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Abstract

We present theoretical properties of the log-concave maximum likelihood

estimator of a density based on an independent and identically distributed

sample in R
d. Our study covers both the case where the true underlying density

is log-concave, and where this model is misspecified. We begin by showing that

for a sequence of log-concave densities, convergence in distribution implies much

stronger types of convergence – in particular, it implies convergence in Hellinger

distance and even in certain exponentially weighted total variation norms. In

our main result, we prove the existence and uniqueness of a log-concave density

that minimises the Kullback–Leibler divergence from the true density over the

class of all log-concave densities, and also show that the log-concave maximum

likelihood estimator converges almost surely in these exponentially weighted

total variation norms to this minimiser. In the case of a correctly specified

model, this demonstrates a strong type of consistency for the estimator; in a

misspecified model, it shows that the estimator converges to the log-concave

density that is closest in the Kullback–Leibler sense to the true density.
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1 Introduction

Although work on shape-constrained density estimation dates back to the celebrated
paper of Grenander (1956) on the estimation of a decreasing density on the positive
half-line, it is in recent years that the area has enjoyed its most significant interest.
This is partly because algorithmic and technological advances now allow the compu-
tation of estimators that would not previously have been feasible, and partly because
statisticians now have more tools at their disposal for the study of the theoretical
properties of these estimators.

The attraction of the use of these estimators is that, in contrast to alternative non-
parametric density estimation methods such as those based on kernels or wavelets,
they provide fully automatic procedures, with no smoothing parameters to choose.
Such procedures are particularly desirable when the data are multidimensional, and
the choice of (often multiple) smoothing parameters is particularly problematic.

The properties of the Grenander estimator are now quite well understood, thanks
to the works of Marshall and Proschan (1965), Prakasa Rao (1969), Devroye (1987),
Birgé (1989), van de Geer (1993) and Balabdaoui et al. (2009). Other examples
of shape constraints on univariate densities that have been studied in the literature
include convexity (Groeneboom, Jongbloed and Wellner, 2001; Dümbgen, Rufibach
and Wellner, 2007) and k-monotonicity (Balabdaoui and Wellner, 2008). It is also
known that a maximum likelihood estimator does not exist over the class of unimodal
densities – cf. Birgé (1997).

Log-concavity has become an intensively-studied shape constraint for densities re-
cently – see, for example, Walther (2002), Dümbgen, Hüsler and Rufibach (2007),
Pal, Woodroofe and Meyer (2007), Cule, Samworth and Stewart (2007), Dümbgen
and Rufibach (2009), Balabdaoui, Rufibach and Wellner (2009), Seregin and Well-
ner (2009), Schuhmacher, Hüsler and Dümbgen (2009), Schuhmacher and Dümbgen
(2010). A nice review of much of this work can be found in Walther (2010). The class
of univariate log-concave densities includes many common parametric families, such
as the normal, Γ(α, β) (α ≥ 1), Beta(α, β) (α, β ≥ 1), Weibull(α) (α ≥ 1), Gumbel,
logistic and Laplace densities; see Bagnoli and Bergstrom (1989) for other examples.
Among the desirable properties enjoyed by the class are the facts that it is closed
under convolution (e.g. Dharmadhikari and Joag-Dev (1988, Theorem 2.18)) and the
taking of pointwise limits.
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The existence and uniqueness of a log-concave maximum likelihood estimator f̂n of
a density f0 based on a sample X1, . . . , Xn in R

d was proved in Cule, Samworth
and Stewart (2007). There, the structure of f̂n was outlined and an algorithm for
its computation was described. The algorithm was implemented in the R package
LogConcDEAD (Cule, Gramacy and Samworth, 2007, 2009).

In this paper, we study the statistical properties of the estimator. Importantly, our
results do not assume that the underlying density is log-concave. To the best of our
knowledge, such results have not been obtained before even for univariate data, but
are of interest because in practice it is impossible to tell from a sample of data whether
the assumption of log-concavity is satisfied. It is therefore natural to seek assurance
that the estimator will behave sensibly if the condition is violated. In our main
result (cf. Theorem 4 below), we prove under very mild conditions the existence and
uniqueness of a log-concave density f ∗ that minimises the Kullback–Leibler divergence
from f0 and show that there is an interval of values of a for which

∫

Rd

ea‖x‖|f̂n(x) − f ∗(x)| dx
a.s.
→ 0

as n → ∞. Moreover, if f ∗ is continuous, then supx∈Rd ea‖x‖|f̂n(x) − f ∗(x)|
a.s.
→ 0 as

n → ∞. The upper bound for the range of allowable values of a is explicitly linked
to the rate of tail decay of f ∗. In the case where f0 is log-concave, it is well-known
that f ∗ = f0, so the result demonstrates the strong consistency of f̂n in exponentially
weighted total variation norms, and in exponentially weighted supremum norms if f0

is continuous. If the true density is not log-concave, we see that the limiting density is
the one that is closest (in the Kullback–Leibler sense) to f0. As described in Section 3
below, this result strengthens what was previously known even for the case d = 1.

The rest of this paper is organised as follows. In Section 2, we study sequences of log-
concave densities that converge in distribution to a limiting density, and demonstrate
that the convergence must also occur in much stronger senses. In Section 3, we show
that, with probability one, the estimator is uniformly bounded above on R

d, and
uniformly bounded below on compact subsets in the interior of the support of the
true density. This enables us to state and prove the main result described in the
previous paragraph. Further auxiliary results can be found in the Appendix.
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2 Convergence of log-concave densities

We begin with an elementary lemma, whose proof is given in the Appendix. Let f
be a log-concave density on R

d.

Lemma 1. There exist a > 0 and b ∈ R such that f(x) ≤ e−a‖x‖+b for all x ∈ R
d.

Notice in particular that if X has density f , then Lemma 1 implies that the moment
generating function of X is finite in an open neighbourhood of the origin.

If f, f1, f2, . . . are densities on R
d, we write fn

d
→ f for the convergence in distribution

of the corresponding measures; in other words, fn
d
→ f means

∫

g(x)fn(x) dx →
∫

g(x)f(x) dx for all bounded, continuous functions g : R
d → R. The following result

shows that when it is known that a sequence of densities is log-concave, convergence
in distribution in fact implies much stronger forms of convergence. A similar result,
proved independently at around the same time and using different techniques, can
be found in Schuhmacher, Hüsler and Dümbgen (2009). We write µ for Lebesgue
measure on R

d.

Proposition 2. Let (fn) be a sequence of log-concave densities on R
d with fn

d
→ f

for some density f . Then:

(a) f is log-concave

(b) fn → f , µ-almost everywhere

(c) Let a0 > 0 and b0 ∈ R be such that f(x) ≤ e−a0‖x‖+b0. Then for every a < a0, we
have

∫

Rd ea‖x‖|fn(x)−f(x)| dx → 0 and, if f is continuous, supx∈Rd ea‖x‖|fn(x)−
f(x)| → 0.

Proof. (a) This part of the proposition can be deduced from Theorems 2.8 and 2.10
of Dharmadhikari and Joag-Dev (1988). Their proof relies on a non-trivial correspon-
dence between log-concave probability measures and log-concave densities, which in
turn depends on several other facts about log-concavity – cf. Dharmadhikari and
Joag-Dev (1988, pp.46–54). We give an alternative proof because it is perhaps a little
more direct, and because it forms part of the proof of part (b) below.
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Let fn
d
→ f . Our proof relies on two crucial results. The first is that if D is the class

of all Borel-measurable, convex subsets of R
d, then

sup
D∈D

∣

∣

∣

∣

∫

D

(fn − f)

∣

∣

∣

∣

→ 0

as n → ∞ (Bhattacharya and Rao, 1976, Theorem 1.11, p.22). The second is
Lebesgue’s differentiation theorem: recall that a family {Aδ : δ > 0} of Borel subsets
of R

d shrinks nicely to x0 ∈ R
d with eccentricity bound η > 0 if Aδ ⊆ Bδ, where Bδ

is the closed (Euclidean) ball of radius δ centered at x0, and if the family is such that
µ(Aδ) > ηµ(Bδ) for all δ > 0. Then for µ-almost all x0, we have

1

µ(Aδ)

∫

Aδ

|f(x) − f(x0)| dx → 0 (2.1)

as δ → 0, for every family {Aδ : δ > 0} that shrinks nicely to x0 (Folland, 1999,
Theorem 3.21). Points x0 at which this equality holds are called Lebesgue points of
f ; notice that any continuity point of f is certainly a Lebesgue point of f . In fact,
it will be helpful to note the following small generalisation: if we have a sequence
{Ak,δ : k ∈ N, δ > 0} of families that shrink nicely to x0 with the same eccentricity
bound η, then the convergence in (2.1) is uniform in k.

Consider E1 = {x ∈ R
d : lim inf fn(x) < f(x)}, and suppose for a contradiction

that µ(E1) > 0. Then there exists a Lebesgue point x0 of f satisfying x0 ∈ E1

and f(x0) < ∞. Letting ǫ = f(x0) − lim inf fn(x0), find a subsequence (fnk
) with

fnk
(x0) < f(x0) − 3ǫ/4, and for δ > 0, define the convex sets

Dk,δ = {x ∈ Bδ : fnk
(x) ≥ f(x0) − ǫ/2}.

Observe by the concavity of log fnk
that if x ∈ Dk,δ then 2x0−x ∈ Bδ \Dk,δ. It follows

that µ(Bδ\Dk,δ) ≥ µ(Bδ)/2. This means that we can apply Lebesgue’s differentiation
theorem to choose δ > 0 small enough that for every k,

1

µ(Bδ \ Dk,δ)

∣

∣

∣

∣

∫

Bδ\Dk,δ

{f(x0) − f(x)} dx

∣

∣

∣

∣

≤
ǫ

8
.

But then
∫

Bδ

(f − fnk
) =

∫

Bδ\Dk,δ

{f(x) − f(x0) + f(x0) − fnk
(x)} dx +

∫

Dk,δ

(f − fnk
)

≥ −
ǫ

8
µ(Bδ) +

ǫ

4
µ(Bδ) − sup

D∈D

∣

∣

∣

∣

∫

D

(f − fnk
)

∣

∣

∣

∣

.
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We conclude that lim infk

∫

Bδ
(f−fnk

) ≥ ǫµ(Bδ)/4, a contradiction. Hence µ(E1) = 0.

Thus, without loss of generality, we may assume f ≤ lim infn fn. But by Fatou’s
lemma,

1 =

∫

f ≤

∫

lim inf fn ≤ lim inf

∫

fn = 1,

so in fact we may assume f = lim inf fn. Since lim inf fn is log-concave, this proves (a).

(b) Now suppose that µ(E2) > 0, where E2 = {x ∈ R
d : lim sup fn(x) > f(x)}. Since

f is log-concave and so continuous almost everywhere, let x0 ∈ E2 be continuity point
of f . Define ǫ0 ∈ (0,∞] by ǫ0 = lim sup fn(x0) − f(x0) and set ǫ = min(1, ǫ0). We
can find a subsequence (fnk

) with fnk
(x0) > f(x0) + 3ǫ/4 for all k. Define the convex

sets
D̃k,δ = {x ∈ Bδ : fnk

(x) ≥ f(x0) + ǫ/2}.

There are three cases to consider:

Case (i): Suppose the sequence {D̃k,δ : k ∈ N, δ > 0} of families shrink nicely to x0

with the same eccentricity bound η. Find δ > 0 such that |f(x)− f(x0)| ≤ ǫ/4 for all
x ∈ Bδ. Then, for every k,

∫

D̃k,δ

(fnk
− f) ≥

µ(D̃k,δ) ǫ

4
≥

µ(Bδ) η ǫ

4
,

contradicting our first crucial result.

Case (ii): Suppose we are not in Case (i), and that f(x0) > 0, so that by reducing
ǫ if necessary we may assume f(x0) > ǫ/2. In this case, since for each k the ratio
µ(D̃k,δ)/µ(Bδ) is decreasing as δ increases, there exist δ > 0 and positive integers
k(1) < k(2) < . . . such that

µ(D̃k(l),δ)

µ(Bδ)
≤

td

2
,

where

t =
log

(

f(x0) + 3ǫ/4
)

− log
(

f(x0) + ǫ/2
)

log
(

f(x0) + 3ǫ/4
)

− log
(

f(x0) − ǫ/2
) .

It is straightforward to show, using the concavity of log fnk
, that µ(Dk,δ) ≤ µ(D̃k,δ)/t

d,
where as above,

Dk,δ = {x ∈ Bδ : fnk
(x) ≥ f(x0) − ǫ/2}.
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We may also assume that |f(x) − f(x0)| ≤ ǫ/4 for all x ∈ Bδ. We conclude that for
all l,

∫

Bδ

(fnk(l)
− f) =

∫

Bδ\D̃k(l),δ

(fnk(l)
− f) +

∫

Dk(l),δ

(fnk(l)
− f)

≤ −
ǫ

4
µ(Bδ \ Dk(l),δ) + sup

D∈D

∫

D

(fnk(l)
− f),

so lim supl

∫

Bδ
(fnk(l)

− f) ≤ − ǫ
8
µ(Bδ), a contradiction.

Case (iii): Finally, if f(x0) = 0, then without loss of generality we can find δ > 0 such
that f(x) = 0 for all x ∈ Bδ. For each t > 0, we have µ({x ∈ Bδ : fnk

(x) ≥ t}) → 0 as
k → ∞. Choose t > 0 small enough that fnk

(x0) ≥ t and such that there exist points
x1, . . . , xd in the interior of the effective domain of log f , denoted int(dom log f), with
f(xj) ≥ 2t and µ

(

conv{x0, x1, . . . , xd}
)

> 0, where conv{x0, x1, . . . , xd} denotes the
convex hull of {x0, x1, . . . , xd}. As we cannot have conv{x0, x1, . . . , xd} contained in
{x ∈ R

d : fnk
(x) ≥ t} eventually, there exists j ∈ {1, . . . , d} and a further subsequence

(fnk(l)
) such that fnk(l)

(xj) < t. We then obtain a contradiction as in the proof of
Proposition 2(a). Hence µ(E2) = 0, as required. This proves (b).

(c) Write φn = log fn and φ = log f . Without loss of generality assume 0 ∈
int(dom φ), and let η > 0 be small enough that Bη(0), the closed ball of radius
η > 0 about the origin, is contained in int(dom φ).

Fix a ∈ (0, a0), and let δ = a0 − a. By Lemma 1, we can find R > 0 such that
1

‖x‖
{φ(x) − φ(0)} ≤ −

(

a + 3δ
4

)

for all ‖x‖ ≥ R/2. We claim there exists n0 such that

φn(x) − φn(0)

‖x‖
≤ −

(

a +
δ

4

)

(2.2)

for all ‖x‖ ≥ R and n ≥ n0. Note that since, for each n, the ratio on the left-hand
side of (2.2) is a decreasing function of ‖x‖, it suffices to prove that the inequality
in (2.2) holds for all ‖x‖ = R and n ≥ n0. This is straightforward to see if the ball of
radius R about the origin is in int(dom φ), because in that case φn → φ uniformly on
this ball (Rockafellar, 1997, Theorem 10.8). In general, however, we argue as follows.
Suppose we can find a subsequence (φnk

) and a sequence (xk) with ‖xk‖ = R such
that

φnk
(xk) − φnk

(0)

‖xk‖
> −

(

a +
δ

4

)
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for all k. Let Ck = Ak ∩ Bk, where Ak = {λxk + (1 − λ)y : λ ∈ [0, 1], y ∈ Bη(0)}
and Bk = {y ∈ R

d : ‖y − xk‖ ≤ R/2}, so that Ck is convex and µ(Ck) = ζ > 0,

independent of k. By reducing η > 0 if necessary, we may assume R/3
R/3−η

≤ 1+ δ
8(a+δ/4)

and η < R/4. Finally, since (φnk
) is equi-Lipschitzian on Bη(0) (Rockafellar, 1997,

Theorem 10.8), we may assume η is small enough that φnk
(y) ≥ φnk

(0) − δR
16

for all
y ∈ Bη(0). Since any x∗ = λxk + (1− λ)y ∈ Ck has λR− η ≤ ‖x∗‖ ≤ R and λ ≥ 1/3,
we have

φnk
(x∗) − φnk

(0)

‖x∗‖
≥

λφnk
(xk) + (1 − λ)φnk

(y) − φnk
(0)

‖x∗‖

≥
λφnk

(xk) − λφnk
(0)

‖x∗‖
−

δ

8

≥
−λ(a + δ

4
)R

‖x∗‖
−

δ

8
≥ −

(

a +
δ

2

)

.

From this we deduce that

lim inf
k→∞

∫

Ck

(fnk
− f) ≥ ζ{e−

1
2
(a+δ/2)R+φ(0) − e−

1
2
(a+3δ/4)R+φ(0)},

contradicting the first crucial result in the proof of Proposition 2(a). This establishes
our claim at (2.2). But this means there exists b ∈ R such that supn≥n0

fn(x) ≤

e−(a+δ/4)‖x‖+b. From Proposition 2(b) and the dominated convergence theorem we
conclude that

∫

Rd

ea‖x‖|fn(x) − f(x)| dx → 0.

Now suppose that f is continuous and let ǫ ∈ (0, 1). Choose R > 0 large enough that
f(x) + supn≥n0

fn(x) ≤ ǫe−a‖x‖/2 for all ‖x‖ ≥ R. Then certainly,

sup
‖x‖≥R

ea‖x‖|fn(x) − f(x)| ≤ ǫ

for n ≥ n0. Using the continuity of f , we can choose a closed, convex set S ⊆
int(dom φ) ∩ BR(0) such that f(x) < e−aR/2 for all x ∈ Sc. Since fn → f uniformly
on S, we may assume supx∈S |fn(x) − f(x)| ≤ ǫe−aR/2 for all n ≥ n0. Finally,
for x ∈ BR(0) \ S, we may assume ǫ > 0 is small enough that fn(0) ≥ ǫe−aR for
n ≥ n0. Since fn(x) ≤ ǫe−aR for x on the boundary of S and n ≥ n0, it follows that
fn(x) ≤ ǫe−aR for x ∈ BR(0) \ S and n ≥ n0. We deduce that

sup
x∈Rd

ea‖x‖|fn(x) − f(x)| ≤ ǫ

for all n ≥ n0.
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3 Theoretical properties of the log-concave maxi-

mum likelihood estimator

Let X1, X2, . . . be an independent and identically distributed sequence with density
f0 (not necessarily log-concave), and for n ≥ d + 1 let f̂n denote the log-concave
maximum likelihood estimator of f0 based on X1, . . . , Xn. Thus f̂n maximises

L(f) =

n
∏

i=1

f(Xi)

over all log-concave densities on R
d. One aspect that makes analysis of the properties

of f̂n challenging is the fact that there is no closed-form expression for f̂n. Neverthe-
less, in Cule, Samworth and Stewart (2007) it is shown that f̂n belongs to the class
of tent functions. For fixed y = (y1, . . . , yn) ∈ R

n, the tent function with tent-pole
heights y1, . . . , yn is the smallest concave function h̄y : R

d → R such that h̄y(Xi) ≥ yi

for i = 1, . . . , n. Illustrative pictures, as well as an algorithm for computing the
estimator, can be found in Cule, Samworth and Stewart (2007).

Let E denote the support of f0; that is, the smallest closed set with
∫

E
f0 = 1.

The lemma below establishes appropriate upper and lower bounds for f̂n. Part (a)
of the lemma strengthens Theorem 3.2 of Pal, Woodroofe and Meyer (2007), where
for the case of univariate data and a log-concave underlying density it was shown
that the random variable supn≥d+1 supx∈Rd f̂n(x) is finite with probability one (see
also Lemma 4 of Schuhmacher and Dümbgen (2010) for a corresponding multivariate
result). To the best of our knowledge, lower bounds such as that appearing in part (b)
have not been studied before.

Lemma 3. Suppose that
∫

Rd ‖x‖f0(x) dx < ∞.

(a) There exists a constant C > 0 such that, with probability one,

lim sup
n→∞

sup
x∈Rd

f̂n(x) ≤ C.

(b) Let S be a compact subset of int(E). There exists a constant c > 0 such that,
with probability one,

lim inf
n→∞

inf
x∈conv S

f̂n(x) ≥ c.
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Proof. (a) Let g(x) = exp(−‖x‖ + b), where the normalisation constant b is chosen
to ensure g is a density, so that

∫

f0 log g = −

∫

‖x‖f0(x) dx + b ≡ k + 1,

say. Now let C = eM , where M is large enough that M > k + 1 and such that
∫

D
f0 ≤ 1/4 whenever µ(D) ≤ 2d+3(M − k)de−M . Let f be any log-concave density

with supx∈Rd f(x) = C. We claim that, for sufficiently large n, the log-concave density
g has higher log-likelihood. More precisely, if ‘i.o.’ stands for ‘infinitely often’, we
claim that

P

(

1

n

n
∑

i=1

log f(Xi) >
1

n

n
∑

i=1

log g(Xi) i.o.

)

= 0.

The result follows immediately from this claim. To establish the claim, write φ =
log f , and observe that

P

(

1

n

n
∑

i=1

φ(Xi) >
1

n

n
∑

i=1

log g(Xi) i.o.

)

(3.1)

≤ P

(
∣

∣

∣

∣

1

n

n
∑

i=1

log g(Xi) − (k + 1)

∣

∣

∣

∣

> 1 i.o.

)

+ P

(

1

n

n
∑

i=1

φ(Xi) > k i.o.

)

.

The first term on the right-hand side of (3.1) is zero, by the strong law of large
numbers.

To prove the second term on the right-hand side of (3.1) is zero, the idea is to show
that there is only a small set on which φ is large, so with high probability only a
small proportion of the observations are in this set. To this end, let Dt = {x ∈ R

d :
φ(x) ≥ t}. By concavity of φ, for t ∈ [2k − M, M ], we have

µ(Dt) ≥
( M − t

2M − 2k

)d

µ(D2k−M).

It follows by Fubini’s theorem that

1 ≥

∫

Rd

f1{log f≥2k−M} =

∫

Rd

∫ eM

0

1{t≤f(x)} dt1{log f(x)≥2k−M} dx

≥

∫ M

2k−M

esµ(Ds) ds ≥
µ(D2k−M)

2d(M − k)d

∫ M

2k−M

(M − s)des ds ≥
µ(D2k−M)eM

2d+3(M − k)d
.
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Thus P(X1 ∈ D2k−M) =
∫

D2k−M
f0 ≤ 1/4. We deduce that

P

(

1

n

n
∑

i=1

φ(Xi) > k

)

≤ P

(

1

n

n
∑

i=1

1{Xi∈D2k−M} ≥
1

2

)

≤ e−n/8,

by Hoeffding’s inequality. The first Borel–Cantelli lemma then completes the proof
of (a).

(b) By the concavity of log f̂n, it suffices to prove the conclusion of this part of
the lemma when the infimum over x ∈ conv S is replaced with an infimum over
x ∈ S. Let S be a compact subset of int(E) and let δ > 0 be small enough that
Sδ = {x ∈ R

d : dist(x, S) ≤ δ} is contained in int(E). Consider the function
x0 7→

∫

Bδ/2
f0, where Bδ again denotes the closed ball of radius δ centered at x0. This

function is positive and continuous on Sδ/2, so attains its (positive) infimum on this
compact set. Thus there exists p > 0 such that

∫

B
f0 ≥ p for any Borel subset B of

R
d containing a ball of radius δ/2 centered at a point in Sδ/2.

Now let f be any log-concave density on R
d, and let c = 2 infx∈S f(x). We show

that if c ≥ 0 is sufficiently small, then f is not the maximum likelihood estimator
for large n. By Lemma 3(a), we may assume supx∈Rd f(x) ≤ C. Recall that the
density g was defined by g(x) = e−‖x‖+b, where b is a normalisation constant, and
that k = −

∫

‖x‖f0(x) dx + b − 1. Suppose c ∈ [0, C] is small enough that p
2
log c +

(

1 − p
2

)

log C ≤ k. Writing B = {x ∈ Sδ : f(x) ≤ c}, we note that B contains a
point x0 ∈ S, and if x /∈ B, then 2x0 − x ∈ B. Thus B contains a ball of radius δ/2
centered at a point in Sδ/2, so

∫

B
f0 ≥ p. Thus, if φ = log f , then

P

(

1

n

n
∑

i=1

φ(Xi) > k

)

≤ P

(

1

n

n
∑

i=1

1{Xi∈B} ≤
p

2

)

≤ e−np2/2,

again by Hoeffding’s inequality. By the first Borel–Cantelli lemma, and arguing as in
the proof of Lemma 3(a) above, we conclude that

P

(

1

n

n
∑

i=1

log f(Xi) >
1

n

n
∑

i=1

log g(Xi) i.o.

)

= 0.

Our next theorem is the main result in this paper and establishes desirable perfor-
mance properties of the log-concave maximum likelihood estimator. We first recall

11



that the Kullback–Leibler divergence of a density f from f0 is given by

dKL(f0, f) =

∫

Rd

f0 log
f0

f
.

Jensen’s inequality shows that the Kullback–Leibler divergence is non-negative, and
equal to zero if and only if f = f0 (almost everywhere). Thus in the case where
f0 is log-concave, Theorem 4 below shows that the log-concave maximum likelihood
estimator f̂n is strongly consistent in certain exponentially weighted total variation
metrics. Convergence in exponentially weighted supremum norms also follows if f0

is continuous. The fact that the convergence occurs in these exponentially weighted
norms gives reassurance about the performance of the estimator in the tails of the
density. The theorem strengthens known results even in the univariate case, which
include Corollary 1 of Pal, Woodroofe and Meyer (2007), where it was proved that
f̂n is strongly consistent in Hellinger distance, and Corollary 4.2 of Dümbgen and
Rufibach (2009), where (weak) consistency of f̂n in the unweighted total variation
distance was established. The observation that the mode of convergence in the uni-
variate consistency result of Corollary 4.2 of Dümbgen and Rufibach (2009) could be
strengthened was also made independently at around the same time in Schuhmacher,
Hüsler and Dümbgen (2009). Indeed, a similar consistency result to Theorem 4 below
was also obtained by Schuhmacher and Dümbgen (2010) independently and at around
the same time.

In the case where the model is misspecified, i.e. f0 is not log-concave, we prove
that the existence and uniqueness of a log-concave density f ∗ that minimises the
Kullback–Leibler divergence from f0. Moreover, we show that the log-concave maxi-
mum likelihood estimator f̂n converges in the same senses as in the previous paragraph
to f ∗. The natural practical interpretation is that provided f0 is not too far from
being log-concave, the estimator is still sensible.

We write log+ x = max(log x, 0) and recall that E denotes the support of f0.

Theorem 4. Let f0 be any density on R
d with

∫

Rd ‖x‖f0(x) dx < ∞,
∫

Rd f0 log+ f0 <
∞ and int(E) 6= ∅. There exists a log-concave density f ∗, unique almost everywhere,
that minimises the Kullback–Leibler divergence of f from f0 over all log-concave den-
sities f . Taking a0 > 0 and b0 ∈ R such that f ∗(x) ≤ e−a0‖x‖+b0, we have for any
a < a0 that

∫

Rd

ea‖x‖|f̂n(x) − f ∗(x)| dx
a.s.
→ 0,

and, if f ∗ is continuous, supx∈Rd ea‖x‖|f̂n(x) − f ∗(x)|
a.s.
→ 0.
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Remark: The conditions on the underlying density f0 are very weak indeed, and are
in particular satisfied by any log-concave density. The first condition asks for a finite
mean, while the second is satisfied by any bounded density, as well as a wide class of
unbounded densities. The third condition is also very weak, but it may help to give
an example where it fails: let (qn) be an enumeration of the rationals in [0, 1], and
let f0 ∝ 1E , where E = [0, 1] \ ∪∞

n=1(qn − 1
10n2 , qn + 1

10n2 ). In this case int(E) = ∅.

Proof. By the two integrability conditions, the log-concave density g(x) = e−‖x‖+b ,
where b is a normalisation constant, satisfies dKL(f0, g) < ∞. We can therefore pick a
minimising sequence of log-concave densities (fn) for the Kullback–Leibler divergence
from f0; in other words, the sequence (fn) satisfies

dKL(f0, fn) → inf
f∈F0

dKL(f0, f),

where F0 denotes the class of all log-concave densities. A slightly simpler version of
the argument given in the proof of Lemma 3(a) shows that there exists C > 0 such
that fn ≤ C for all n. Similarly, a small modification to the argument in the proof
of Lemma 3(b) shows that for every compact subset S of int(E), there exists c > 0
such that

lim inf
n→∞

inf
x∈conv S

fn(x) ≥ c.

We claim that the sequence (fn) is tight (or more precisely that the sequence of
probability measures corresponding to the sequence of densities is tight). To see this,
let S be a compact subset in int(E), and choose c > 0 such that infx∈S fn(x) ≥ c
for large n. Without loss of generality we assume 0 ∈ S and µ(S) > 0. Now, for
R sufficiently large, we must have lim supn→∞ sup‖x‖>R fn(x) ≤ c/2, as otherwise the

Lebesgue measure of the convex level sets {x ∈ R
d : fn(x) > c/2} would be too large

for each fn to be a density. It follows that there exist a0 > 0 and b0 ∈ R such that
supn∈N

fn(x) ≤ e−a0‖x‖+b0 , and tightness of the sequence follows.

Prohorov’s theorem (Billingsley, 1999, Theorem 5.1) therefore guarantees the exis-
tence of a probability measure ν∗ such that a subsequence (fnk

) converges in distri-
bution to ν∗. Now, given ǫ > 0, choose δ = ǫ/(2C). If A is a Borel subset of R

d with
µ(A) ≤ δ, then since Lebesgue measure is regular we can find an open set A′ ⊇ A
such that µ(A′) ≤ 2δ. Now

ν∗(A) ≤ ν∗(A′) ≤ lim inf
k→∞

∫

A′

fnk
≤ Cµ(A′) ≤ ǫ.
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Thus ν∗ is absolutely continuous with respect to µ, and we may write f ∗ for its density
with respect to µ. By Proposition 2(a), f ∗ is log-concave, and by Proposition 2(b),
fnk

→ f ∗ almost everywhere. Finally, by Fatou’s lemma, we have

dKL(f0, f
∗) =

∫

f0(log f0 − log f ∗) ≤ lim inf
k→∞

∫

f0(log f0 − log fnk
)

= inf
f∈F0

dKL(f0, f).

Thus f ∗ does indeed minimise the Kullback–Leibler divergence from f0 over the class
of log-concave densities.

Suppose now that both f ∗
1 and f ∗

2 minimise the Kullback–Leibler divergence from f0

over the class of log-concave densities. Defining

f ∗ =
(f ∗

1 f ∗
2 )1/2

∫

(f ∗
1 f ∗

2 )1/2
,

we see that f ∗ is a log-concave density with

dKL(f0, f
∗) = dKL(f0, f

∗
1 ) + log

∫

(f ∗
1 f ∗

2 )1/2 ≤ dKL(f0, f
∗
1 ),

by the Cauchy–Schwarz inequality, with equality if and only if f ∗
1 = f ∗

2 , µ-almost
everywhere. This proves the claimed uniqueness property of f ∗.

Now, write F0 for the distribution function corresponding to the density f0 and P0 for
the distribution on R

d induced by F0. Similarly, write F̂n for the empirical distribution
function of X1, . . . , Xn, and P̂n for the corresponding empirical measure. By definition
of f̂n, we have for any b > 0 that

0 ≤

∫

Rd

log(b + f̂n) dF̂n −

∫

Rd

log f ∗ dF̂n

=

∫

Rd

log(b + f̂n) d(F̂n − F0) +

∫

Rd

log

(

b + f̂n

b + f ∗

)

dF0 +

∫

Rd

log

(

b + f ∗

f ∗

)

dF0

+

∫

Rd

log f ∗ d(F0 − F̂n). (3.2)

The idea of adding the small constant b > 0 in this calculation first appeared in Pal,
Woodroofe and Meyer (2007). We first derive an appropriate uniform law of large
numbers to handle the first term on the right hand side of (3.2). By Lemma 3(a),
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we may assume that f̂n ≤ C. Recall that D denotes the class of all Borel-measurable
convex subsets of R

d. For any log-concave density f with f ≤ C, we have by Fubini’s
theorem that

∫

Rd

log(b + f) d(F̂n − F0) =

∫

Rd

log(1 + f/b) d(F̂n − F0)

=

∫

Rd

∫ log(1+C/b)

0

1{t≤log(1+f/b)} dt d(F̂n − F0)

=

∫ log(1+C/b)

0

(P̂n − P0)({x : f(x) ≥ b(et − 1)}) dt

≤ log
(

1 +
C

b

)

sup
D∈D

(P̂n − P0)(D)
a.s.
→ 0

as n → ∞. Hence
∫

Rd

log(b + f̂n) d(F̂n − F0)
a.s.
→ 0

as n → ∞.

Combining this result with an application of the strong law of large numbers to the
fourth term on the right-hand side of (3.2), we deduce that with probability one,

lim sup
n→∞

∫

Rd

log

(

b + f ∗

b + f̂n

)

dF0 ≤

∫

Rd

log

(

b + f ∗

f ∗

)

dF0.

It follows by the monotone convergence theorem that with probability one,

lim sup
bց0

lim sup
n→∞

∫

Rd

log

(

b + f ∗

b + f̂n

)

dF0 ≤ 0.

Lemma 6 in the Appendix allows us to deduce from this that
∫

Rd |f̂n − f ∗|
a.s.
→ 0, so

the full result follows by Proposition 2.

4 Appendix

Before proving Lemma 1, we first derive a basic property of a log-concave density f .
Recall that the epigraph of a concave function φ : R

d → [−∞,∞) is the set

{(x, µ) : x ∈ R
d, µ ∈ R, µ ≤ φ(x)}.
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The closure of φ, denoted cl(φ), is the concave function whose epigraph is the closure
in R

d+1 of the epigraph of φ. The functions φ and cl(φ) agree almost everywhere, and
we say φ is closed if φ = cl(φ).

Lemma 5. A log-concave density f is bounded above and the version of f that is
closed attains its maximum.

Proof. Without loss of generality, we may assume log f is closed. It has no directions
of increase, because otherwise there would exist ǫ ∈ R such that the set {x ∈ R

d :
log f(x) ≥ ǫ} were d-dimensional, convex and unbounded (so of infinite Lebesgue
measure). Theorem 27.2 of Rockafellar (1997) therefore gives that log f attains its
(finite) maximum.

We can now prove Lemma 1.

Proof of Lemma 1.

Let φ = log f . Without loss of generality, we may assume that 0 ∈ int(dom φ). Since
φ(x) → −∞ as ‖x‖ → ∞, we can find R > 0 such that φ(x) − φ(0) ≤ −1 for all
‖x‖ > R. But, for each z ∈ R

d with ‖z‖ = 1, we have that 1
c
{φ(cz) − φ(0)} is

non-increasing in c > 0. Thus, with a = 1/R, we have 1
c
{φ(cz) − φ(0)} ≤ −a for

c > R. Now
φ(x)

‖x‖
=

φ(x) − φ(0)

‖x‖
+

φ(0)

‖x‖
≤ −a +

φ(0)

‖x‖

for all ‖x‖ > R. Since φ is bounded (by Lemma 5), the result follows by choosing
b > φ(0) sufficiently large. �

The following lemma is used in the proof of Theorem 4. The conclusion can be
immediately strengthened using Proposition 2, and is stated in this way only for
brevity.

Lemma 6. Let f0 be any density on R
d with

∫

Rd ‖x‖f0(x) dx < ∞,
∫

Rd f0 log+ f0 < ∞
and int(E) 6= ∅. Let f ∗ be a log-concave density that minimises the Kullback–Leibler
divergence from f0 over the class of log-concave densities. If (fn) is a sequence of
log-concave densities satisfying

lim sup
bց0

lim sup
n→∞

∫

Rd

log

(

b + f ∗

b + fn

)

dF0 ≤ 0,

then
∫

Rd |fn − f ∗| → 0 as n → ∞.
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Proof. Let Φ : R
d → R be the Young function Φ(x) = (1 + |x|) log(1+ |x|)− |x|. The

Orlicz space LΦ is the set of (equivalence classes of) measurable functions f : R
d → R,

whose Luxemburg norm ‖f‖Φ, given by

‖f‖Φ = inf
{

λ > 0 :

∫

Φ(|f |/λ) ≤ 1
}

,

is finite. Let Φ̃(y) = e|y| − |y| − 1 denote the Young conjugate of Φ, and let ‖ · ‖Φ̃

denote the corresponding Luxemburg norm on LΦ̃. Then by Rao and Ren (1991,

Proposition 1, p.58), and the remark following it, for f ∈ LΦ and g ∈ LΦ̃, we have

∫

|fg| ≤ 2‖f‖Φ‖g‖Φ̃.

Noting that ‖f0‖Φ < ∞, an immediate application of this formula yields that for any
Borel subset D of R

d,
∫

D

f0 ≤
2‖f0‖Φ

− log µ(D)
. (4.1)

Now let f be a log-concave density with supx∈Rd f(x) = C ≡ eM . For large M , we
have as in the proof of Lemma 3(a) that µ({x : f(x) ≥ 1}) ≤ 1

8
Mde−M ≤ e−M/2. It

follows that for any b0 ∈ (0, 1) and b < b0, we have

∫

log(b + f) dF0 ≤

∫

log(b0 + f) dF0 ≤ log(2b0) +

∫

f≥b0

log(2f) dF0

≤ 2 log 2 + log b0 +

∫

f≥1

log f dF0

≤ 2 log 2 + log b0 +
2M‖f0‖Φ

− log µ({x : f(x) ≥ 1})

≤ 2 log 2 + log b0 + 4‖f0‖Φ → −∞

as b0 → 0. Here, the penultimate inequality uses (4.1). We deduce that the sequence
(fn) in the statement of the lemma satisfies the condition that there exists C ≥ 1
such that

sup
n∈N

sup
x∈Rd

fn(x) ≤ C.

Now let S be a compact subset of int(E). Find δ > 0 such that Sδ ⊆ int(E) and,
as in the proof of Lemma 3(b), find p > 0 such that

∫

B
f0 ≥ p for all Borel subsets

B of R
d that contain a ball of radius δ/2 centered at a point in Sδ/2. Let f be any
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log-concave density on R
d with supx∈Rd f(x) ≤ C, and write c = 2 infx∈S f(x). If

c ∈ [0, C] is sufficiently small, then we can find b0 > 0 small enough that

p log(b0 + c) + (1 − p) log(b0 + C) ≤

∫

log f ∗ dF0 − 1.

Then writing B = {x : f(x) ≤ c}, we have for all b ∈ (0, b0) that

∫

log(b + f) dF0 ≤

∫

B

log(b0 + c) dF0 +

∫

Bc

log(b0 + C) dF0 ≤

∫

log f ∗ dF0 − 1.

We deduce that there exists c > 0 such that

lim inf
n→∞

inf
x∈conv S

fn(x) ≥ c. (4.2)

As in the proof of Theorem 4, we have from (4.2) that the sequence (fn) is tight. Thus
if (fnk

) is an arbitrary subsequence of (fn), then there exists a further subsequence
(fnk(l)

) and a log-concave density f such that
∫

|fnk(l)
− f | → 0. But then, by the

dominated and monotone convergence theorems,

lim sup
bց0

lim sup
l→∞

∫

Rd

log

(

b + f ∗

b + fnk(l)

)

dF0 = lim sup
bց0

∫

Rd

log

(

b + f ∗

b + f

)

dF0

=

∫

Rd

log
f ∗

f
dF0 ≥ 0,

with equality if and only if f = f ∗ almost everywhere. By the hypothesis of the
lemma, we must have

∫

|fnk(l)
−f ∗| → 0. Since every subsequence of (fn) has a further

subsequence converging in total variation norm to f ∗, we must have
∫

|fn − f ∗| →
0.
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