical index

n = 1.5, supports a small dielectric sphere of diameter D. The system is illuminated in total

internal reflection with an incident angle θ0 and rs = (0, 0,D/2)

FIG. 4. Image of microfabricated dielectric samples recorded by an atomic force microscope.

(a) The section of the small glass pads is 100 nm ×100 nm and their height is 70 nm. (b) The

section of the small glass pads is 250 nm ×250 nm and their height is 100 nm.

FIG. 5. PSTM isointensity image of the sample shown in figure 4 (a) for both incident polar-

izations p (a) et s (b). The projection of the incident wavevector on the sample surface is directed

along y.

FIG. 6. PSTM isointensity image of the sample shown in figure 4 (b) for both incident polar-

izations p (a) et s (b). The projection of the incident wavevector on the sample surface was tilted

approximately 30 degrees relatively to the y direction (nearly pointing towards the upper right

corners of the images)

FIG. 7. For both polarizations p (a) and s (b) and not including any tip, theoretical isointensity

distributions of |E(r, ω)|2. The computation uses de AFM topography of figure 4 (b) as input.
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FIG. 8. Comparison of a theoretical computation (a) with an experimental PSTM image

recorded at constant height (b) of a Au particle (100 × 100 × 40 nm3) deposited on a ITO glass

substrate. The particle is centered at the origin of the coordinates system in the computation (a)

(the surface projection of the model particle corresponds to the white square) while it is slightly

translated to the left in the experimental image (b).

FIG. 9. (a) Constant height PSTM image recorded above a chain of Au particles (individual

size: 100 × 100 × 40 nm3) separated of each other by a distance of 100 nm and deposited on an

ITO glass substrate. A comparison with a numerical simulation (b) shows that the bright spots

are not on top of the Au particles (the surface projections of the particles correspond to the white

squares). The intensity scale of experimental data (a) is normalized to the one of the numerical

calculation.

FIG. 10. Schematic drawing illustrating a SNOM geometry in the presence of a single molecule.

FIG. 11. (A) Top view of the model structure. Glass pads (section 90× 90 nm2, height 60 nm)

deposited on a flat glass substrate. At a constant height, 160 nm above the flat surface and for a

wavelength in vacuum equal to 543 nm: (B) Electromagnetic LDOS; (C) Partial LDOS ρxx(rm, ω);

(D) Partial LDOS ρzz(rm, ω).
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