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Abstract

The goal of pattern-based classification of functional neuroimaging data is to link individual brain activation patterns to the
experimental conditions experienced during the scans. These “brain-reading” analyses advance functional neuroimaging on three
fronts. From a technical standpoint, pattern-based classifiers overcome fatal flaws in the status quo inferential and exploratory
multivariate approaches, by combining pattern-based analyses with a direct link to experimental variables. In theoretical terms,
the results that emerge from pattern-based classifiers can offer insight into the nature of neural representations. This shifts the
emphasis in functional neuroimaging studies away from localizing brain activity toward understanding how patterns of brain
activity encode information. From a practical point of view, pattern-based classifiers are already well established and understood
in many areas of cognitive science. These tools are familiar to many researchers and provide a quantitatively sound and
qualitatively satisfying answer to most questions addressed in functional neuroimaging studies. Here, we examine the theoretical,
statistical, and practical underpinnings of pattern-based classification approaches to functional neuroimaging analyses. Pattern-
based classification analyses are well positioned to become the standard approach to analyzing functional neuroimaging data.

Introduction

Pattern-based classification analyses are appearing with
increasing frequency in the functional neuroimaging lit-
erature and are being applied across a diverse span of
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topics. These techniques first garnered wide attention in
studies of face and object perception, where researchers
agree about brain activation sites for faces/objects, but
are engaged in a vigorous debate about the nature of
the underlying high-level visual representations (Carlson,
Schrater, & He, 2003; Cox & Savoy, 2003; Gauthier, Tarr,
Anderson, Skudlarski & Gore, 1999; Hanson, Matsuka,
& Haxby, 2004; Haxby, Gobbini, Furey, Ishai, Schouten
& Pietrini, 2001; O’Toole, Jiang, Abdi, & Haxby, 2005;
Spiridon & Kanwisher, 2002; Kamitani & Tong, 2005).
In vision science, pattern-classification analyses have pro-
duced striking and important results on the neural pro-
cesses underlying low-level visual aftereffects (Haynes
& Rees, 2005a), predicting conscious visual perceptions
(Haynes & Rees, 2005a, Haynes, & Rees, 2005b, Kami-
tani & Tong, 2005), dissociating brain areas responsive to
biological motion (Peelen, Wigget & Downing, 2006), and
distinguishing brain states underlying face matching and
location matching tasks (Mourão-Miranda, Bokde, Born,
Hampel, & Stretter, 2005). In other areas of cognitive
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science, pattern-based classifiers have been able to detect
lies from brain activity patterns (Davatzikos, Ruparel, Fan,
Acharyya, Loughead, Gur & Langleben, 2005), classify
brain states underlying the experience of reading different
words (Mitchell, Hutchinson, Niculescu, Pereira, Wang,
Just, & Newman, 2004), and predict conscious decisions
about emotional faces at accuracy levels comparable to
neuronal data (Pessoa & Padmala, 2005).

Pattern-based classification methods have also pushed
the spatial resolution of functional neuroimaging data be-
yond conventional limits, by offering converging “human”
evidence for findings from single-unit neurophysiolog-
ical studies in animals (e.g., Kamitani & Tong, 2005;
Haynes & Rees, 2005a). These kinds of approaches can
offer interpretative grounding for recently reported data
from high-resolution functional neuroimaging studies (e.g.,
Grill-Spector, Sayres, & Rees, 2006; Schwartzlose, Baker,
& Kanwisher, 2005).

The use of pattern-based classification analyses for func-
tional neuroimaging has been reviewed recently with em-
phasis on the ability of these methods to “decode conscious
experience” (Haynes & Rees, 2006) and to address ques-
tions about neural representation (Norman, Polyn, Detre, &
Haxby, 2006). Haynes and Rees (2006) also offer a thought-
ful critique of the ethical issues entailed in brain-decoding
approaches. Both of these previous reviews highlight the
accomplishments of this new approach across the domain
areas to which it has been applied. Here we take a closer
look at the theoretical, statistical, and practical underpin-
nings of pattern-based classification approaches to func-
tional neuroimaging analyses. We argue that pattern-based
classification analyses solve some long-standing technical
and statistical problems for functional neuroimaging data
and provide a more accurate accounting of the data at hand.
We also look at the relationship among different classifiers
and the issues relevant for implementing classifiers with
appropriate pre-processing and cross-validation schemes.

This paper is organized as follows. We begin with a look
at what qualifies as a pattern-classification approach to func-
tional neuroimaging analysis. Next we detail the advances
made by this approach on technical, theoretical, and prac-
tical grounds, focusing on the question of whether these
techniques will move the field forward or simply add unnec-
essary complexity to the diverse methods already in place.
Finally, we consider the challenges ahead for using pattern-
based classifiers as a standard in functional neuroimaging
analysis.

Pattern-based classification for functional neuroimaging
analysis: What qualifies?

The goal of pattern-based classification of functional
neuroimaging data is to link individual brain activation pat-

terns to the experimental conditions experienced during the
scans. These “brain-reading” (Cox & Savoy, 2003) analy-
ses address a fundamentally different experimental question
than traditional exploratory or inferential analyses. They
ask, “How reliably can patterns of brain activation indi-
cate or predict the task in which the brain is engaged or
the stimulus which the experimental participant is process-
ing?” Pattern-based classifiers fit the “brain-reading” label
assigned to them by Cox and Savoy (2003), because they
allow us to “peer into the brain” and determine the likeli-
hood that a particular perceptual or cognitive state is being
experienced.

From a practical point of view, classifiers use individual
patterns of brain activity from trials in a functional neu-
roimaging experiment to predict the experimental condi-
tions in effect when the scans were taken. Most commonly,
a standard, “off-the-shelf” classifier algorithm is applied to
the task of learning the statistical relationship between pat-
terns of brain activity and the occurrence of particular ex-
perimental conditions. Individual brain activity patterns are
input to the classifier and predictions of the stimulus or ex-
perimental condition are generated. The accuracy of these
predictions can be measured in standard performance mea-
sures (e.g., percent correct, d’). The data that emerge from
this analysis are, therefore, remarkably similar in form to
the data that emerge from behavioral experiments in psy-
chology and cognitive science.

The earliest uses of pattern-classifiers for neuroimag-
ing analysis date back to the early nineties and were
implemented to classify PET data (e.g., Azari, Pettigrew,
Schapiro, Haxby, Grady, Pietrini, et al., 1993; Clark, Am-
mann, Martin, Ty & Hayden 1991; Kippenhan, Barker, Pas-
cal, Nagel & Duara, 1992; Moeller & Strother, 1991). The
problem considered in these papers was to classify or “di-
agnose” clinical populations (e.g., Alzheimer, Huntington
disease, or AIDS patients) using patterns of brain activation
from PET scans. This problem leads naturally to the use of
a standard discriminant analysis, which is a linear classi-
fier. The immediate issue faced by these researchers when
using standard discriminant analysis for this purpose was
the larger number of voxels by comparison to the number
of observations 2 . This motivated preprocessing schemes
based on predefined regions of interest, hierarchical multi-
ple regression analysis (in order to reduce and optimize the
number of predictors), and a principal component analysis
(PCA) (or both). The sophisticated techniques used in these
early papers are equivalent to the brain decoding methods
that have recently attracted wide attention in the literature
as a novel approach to functional neuroimaging analysis.

2 The larger number of voxels than observations would require the
inversion of a singular matrix (which is equivalent to a division by zero
and is therefore impossible).
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A daunting challenge to understanding commonalities
among pattern-based approaches to functional neuroimag-
ing analyses is that classifiers go by a wide variety of names
including neural network classifiers (NN), connectionist
networks, support vector machines (SVM), correlation-
based classifiers, backpropagation (BP), and linear dis-
criminant analysis (LDA), among others. The diversity of
labels and lack of cross-citations have obscured obvious
connections among these analyses, leaving many readers
to concentrate more on the specifics of particular analyses
than on the general pattern-based classification approach
they implement.

Remarkably, the labeling issue has also obscured a rather
transparent connection between pattern-based classifica-
tion approaches and partial least squares (PLS) regression
analysis—a statistically driven pattern-based classification
algorithm that has been used in functional neuroimaging
studies for over a decade now. The now classic paper in-
troducing PLS to the functional neuroimaging community
(McIntosh, Bookstein, Haxby, & Grady’s, 1996) has been
cited 217 times and used in roughly two-thirds of these
papers. Few studies using pattern-based classification even
cite the McIntosh et al. (1996) paper on PLS. Notwith-
standing, pattern-based methods are introduced uniformly
in recent papers as a “novel approach” to functional neu-
roimaging analysis. Concomitantly, few studies using PLS
regression cite pattern-based classification studies. A re-
cent review of PLS regression analysis of neuroimaging
data (McIntosh & Lobaugh, 2004), for example, does not
cite any of the recent pattern-based classification papers or
point out the equivalent aspects of the approach. It is not
surprising, therefore, that there is limited general recogni-
tion of the related nature of the approaches among readers
of the neuroimaging literature. From the perspective of
researchers with a solid grounding in statistics, however,
the labeling of methods in the functional neuroimaging lit-
erature is becoming confusing and potentially misleading.

The tendency in science to reinvent the wheel is espe-
cially prevalent in literatures that are inherently interdis-
ciplinary and where experimental and statistical methods
are borrowed intermittently across domains. One purpose
of this paper is to inform a general readership in the be-
havioral and brain sciences about the similar nature of the
wide variety of pattern-based classification analyses being
used for functional neuroimaging data—and to point out
critical differences among the approaches, where they exist.
Seen as a body of work, these papers represent a paradigm
shift in the way functional neuroimaging data are being an-
alyzed and interpreted. These analyses come from different
disciplines and go by different names but they accomplish
the same thing. What they accomplish is precisely what is
needed—a pattern-based analysis of functional neuroimag-
ing data in terms that relate directly and quantitatively to

experimental design variables.
A second purpose of this paper is to understand why

analyses that have been available for decades are only now
beginning to take hold in the functional neuroimaging liter-
ature. We argue that one reason behind the recent popular-
ity of pattern-based classifiers in this field is that the time is
ripe for moving functional neuroimaging research beyond
the era of cortical localization, to a new level where ques-
tions about neural representation dominate questions about
neural locus. Pattern-based classification analyses have the
potential to support this next step and to become the stan-
dard approach in functional neuroimaging analysis.

A third purpose is to evaluate how the shift will likely
affect progress in the field. On technical, theoretical, and
practical grounds, we argue that the use of pattern-based
classifiers will make important strides toward setting a min-
imum quantitative standard to which functional neuroimag-
ing analysis must adhere and toward making full use of the
potential of neuroimaging technologies.

Before proceeding, it is worth noting that the largest
concentration of papers using pattern-based classification
analyses for functional neuroimaging have appeared in do-
main of face and object processing. This is likely due to
the recent emphasis in that literature on understanding the
pattern structure of brain responses for deciding among al-
ternative theoretical hypotheses about the neural represen-
tation of faces/objects. In what follows, we make liberal use
of the studies from this domain to illustrate our points.

Why pattern-based classification analyses are attracting
attention

The widespread and accelerating popularity of pattern-
based classification analyses in functional neuroimaging
can be attributed to three factors, which provide an orga-
nizational structure for this paper. First, pattern-based clas-
sifiers overcome fatal flaws in the status quo inferential
and exploratory multivariate approaches. Second, the re-
sults that emerge from pattern-based classifiers can pro-
vide insight into the nature of neural representations. Third,
pattern-based classifiers are already well established and
understood in many areas of cognitive science. These tools
are familiar to many researchers and provide a qualitatively
and quantitatively satisfying answer to most questions ad-
dressed in functional neuroimaging studies.

We present these three factors first as tenets and then in
more detail. We concentrate on how these factors support
the adoption of pattern-based classifiers as the standard ap-
proach to analyzing functional neuroimaging data.
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Tenet 1: Fatal flaws in the status quo

Voxel-based inferential statistics (e.g., analysis of vari-
ance, ANOVA) and multivariate exploratory methods (e.g.,
principal/independent components analysis, PCA/ICA)
constitute the status quo in functional neuroimaging data
analysis. Voxel-based inferential analyses are flawed be-
cause they treat brains data from neuroimaging studies
as independent voxels. Exploratory multivariate analyses
are flawed because they fail to provide quantifiable links
to experimental design variables. Pattern-based classifiers
address these shortcomings by treating brain images as
patterns and by providing a quantifiable link to experimen-
tal conditions. This is a technical advance in the quality of
analyses available for functional neuroimaging data.

Tenet 2: Understanding neural representation

Status quo analyses are focused on identifying brain re-
gions that are active during perceptual and cognitive tasks.
Pattern-based classification approaches to functional neu-
roimaging are focused more on understanding how, rather
than where, the brain encodes information. If successful,
pattern-based classifier approaches can offer insight into the
nature of neural representations. This is a watershed issue
for high-level neural codes that can go beyond trivial ex-
tensions of single unit neural response profiles to the nature
of the neural codes that underlie perceptual and cognitive
brain states. This is a theoretical advance in the kinds of
questions that functional neuroimaging studies can address.
It is a by-product of the technical advance, but one that re-
lies on appropriately framing the experimental questions,
rather than simply implementing a classifier.

Tenet 3: Familiarity, comfort level, and “attractiveness” of
the approach

To ignore the influence of the sociology of science in un-
derstanding why certain methodological approaches “catch
on” and others (even rigorous, well-respected ones) are left
to “specialists” is to miss a solid slice of causality in the
progress of science. The practitioners of functional neu-
roimaging have come from traditions in psychology, cogni-
tive science, and neuroscience, bringing analysis methods
from these domains with them. From a technical point of
view, these methods are ill suited to the analysis of func-
tional neuroimaging data. Statisticians have long bemoaned
the inadequacies of status quo approaches to functional neu-
roimaging data analysis and have succeeded in publishing,
but not popularizing, sensible alternatives. Pattern-based
classifiers took center stage in cognitive science under the
name of neural networks in the eighties and early nineties.

As techniques, they are familiar to broad and diverse groups
of researchers in cognitive science and are statistically ap-
propriate for the analysis of functional neuroimaging data.
They are also functionally equivalent to statistically based
techniques, such as PLS, which achieved the technical ad-
vance of Tenet 1 over a decade ago, but have not become
the standard in functional neuroimaging analysis. The tech-
nical advance of Tenet 1 is “catching on” and will increase
in popularity, under the name of pattern-based classifiers,
“brain-reading” and “brain decoding” approaches. This is
a practical advance as research expertise from a broader
range of behavioral and brain sciences can be brought to
bear on issues in the analysis of functional neuroimaging
data.

A sub-tenet of the “catch-on” issue is that the brain-
reading metaphor suggested by pattern-based classification
algorithms is an attractive metaphor that might be able to
supplant less positive metaphors for functional neuroimag-
ing, such as the “new phrenology” (Uttal, 2001). Whether
a change in metaphor represents an advance (of any kind)
in science depends on whether it alters the way researchers
and the general scientific public view the value of the re-
sults that emerge. This may indeed be the most tangible
advance to emerge from a paradigm shift.

Technical Advance: What’s wrong with the status quo?
Tenet 1

Pattern-based classification methods represent a major
advance in the analysis of functional neuroimaging data,
because they combine pattern-based data analysis of brain
responses with quantifiable links to the experimental con-
ditions. The two most common approaches to functional
neuroimaging analysis are flawed because they provide ei-
ther a quantitative link between the data and the experi-
mental conditions or a pattern-based analysis, but not both.
Specifically, inferential or “hypothesis-led” methods (Fris-
ton, 1998; Petersson, Nichols, Poline & Holms, 1999b) pro-
vide quantification of functional neuroimaging data in terms
of the experimental variables, but do not operate on patterns
of neural activation. Inferential analyses operate on single
voxels, which are treated incorrectly in these analyses as
independent measures.

Exploratory or “data-led” analyses (Friston, 1998; Pe-
tersson, Nichols, Poline, & Holms, 1999a) are applied
directly to the neural activity patterns, but are limited in
their ability to quantify patterns in terms of the original
condition-based, experimental variables. These analyses
quantify free-floating variance in neural activation patterns
without regard to their source, experimental or otherwise.
In what follows, we present the assumptions, advantages,
and disadvantages of the status quo approaches.
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    a.) 

b.)  c.)

Fig. 1. Figure 1. Pattern based visualization. a.) Voxels from the Haxby et al. (2001) that differed significantly as a function of the object category
being viewed by the participant when the scan was taken; b.) a principal component computed from the scans taken while participants viewed faces
and houses that explains almost half of the variance in the set of scans from this participant, but is unrelated to the experimental variable. Intensity
indicates the weighting of each voxel on this component (positive values in orange, negative values in blue); c.) a principal component that proved
useful for classifying scans by condition (face versus house), but explained only 3 percent of the variance in the PCA.
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Hypothesis-led approaches: A closer look

Hypothesis-led approaches to the analysis of functional
neuroimaging data draw on inferential statistical methods
similar to those used in the behavioral sciences. A standard
hypothesis-testing perspective underlies this approach. A
researcher posits that different brain states will result as a
function of different experimental conditions. An inferential
statistical test, such as an analysis of variance (ANOVA),
is applied to answer the question, “Do the brain states that
occur in response to experimental Condition A differ sig-
nificantly from the brain states that occur in response to
experimental Condition B?” The operational definition of
this question reduces to assessing differences in the activa-
tion level of any voxel or subset of voxels or “region of in-
terest” as evidence for rejecting the null hypothesis of “no
difference” in brain states. Hypothesis-led methods follow
a “label and analyze” approach. Voxel activations are la-
beled by condition and then analyzed in a way that detects
statistically reliable differences between the activation lev-
els as a function of experimental condition.

Figure 1a shows the results of an inferential analysis
applied to data from Haxby et al. (2001) on face and ob-
ject processing. Participants in that study viewed eight cat-
egories of objects (faces, houses, cats, chairs, scissors, bot-
tles, shoes, and scrambled objects). An inferential analysis
of these data asks the question, “Does brain activation vary
as a function of the object category being viewed?” Inferen-
tial methods answer this question, one voxel at a time. The
figure displays the result of applying one-factor (object cat-
egory) ANOVAs separately to each voxel in a pre-selected
target area of the brain, with voxel activation as the de-
pendent variable in each analysis. Specifically, we see the
anatomy of a participant, with an overlay of the voxels that
were statistically significant in their respective ANOVAs.
Figure 1a, therefore, shows the parts of the brain that are
affected by changes in the experimental condition, (i.e., the
object being viewed).

The advantage of inferential approaches is that they pro-
vide a statistical method for making statements about the
reliability of brain response as a function of experimen-
tal conditions. The disadvantages of this approach are well
known, but rarely taken seriously enough to limit the use of
these techniques. First, these inferential analyses are voxel-
based and therefore rely on the assumption that voxels are
independent, which they are not—a fact that is universally
accepted by functional neuroimaging researchers.

The consequence of accepting the independence assump-
tion for co-dependent voxels is that it eliminates any possi-
bility of measuring or assessing neural codes that reside in
the interactions among voxels. The communication among
neurons is, arguably, the preeminent strength of neural/brain
computation. The power of functional neuroimaging tech-

niques is that they simultaneously measure patterns of brain
activity across large regions of the brain. The use of voxel-
based inferential statistics, therefore, systematically elimi-
nates most of the data a researcher gathers in a functional
neuroimaging study, reducing the power of neuroimaging
techniques to the level of single unit recordings.

The independence assumption leads to the second more
technical, but equally vexing problem of multiple compar-
isons across statistical tests (e.g., Petersson et al., 1999b).
The application of multiple inferential tests to the many
voxels measured in functional neuroimaging experiments
inflates the alpha level for rejecting the null hypothesis. The
more comparisons made, the more likely it is to reject the
null when it is correct (a Type I error). This leads to a liberal
test for significance that overestimates effects. There are a
number of ways of correcting for inflated values, but these
swing the pendulum in the opposite direction toward Type
II errors. This leads to excessively conservative tests that
tend to underestimate effects (e.g., Petersson et al., 1999b).

Data-led approaches: A closer look

Data-led approaches to the analysis of functional neu-
roimaging data employ pattern-based, multivariate ex-
ploratory methods to “characterize” the nature of the signal
present in the data, including “unsuspected effects” (Peters-
son et al., 1999a). Typical exploratory analyses used with
functional neuroimaging data include principal component
analysis (PCA) and independent component analysis (ICA;
e.g., McKeown, Makeig, Brown, Jung, Kindermann, Bell,
& Sejnowski, 1998). These kinds of multivariate analyses
have a long and distinguished history and been applied
ubiquitously to problems in engineering and cognitive
science for decades. They are appropriate for functional
neuroimaging analyses because of the multiple measures
of brain activity that are taken across time and brain space
in a typical study.

At the outset, it is worth stressing that brain activity data
from a standard functional neuroimaging experiment do in-
deed vary across both space and time. As such, brain activ-
ity patterns can be defined relative to the temporal, spatial,
or spatiotemporal dimensions of the brain data. We consider
the importance of this spatiotemporal issue in more detail
shortly. For present purposes, however, data-led methods
are applied most commonly to the entire series of brain
maps (spatially arrayed voxels) available from an experi-
ment, (e.g., a matrix of n brain maps in the columns with
m voxels for each in the rows). The signal characterization
that results usually takes the form of n brain activity pat-
terns 3 (e.g., principal or independent components) that ex-
plain different amounts of variance in the set of brain scans.

3 Assuming n < m.
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These components can be ordered according to the propor-
tion of variance they explain, but must be interpreted “by
eye” in a post-hoc fashion.

The process of interpretation is usually undertaken visu-
ally by projecting individual principal or independent com-
ponents onto the participant’s brain anatomy and looking at
the projections. The patterns of activity captured in the ex-
ploratory analysis are considered meaningful positive indi-
cations of the experimental effects when they explain sub-
stantial proportions of variance and “resemble” or “echo”
the hypothesized regions of brain activation and/or the tem-
poral structure expected from the experimental conditions.
Additional components may be deemed meaningful when
they indicate experimental artifacts (e.g., from head move-
ment). These pattern-based artifacts can be removed from
the data when they are interpretable, allowing for a cleaner
interpretation of the experimental data. Un-interpretable
components are ignored.

A simple example appears in Figure 1b, using the data
from the Haxby et al. (2001) experiment and the participant
presented in Figure 1a. A PCA was applied to the brain
scans taken while the participant viewed faces and houses.
Because PCA was applied to brain scans, it is possible to
interpret and visualize the resultant principal components
as brain scans by projecting them back onto the anatomy
of the participant. The first principal component explains
roughly half of the variance in the scans and is displayed in
Figure 1b. It highlights areas near the fusiform and parahip-
pocampal place areas—these are areas known from previous
studies to respond well to faces and houses, respectively.
As we will see shortly, despite the general resemblance of
the principal component to preconceived ideas about the
locations of the relevant brain areas, a pattern-based clas-
sification approach shows that this principal component is
unrelated to the experimental manipulation.

Exploratory analyses such as PCA and ICA are “blind”
to the structure of the experimental design, and so the goal
is to uncover the experimental design in the context of other
important components of the data that may or may not be
expected. In contrast to the inferential approach, exploratory
methods can be considered examples of an “analyze and
label” approach. The pattern data are analyzed first and are
then labeled post-hoc with an interpretation that fits them
into aspects of the experimental design (e.g., which category
of objects a participant was viewing).

The fact that exploratory analyses are blind to the struc-
ture and parameters of the experiment is both an advantage
and a weakness. The advantage is that components explain-
ing variance highlight relationships among voxels at both
a local and global scale. These relationships can be indica-
tive of the co-activation of multiple brain areas to the stim-
ulus being presented and also can indicate unsuspected or
non-hypothesized effects, which might escape notice in a

voxel-based analysis.
The primary disadvantage of exploratory approaches is

that the interpretation of the derived components, in terms of
the experimental conditions and artifacts, is left completely
to the experimenter. Components that are compelling in
terms of the experimental context are retained. Components
that are not easy to interpret are discarded or ignored.

A second more practical disadvantage of multivariate
analyses such as PCA and ICA is the voluminous and some-
times unwieldy nature of the resultant output. In fact, as
much data comes out of the analysis as goes in. Although
the proportion of explained variance serves as a guide to
the “importance” of the components, this “importance” is
defined by explained variance in the set of brain images
analyzed. There is no systematic or prescribed method for
determining whether explained variance in the set of im-
ages has anything to do with the manipulation of the exper-
imental variables. As is well known, the functional effects
detected in f MRI alter voxel activation level by less than a
few percentage points. Consequently, the experimental ef-
fects of interest may explain a relatively small amount of
variance in a linear analysis by comparison to a variety of
other sources of variance in the scans (e.g., head move-
ments). Thus, the proportion of explained variance may not
be the best guide to finding components that relate to the
experimental conditions.

Finally, the need to interpret components by eye, from
an inherently three-dimensional functional neuroimaging
brain map, is a daunting and potentially error-prone task.
Given the volume of data and the number of components to
choose from, it is generally possible to find something that
looks “interesting” and meets a researcher’s expectations
about the location(s) of brain activity changes that should
accompany particular experimental manipulations. Though
patterns may “look” interesting, and may meet the expecta-
tion of a hypothesis, these methods include no formal way
to establish a link between the patterns and experimental
variables.

Synopsis of the status quo and technical advantages of
pattern-based classifiers

The problem with status quo analyses to functional neu-
roimaging data is that there are fatal flaws in what they
accomplish. The inordinate loss of information in voxel-
based analyses is an unacceptable waste of functional neu-
roimaging data, which are expensive and challenging to col-
lect. The need to interpret multivariate exploratory analyses
without built-in data-driven constraints makes for an unac-
ceptably weak tie between brain activation maps and exper-
imental variables. Both voxel-based inferential and multi-
variate exploratory approaches are ill suited for functional
neuroimaging analysis.
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Two critical differences in pattern-based classification
approaches over the status quo address the technical short-
comings of previous approaches. First, pattern-based clas-
sifiers ask a different question than either inferential or ex-
ploratory methods. Inferential methods ask, “Does the ac-
tivation level of a voxel vary significantly as a function of
experimental condition?” Exploratory methods ask, “What
patterns of activity explain variations across the set of brain
maps?” Pattern-based classification methods ask, “How re-
liably can patterns of brain activation indicate or predict the
task in which the brain is engaged or the stimulus which the
experimental participant is processing?” The answer pro-
vided by pattern-based classification methods is a quantita-
tive measure of the discriminability of brain maps in terms
of experimental variables. These data can be expressed as
a percent correct classification or, when appropriate, in sig-
nal detection terms as a discrimination index, such as d′.
The extracted measures of pattern similarity can be submit-
ted to inferential statistics and compared to behavioral data
from human participants.

Second, pattern-based classification algorithms operate
on brain activity patterns, allowing for the relationship or
interaction among voxels to contribute to the classification
success of the algorithm. The ability of pattern-based clas-
sifiers to use this enormous quantity of data, which voxel-
based analyses discard, makes them less likely than tradi-
tional voxel-based analyses to underestimate the discrim-
inability of brain states as a function of experimental vari-
ables. We qualify this claim shortly to make clear that it
applies only to certain types of pattern-based classifiers,
which are a subset of those used in recent analyses of func-
tional neuroimaging data.

Spatial, Temporal, or Spatiotemporal? Again, we stress
that the brain activity data measured in a standard func-
tional neuroimaging experiment vary both in time and
space. Consequently, there can be significant pattern struc-
ture in time between voxels and in space between time
points. Temporal variation typically marks modulations in
the stimulus/experimental conditions in a dataset, whereas
spatial variations mark the structure of voxel activation
across different brain locations (assuming a constant
stimulus/experimental condition). Most pattern-based ap-
proaches have been limited to the analysis of either the
spatial or temporal structure of the design (though see
Lobaugh, West, and McIntosh, 2001, for spatiotemporal
analyses that encompass the entire spatiotemporal design
of a study). In most cases, looking at the spatial or tem-
poral structure alone is a reasonable first order analysis.
For example, there can be valuable information gained by
looking at the stability of a spatial activation structure in a
stimulus/experimental condition and contrasting it to other
conditions. Concomitantly, there can be valuable informa-
tion in the time course activation of voxels as experimental

conditions vary.
Ideally, pattern-based analyses should consider the full

range of spatiotemporal patterns. However, to limit the com-
plexity of this paper and to follow the thread inherent in
most of the literature on this topic, we discuss pattern-based
classification analyses in this paper only for spatial brain
patterns. To date, most pattern-based classifiers in func-
tional neuroimaging concentrate on the spatial layout of
brain activity by condition. It is worth bearing in mind, how-
ever, that both space and time are variables in all functional
neuroimaging studies—though they may have differential
importance in the context of different experimental designs.
In principle, all of the analyses discussed here apply to tem-
poral and spatial variations in brain activity data, with the
caveat that interpreting the analyses will differ substantially
as a function of design type (e.g., block versus event).

Neural representation from functional neuroimaging
data: Tenet 2

Much has been made recently of the fact that pattern-
based analyses of functional neuroimaging data provide a
kind of neural “read-out” of conscious experience (e.g.,
Haynes & Rees, 2006). This is a compelling metaphor for
a pattern-based classifier approach to the analysis of func-
tional neuroimaging data, but one that threatens to direct
the attention of researchers away from the potential of these
analyses for making progress on questions of neural code
beyond the limits of established methods. Single unit neuro-
physiology, neuropsychology, and status quo treatments of
functional neuroimaging data can confirm the importance
of brain locations for a perceptual or cognitive process, but
are limited in their potential for elucidating the contribu-
tion of the location to the neural code. In rare instances,
neurophysiological single unit recordings can show a link
between the response of a neuron and conscious perception
(e.g., Newsome, Britten, & Movshon, 1989). The motiva-
tion of these studies is analogous to brain-decoding, but
on the scale of individual neurons. Although these cases
establish strong ties between conscious experience and a
neural response, they constitute instances of grandmother
cell codes (Barlow, 1972), and may represent only a small
fraction of neural codes.

A verifiable link between a real-valued neural activity
pattern and an experimental variable (or conscious percep-
tion) (e.g., this brain activity pattern predicts that a person
is experiencing this ambiguous stimulus as x) can provide
information about neural codes that is not available with
previous approaches. This information comes in the form
of interactions among voxels, the degree to which neural
codes are shared at the level of stimuli and/or psychologi-
cal tasks, and the ability to visualize pattern-based data that
relate directly to experimental variables. The challenge is
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to use the information to advance understanding of how the
brain works and to expand the range of questions that can
be addressed in functional neuroimaging.

The literature on face and object processing offers an
entry into understanding how pattern-based classifiers can
provide insights into neural representation that are not pos-
sible with other methods. It also serves as a useful base for a
discussion of the relative merits of individual classifiers for
analyzing functional neuroimaging data. We take up these
issues in the next three sections. In this section, we offer
a brief sketch of the neural representation issue at ques-
tion in the domain of face and object processing. In so far
as possible, we separate issues about neural representation
from issues about the quality and adequacy of classifiers.
We evaluate the various classifiers used in this literature in
the section on “Familiarity, comfort level, and practical as-
pects of the approach.” For clarity, however, we provide a
brief description of the classifier(s) for each study as they
are discussed, leaving the methodological issues and eval-
uation of different classifiers to the third section.

Face and Object Processing: Modular versus distributed?

The recent popularity of pattern-based classification ap-
proaches for analyzing functional neuroimaging data can be
traced directly to Haxby et al.’s (2001) influential 4 study
of face and object processing in ventral temporal (VT) cor-
tex. The Haxby et al. (2001) paper weighed into an existing
debate about whether the neural representation of faces and
objects is modular or distributed. The modular account of
representation posits that specific areas of VT cortex are
specialized for representing certain categories of objects
(Spiridon & Kanwisher, 2002). Prior to the use of pattern-
based classification for this problem, support for the mod-
ular approach was based on findings that certain regions of
cortex respond preferentially to particular categories of ob-
jects (e.g., faces and houses). By viewing statistically sig-
nificant voxels projected onto brain anatomy, it is possible
to locate cortical “hot spots” or maximal activation sites for
faces, houses, and other objects. Faces, for example, elicit
maximal response from an area in VT cortex now known
as the fusiform face area (FFA, Kanwisher, McDermott, &
Chun, 1997). Houses and scenes, for example, maximally
activate an area in VT known as the parahippocampal place
area (PPA, Epstein & Kanwisher, 1998).

The distributed or object form topography model posits
that the representations of objects are distributed widely
across VT cortex (Haxby et al., 2001). Prior to the use
of pattern-based classifiers, support for the distributed ac-
count was based on findings that the brain regions pre-
ferring certain categories of objects also respond to other

4 Cited 221 times as of this writing!

“non-preferred” categories of objects (e.g., Ishai, Ungerlei-
der, Martin, Schouten, & Haxby, 1999).

Remarkably, there is little disagreement in the literature
about the existence of brain areas that respond maximally
to certain objects and little disagreement about where these
areas are located. At issue is whether different categories
of objects are coded with dedicated (modular) or shared
(distributed) neural resources.

Pattern-based classifier approaches to understanding neu-
ral representation

Dissect and classify
Haxby et al.’s (2001) approach to the neural represen-

tation issue was simple and direct. They used a simple
classifier to categorize scans from an f MRI experiment in
which participants viewed eight categories of objects (faces,
houses, cats, bottles, scissors, shoes, chairs, and scrambled
control stimuli). This classifier was based on comparisons
of individual brain map correlations, both within and across
object categories (Haxby et al., 2001). The idea behind this
approach is that accurate pattern-based discrimination of the
scans is possible if there is a higher correlation among scans
taken while participants viewed stimuli from “within a cat-
egory of objects” than while they viewed stimuli “across
different categories of objects.” Haxby et al. (2001) found
that the patterns of brain responses to object categories were
highly discriminable.

To look at the distributed versus modular representation
of faces and objects, the classifier was applied to differ-
ent subsets of voxels. The modular hypothesis predicts that
the information for classifying objects by category should
be contained primarily in voxels that respond maximally to
the category in question. Haxby et al. (2001) found that the
voxels maximally activated in response to particular cate-
gories could be deleted from the classifier input with only
minor cost to classification accuracy. This finding supports
a distributed account of neural representation because it
suggests that the regions of brain that respond maximally
to particular categories of objects are not required to cate-
gorize objects.

Following the study of Haxby et al. (2001), Spiridon
and Kanwisher (2002) also used the same type of clas-
sifier with a related, but not identical, operational defini-
tion of “distributed” versus “modular”. Haxby et al. asked,
“To what extent do voxels that respond non-maximally to
a particular category of objects affect performance in dis-
criminating preferred and non-preferred objects?” Spiridon
and Kanwisher (2002) asked, “How useful are voxels from
specialized areas for discriminating among objects from
non-preferred categories?” Spiridon and Kanwisher (2002)
found that regions that give their maximal response to a
particular object (e.g., faces) were only minimally able to
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classify other objects (e.g., chairs and shoes). They con-
cluded in favor of a modular organization of ventral tem-
poral cortex.

These two studies illustrate a classify-and-dissect ap-
proach to understanding neural representation. The first step
is to show that the classifier can discriminate brain acti-
vation patterns with reasonable accuracy. This provides a
quantitative link between patterns and experimental condi-
tions. The accuracy of prediction gives a measure of the
strength of the link. The second step is to selectively ablate
the voxels input to the classifier in a theoretically motivated
way. The effect of this ablation on classification accuracy
is taken as an indication of how patterns of brain activity
contribute functionally to the neural code.

Differences in the conclusions of Haxby et al. (2001)
and Spiridon and Kanwisher (2002) are likely due to dif-
ferences in their operational definitions of distributed and
modular. Although classifiers are capable of providing the
kind of data needed to test hypotheses about neural rep-
resentation, as for other analysis methods in science, the
definitiveness of the test lies not with the method itself, but
with the framing of the question. A positive outcome of any
new method in science is that it opens a dialog on how to
frame questions in the context of a novel tool. To provide
more definitive answers to questions about neural represen-
tations that are pattern-based, more precise formulations of
these theoretical concepts are required. In the case of the
face and object literature, these formulations came quickly
in the form of a flurry of follow-up studies to Haxby et al
(2001) and Spiridon and Kanwisher (2002). These studies
introduced a host of intriguing refinements to the general
notion of how (or whether) pattern-based neural codes dis-
tribute information.

Hanson et al. (2004) moved the representation question
to a higher level of precision by proposing an explicit tax-
onomy of neural code types. Working with the data from
Haxby et al. (2001), Hanson et al. defined four neural in-
stantiations of distributed and modular codes. The first com-
prises a spatially local/compact code that indicates the pres-
ence or absence of an object type. The second adds a poten-
tial likelihood estimate to this spatially local/compact rep-
resentation. The third code is distributed (i.e., spread out),
but non-overlapping. Voxels in this code are dedicated to
object categories, although voxels dedicated to coding spe-
cific object categories are not (necessarily) spatially con-
tiguous. The fourth type of code is distributed and partially
or completely overlapping. Hanson et al. (2004) refer to the
completely overlapped version of this code as “combinato-
rial” and stress that this code type is “intensity variable.”
Object categories are indicated, therefore, not only by the
patterns of active voxels, but by the relative intensities of
the voxels as well. At its extreme, all voxels might be ac-
tive for all object categories, with distinctions among cate-

gories coded only by the relationship among voxel intensi-
ties across cortex.

Hanson et al. (2004) implemented a variety of feed-
forward, neural network architectures with both linear and
nonlinear decision rules. The architecture for which they
report the most interesting results starts with input from
the voxels, follows with a bottleneck of hidden units, and
ends with projections onto output units indicating the ex-
perimental conditions. The sensitivity of individual voxels
was assessed by adding Gaussian noise to the voxels and re-
computing classification accuracy. This sensitivity analysis
showed a high degree of overlap among voxels recruited for
all object categories and exemplars. Hanson et al. (2004)
conclude, therefore, in favor of a combinatorial code.

Knock-out and classify
Carlson et al. (2003) took the representation enterprise

a step further using an elegant “knock-out” procedure that
is capable of deleting entire systems of voxel activation
patterns involved in certain kinds of classifications. They
modeled data from a face and object processing study in
which participants viewed three categories of objects (faces,
houses, and chairs) in either a passive viewing procedure
or a delayed matching task (Ishai et al., 1999).

The knock-out procedure was implemented in two steps.
First, Carlson et al. (2003) created a multidimensional rep-
resentation space of the scans using PCA. Next, a LDA
classifier learned to predict experimental conditions from
the projections of the individual scans on the principal com-
ponents. The important difference in this approach is that
voxel values are not directly input to the classifier. Rather,
classifier input is based on an extracted exploratory mul-
tivariate analysis of the scans (see Section “Data-led ap-
proaches”). In this context, the interpretation difficulties we
discussed previously for multivariate exploratory analyses
are reduced, because the classifier quantitatively links the
principal components to the experimental variables. A re-
searcher does not have to guess whether or not a pattern of
activation (e.g., principal component) is linked to the ex-
perimental manipulation. Moreover, the good points of ex-
ploratory multivariate analyses, like their ability to remove
experimental artifacts, return. Factors that explain variance,
(e.g., experimental artifact and experimental condition ma-
nipulations), will be detected in the multivariate exploratory
analysis. The classifier then weights the information useful
for predicting experimental condition strongly and pushes
the weights on the artifactual information toward zero. Be-
cause classifier input is in the form of projections of scans
on the multivariate axes, the weighting applies, not to indi-
vidual voxels, but to entire (overlapping) patterns of voxel
activations specified by the multivariate axes.

The knock-out procedure operates by systematically
eliminating or “lesioning” the best discriminant axes until
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the classification performance is close to chance 5 . Each
“knock-out” deletes an entire complex pattern of brain
responses, rather than deleting individual voxels. This al-
lowed Carlson et al. (2003) to look at the interdependence
among neural codes for the various kinds of classifier tasks.
With this procedure, it becomes possible to delete all of
the information needed for a particular discrimination task
and then to assess the effects of this deletion on any other
discrimination task. Carlson et al. (2003) defined category-
specific classifiers, which discriminated a specific category
of items (e.g., faces) from the other categories of items
(e.g., houses and chairs). Pairwise classifiers discriminated
a specific category of items (e.g., faces) from another cat-
egory of items (e.g., houses). Object-control classifiers
discriminated a specific category of items (e.g., faces)
from scrambled items from the category (e.g., scrambled
faces). Carlson et al. (2003) found that category-specific
knock-outs reduced classification performance for all three
object-specific control tasks. This illustrates that there are
aspects of the neural representations that are shared across
all object categories.

The knock-out technique adds a powerful tool to the
repertoire of methods available for investigating the nature
of the patterns involved in object representation. Of note, it
sets up a framework for investigating the degree to which
neural representations sub-serve multiple tasks, thereby pro-
viding a window into the structure of information process-
ing in the brain. Questions of task independence, which are
key in many areas of psychology, can be addressed with
this method.

Representations: Merging Brain Space with Stimulus Space
An important advantage of pattern-based classification

analyses of functional neuroimaging data is that many of
these analyses create a “brain space”. When compared ap-
propriately to perceptual spaces or computationally derived
stimulus spaces, brain spaces can ground hypotheses about
neural representation (cf., Edelman, Grill-Spector, Kush-
nir & Malach, 1998; Young & Yamane, 1992). By “brain
space,” we mean simply that in geometric terms, pattern-
based classifiers classify patterns based on where they are
in a multidimensional space that represents brain states.
The success of the classifier depends upon how neatly the
scans/brain states from particular experimental conditions
cluster. Failures of classification indicate that scans from
different conditions intermix in the brain space. The confus-
ability of brain scans can be used to leverage information
about representations, when the hypothesized representa-

5 It is worth noting that Hanson et al. (2004) constrain the number of axes
available for coding by varying the number of hidden units, a procedure
related to that used by Carlson et al. (2003). The Hanson et al. results
have interesting implications for finding the minimum dimensionality of
representations.

tions or known perceptual data suggest that certain stimulus
conditions should be more or less confusable.

To illustrate a brain space using the data of Haxby et
al. (2001), O’Toole et al. (2005) used the “distances” be-
tween the brain states that resulted when viewing different
object categories. These distances were derived with a PCA
followed by a pattern-based classifier, similar to that used
by Carlson et al. (2003). The d’s (distances) for discrimi-
nating object categories were based on the functional neu-
roimaging scans collected by Haxby et al. (2001). These
distances can be combined across the individual participants
to give an idea of the consistency of brain representations
across different observers, avoiding the notoriously error-
prone process of physically aligning participant brains.

Figure 2a shows a profile of the similarity of brain re-
sponses to the object categories, combined across partici-
pants. It is clear that the pattern-based representations of the
face and house categories are highly distinct from each other
and from the cluster of other objects 6 . As indicated by the
participant dispersion lines, it is also clear that the neural
response to these categories was relatively consistent across
participants in the study. Viewed in computational object
recognition terms, questions about the nature of face and
object representations in VT cortex can be considered in the
context of stimulus predictions. How confusable should we
expect the neural representations of object categories to be,
assuming a distributed or modular hypothesis (O’Toole et
al., 2005)? The object form topography model of Haxby et
al. (2001) posits that the representations of faces and other
objects are widely distributed and overlapping, because VT
cortex contains a topographically organized representation
of the attributes that underlie face and object recognition. It
follows that voxels should share information about object
categories as a function of the degree to which the object
categories share features or attributes. “Similar” object cat-
egories should share more voxels than “dissimilar” object
categories. An unexpected consequence of this logic is that
a distributed coding of objects in VT cortex actually pre-
dicts modular brain activations, when the object categories
share few common attributes.

To define “physically similar”, O’Toole et al. (2005) im-
plemented a computational model to categorize the stimuli
used by Haxby et al. (2001). The resultant stimulus space
was remarkably similar to the brain space (Figure 2b). This
is consistent with a distributed code in which the brain re-
sponse patterns for different object categories share voxels
in roughly equal measure to the extent to which they share
attributes. It also accounts for brain activation patterns that
look modular, but which are actually based on distributed
coding principles.

6 See O’Toole et al. (2005) for a discussion of the cat and scrambled
categories, which are not well-fit by the computational model.
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Fig. 2. A schematic view of the neural separability of representations for faces and objects derived from O’Toole et al. (2005) based on data from
Haxby et al. (2001). a.) shows a DISTATIS plot derived from the neuroimaging-based confusability profiles of the scans from the eight categories
(Abdi, Valentin, O’Toole & Edelman, 2005; Abdi, 2003, 2007; Kherif, Poline, Mériaux, Benali, Flandin, & Brett 2003, Shinkareva, Ombao, Sutton,
Mohanty, & Miller, 2006). Dispersion lines indicate the consistently of individual participants with respect to the center points of the categories; b.) a
combined neuroimaging and stimulus space that shows the compatibility of the neural activation maps from Figure 2a and the stimulus model (outlined
pictures). The distance matrix from the stimulus model projected onto the neural activation distance map (Abdi & Valentin, 2006) reveals a close fit
between brain and stimulus spaces.
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The use of patterns as the primary unit of analyses of-
fers advantages in visualizing pattern-based brain activity
with a stronger tie to interpretation than is possible with
multivariate exploratory analyses. We can now return to
the information in patterns for discriminating experimental
conditions. From the PCA-LDA classifier used by O’Toole
et al. (2005), the principal component displayed in Figure
1c was quantitatively linked to the experimental variable—
it achieved a high degree of separation (d’ = 3.3) between
face and house brain maps in the brain of a participant in
Haxby et al. (2001). This component, however, explained
only 3 percent of the variance in the PCA. This stands in
stark contrast to the principal component displayed in Fig-
ure 1b, which explained over 50 percent of variance but
was unrelated to the experimental manipulation.

In summary, a verifiable link between a real-valued neu-
ral activity pattern and an experimental variable (or con-
scious perception) can provide information about neural
codes that is not available with previous approaches. The
information provided by the interaction among voxels, the
degree to which neural codes are shared at the level of stim-
uli and/or psychological tasks (e.g., detection of an object,
discriminating pairs of objects, open-ended object classifi-
cation), and visualization of supportive pattern-based data
expand the range of questions that can be addressed directly
in functional neuroimaging studies.

Familiarity, comfort level, and practical aspects of the
approach: Tenet 3

In the introduction, we noted that pattern-based classi-
fiers are familiar to many researchers via the neural network
boom of the eighties and early nineties. Shared knowledge
of methods in a field fosters progress through the common
ground it provides for dialog. The quick spread of pattern-
based classifiers across a diverse range of domains in func-
tional neuroimaging is probably due in part to the comfort
level aspect of these analyses. If it were simply a question
of making a technical advance, PLS regression would now
be the standard. Pattern-based classification analyses sat-
isfy long-standing valid complaints about the inadequacy
and inappropriateness of status quo approaches and are rea-
sonably well understood in the behavioral sciences. They
can therefore support a relatively painless transition from
the status quo to a better way of analyzing functional neu-
roimaging data. It is important, nonetheless, to see these
approaches in a correct historical context, where function-
ally related analyses are part of the overall change in per-
spective for functional neuroimaging analysis.

In this section, we look at some of the practical issues
involved in choosing an appropriate classifier and in im-
plementing it in ways that enable conclusions that answer
the questions at hand. We begin with the topic of choosing

input for a classifier from the enormous number of avail-
able brain voxels. These pre-processing decisions are crit-
ical for determining the scope of conclusion possible and
are a necessary prerequisite for training well-behaved clas-
sifiers. Next, we consider cross-validation methods, which
must be implemented to evaluate the robustness of classifier
results across samples. Finally, we consider some critical
features of the classifiers and the representations on which
they operate.

Preprocessing or Input Conditioning

Because the number of voxel activations measured in a
standard fMRI study can be on the order of several hundred-
thousand voxels, the input used by classifiers almost never
includes the entire set of voxels. Rather, it is common for
researchers to pare down the activity pattern to a smaller
subset of the available voxels (e.g., Haxby et al., 2001), a
low-dimensional or compressed representation of the vox-
els (achieved usually by PCA) (e.g., Strother, Anderson,
Schaper, Sidtis, Rottenberg, 1995), or both (O’Toole, et al.,
2005). There are important technical and statistical motiva-
tions for the selection or compression of the voxel input to a
classifier. One, in particular, is that the number of voxels is
very large by comparison to number of scans. This creates
a problem of over-fitting, whereby perfect classification can
be obtained for the learning set, because there are too many
free parameters (i.e. voxels) relative to the number of obser-
vations (i.e., scans). Because of this problem, the solution
obtained with a large number of parameters can fit a sam-
ple dataset, regardless of its relevance or generality across
other sample datasets extracted from the same population.

A second, related but more vexing, problem occurs when
the number of predictors is larger than the number of ob-
servations. This “multicolinearity” problem makes it im-
possible to invert the between-voxel covariance matrix, due
to the fact that it is not full rank. In practice, techniques
such as discriminant analysis or multiple regression analy-
sis fail in these cases. Both multicolinearity and over-fitting
problems can be handled by input conditioning (i.e., pre-
processing), cross-validation (see section below), or by a
combination of both.

Preprocessing or voxel selection is a common first step in
many pattern-based classification models of functional neu-
roimaging data. Methods for selecting voxels for input to a
classifier include the use of inferential statistics as a screen-
ing device for deciding which voxels merit further pattern-
based examination. For example, Haxby et al., (2001) ap-
plied an inferentially-based regressor to the raw f MRI voxel
activations to locate voxels that differed significantly across
the eight object categories he used. Cox and Savoy (2003)
used inferential statistics to target two subsets of voxels: a.)
all voxels that varied significantly over at least one cate-
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gory of object stimuli; and b.) functionally localized voxels
that discriminated significantly between object categories
and their scrambled controls. In both cases, this reduced in-
put dimensionality from several hundred thousand to a few
hundred, with the caveat that the classifier performance is
conditional on the set of voxels that vary significantly with
respect to some experimental condition variable(s).

Reduction of the dimensionality of the classifier input
using PCA-based compression is also a common prepro-
cessing method. A short digression is useful here to recall
that PCA produces a set of principal components derived
from the statistical structure of the set of brain scans. These
principal components form an orthogonal basis set of brain
response patterns, which can be ordered by the degree of
variance they explain in the set of scans. Because individ-
ual scans in the training/example set can be reconstructed
(exactly) as a weighted combination of the principal com-
ponents, it is possible to use these weights in lieu of the
vector of voxel activations as input to a classifier algorithm.

The use of these weights can vastly reduce the
“size/dimensionality” 7 of the input to the classifier in
two distinct ways. First, from a practical point of view,
full vectors of hundreds or even thousands of voxels can
be condensed to consist of vectors containing only the
weights of individual scans on the principal components
(i.e., discarding the PCs from further analysis). Second,
PCA is a dimensionality reduction technique in a more
generic sense, because the original scans can be approxi-
mated using only a subset of principal components—those
explaining relatively large amounts of variance in the
dataset. This further reduces the “size” of the input vector
by restricting the weight-based representation to contain a
smaller number of elements than the number of available
principal components 8 . The work of Hanson et al. (2004)
evaluating a non-linear hidden-unit neural network sug-
gests that the amount of data reduction possible for fMRI
studies is substantial.

As an example, Strother, Anderson, Hansen, Kjems,
Kustra, Sidtis, et al., (2002) used PCA compression to re-
duce input dimensionality and noted that it is particularly
helpful in reducing noise in the input, thereby boosting the
signal to noise ratio (cf., also Moeller & Strother, 1991). A
further example of this approach can be seen in the work
of Carlson et al. (2003) who selected a low dimensional
representation of the information contained in the voxel
activations by using the first 40 principal component axes.

7 The word size is used here because “dimensionality” could refer either
to the dimensionality or number of elements in an input vector (of either
voxels or weights) or to the true dimensionality of the problem, in more
mathematical terms (the rank of the covariance matrix).
8 This is equal to the rank of the matrix, which is less than or equal to
the lesser of n and m, where n is the number of voxels per scan and
m is the number of scans included in the PCA.

This representation allows for their knock-out procedure to
target individual PC axes of voxel activations rather than
single voxels.

Finally, an example of combining compression schemes
can be found in O’Toole et al. (2005), who used Haxby et
al.’s scheme to select significant voxels and then applied a
PCA compression in which they retained the PCs with the
most discriminative power.

In summary, pre-processing reduces the dimensionality
of the input and can attenuate noise in the signal. It can
also provide a convenient representation of the input (i.e.,
“eigenbrains”) with strong value for visualizing patterns of
brain activity that have discriminative power (cf., Figure
1c). On the less positive side, pre-processing can create sta-
tistical problems related to the exclusive use of a particular
sample of variables in deriving predictors (i.e., voxels or
PCs) of the experimental conditions.

Cross-validation

Cross-validation is the most commonly used method for
evaluating the accuracy and generalizability of results from
pattern-based classifiers. Cross-validation involves a sep-
aration of the available data into training and test set(s).
The quality of a trained mapping between brain activation
maps and experimental variables can be assessed, there-
fore, by evaluating the accuracy of the classifier on the
“left-out” test-set data. Versions of cross-validation proce-
dures include jackknifing, bootstrapping (Efron & Tibshi-
rani, 1993), and reproducibility resampling (e.g., NPAIRS,
Strother et al., 2002).

Cross-validation techniques are needed to evaluate the
generality of the results from classifiers, because these data
are not easily amenable to standard statistical inferential ap-
proaches. Specifically, as in any standard experiment, it is
important to know how well the system will perform on a
different sample. Experimental psychologists typically an-
swer this question by performing an inferential statistical
test (e.g., ANOVA). A “significant” result is interpreted as a
potentially “replicable” result. At present, there is no stan-
dard statistical practice for assessing the inferential valid-
ity of pattern classifiers (e.g., Duda, Hart & Stork 2001).
Cross-validation has been used, therefore, to address ques-
tions about the robustness and replicability of classifiers
across samples.

Although the generalizability problem has been consid-
ered extensively in the neural networks and machine learn-
ing literatures (cf., e.g., Duda et al., 2001, Ripley, 1996;
Hastie, Tibshirani, & Friedman, 2001; Bishop, 2006), brain
imaging data pose unique challenges. The most critical
problem to consider in implementing cross-validation on
spatially arrayed brain map data is the issue of temporal
structure of the data set. Specifically, the temporal struc-
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ture of experimental conditions combined with the hemody-
namic correlation among temporally contiguous scans (e.g.,
two scans performed closely in time will be similar for
reasons unrelated to the experimental condition) makes the
choice of training and test sets difficult and potentially sub-
ject to confounds. These sampling issues play out in differ-
ent ways for event-related versus block designs. Notwith-
standing, the temporal correlation problem must be taken
into account in implementing cross-validation procedures.
Strother et al. (2002) and LaConte, Anderson, Muley, Ashe,
Frutiger, Rehm, et al. (2003) discuss this issue in detail and
present a comprehensive approach to the problem for brain
imaging data.

Critical features of the classifiers

In what follows, we overview some important features of
classifiers applied to the analysis of functional neuroimag-
ing data. The section is meant to provide an accessible and
general entry into the kinds of classifiers used in this litera-
ture, with the caveat that more detailed statistical references
are available in other work (cf., Bishop, 2006; Duda, Hart
& Stork, 2001; Hastie et al., 2001; Ripley, 1996).

Assessing Brain Map Similarity
Nearly all classifiers operate on measures of the similar-

ity (or inversely, distances) among the stimuli to be classi-
fied. An important difference among pattern-based classi-
fiers is the way these distances are computed. In the func-
tional neuroimaging literature, computations vary from us-
ing simple correlations to compute brain map similarity
(e.g., Haxby et al. 2001; Spiridon & Kanwisher, 2002) to
comparisons based on multivariate representations of the
brain scans (e.g., Cox & Savoy, 2003; Strother et. al., 1998).

Similarity based on correlation
Classifiers that categorize inputs based on correlation

treat brain maps as patterns, but use only a fraction of the
data available in the patterns for classification. Correlation
provides a measure of the similarity of two patterns. The
contribution of any given voxel to the computation of sim-
ilarity is based on the deviation of its response from the
average response across voxels—a computation that can be
inordinately affected by the presence of outliers.

By comparison to voxel-based inferential approaches,
classifiers that categorize based on correlation increase the
quantity of information considered from n independent vox-
els to 2n. Specifically, as implemented in the classifiers we
have mentioned, correlation measures the accord between
the neural activity in two experimental conditions at the
same locations in the brain. The decision of whether a brain
activity map was generated during a particular experimen-

tal condition depends, therefore, on the combined estimate
of how similar the brain responses are across the n pairs of
location-matched voxels.

Similarity based on multivariate representations
Other pattern-based classifiers learn a mapping function

from a multivariate representation of the brain activity di-
rectly onto a variable indicating the experimental condition
from which the scans originate. The learning makes use
of “example” mappings from scans to experimental condi-
tions. Test data are computed on mappings that were not
part of the example data. The primary technical advantage
of multivariate representation is that a classifier can learn,
not only the discriminative power of individual voxels, but
also the dicriminative power of voxel combinations. Clas-
sifiers can seek, therefore, an “optimal” separation of cate-
gories in a multivariate space by finding a set of weights for
combining voxels to accurately predict experimental con-
ditions.

The substantive advantage of these classifiers is that they
make use of the relationship among responses at different
locations in the brain (cf., Cox & Savoy, 2003). Consider-
ing the covariance of all possible pairs of voxels in brain
activities, rather than attending selectively only to the pairs
located at corresponding brain locations (as in correlation),
effectively increases the information available for each mea-
sure from 2n in correlation, to n2 in a multivariate analysis.

Most of the classifiers used for functional neuroimag-
ing data analysis operate on a multivariate representation
of brain activity. These include SVM’s (e.g., Cox & Savoy,
2003), LDA’s (Carlson et al., 2003; O’Toole et al., 2005),
feed-forward neural networks (Hanson et al., 2004), and
PLS (McIntosh et al., 1996). To summarize, classifiers that
categorize based on correlation between brain maps (Haxby
et al., 2001; Spiridon & Kanwisher, 2002) operate on pat-
terns, but not in a multivariate space. Classifiers like LDA,
SVM, and PLS are pattern-based and have the advantage
of making use of the multivariate structure of the space in
categorization.

In choosing the parameters involved in implementing a
particular classifier, a reappearing principle for guiding the
reader through the next few sections can be summarized as
follows. If information is available and useful for classifi-
cation, but not used by a particular classifier, that classifier
is deficient by comparison to a better one that can exploit
the available and useful information. This says both noth-
ing and everything about which classifier to use. It says
nothing, because the true answer to the question of what
information is available and useful for classifying a partic-
ular dataset is entirely empirical. To find out what informa-
tion is available and useful, one has to implement classifiers
that exploit various kinds of information and see which one
works best.
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In the absence of the data one could gain by taking the
impractical route of implementing all possible classifiers,
an educated guess about an adequate classifier is needed.
This brings us to the second axiom. Implement the simplest
classifier able to effectively classify the data at hand, with
the caveat that the classifier be consistent with theoretical
notions about the nature of the information in neural codes.
Although beyond the scope of the present paper to justify,
we claim that there is more than ample evidence to suggest
that an important part of the neural code lies in the interac-
tion of brain response across different spatial locations in
the cortex. We recommend, therefore, that multivariate clas-
sifiers be the standard for functional neuroimaging analysis.

Linear or Nonlinear Classifiers?
Classifiers differ also in whether they are linear or non-

linear. This is a feature of the classifier algorithm itself.
Classifiers seek an “optimal” separation of categories in a
space by finding a set of weights for combining voxels. Suf-
fice to say that in geometric terms, linear classifiers work
in a representational space to find the best (hyper)-plane for
separating the scans by condition. Non-linear classifiers can
bend this (hyper)-plane in various (classifier-limited) ways
to seek a better separation of scans by condition.

We re-iterate that it is impossible to know, a priori, what
kind of surface is needed to classify brain maps in any given
dataset. So, for linear versus non-linear, we recommend the
following approach. Start with a linear classifier. If it fails,
try a nonlinear classifier. Failure means that accuracy is ei-
ther not above chance or is seriously below the accuracy
humans achieve on the best-fit analogous task. Human ac-
curacy is sometimes at ceiling in functional neuroimaging
tasks, (e.g., we assume that humans never misclassify com-
mon objects). In many other cases, however, human accu-
racy varies by condition, so perfect accuracy in all condi-
tions may not be a sensible goal for a classifier.

On the question of whether classifiers should be make
use of the multivariate features of the data, we argued that
there are ample data to support the view that at least some
part of the neural code resides in interactions among neural
activity at different locations in the brain. For the question
of whether or not important principles of neural coding will
be missed without considering nonlinear dividers between
brain states, the literature is less clear. Two things are cer-
tain. First, if a linear classifier works to levels of accuracy
that are theoretically acceptable for a given problem, with-
out a theoretically motivated reason for seeking a nonlinear
separator, there is little to be gained by using a nonlinear
classifier.

Second, if linear separation does not work up to expec-
tations, nonlinear classifiers are an available and sensible
alternative. We cannot think of neural data that preclude
brain state separation by nonlinear dividers. In this case, the

best practice is to compare classifiers. The approach of Cox
and Savoy (2003) comparing several classifier algorithms
for the task of separating object categories from a func-
tional neuroimaging experiment serves as a good example.
They implemented three classifiers (LDA, SVM, and a cu-
bic polynomial SVM classifier). LDA and SVM are linear
classifiers, whereas the cubic polynomial SVM is a nonlin-
ear classifier. The output of the classifier was a prediction
of the object category viewed while the scan was taken.
Cox and Savoy did not find a performance advantage for
the nonlinear cubic polynomial SVM over its linear coun-
terparts. There are several interpretations of for this lack of
difference, including the possibility that the neural signal
itself is linearly separable by object category or that the cu-
bic polynomial function failed to capture the true nature of
the decision boundaries.

Representational Spaces or Not?
Analyses that use representational spaces, (e.g., based

on PCA, Carlson et al., 2003; O’Toole et al., 2005, ICA, or
multi-layer feed-forward networks (Hanson et al., 2004) of-
fer some advantages over direct voxel-based classifiers (e.g.,
SVM or LDA alone). Perhaps the primary one is that repre-
sentational spaces allow for a richer analysis of the pattern-
structure of functional neuroimaging brain maps than direct
voxel-based classifiers. They also allow for visualization of
brain states that are proven to be relevant for classifying by
scans by experimental condition. This puts the interpreta-
tion of brain activity patterns on firmer ground.

Going from good to better to best, the following sums
up the popcorn trail a classifier leaves behind when it is
successful for classifying brain states. Classifiers based on
correlation leave no popcorn trail for interpretation, beyond
that available from the average brain map in each condition.
In their simplest implementation, direct voxel based classi-
fiers like LDA and SVM leave behind a pattern of weights
that specifies how to combine the voxels to predict condi-
tion. Weights with larger absolute values are more impor-
tant for the classification than weights closer to zero.

Classifiers that operate on a representational space leave
behind a set of patterns and a set of corresponding weights
indicating the importance of each of the patterns in predict-
ing experimental condition. As noted, some of these pat-
terns will be useful for predicting experimental condition
and some (artifactual or simply unrelated to experimental
manipulation) will not be useful. Representational spaces
can prove helpful in understanding the dimensionality and
complexity of the brain task being undertaken (see Hanson
et al., 2004 for an excellent discussion of dimensionality
reduction). Further, as illustrated by Carlson et al. (2003),
there are important advantages in being able to selectively
manipulate whole patterns linked to performance in a task,
with the goal of assessing the side effects of deletion on
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other tasks.
On the downside, representational spaces add complex-

ity to the analysis that may or may not be helpful in an-
swering the experimental questions at hand. This returns us
to the principle “implement the simplest classifier able to
effectively classify the data at hand with the caveat that the
classifier be consistent with theoretical notions about the
nature of the information in neural codes”.

Challenges for pattern-based classifiers in functional
neuroimaging analysis

Keeping inferential analyses in the picture

Researchers in the behavioral sciences are trained to
embrace inferential statistics with great fervor—with good
reason (Cohen, 1994). A major challenge ahead is to de-
velop and standardize inferential methods for the pattern-
based classifier methods in ways that solidify and comple-
ment current cross-validation approaches. Inferential meth-
ods are ultimately the best approach, when they can be ap-
plied appropriately. However, the application of a quanti-
tatively sound analysis to the correct data is preferential to
an application of inferential analyses to the incorrect type
of data. Individual voxels are the wrong unit of analysis for
functional neuroimaging.

Pattern-based classification results have been tested in-
ferentially with a number of methods. At least two routes
have been proposed and implemented. The first route mea-
sures the stability of the brain patterns contributing to the
prediction (e.g., McIntosh et al., 1996) and the second mea-
sures the stability of classifier performance across partici-
pant brains.

For the first, PLS regression, as introduced to the brain
imaging community by McIntosh et al. (1996), was de-
scribed with an accompanying bootstrapping procedure for
testing the inferential stability of the latent vectors (simi-
lar to principal components). Dedicated users of PLS typ-
ically employ this type of inferential analyses, as a matter
of course.

Another way to test pattern-based classifiers inferentially
is to apply inferential analyses across participant brains, to a
measure of classifier success in different experimental con-
ditions. As noted, classifier success is measured by experi-
mental condition in much the same way as it is for human
participant success—with a percent or number correct per
condition. Applied to the brains of individual participants,
classifiers can yield data that are structurally analogous to
data from behavioral experiments (cf., O’Toole et. al., 2005,
for an example), allowing for a direct comparison between
behavioral and neural data. The primary weakness of this
approach is that the extracted measures do not necessarily
refer to brain activations that are at the same anatomical

locations in the brains of different participants.
To retain staying power, an acceptable standard of in-

ferential analyses for the results of pattern-based classifiers
will ultimately need to emerge. In the interim, we stress
that inferential analysis of voxels, though statistically rig-
orous, is based on such a small proportion of the available
data from functional neuroimaging experiments and is not
guaranteed to provide a meaningful assessment of the data.

So many pattern-based classifiers!

The science of pattern recognition has flourished for
decades in engineering, statistics, physics, and cognitive
science. Relatively minor classifier refinements that im-
prove performance in an engineering or computer applica-
tion from excellent to perfect performance are noteworthy
in these literatures (e.g., face and fingerprint analysis), but
are potentially an enormous distraction for the emergent
use of these methods in functional neuroimaging analysis.
A challenge for this field will be to stay on task and to
use classifiers that get the job done without forcing the re-
searcher into too many unwarranted assumptions. The job is
to link patterns to experimental variables in ways that cap-
ture as much of the richness and complexity of the neural
code as possible. Used in this least-common-denominator
way, pattern-based classifiers can be used to address ques-
tions about neural codes, avoiding the potential pitfall of
using neural codes to address questions about the quality of
pattern-based classifiers. In no way do we wish to suggest
that all classifiers are equivalent—they are not. We suggest
only that achieving the highest possible level of classifi-
cation accuracy may be less important in many functional
neuroimaging applications than arriving at understandable
and transparently interpretable solutions to the problem of
separating brain states.

Concluding remarks

A large part of the appeal of pattern-based classifiers for
the analysis of functional neuroimaging data is the claim
that they are acting like “brain-readers.” This is a real
change in experimental question from previous approaches.
We have argued in the context of the recent literature on
face and object processing that pattern-based prediction has
advanced our understanding of the neural coding principles
underlying high level visual representations of faces and ob-
jects. This is true even if there is still controversy about the
answers to these questions. The most important outcome of
the use of classifiers in the face and object processing area
is that it is making researchers think in new ways about
the representation questions. This extends the appeal of the
brain-reading metaphor beyond prediction and will be of
long-term value to cognitive science.
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In summary, pattern-based classifiers make a fundamen-
tal technical advance in the state of the art by linking pat-
terns of brain activity to experimental design variables. In
the context of appropriately framed questions, these analy-
ses open a door toward advancing functional neuroimaging
studies beyond cortical localization toward questions that
offer insight into neural codes. The time is ripe for allowing
these analyses to replace the status quo.
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