
Theoretical Properties of Two ACO Approaches for the

Traveling Salesman Problem

Timo Kötzing1, Frank Neumann1, Heiko Röglin2, Carsten Witt3
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Abstract. Ant colony optimization (ACO) has been widely used for different

combinatorial optimization problems. In this paper, we investigate ACO algo-

rithms with respect to their runtime behavior for the traveling salesperson (TSP)

problem. We present a new construction graph and show that it has a stronger

local property than the given input graph which is often used for constructing so-

lutions. Later on, we investigate ACO algorithms for both construction graphs on

random instances and show that they achieve a good approximation in expected

polynomial time.

1 Introduction

Stochastic search algorithms such as evolutionary algorithms (EAs) [4] and ant colony

optimization (ACO) [3] are robust problem solvers that have found a wide range of

applications in various problem domains. In contrast to many successful application

of this kind of algorithms, the theoretical understanding lags far behind their practical

success. Therefore, it is highly desirable to increase the theoretical understanding of

these algorithms.

The goal of this paper is to contribute to the theoretical understanding of stochastic

search algorithms by rigorous runtime analyses. Such studies have been successfully

applied for evolutionary algorithms and have highly increased the theoretical foundation

of this kind of algorithms. In the case of ACO algorithms the theoretical analyses of

their runtime behavior has been started only recently [12, 6, 7, 11, 10, 8]. We increase the

theoretical understanding of ACO algorithms by investigating their runtime behavior on

the well-known traveling salesperson (TSP) problem. For ACO the TSP problem is the

first problem where this kind of algorithms has been applied. Therefore, it seems to be

natural to study the behavior of ACO algorithms for the TSP problem from a theoretical

point of view in a rigorous manner.

ACO algorithms are inspired by the behavior of ants to search for a shortest path be-

tween their nest and a common source of food. It has been observed that ants find such a

path very quickly by using indirect communication via pheromones. This observed be-

havior is put into an algorithmic framework by considering artificial ants that construct

solutions for a given problem by carrying out random walks on a so-called construction

graph. The random walk (and the resulting solution) depends on pheromone values that

are values on the edges of the construction graph. The probability of traversing a certain

edge depends on its pheromone value.



One widely used construction procedure for tackling the TSP has already been an-

alyzed in [14]. It constructs a tour in an ordered manner, where the iteratively chosen

edges form a path at all times. In this paper, we give new runtime bounds for ACO

algorithms using this construction procedure. On the other hand, we propose a new

construction procedure, where, in each iteration, an arbitrary edge not creating a cy-

cle or a vertex of degree 3 may be added to extend the partial tour. We analyze both

construction methods and point out their differences.

Our analysis of these two ACO variants goes as follows. We first examine the lo-

cality of changes made, i.e., how many edges of the current-best solution are also in

the newly sampled tour, and how many are exchanged for other edges. We then use

these results as upper bounds on the time until certain desired local changes are made

to derive upper bounds on the optimization time.

In particular, we show the following results:

– The ordered edge insertion algorithm exchanges an expected number of Ω(log(n))
many edges (Theorem 1) while the arbitrary edge insertion exchanges only an ex-

pected constant number of edges (Theorem 4).

– Arbitrary edge insertion has a probability of Θ(1/n2) for any specific exchange of

two edges (Corollary 1), while ordered edge insertion has one of Θ(1/n3) [14].

– The simple TSP-instance analyzed in [14] is optimized by arbitrary edge insertion

in an expected number of O(n3 log(n)) steps (Theorem 5), while the best known

bound for ordered edge insertion is O(n6) ([14]).

– Both construction graphs lead in expected polynomial time to a good approxima-

tion on random instances.

In particular, arbitrary edge insertion allows for better runtime bounds thanks to

its locality. It remains open whether there are TSP instances where the non-locality

of ordered edge insertion provably gives better runtime bounds than the more local

arbitrary edge insertion.

The rest of the paper is organized as follows. In Section 2, we introduce the problem

and the algorithms that are subject to investigations. We investigate the number of edge

exchanges for large pheromone updates in Section 3 and prove runtime bounds for cer-

tain classes of instances in Section 4. Finally, we finish with some concluding remarks

and topics for future work.

2 Problem and Algorithms

In this paper, we consider the symmetric Traveling Salesperson Problem (TSP). We are

given a complete undirected graph G = (V,E) and a weight function w : E → R+ that

assigns positive weights to the edges. The goal is to find a tour of minimum weight that

visits every vertex exactly once and returns to the start vertex afterwards. We analyze

an ACO algorithm called MMAS∗ (Min-Max Ant System – see Algorithm 1), already

used in different theoretical studies [11, 14]. MMAS∗ works iteratively, creating one

new candidate solution x in each iteration, and keeping track of the best-so-far solution

x∗. A new candidate solution for a target graph G is constructed by an artificial ant that

performs a random walk on an underlying graph, called the construction graph, step by



step choosing components of a new candidate solution. In this paper, we use edges of

the given input as the components that influence this random walk. In each step of its

random walk on the construction graph, we want the ant to choose an edge e in G with

a probability based on pheromone value τ(e).1 We use a procedure construct based

on the pheromones τ as given in Algorithm 2. In this paper, we consider two different

approaches of constructing new solutions by specifying the neighborhood function N
of Algorithm 2 in Sections 2.1 and 2.2.

Algorithm 1: The algorithm MMAS∗.

function MMAS∗ on G = (V, E) is1

τ(e)← 1/|V |, for all e ∈ E;2

x∗ ← construct(τ);3

update(τ, x∗);4

while true do5

x← construct(τ);6

if f(x) > f(x∗) then7

x∗ ← x;8

τ ← update(τ, x∗);9

Algorithm 2: The algorithm construct.

function construct based on τ is1

for k = 0 to n− 2 do2

R←
∑

y∈N(e1,...,ek) τ(y);3

Choose one neighbor ek+1 of ek where the probability of selection of any fixed4

y ∈ N(e1, . . . , ek) is
τ(y)

R
;

Let en be the (unique) edge completing the tour;5

return (e1, . . . , en);6

For each edge e ∈ E, the pheromones are kept within upper and lower bounds τmax

and τmin, respectively. The pheromone values change after each iteration of MMAS∗

according to a procedure update and an evaporation factor ρ: For a tour x, let E(x) be

the set of edges used in x; for each edge e, the pheromone values are updated such that

the new pheromone values τ ′ = update(τ, x) are such that

τ ′(e) =

{

min {(1 − ρ) · τ(e) + ρ, τmax} , if e ∈ E(x);

max {(1 − ρ) · τ(e), τmin} , otherwise.

1 Note that, in this paper, we are not concerned with the use of heuristic information.



Here, ρ, 0 ≤ ρ ≤ 1, is the evaporation factor which determines the strength of an

update. As in [14], we use τmin = 1/n2 and τmax = 1 − 1/n throughout this paper,

where n is the number of nodes of the input graph; further, initial values for pheromones

are 1/n. If in an iteration of MMAS∗ the pheromone values are such that, for exactly

the edges of the best-so-far tour the pheromone values are at τmax and all others are at

τmin, we call the pheromones saturated at that iteration.

To measure the runtime of MMAS∗, it is common to consider the number of con-

structed solutions. Often we investigate the expected number of constructed solutions

until an optimal tour or a good approximation of an optimal tour is obtained.

2.1 The Input Graph as Construction Graph

To specify the construction graph, we need to introduce the neighorhood function N in

Algorithm 2. The most common way of constructing a tour for TSP problem is to use

the input graph as construction graph (see e. g. [2]). A tour is constructed by having an

ant start at some vertex, visit all vertices by moving to a neighbor of the current vertex,

and finally coming back to the start vertex. We model this behavior with a neighbor set

as follows. For each sequence σ of chosen edges, let U(σ) be the set of unvisited nodes

and l(σ) the most recently visited node (or, if σ is empty, some distinguished node); let

NOrd(σ) = {{l(σ), u} | u ∈ U(σ)}.

This set has the advantage of being easily computable and of size linear in the number

of edges needed to complete the tour. We will discuss drawbacks of this neighborhood

set later. We will refer to MMAS∗ using this neighborhood as MMAS∗
Ord (“Ord” is

mnemonic for the “ordered” way in which edges are inserted into the new tour).

2.2 An Edge-Based Construction Graph

Alternatively, we can let the ant choose to add any edge to the set of edges chosen so

far, as long as no cycle and no vertex are created. This is modeled by a neighbor set as

follows. For each sequence σ of chosen edges, let V (σ) be the set of previously chosen

edges and

NArb(σ) = (E \ V (σ)) \
{

e′ ∈ E
∣

∣ (V, {e′1, . . . , e′k, e′}) contains a cycle or a vertex of degree ≥ 3
}

.

This set has a size quadratic in the number of edges required to complete the tour.

We will refer to MMAS∗ using this neighborhood as MMAS∗
Arb (“Arb” is mnemonic

for the “arbitrary” way in which edges are inserted into the new tour).

3 Number of Edge Exchanges

In this section, we consider the expected number of edges that a newly constructed

solution x differs from the best-so-far solution x∗ if the pheromone values are saturated.



In this case, the solution x∗ can often be reproduced with constant probability and it is

desirable that x∗ and x only differ by a small (constant) number of edges. In such a

situation, ACO algorithms are able to carry out improving steps by sampling solutions

in their local neighborhood. In particular, for a tour t, we are interested in tours t′ such

that t and t′ differ by exchanging 2 or 3 edges, called a 2-Opt or a 3-Opt neighbor,

respectively.

3.1 The Behavior of MMAS∗

Ord

In the following we examine MMAS∗
Ord. We show that the expected number of edges

where x∗ and x differ is Ω(log n). Thus, the MMAS∗
Ord does not have the desired local

property.

The reason for this large number of exchange operations is that if an ant has left

the path corresponding the currently best solution then it will encounter paths of high

pheromone that do not cover the rest of the tour. The rest of the tour needs to be discov-

ered by joining different subpaths of high pheromone which implies the lower bound

on the expected number of edge exchanges.

In the proof of the claimed result, we consider the following random process which

captures the situation after an ant has left the high pheromone path for the first time.

Let W be a walk on a sequence of t vertices. W starts at a random vertex, and will go

to the just previous or following vertex in the sequence with equal probability, if both

are available and unvisited. If only one is available and unvisited, W will go to this

one. If none are available and unvisited, the walk will jump uniformly at random to an

unvisited vertex. The walk ends as soon as all vertices are visited.

Lemma 1. For each t, let Xt be the random variable denoting number of jumps made

by the walk W on a path of t vertices. Then we have

∀t ≥ 3 : E(Xt) ≥
1

6
ln(t).

Proof. We start by giving a recursive definition of Xt. Clearly, X1 = 0 and X2 = 0.

Let t ≥ 3. The walk can start with uniform probability in any vertex, and will not

jump if the first or last vertex has been chosen. Otherwise, with equal probability, the

walk will start up or down. After visiting all nodes in the chosen direction, the walk will

jump once, and then perform a walk according to Xi, where i is the number of unvisited

nodes just before the jump. Thus, we get, for all t ≥ 3,

E(Xt) =
1

t

t−1
∑

i=2

(
1

2
(1 + E(Xi−1)) +

1

2
(1 + E(Xt−i)))

=
t − 2

t
+

1

t
(
1

2

t−1
∑

i=2

E(Xi−1) +
1

2

t−1
∑

i=2

E(Xt−1))

=
t − 2

t
+

1

t

t−2
∑

i=1

E(Xi) =
t − 2

t
+

1

t

t−2
∑

i=3

E(Xi)



The claim is true for t = 3. We show the remainder of the claim of the lemma by

induction on t. Let t ≥ 4 and for all i, 3 ≤ i < t, E(Xi) ≥ 1
6 ln(i). Using t ≥ 3, we

have (t − 2)/t ≥ 1/3. Thus, also using the induction hypothesis,

E(Xt) ≥
1

3
+

1

t

t−2
∑

i=3

1

6
ln(i)

=
1

3
+

1

t

1

6
ln(

t−2
∏

i=3

i) =
1

3
+

1

t

1

6
ln((t − 2)!/2) ≥ 1

6
ln(t).

⊓⊔
Next we will give a lower bound on the expected number of edge exchanges which

MMAS∗
Ord will make when saturated.

Theorem 1. If in an iteration of MMAS∗Ord the pheromone values are saturated, then,

in the next iteration of MMAS∗Ord, the newly constructed tour will exchange an expected

number of Ω(log(n)) of edges.

Proof. It is easy to see that an ant leaves the path corresponding the currently best

solution x∗ with probability Ω(1) after having visited at most n/2 vertices. After the

ant has left the path it performs on the remaining r ≥ n/2 vertices as a walk similar to

W on a path of length r. In fact, with constant probability, the ant will never leave the

path again unless necessary, so that we get the result by applying Lemma 1. ⊓⊔
However, constructing new solutions with few exchanged edges is still somewhat

likely. In [14] it is shown that the probability for a particular 2-Opt step is Ω(1/n3).
Taking a closer look at the analysis presented in this paper a matching upper bound on

this probability can be extracted. In summary, we get the following result.

Theorem 2 ([14]). Let t be a tour found by MMAS∗
Ord and let t′ be a tour which is a

2-Opt neighbor of t. Suppose that the pheromone values are saturated. Then MMAS∗Ord

constructs t′ in the next iteration of with probability Θ(1/n3).

3.2 The Behavior of MMAS∗

Arb

In this section we examine the expected number of edge exchanges of MMAS∗
Arb. In

Theorem 4 we show that the expected number of edges where x∗ and x differ is Θ(1).
Thus, the MMAS∗

Arb does have the desired local property.

Theorem 3. Let k be fixed. If in an iteration of MMAS∗Arb the pheromone values are

such that, for exactly the edges of the best-so-far tour the pheromone values are at τmax

and all others are at τmin, then, in the next iteration of MMAS∗Arb with probability Θ(1),
the newly constructed tour will choose k new edges and otherwise rechoose edges of

the best-so-far tour as long as any are admissible.

Proof. We call an edge with pheromone level τmax a “high” edge, the others are “low”

edges. Let P be the set of all high edges (the edges of the best-so-far tour). We consider

an iteration of MMAS∗
Arb. We analyze the situation where, out of the n edges to be



chosen to create a new tour, there are still i edges left to be chosen. In this situation,

the edges chosen so far partition the graph into exactly i components. For each two

components, there are between 1 and 4 edges to connect them (each component is a

path with at most 2 endpoints, only the endpoints can be chosen for connecting with

another component); thus, there are between
(

i
2

)

and min
(

4
(

i
2

)

,
(

n
2

))

edges left to be

chosen. Further, when there are i edges left to be chosen for the tour, at most k of which

are low edges, there are between i and i + k high edges and between
(

i
2

)

− (i + k) and

min(4
(

i
2

)

,
(

n
2

)

) low edges left to choose from.

For a fixed k-element subset M of {1, . . . , n}, and any choice of edges at positions

M , we use the union bound to analyze the probability to rechoose as many other high

edges as possible in all the other postions. This probability is lower bounded by

1 −
n
∑

i=1

min

(

4

(

i

2

)

,

(

n

2

))

τmin ·
1

iτmax

= 1 − τmin

τmax





n/2
∑

i=1

4

(

i

2

)

· 1

i
+

n
∑

i=n/2+1

(

n

2

)

· 1

i



 ≥ 1

4
> 0.

For each k-element subset M of {1, . . . , n}, the probability of choosing a low edge

on all positions of M , and choosing a high edge on all other positions is lower bounded

by

1

4

∏

i∈M

((

i

2

)

− (i + k)

)

τmin/((i + k)τmax + n2τmin)

≥ τk
min

4

∏

i∈M

(

i2 − i

2
− (i + k)

)

/(i + k + 1) ≥ τk
min

4

∏

i∈M

(

i

2k + 4
− 2

)

.

Let ci,k = i/(2k+4)−2. Note that, for any set M with |M | ≤ k, we have
∑n

i=1,i 6∈M ci,k =

Θ(n2). Now we have that the probability of choosing low edges on any k positions is

lower bounded by

τk
min

4

∑

M⊆{1,...,n}

|M |=k

∏

i∈M

ci,k

=
1

4k!n2k

n
∑

i1=1





n
∑

i2=1,i2 6∈{i1}



. . .





n
∑

ik=1,ik 6∈{i1,...,ik−1}

k
∏

j=1

cij ,k













=
1

4k!n2k

(

n
∑

i1=1

ci1,k

)





n
∑

i2=1,i2 6∈{i1}

ci2,k



 . . .





n
∑

ik=1,ik 6∈{i1,...,ik−1}

cik,k





= Θ(1).

⊓⊔
As a corollary to the proof just above, we get the following.



Theorem 4. If in an iteration of MMAS∗Arb the pheromone values are such that, for

exactly the edges of the best-so-far tour the pheromone values are at τmax and all others

are at τmin, then, in the next iteration of MMAS∗Arb, the newly constructed tour will

exchange an expected number of O(1) of edges.

As a further corollary to Theorem 3, we get the following.

Corollary 1. Let t be a tour found by MMAS∗Arb and let t′ be a tour which is a 2-Opt

neighbor of t. Suppose that the pheromone values are such that for exactly the edges of

t the pheromone values are at τmax and all others are at τmin. Then MMAS∗Arb constructs

t′ in the next iteration with probability Θ(1/n2).

Proof. The tour t has Θ(n2) many 2-Opt neighbors. By Theorem 3, MMAS∗
Arb will

construct, with constant probability, a tour that exchanges one edge and otherwise re-

chooses edges of t as long as possible. This new tour is a 2-Opt neighbor of t. As all

2-Opt neighbors of t are constructed equiprobably (thanks to the symmetry of the con-

struction procedure), we obtain the desired result. ⊓⊔

4 Runtime Bounds

4.1 A Simple Instance

An initial runtime analysis of ACO algorithms for the TSP problem has been carried out

by Zhou in [14]. In that paper, the author investigates how ACO algorithms can obtain

optimal solutions for some simple instances. The basic ideas behind these analyses is

that ACO algorithms are able to imitate 2-Opt and 3-Opt operations.

A simple instance called G1 in [14] consists of a single optimum, namely a Hamil-

tonian cycle where all edges have cost 1 (called light edges), while all remaining edges

get a large weight of n (called heavy edges). The author shows that MMAS∗
Ord for arbi-

trary ρ > 0 obtains an optimal solution for G1 in expected time O(n6 + (1/ρ)n log n).
The proof idea is as follows: As long as an optimal solution has not been obtained, there

is always a 2-Opt or 3-Opt operation that leads to a better tour. Having derived a bound

of Ω(1/n5) for the probability of performing an improving 2- or 3-Opt step, the re-

sult follows since at most n improvements are possible and O(log n/ρ) is the so-called

freezing time, i. e., the time to bring all pheromone values to upper or lower bounds.

In this section, we prove a bound of O(n3 log n + (n log n)/ρ) on the expected

optimization time of MMAS∗
Arb for the instance G1. This bound is considerably better

than the O(n6) proved before in [14] for MMAS∗
Ord. At the same time, the analysis is

much simpler and saves unnecessary case distinctions.

The following lemma concentrates on a single improvement. Following the notation

in [14], let Ak, k ≤ n, denote the set of all tours of total weight n − k + kn, i. e., the

set of all tours consisting of exactly n − k light and k heavy edges.

Lemma 2. Let α = 1 and β = 0, τmin = 1/n2 and τmax = 1 − 1/n. Denote by Xt the

best-so-far tour sequence produced by MMAS∗Arb on TSP instance G1 until iteration t >
0 and assume that Xt is saturated. Then the probability of an improvement, given 1 ≤
k ≤ n heavy edges in Xt, satisfies sk = P (Xt+1 ∈ Ak−1 ∪ . . . ∪ A0 | Xt ∈ Ak) =
Ω(k/n3).



Proof. Consider an arbitrary light edge e = {u, v} /∈ T outside the best-so-far tour.

Each vertex of G1 is incident to 2 light edges, so both u and v are incident to exactly

one light edge different from e. Since e /∈ T , this implies the existence of two different

heavy edges e0, e1 ∈ T on the tour such that e0 is incident on u and e1 incident on v.

Let e′0, e
′
1 ∈ T with e′0 6= e0 and e′1 6= e1 be the other two edges on the tour that

are incident to u and v, respectively. The aim is to form a new tour containing e and

still e′0 and e′1 but no longer e0 and e1. Note that the set of edges (T ∪ {e}) \ {e0, e1}
has cardinality n − 1 but might contain a cycle. If that is the case, there must be a

heavy edge e2 ∈ T from the old tour on that cycle (since there is a unique cycle of light

edges in G1). Then we additionally demand that the new tour does not contain e2. Since

the undesired edges e0, e1 and possibly e2 are heavy and e is a light edge outside the

previous tour, any tour being a superset of (T ∪ {e}) \ {e0, e1, e2} is an improvement

compared to T .

For 1 ≤ j ≤ n/4, we consider the following intersection of events, denoted by

Me(j) and prove that Prob(Me(j)) = Ω(1/n4); later, a union over different j and e is

taken to get an improved bound.

1. the first j − 1 steps of the construction procedure choose edges from T ∗ := T \
{e0, e1, e2} and the j-th step chooses e,

2. e′0 is chosen before e0 and e′1 before e1,

3. all steps except the first one choose from T ∗ as long as this set contains applicable

edges.

Note that e0 and e1 are no longer applicable once {e, e′0, e′1} is a subset of the new tour.

For the first subevent, assume that the first i < j steps have already chosen exclu-

sively from T ∗. Then there n−i edges from T and n−i−3 edges from T ∗ left. Finally,

there are at most n2/2 edges outside T . Using that Xt is saturated, the probability of

choosing another edge from T ∗ is then at least

(n − i − 3)τmax

(n − i)τmax + n2τmin/2
≥ n − i − 3

n − i + 1

(assuming n ≥ 2). Altogether, the probability of only choosing from T ∗ in the first

j − 1 steps is at least

j−2
∏

i=0

n − i − 3

n − i + 1
≥
(

3n/4 − 1

3n/4 + 3

)n/4−1

= Ω(1)

since j ≤ n/4. The probability of choosing e in the j-th step is at least at least τmin/n =
1/n3 since the total amount of pheromone in the system is at most n. Altogether, the

first subevent has probability Ω(1/n4).
The second subevent has probability at least (1/2)2 = 1/4 since all applicable

edges in T are chosen with the same probability (using that Xt is saturated).

For the third subevent, we study a step of the construction procedure where there are

i applicable edges from T left and all edges chosen so far are from T∪{e}. Now we need

a more precise bound on the number of applicable outside T . Taking out k ≥ 1 edges

from T breaks the tour into k connected components, each of which has at most two



vertices of degree less than 2. Since e /∈ T has been chosen, at most two edges from T
are excluded from our consideration. Altogether, the number of connected components

in the considered step of the construction procedure is at most i + 2, which means

that there are at most
(

2(i+2)
2

)

≤ 2(i + 2)2 ≤ 18i2 edges outside T applicable. The

probability of neither choosing e2 nor an edge outside T in this situation is at least

iτmax

(i + 1)τmax + 18i2τmin

.

Hence, given the second subevent, the probability of the third subevent is at least

n−1
∏

i=1

i · τmax

(i + 1)τmax + 18i2τmin

=

n−1
∏

i=1

(

i

i + 1
· (i + 1) · τmax

(i + 1)τmax + 18i2τmin

)

≥ 1

n

n−1
∏

i=1

i + 1

(i + 1) + 18(i + 1)2/(τmax · n2)
≥ 1

n

(

n
∏

i=1

1 + 18i/(τmax · n2)

)−1

≥ 1

n

(

1 +
18

n − 1

)−n

= Ω(1/n),

altogether, the intersection Me(j) of the three subevents happens with probability Ω(1/n4).
Finally, consider the union Me :=

⋃

j≤n/4 Me(j), which refers to including e

in any of the first n/4 steps. Since the Me(j) are disjoint for different j, we obtain

Prob(Me) = (n/4) · Ω(1/n4) = Ω(1/n3). Similarly, for all light edges e /∈ T (of

which there are k), the events Me are disjoint (as a different new edge is picked in the

first step). Thus, the probability of an improvement is Ω(k/n3) as desired. ⊓⊔

Theorem 5. Let α = 1 and β = 0, τmin = 1/n2 and τmax = 1−1/n. Then the expected

optimization time of MMAS∗Arb on G1 is O(n3 log n + n(log n)/ρ).

Proof. Using Lemma 2 and the bound O(log n/ρ) on the freezing time, the wait-

ing time until a best-so-far solution with k heavy edges is improved is bounded by

O((log n)/ρ) + sk = O((log n)/ρ + n3/k). Summing up, we obtain a total expected

optimization time of O(n(log n)/ρ) +
∑n

k=1(1/sk) = O(n3 log n + n(log n)/ρ). ⊓⊔

4.2 Random Instances

The 2-Opt heuristic, which starts with an arbitrary tour and performs 2-Opt steps until

a local optimum is reached, is known to perform well in practice in terms of running

time and approximation ratio [9]. In contrast to this, it has been shown to have expo-

nential running time in the worst case [5] and it has been shown that there are instances

with local optima whose approximation ratio is Ω(log n/log log n) [1]. To explain this

discrepancy between theory and practice, 2-Opt has been analyzed in a more realis-

tic model of random instances reminiscent of smoothed analyis [13]. In this model,

n points are placed independently at random in the d-dimensional Euclidean space,

where each point vi (i = 1, 2, . . . , n) is chosen according to its own probability density

fi : [0, 1]d → [0, φ], for some parameter φ ≥ 1. It is assumed that these densities are



chosen by an adversary, and hence, by adjusting the parameter φ, one can interpolate

between worst and average case: If φ = 1, there is only one valid choice for the densi-

ties and every point is chosen uniformly at random from the unit hypercube. The larger

φ is, the more concentrated can the probability mass be and the closer is the analysis to

a worst-case analysis. We analyze the expected running time and approximation ratio

of MMAS∗
Arb and MMAS∗

Ord on random instances. For this, we have to take a closer

look into the results from [5] which bound the expected number of 2-Opt steps until a

good approximation has been achieved. We show the following theorem.

Theorem 6. For ρ = 1, MMAS∗Arb finds in time O(n6+2/3 ·φ3) with probability 1−o(1)
a solution with approximation ratio O( d

√
φ).

Proof. As we have argued in Corollary 1, if all edges are saturated and there is an

improving 2-Opt step possible, then this step is performed with probability at least

Ω(1/n2). From [5] we know that from any state, the expected number of 2-Opt steps

until a tour is reached that is locally optimal for 2-Opt is at most O(n4+1/3 · log(nφ) ·
φ8/3) even if in between other changes are made to the tour that do not increase its

length. Hence, using Markov’s inequality we can conclude that MMAS∗
Arb has reached

a local optimum after O(n6+2/3 · φ3) steps with probability 1 − o(1).
From [5], we also know that every locally optimal tour has an expected approxi-

mation ratio of O( d
√

φ). Implicitly, the proof of this result also contains a tail bound

showing that with probability 1− o(1) every local optimum achieves an approximation

ratio of O( d
√

φ). The theorem follows by combining the previous observations and tak-

ing into account that for our choice of ρ all edges are saturated after the first iteration of

MMAS∗
Arb. ⊓⊔

Taking into account that a specific 2-Opt operation in MMAS∗
Ord happens with prob-

ability of Ω(1/n3) in the next step, we get the following results.

Theorem 7. For ρ = 1, MMAS∗Ord finds in time O(n7+2/3 ·φ3) with probability 1−o(1)
a solution with approximation ratio O( d

√
φ).

5 Conclusions

Our theoretical results show that the usual construction procedure leads to solutions that

are in expectation far away from the currently best one in terms of edge exchanges even

if the pheromone values have touched their corresponding bounds. Due to this, we have

examined a new construction graph with a stronger locality. On the other hand, this

construction procedure has a high probability of carrying out a specific 2-opt operation

which is important for successful stochastic search algorithms for the TSP problem.

Afterwards, we have shown that both algorithms perform well on random instances if

the pheromone update is high.
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and A. F. T. Winfield, editors, ANTS Conference, volume 5217 of Lecture Notes in Computer

Science, pages 132–143. Springer, 2008.

11. F. Neumann, D. Sudholt, and C. Witt. Analysis of different MMAS ACO algorithms on

unimodal functions and plateaus. Swarm Intelligence, 3(1):35–68, 2009.

12. F. Neumann and C. Witt. Runtime analysis of a simple ant colony optimization algorithm.

Algorithmica, 54(2):243–255, 2009.

13. D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algo-

rithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.

14. Y. Zhou. Runtime analysis of an ant colony optimization algorithm for TSP instances. IEEE

Transactions on Evolutionary Computation, 13(5):1083–1092, 2009.


